
Classifying Infection Stages in Patients with
Ventricular Assist Devices

Master’s Thesis

Noël Lüneburg
s1773135

Internal Supervisor:
Dr. Marco Wiering (Artificial Intelligence, University of Groningen)

External Supervisor:
MSc. Sybren Jansen (Target Holding B.V., Atoomweg 6B, Groningen)

Artificial Intelligence
University of Groningen, The Netherlands

Abstract

Deep learning has made large steps forward in the image processing field, including in
highly specific medical cases. Skin infections are a common problem in patients with a
heart assist device. The research in this thesis focuses on classifying skin infections by
making use of recent deep learning advancements. A semantic segmentation convolu-
tional neural network was trained to identify objects in the images unrelated to infection
status. A small and imbalanced data set formed one of the challenges. In addition to
affine transformations, generative adversarial networks (GANs) were used to generate
training data as a form of data set augmentation, artificially increasing the size of the
data set. Results show that applying segmentation masks of irrelevant objects to images
during the classification step does not improve classification performance. Images sim-
ilar to the training data were generated by a GAN. However, the available data set was
likely too small for GANs to be used as data augmentation. Classification results show
that infection class prediction based solely on external photos is a difficult problem, as
confirmed by a validation experiment with medical experts.

ii

Contents

Contents iv

1 Introduction 1
1.1 Project scope . 1
1.2 Deep learning applications . 1

1.2.1 Infection classification . 2
1.2.2 Data set augmentation . 2
1.2.3 Segmentation . 2

1.3 Research questions . 3

2 Theoretical background 4
2.1 Convolutional neural network . 4

2.1.1 Padding . 5
2.1.2 Pooling . 5
2.1.3 Global pooling . 5
2.1.4 Transposed convolution . 6
2.1.5 Dilated convolution . 6
2.1.6 Activation functions . 6
2.1.7 Inception v3 . 7

2.2 Segmentation . 7
2.2.1 Felzenszwalb segmentation . 8
2.2.2 Kuwahara filter . 9
2.2.3 U-net semantic segmentation . 9
2.2.4 Dice score coefficient . 10

2.3 Generative adversarial network . 11
2.3.1 Deep convolutional GAN . 12
2.3.2 Fast conditional GAN . 13
2.3.3 Inception score . 14

3 Data set 15
3.1 Labelling method . 15
3.2 Region of interest . 16
3.3 Segmentation masks . 17

3.3.1 Train and test partitioning . 17

4 Methods 18
4.1 Unsupervised segmentation . 18

4.1.1 Felzenszwalb segmentation . 18
4.2 Supervised segmentation . 19

iii

CONTENTS iv

4.2.1 U-net . 19
4.2.2 Driveline tube segmentation . 19
4.2.3 ROI segmentation . 20
4.2.4 Dice score coefficient . 21

4.3 Generative adversarial networks . 21
4.3.1 DCGAN . 21
4.3.2 Latent space interpolation . 22
4.3.3 Baseline configuration . 22
4.3.4 FC-GAN . 22
4.3.5 Quality of generated samples . 23
4.3.6 Training a classifier with GAN augmentation . 23

4.4 Data augmentation . 24
4.5 Infection type classification . 24

4.5.1 Inception v3 pretrained . 24
4.5.2 Applying driveline segmentation masks . 26
4.5.3 Inception v3 finetuning . 26

5 Results 28
5.1 Segmentation . 28

5.1.1 Felzenszwalb driveline segmentation . 28
5.1.2 U-net driveline segmentation . 28
5.1.3 U-net ROI segmentation . 29

5.2 Generative adversarial networks . 30
5.2.1 DCGAN experiments . 30
5.2.2 FC-GAN experiments . 34

5.3 Infection classification . 34
5.3.1 Inception v3 pretrained . 34
5.3.2 Inception v3 finetuned . 37

6 Conclusion 39
6.1 Segmentation . 39

6.1.1 Unsupervised segmentation . 39
6.1.2 Supervised segmentation . 39

6.2 Data augmentation . 40
6.3 Generative adversarial networks . 40
6.4 Infection classification . 40

Acknowledgments 42

Bibliography 47

List of Tables

3.1 Distribution of labelled image samples. 15
3.2 Image statistics of annotated samples. 17

4.1 Baseline hyperparameters for U-net semantic segmentation experiments. 20
4.2 Baseline hyperparameters for the DCGAN architecture. 23

5.1 Results of U-net configurations on the segmentation validation set which contains 29
images. 29

5.2 Results of multiple infection classification configurations on repeated stratified 10-fold
cross-validation using a pretrained Inception v3 network in combination with a logistic
regression classifier. 36

v

List of Figures

2.1 Abstract visualization of a regular convolution. Taken from [8]. 5
2.2 Transposed convolution with a 3x3 kernel. Taken from [8]. 7
2.3 Dilated convolution. Taken from [8]. 7
2.4 Inception v3 architecture. 8
2.5 Felzenszwalb nearest neighbor graph-based example. Taken from [10]. 9
2.6 U-net architecture. Taken from [43]. 10
2.7 Simplification of a generative adversarial network. 13

3.1 Examples of manually cropped photos for each type of infection. 16
3.2 Example of a region of interest visualization. 16
3.3 Example of a region of interest segmentation output mask. 16

4.1 Relation between image size and infection classification accuracy in cross-validation
using a pretrained Inception v3 feature extraction network. 25

4.2 Relation between number of images in the training set and infection classification ac-
curacy in cross-validation using a pretrained Inception v3 feature extraction network. . 25

5.1 Examples of driveline segmentation masks from (a) Felzenszwalb and (b) U-net. 30
5.2 Examples of U-net segmentation masks in a multi-class setting (three classes). 31
5.3 Generated samples from the DCGAN baseline at multiple stages during training. 32
5.4 Generated DCGAN samples from multiple configurations after 12000 iterations of train-

ing. 33
5.5 DCGAN baseline cross-entropy error during training. 33
5.6 Samples generated from high resolution DCGAN (192x192) after 46000 iterations. . . 34
5.7 Latent space spherical interpolation between two generated samples from DCGAN at

192x192 resolution. 34
5.8 Samples generated by the FC-GAN architecture after 50000 iterations at a resolution

of 64x64. 35
5.9 Examples of random affine transformations applied to a single image. 35
5.10 Confusion matrices of 10 times 10-fold CV on infection classification with an augmen-

tation factor of 2. 37
5.11 Confusion matrices on the evaluation set of 139 images for two stages of Inception v3

finetuning. 38

vi

Chapter 1

Introduction

Patients with severe heart conditions find themselves in life threatening conditions. A heart transplant
is an extreme but possible treatment option. Not all patients qualify for a heart transplant due to the
reason that there is only a limited number of donor hearts available at any given time. A left ventricular
assist device (LVAD) is a common alternative for a heart transplant, either as a temporary solution or
as a lifelong solution, termed destination therapy [39].

One of the major issues with LVAD implants is the driveline exit site, which is susceptible to skin
infections [56]. Different stages of infections exist, from minor to severe. It is important to moni-
tor infection status in LVAD patients as a severe infection can be fatal if left untreated for too long.
Monitoring of driveline exit site infections is done in specialized clinics. Long travel time to clinics is
one of the main disadvantages of the current monitoring process. Therefore, a significant increase in
patient quality of life could be realized by a telemonitoring approach [42], in which patients would
be monitored remotely for potentially developing infections.

1.1 Project scope

A concrete case for LVAD infection classification was created as part of the international ITEA Medo-
lution project1. Within this project, colleagues from Target Holding2 and myself cooperated with
Schüchtermann-Schillersche Kliniken and Medical School Hannover’s department of Cardiothoracic,
Transplantation and Vascular Surgery. The LVAD case revolved around automatically classifying LVAD
patient photos (taken by a mobile device for example) in order to provide decision support for the
doctors. All data used in the experiments was provided by the heart clinics and an interactive setting
was created between medical experts and machine learning engineers.

1.2 Deep learning applications

Before deep learning became popular, machine learning methods such as the support vector machine
and multi-layer perceptron were widely used in medical applications supported by artificial intelli-
gence [31]. Deep learning approaches started gaining popularity in the medical field around 2016
[26].

1http://medolution.org/
2https://www.target-holding.nl/?lang=en

1

1.2.1 Infection classification

One of the requirements for training very deep networks is a large labelled data set. In highly spe-
cific medical cases a large data set is often not available or the distribution of class labels is highly
imbalanced. Two common methods for applying deep learning to smaller data sets is to use transfer
learning [54] or data set augmentation [21, 38]. In transfer learning, a neural network which has
been trained on a specific data set is used in combination with a different data set. This allows for
applying a very deep network to a smaller data set if it has been pretrained on a larger data set. To
overcome the difference in class labels or features of the data, the model may be finetuned, where a
pretained model is further trained on the target data set.

No research was discovered with regard to deep learning applications in LVAD infection classifica-
tion. An instance of related research focuses on infection classification of general wounds in a binary
setting [51]. Cases related to skin infection classification often researched in the machine learning
medical field include skin lesions such as melanomas and carcinomas [32]. This type of research
focuses on dermoscopic image data, which entails a standardized image structure [5]. In skin lesion
research, convolutional neural networks (CNNs) have been applied as feature extractors, separate
from a classification model [16, 30]. Other research on skin lesion classification makes use of transfer
learning applied to a pretrained CNN classifier [28]. In a three-class setting, a CNN model trained on
a large data set of 129,450 images, has been shown to be capable of outperforming a human expert
in skin cancer classification [9].

1.2.2 Data set augmentation

Data set augmentation is a method of artificially extending a training data set by using label-preserving
techniques. Next to transfer learning, data augmentation is one of the main techniques used to over-
come the scarcity of medical data sets [32]. Successfully applying image data augmentation requires
some insight into the training data as to how the data can be manipulated without affecting the la-
bels. If a classification problem includes determining whether an object on a table surface is upright
or laying down then augmentation by rotating training images would be ill-advised.

A separate branch of deep learning models, called generative modeling, may be used as a form
of data augmentation [34]. Generative adversarial networks (GANs) [11] can learn the underlying
distribution of a data set and can therefore be used to generate unique data samples which are similar
to the original training samples. GAN data augmentation has been successfully applied in skin lesion
segmentation research [1]. The authors make use of a conditional GAN image-to-image translation
network [13, 37], to generate training data conditioned on the ground-truth segmentation masks of
the same training data.

Additional steps have to be taken to generate labelled generated samples using GANs, in order to
be useful in classification applications. Alternatively, data augmentation can be realized by combining
a GAN with a classifier in a semi-supervised setting [44].

1.2.3 Segmentation

In addition to classification, semantic segmentation is an important topic in the medical field, which
can be used to localize areas of interest or, for example, to determine the shape of melanomas [46].
In semantic segmentation, each pixel in an image is assigned a specific class. This is one level of detail
lower than instance segmentation, in which separate objects within a class are identified. Semantic
deep learning CNN segmentation networks have been shown to be capable of accurate segmentation
performance in highly specific tasks [43]. In the case of LVAD patients infection classification, segmen-
tation can be applied in two approaches. The first approach attempts to separate skin from non-skin

2

objects, allowing the classification network to focus only on the relevant areas of an image. The sec-
ond approach aims at predicting regions of interest, such that the majority of irrelevant background
features can be ignored by a classifier. An example of the second approach is given in [51], which
combines wound segmentation and infection classification. The wound segmentation CNN here con-
sists of an encoder-decoder architecture. This allows for using the high-level features extracted during
segmentation to be used for infection classification by a separate classifier. The high-level features of
the segmentation network may not be suitable for infection classification, as the authors of [51] report
a binary F1 score of 0.348.

1.3 Research questions

The main contribution of this thesis is an attempt at achieving human-level performance on infection
type classification in LVAD patients by building on the state of the art of existing deep learning models.
To support the main goal, this thesis attempts to answer the following research questions:

1. What increase in performance of the classifier is realized by augmenting the data with artificial
images by using geometric transformations or a generative adversarial network?

2. What increase in performance of the classifier is realized by semantically segmenting the visible
driveline tube from patient photos?

Throughout this thesis a subdivision is made into the topics classification, segmentation and aug-
mentation. In Chapter 2 the theoretical background of relevant methods and models is described.
Chapter 3 describes the properties of the image data set. Chapter 4 contains descriptions of exper-
iments and configurations of models. Chapter 5 lists and analyzes the results of the experiments.
Finally, Chapter 6 contains the conclusions drawn from the experiments and remaining future work.

3

Chapter 2

Theoretical background

2.1 Convolutional neural network

The individual features in highly dimensional data samples are often related in some way. In time
series data, the sequence of features within a single data point has a temporal relation. In 2- or 3-
dimensional image data the features are spatially related. A convolutional neural network (CNN) is
suited for these types of data as a convolution kernel is a temporal or spatial representation of a local
receptive field.

A CNN contains a number of convolution layers. Within a convolution layer a number of filter
kernels of a particular size are convolved with the input to the layer. The output of a convolution layer
in the discrete domain is computed by calculating the cross-correlation between each filter kernels and
the layer’s input [8]. A filter kernel is repeatedly applied to different positions in the input structure to
compute local features across the full input structure. The method of repetition is determined by the
kernel’s stride. For each dimension of the input data, a stride value of 1 ensures that the filter kernel
is centered on each element of the input data. Higher stride values result in fewer applications of
the filter which could cause the kernel to skip over potentially important features in the input. When
considering a multi-layered CNN a higher stride value in a particular convolution layer effectively
increases the receptive field of the later layers of the network by reducing the output dimensions. The
size of a filter kernel determines the receptive field of the current convolution layer; the area of the
input data that can be captured inside a single kernel. The output dimensions of a convolution layer
are determined by the filter kernel’s stride and size. For any dimension of the input the following
relation holds [8]:

o= b
i−k

s
c+1 (2.1)

where o is the output size, i is input size, k is the filter kernel size and s is the kernel stride. Given
a two-dimensional input image the output dimensions are then given by D= {Ow,Oh,N}, where Ow
and Oh are the output sizes obtained by applying (2.1) using the width and height dimensions of the
input image. N is the number of output feature maps and is determined by the number of kernel
filters present in the convolution layer. A visualization of a convolution for the case of i = 4, k= 3,
s = 1 and o = 2 is given in Figure 2.1. In the image domain the term 2D convolution is used even
though the computations are usually done on 3D input, where the third dimension represents either
the color channels of the input image or the feature maps in higher layers. Each kernel applied in
2D convolution layers has an additional dimension which contains weights for each channel of the
input. The 3-dimensional result of applying a single kernel to each input channel is then summed
along the channel’s dimension to create a single output channel. Convolution layers can be applied
to data samples of three dimensions or higher following the same methods as described here. In this
thesis only image-based 2D convolutions are discussed.

4

Figure 2.1: Abstract visualization of convolving a 4x4 single channel, non-padded image with a 3x3
kernel resulting in a 2x2x1 feature map output. Taken from [8].

2.1.1 Padding

When a convolution layer with a stride of 1 is applied to an input image, the size of the resulting
feature map will be smaller than the input image, as indicated by Equation (2.1). To overcome this
change in size padding can be applied to the input image. This is a method of adding additional pixels
to the edges of an image to artificially increase its size.

In CNN architectures which try to preserve input size, a popular method is to use zero padding
which pads an image with values of zero. This can create artefacts in the feature maps, especially
when combined with a small kernel size and small input size. When a substantial area must be added
to an image, reflection padding is likely more realistic than zero padding [55]. Reflection padding
adds pixels by mirroring the pixels about each edge.

2.1.2 Pooling

Pooling operations can be used in sequence with convolution layers. A pooling operation functions
as a sliding window method similar to a convolution kernel, although a pooling window has no in-
ternal weights. Instead, only the window size and stride are parameterized, in combination with an
aggregation function that produces a single value, such as the maximum or average. An intuitive rep-
resentation of a (max) pooling layer is that of translation invariance. By reducing the spatial features
within a pooling window to its maximum, the information about the most important feature in the
window is kept while the information pertaining to the exact location of the feature is discarded. For
this reason, max pooling operations are often configured with stride s and window size k as s= k to
avoid overlap.

2.1.3 Global pooling

In a classification CNN the feature maps eventually have to be connected to a representation of the
possible class outputs. This can be realized by connecting the last feature map to an output vector
with a fully connected structure. Each element in the output vector represents the prediction value
for a particular class. A fully connected layer has many learnable weights. In addition, a fixed input
size is required for the fully connected layer which in turn means a fixed input size is required for the
convolutional layers. A fully connected layer can be substituted for a global pooling layer. Instead
of aggregating areas in a feature map using a sliding window, a global pooling operation aggregates
each feature channel to a single value, reducing a 3D feature map to a 1D vector, where its length is
equal to the number of channels in the feature map. Global pooling requires no parameters (except
for the aggregation function) as opposed to a fully connected layer. Because the aggregation function
converts an arbitrary number of values to a single element in the output vector the network’s input
size can be variable.

5

2.1.4 Transposed convolution

In a CNN which consists only of regular convolution layers with no padding, the width and height of
the feature map output of each subsequent layer decreases in size, resulting in a high level dense rep-
resentation of features at the output of the network. In some applications it may be desirable to apply
convolution in the opposite direction, where high level representations are converted into formats
that are more similar to the input of a CNN. This type of convolution is called transposed convolution
(sometimes incorrectly referred to as deconvolution [8]), illustrated in Figure 2.2. In a transposed
convolution layer the kernel is defined as usual, however, the forward pass and backward pass are
swapped. For any given combination of input and convolution kernel, the convolution operation can
be described as a matrix A which is multiplied with the input x to create output y:

y= Ax (2.2)

During backpropagation the transpose of the matrix, AT , can be used to compute the gradients of the
kernel weights [8]. The forward pass of a transposed convolution layer can be described as y= AT x.
During backpropgation the transposed matrix then becomes (AT)T = A.

2.1.5 Dilated convolution

Dilated convolutions, also referred to as atrous convolutions consist of regular convolution kernels
which contain empty spaces. Intuitively, the kernel is "stretched out" across a larger area, see Fig-
ure 2.3. The size of the gaps in the kernel is controlled by the dilation rate. By using a dilated
convolution layer instead of regular convolution some information from the input is lost, however, as
a single kernel can cover a larger area of the input, the receptive field is increased. A similar increase
in receptive field can be realized by chaining multiple regular convolution layers, at the cost of a larger
number of learnable kernel weights.

2.1.6 Activation functions

The usage of non-linear activation functions allows a neural network to learn non-linear functions. In
addition, they may perform a type of regularization by squashing the output of a node in a network
to a specific range.

A standard approach for setting up a multi-class classification network is to include one output
node for every possible class label. Common objective functions such as the cross-entropy / negative
log likelihood require output probabilities per class instead of values in an unbounded range. To
satisfy this requirement, a popular choice is to apply the softmax normalization function to the output
node activations y:

f (yi) =
e yi

∑

e y j
(2.3)

Rectified linear unit

In CNN architectures the rectified linear unit (ReLU) [33] is a popular activation function. It is a
piecewise linear function that is described as f (x) = max(0, x). Its derivative is easy to compute
and it does not squash extreme input values to a very narrow range unlike the sigmoid function for
example. When x <= 0, the derivative of the ReLU is 0, which could prevent useful weight updates
during network optimization. A variant of the ReLU that does not have this property is the leaky
ReLU [53], which defines a slope in the negative region:

f (x) =

¨

x if x > 0

ax otherwise
(2.4)

6

Figure 2.2: Transposed convolution. Note
that the bottom part represents the input and
the upper part the output. The image size is
effectively increased by a transposed convolu-
tion. Adapted from [8].

Figure 2.3: Dilated convolution. The dark
blue pixels indicate a 3x3 kernel with a dila-
tion factor of 2. Taken from [8].

where a> 0 is a constant that controls the steepness of the slope.

2.1.7 Inception v3

A popular CNN architecture in the deep learning image processing field is the Inception v3 network
[50]. A schematic of the architecture is display in figure 2.4. The network started as GoogLeNet [49]
which was a computationally and memory efficient implementation of a deep CNN compared to earlier
deep CNNs. The Inception architecture makes use of Inception modules which allows convolutions of
multiple kernel sizes to be applied to a feature map in parallel, in addition to pooling. The results
of each branch in this parallel structure are then concatenated to form the output of an Inception
module. 1x1 convolutions are used to support depth-wise relations, as opposed to spatial relations
which are learned using larger convolution kernels. Improvements to the Inception module include
factorization of convolutions for computational efficiency [50]. In addition to Inception modules,
the Inception architecture contains an auxiliary output, used to prevent vanishing gradients during
training.

2.2 Segmentation

Segmentation in image processing refers to the method of grouping the pixels of an image into one or
more components which each contain a visually similar region of the image. The pixels within each
region do not have to form a single connected component.

Image segmentation can be done using unsupervised or supervised methods. Unsupervised seg-
mentation is a form of clustering since the data samples (pixels) are grouped together based on re-
lations in some color space. Examples of unsupervised segmentation algorithms include k-means
segmentation [29], Felzenszwalb graph-based segmentation [10] and active contour models [15].

7

Figure 2.4: Inception v3 architecturea. Inception modules are identified by sections of parallel
branches.
a Source: https://github.com/tensorflow/models/tree/master/research/inception

Supervised segmentation methods consist of training a model with ground-truth segmentation
examples. The term semantic segmentation is used when a model outputs a class label for each pixel
in the input image. Neural network approaches are popular for semantic segmentation. Example
methods include fully convolutional neural networks (FCNN) [27], optionally in combination with
conditional random fields [4] or visualized as a U-shaped network containing cross-connections be-
tween distant layers in the network [43].

2.2.1 Felzenszwalb segmentation

The Felzenszwalb algorithm [10] is a greedy graph-based segmentation method. It attempts to make
use of local and global properties in the image to decide appropriate segmentation boundaries.

An image can be represented as a graph containing vertices connected via weighted edges. Each
vertex is a pixel and the weight of each edge is a similarity measure between two connected pixels.
The vertices of the graph can be grouped into components, such that each component is a subset of
the initial graph. A pair of separate components, C1 and C2 can be compared to decide whether they
should be merged based on inter-component and intra-component differences. The internal difference
of a single component C is defined as:

Int(C) =max
i

w(Ei) (2.5)

where E is the set of edges within the minimum spanning tree of component C and w(Ei) is the
weight of edge i in C . In regular terms, the strongest edge in the component graph determines the
internal difference. The difference between two components is defined as:

Dif(C1,C2) = min
vi∈C1,v j∈C2

w((vi , v j)) (2.6)

where w((vi , v j)) represents the weight of a given edge that connects the two components. The inter-
difference formulation is less intuitive than the intra-difference equation, however, the authors of
[10] remark that the minimum operator works well here. The decision function M for merging two
components C1 and C2 can now be defined as:

M(C1,C2) =

¨

false if Dif(C1,C2)> S(C1,C2)
true otherwise

(2.7)

8

Figure 2.5: Example image and output segmentation mask of the Felzenszwalb algorithm. Each
separate component is given its own unique color. Note that the colors are semantically irrelevant
here as there are no class labels. Taken from [10].

where S is the minimum internal difference:

S(C1,C2) =min(Int(C1)+τ(C1), Int(C2)+τ(C2)) (2.8)

where τ is a threshold function based on the size of the component, such that τ results in a higher
value for larger components. Without the threshold function a component containing a single element
(pixel) will have no internal edges and therefore Int(C) = 0. The strength of τ can be altered via a
scaling parameter, which represents a bias towards larger or smaller components in the segmentation.

The Felzenszwalb algorithm is initialized by grouping each pixel into its own component and then
iteratively merging components using the merge decision function described in Equation (2.7). Edges
are initialized by using a fixed number of nearest neighbors in the feature space ((r, g, b) in the case
of color images). An example image and its computed segmentation mask is shown in Figure 2.5.

2.2.2 Kuwahara filter

Unsupervised segmentation methods may be sensitive to strong variations in contrast not consis-
tent across multiple images. To prevent these local peaks in contrast, the Kuwahara edge-preserving
smoothing filter [23] can be applied to each image. The Kuwahara filter applies smoothing to visually
coherent regions, yet prevents smoothing edges.

2.2.3 U-net semantic segmentation

U-net [43] is an extension of a deep FCNN. As such, its architecture makes a distinction between an
expanding path and a contracting path. Beyond the standard FCNN architecture, U-net introduces
cross-connections which are direct paths between levels of the expanding and contracting sections of
the network. An illustration of the architecture is given in Figure 2.6.

The contracting part of U-net is similar to a regular CNN in which an image with few channels is fed
through a series of pooling and convolution layers resulting in a small spatial image containing many
channels. In a regular CNN, the output of a series of convolutions and pooling operations is usually
connected to a classification output structure via a fully connected layer or a global pooling layer
(see also Section 2.1.3). In U-net a mirrored version of a contracting network is concatenated, which
features either transposed convolutions (Section 2.1.4) or upsampling operations (refer to Section
2.3.1 for a comparison of the two methods). These upsampling blocks allow the network to learn to
convert a dense feature map into an image-like object.

The cross-connections connecting the contracting path and expanding path are a concatenation
operation in which the output from lower level convolution layers is directly concatenated to the input
of one of the upsampling convolution layers. When regular non-padded convolutions are used in the
contracting path then the dimensions of the feature maps on either side of a cross-connection are not

9

Figure 2.6: U-net architecture of five levels deep designed to accept single-channel input of 572x572
resolution and outputs a 388x388x2 segmentation mask. The left side of the figure consists of the
contracting path and the right side consists of the expanding path. The architecture features four
cross-connections connecting the convolutional blocks of both paths at multiple levels. Taken from
[43].

equal, requiring cropping before concatenation as displayed in Figure 2.6. When the input of each
convolution layer is padded to ensure identical output size, no cropping is necessary.

2.2.4 Dice score coefficient

To measure the quality of overlap between two binary sets a number of different metrics are available.
This section will describe the Dice score coefficient [7] (DSC) with regard to image segmentation
quality assessment.

The binary DSC for two sets A and B can be formalized as:

DSC(A,B) =
2 |A∩B|
|A|+ |B|

(2.9)

which is identical to the F1 score and very similar to the Jaccard index (J), also known as the intersec-
tion over union (IoU). The two metrics both result in a value of 1 for a perfect match and a value of 0
when the two sets are completely disjoint. In-between the extremes they are related via DSC = 2J

(J+1)
[45].

The Dice score coefficient can be used to assess image segmentation quality in terms of sets of
pixels. Intuitively, the DSC measures the amount of overlap between ground truth and a segmentation
mask. The DSC can be applied to multi-class segmentation settings, termed DSC+, by combining the
Dice score for each class independently:

DSC+=
N
∑

n=1

wnDSCn (2.10)

10

where DSCn is the Dice score coefficient of class n and wn is the class weight. This is a form of the
generalized Dice score coefficient [48]. To make sure a value in the range [0,1] is obtained, the class
weights must sum up to 1. For equal class weights, wn = 1/N . Adjusting class weights can provide
a more balanced performance measure when the class labels are imbalanced, as is often the case in
semantic segmentation problems.

The DSC can also be used as an objective function. As objective functions are often minimized the
complement, 1−DSC+, can be used. This is called the soft Dice loss, as the output of a model is used
directly in the calculation of the DSC instead of first applying the ar gmax operation to determine the
predicted class for each pixel.

2.3 Generative adversarial network

A generative adversarial network (GAN) [11] is a network structure designed to capture the distri-
bution of a data set and to allow sampling from the learned distribution in order to generate unique
samples that are similar to the samples in the data set.

A GAN consists of two specialized networks which are connected, a generator and a discriminator,
see Figure 2.7.

The generator network is designed to output a data sample. The network itself is deterministic
(assuming no application of techniques such as dropout [47]). The properties of a generated sample
are determined by the input of the generator, which is a noise vector sampled from what is called a
latent space. The latent space can be implicitly leveraged by the generator to group high-level features
together. A generator G thus maps a variable sampled from a latent probability distribution, z∼ pz,
to a learned target distribution via G(z). Another variant of a generative model which uses a latent
space is a variational autoencoder (VAE) [18]. In a VAE sampling from the latent space is done with
parameters of a distribution whereas in GANs the latent space is discrete. VAEs often lead to more
blurry generated samples when compared to GAN generated samples. A combination of the two
model types is also possible, where the generator of a GAN is replaced with a VAE encoder-decoder
structure [24], in order to avoid optimizing using a pixel-wise reconstruction error metric.

The discriminator network is designed to determine whether a given data sample is real or fake,
i.e. generated, by outputting a value between 1 and 0, corresponding to real and fake respectively.
This entails that the discriminator extracts features to form a high level representation of its input in
order to distinguish between real/fake. If the target application of the GAN is data generation, then
the discriminator is only used during training.

Training procedure

Unlike many deep networks which optimize a single error metric to convergence, a GAN is trained in
an adversarial setting, in which the generator (G) and discriminator (D) networks try to outperform
each other, essentially playing a minimax game. There is no general convergence of the model as both
G and D are optimized simultaneously. Formally, G is optimized by the gradient descent equation:

∇G =
1
m

m
∑

i=1

log(1−D(G(zi))) (2.11)

where zi is a noise sample input in G. The generator is penalized if the discriminator correctly iden-
tifies a generated sample G(z). D is optimized by the gradient ascent equation:

∇D =
1
m

m
∑

i=1

[log D(xi)+ log(1−D(G(zi)))] (2.12)

11

where xi is a real data sample. The discriminator is penalized if the discriminator cannot determine
the validity of a real data sample x , or misclassifies a generated sample G(z) as real.

Mode collapse

Under ideal circumstances, if the generator and discriminator networks have enough capacity to cap-
ture the training data distribution, a GAN will settle in a Nash equilibrium [41] where the discrimi-
nator cannot distinguish between real and fake samples, outputting a value of 0.5 for each sample.
However, the convergence to the equilibrium is not clearly observable from the errors of G and D.

When the generator and discriminator fall out of balance with each other, such as when G con-
verges faster than D, the Helvetica scenario [11, 34], or mode collapse, may occur, in which G has
found a set of very similar generated data samples that are always misclassified by D. In practice,
this is often a point where the learning halts and the generator will only output a single unique data
sample.

Adaptations in the training procedure can make it less likely for mode collapse to occur. If G
converges to fooling D with almost no diversity in the generated examples then updating D more
often relative to the update rate of G can prevent the performance of G and D from getting out of
balance with each other. A more substantial adaption is to make use of Wasserstein training [2],
in which the critic (analogous to a discriminator) can be trained till optimality which avoids mode
collapse. Changes to the network architecture can also help to prevent mode collapse, as noted in
[40], where batch normalization [12] is used to stabilize learning, especially at the start of training.

Latent space interpolation

A properly converged GAN should be able to map a random point in latent space to a unique image.
This entails that interpolation between two points in latent space can be converted to a smooth transi-
tion between the images corresponding to these two points. Instead of linear interpolation, spherical
interpolation inspired by animation physics is a more suitable technique as it leads to improved results
when sampling generative networks [52]. The equation for spherical interpolation is defined as:

Slerp(q1,q2,µ) =
sin (1−µ)θ

sin θ
q1+

sin µθ
sin θ

q2 (2.13)

where q1 and q2 are two vectors between which interpolation is done and µ is the linear distance
between q1 and q2. cos θ = q1 ·q2.

2.3.1 Deep convolutional GAN

The application of GANs is most prevalent in the image domain where they are used to generate
realistic looking images. A deep convolutional generative adversarial network (DCGAN) [40] is a
GAN which instantiates the generator and discriminator as convolutional architectures. Specifically,
the discriminator is a regular CNN classification structure which classifies a natural image as real or
fake. The generator almost mirrors this structure, converting a high level representation into a natural
image by transposed convolutions or upsampling layers (Section 2.1.4). The authors of [40] define a
number of hyperparameters that they have found led to stable training:

• Replace pooling layers in the generator by strided convolutions and use transposed convolutions
in the generator,

• use batch normalization [12] between convolution layers,

• remove any extra fully connected layers,

12

Figure 2.7: Simplification of a generative adversarial network. The generator network outputs gen-
erated images. The discriminator network assesses whether an input image originated from the gen-
erator network or from real data.

• in the generator, use rectified linear units (ReLU, Section 2.1.6) and the hyperbolic tangent
function in the last layer,

• in the discriminator, use leaky ReLU.

Transposed convolution layers in the generator introduce overlap in the output if the kernel size
of a transposed convolution is not divisible by the stride, which is often true. These overlaps can
lead to artefacts in generated images, which is called the checkerboard effect [35]. It can occur at
multiple scales in an image if transposed convolutions are applied in multiple layers. A network
should be able to learn to avoid producing the checkerboard effect during training, however, this does
not always happen in practice. The effect can also be avoided by replacing transposed convolutions
by a simple upsampling operation followed directly by a 1x1 convolution which allows the network
to learn a smooth upsampling, in addition to introducing non-linearity via a non-linear activation
function applied to the output of the convolution.

2.3.2 Fast conditional GAN

Regular GANs can be used to generate data without labels. However, to generate labelled data an
extension to the architecture is necessary. A GAN architecture that is designed to generate labelled
data is the auxiliary classifier generative adversarial network (AC-GAN) [36]. The generator of an
AC-GAN trained on data labelled with a set of classes K = {k1, ...,kn} can generate an image sample
with accompanying class label k ∈ K . The properties of an AC-GAN are similar to a regular GAN,
however, the definition of the generator, G(z), is adapted to also include the input class label, G(z,k).
An auxiliary output variable is included in the discriminator, which contains the predicted class label
associated with the input of D. The objective function is extended to include the cross-entropy term
calculated by the class label output of D. It has been demonstrated that the organization of the latent
space z is independent of the class label k by visualizing the interpolation within a 2D latent space
while keeping k fixed [19].

13

The AC-GAN model can be modified slightly to a fast conditional GAN (FC-GAN) [25]. During
training, an additional fake class label kn+1 /∈ K is added which is associated with samples generated
by G(z,kn+1). The authors of FC-GAN demonstrate that general convergence and class differentiation
is accelerated in comparison to an AC-GAN.

2.3.3 Inception score

It is not trivial to determine a metric that quantifies the quality of samples obtained from a generative
model as there exists no ground truth for generated data. Inspired by the way that humans assess
the quality of generated images, the authors of [44] propose the Inception score (IS) for generative
models, which is defined as:1

IS(G) =Ex∼pG
DK L[p(y|x) ‖ p(y)] (2.14)

where x ∼ pG is a sampling of x from pG , p(y|x) is the conditional class distribution, p(y) is the
marginal class distribution and DK L(P ‖ Q) is the Kullback-Leibler divergence [22] between distribu-
tions P and Q.

The statistics required for evaluating Eq. (2.14) are obtained by applying the Inception v3 net-
work [50] pretrained on ImageNet [6] on samples generated by the generative model. Samples from
a well performing generative model result in a high Inception score if the samples respect two prop-
erties. The first is that each generated sample should contain a single clear entity, resulting in a high
probability value for a single class in the output of the Inception network, which results in a low en-
tropy for p(y|x). The second property is that the generated samples should be highly diverse, resulting
in a high entropy for p(y). If the two properties are met, the two class distributions are sufficiently
different, resulting in a high Inception score.

Two main issues can be identified with regard to the Inception score [3]. The score definition
relies on class probabilities obtained by an optimized Inception v3 network, however, trained models
are often categorized only by classification accuracy, which is different from the class probabilities.
A pair of separately trained Inception v3 networks with an identical architecture may yield identical
classification accuracy while producing different class probabilities. Second, since the behavior of the
IS is closely related with the features and classes of ImageNet data, it can give skewed results if a
generative model is trained on data different from ImageNet. For example, the most common class
predictions of Inception v3 on CIFAR-10 [20] images do not align with the actual CIFAR-10 classes [3].

1The original formulation specifies the Inception score as an exponential function, eIS , which is only relevant when
comparing multiple Inception scores.

14

Chapter 3

Data set

The image data used in this research consisted of 1134 photos of in total 84 patients (µ = 13.5,
σ = 13.2), provided by the Schüchtermann heart clinic and the heart clinic at Hannover Medical
School. The number of available photos varies highly between patients. Each photo was taken in one
of the clinics during patient treatment or check-up. Factors such as surgical revisions and infection
status determine the frequency of patient visits to the clinic, and therefore the number of photos taken.
Each photo is roughly centered at the patient’s driveline exit site. Photographing the wound area
was not standardized, as the photos show high variability in zoom, sharpness, lighting and camera
position/angles. The size of the photos ranged between 3-16 megapixels, with aspect ratio 4:3. In
some cases parts of dressing or hands of the nurse are visible near or above the wound. Some patients
have had surgical revisions on their wound, creating suture marks.

More patient photos became available over the course of the project, therefore not all experiments
have been conducted with all of the 1134 images. Section 4 includes the number of data samples used
in each experiment.

Class Name Samples Portion (%)
0 no infection 561 50.0
1 minor infection 308 27.5
2 mild infection 215 19.2
3 severe infection 37 3.3

Total 1121 100

Table 3.1: Distribution of labelled image samples.

3.1 Labelling method

Out of the 1134 images, 1121 of these were assigned an infection label in the form of a natural number
between 0 and 3. Label 0 indicates no infection; label 1 is a minor infection with symptoms such as a
wet exit area and redness; label 2 is a mild infection, indicated by redness, fluid secretion and driveline
movement; label 3 is the most severe infection label that presents itself with the symptoms redness
in a large area, fluid secretion, a swollen wound area and driveline movement with breathing. See
Table 3.1 for the class distribution. Figure 3.1 shows example images of each of the infection types.
After consulting with the clinics we agreed to limit the number of infection classes to three in order
to reduce classification complexity. This is realized by combining each sample labelled as either 0 or
1 into a single class (no/minor infection). These labels were difficult to distinguish from each other

15

Figure 3.1: Examples of manually cropped photos for each type of infection. The amount of redness
and swelling tends to correlate with the infection severity.

and the distinction between labels 0 and 1 was not important enough to support in the classification
algorithm, as an infection belonging to one of these classes did not warrant immediate action.

The infection label for each photo has been determined by a combination of two methods. A
physician has made an assessment of the infection severity based on the features visible on a single
photo. In addition, clinical data, such as presence of bacteria and sub-skin temperature, were available
from tests during the patient’s stay in the clinic. Both methods factor into a photo’s final infection label,
however, the weighting of each method in determining the final infection score is unknown. The
clinical data has not been provided in a structural manner and was not used in any of the experiments
described in Section 4. In addition, the Medolution project focused on a telemonitoring solution in
which no clinical data would be available in a production setting.

3.2 Region of interest

To assist the feature extraction network in ignoring irrelevant features, a region of interest (ROI) was
manually created by us for each training sample. A ROI is a rectilinear region centered around the
relevant area of the image. Each ROI was created such that the driveline exit site is in the center of
the ROI while making sure the region contains an area of healthy skin at least as large as the driveline
wound area. See Figure 3.2 for an illustrated example of a ROI.

Figure 3.2: Example of a region of interest visu-
alization.

Figure 3.3: Example of a region of interest seg-
mentation output mask.

16

3.3 Segmentation masks

Semantic segmentation, as described in Section 2.2, requires annotated segmentation masks. An open
source annotation tool was adapted and made available to both of the heart clinics. It allowed the
clinics to provide detailed geometrical descriptions of the driveline tube and other objects that obstruct
the view of the wound/skin within each photograph. Manually annotating images is a time intensive
process, therefore only a total of 144 images were annotated. The annotations consisted of convex or
concave polygon representations of the visible part of the driveline tube and other occlusive objects.
The classes in the annotated segmentation masks are imbalanced and not every image features every
class, as described in Table 3.2.

Class Samples Pixel portion (%)
Background 144 93.7
Driveline tube 143 3.2
Occlusive objects 25 14.3

Table 3.2: Image statistics of annotated samples. The pixel portion column indicates the percentage
of pixels that were assigned a specific class if it occurred in the image.

3.3.1 Train and test partitioning

The 144 annotated image samples were divided in a training set (115 images) and a validation set
(29 images). This validation set was kept static throughout experiments to allow for comparing per-
formance of multiple methods. Cross-validation was not used in driveline segmentation experiments
to allow for comparison between multiple configurations, as it would lead to a significant increase in
training time for supervised approaches.

17

Chapter 4

Methods

In this chapter experiments and model configurations are described, describing multiple methods to
support infection type classification. Sections 4.1 - 4.2 focus on unsupervised and supervised segmen-
tation methods for driveline tube identification and region of interest prediction. Two approaches of
data augmentation to extend a small data set are explored. These are generative adversarial networks
(Section 4.3) and geometric transformations (Section 4.4). Lastly, research on infection classification
is described in Section 4.5, with a focus on the Inception v3 architecture.

4.1 Unsupervised segmentation

Unsupervised segmentation is used as an approach for driveline tube identification in patient photos.
A successful identification of the driveline tube is achieved when there is a single segment which
separates the part of the tube visible in the image from any other visible objects.

4.1.1 Felzenszwalb segmentation

When using the Felzenszwalb algorithm [10] (Section 2.2.1) it is not possible to specify the number
of components in the resulting segmentation mask. In this application, a successful segmentation
consists of two or more components which can be separated into background and tube components
by postprocessing.

Before ground truth annotations for image segmentation were available, segmentation masks pro-
duced by the Felzenszwalb algorithm were visually inspected for quality. Based on a sample of seg-
mentation masks, medical experts categorized each result as "good", "reasonable" or "bad", depending
on how much of the driveline tube was correctly masked and how much of the wound area was
erroneously included in the tube mask.

Preliminary experiments showed that applying the Kuwahara filter (Section 2.2.2) led to better
segmentation results on average. After Kuwahara smoothing, a mild two-dimensional Gaussian filter
is applied (σ= 1.0) for further smoothing, which compensates for digitization effects [10]. The scale
parameter used in the threshold function of the algorithm, denoted as k, was varied in preliminary
experiments to find a value that led to the best segmentation results on average across all input
samples. The scale value that generalized best across all samples was 700.

The components in the output mask of the Felzenszwalb algorithm are unordered and have no
direct meaning. Any components smaller than 1% of the total image area are merged until there
are no small components left. The classification of background and tube components is done by
a heuristic. The component that contains the most pixels at the border of the image is classified
as the background component. All remaining components are then merged and classified as the

18

driveline tube component. This entails that there is no restriction on the connectedness of the driveline
components, meaning that gaps in the tube region can exist.

The metric to determine the segmentation quality was the Dice coefficient score (Section 2.2.4),
measured on the annotated images validation set, as described in Section 3.3.1. When using Felzen-
szwalb there are no probability values present in the output. Instead, after the postprocessing step of
determining tube/background components, the two components were separated into two channels,
each containing probability values of 1.0 for the pixels that were assigned the class of the respective
channel. This allowed computing the Dice score coefficient between segmentation masks and ground
truth.

4.2 Supervised segmentation

This section describes two supervised approaches to segmentation. The first experiment is driveline
tube segmentation using the U-net network (Section 4.2.2). There were 144 annotated images avail-
able for supervised driveline segmentation. Due to the small number of annotated images and the
need for accurate segmentation, an appropriate candidate CNN was the U-net architecture due to its
cross-connections leading to more detailed segmentation masks [43].

The second segmentation experiment is ROI segmentation (Section 4.2.3). It builds on the drive-
line segmentation methods, using the same general U-net architecture.

4.2.1 U-net

In all U-net experiments zero padding was used at the image borders before each convolutional layer
to preserve the dimensions of the image. Since 3x3 convolution kernels were used, reflection padding
would not make sense for a 1-pixel border padding. This allowed concatenation of features via cross-
connections without having to crop the image features. As an additional benefit, the output mask of
the U-net network has a size identical to the input image.

In the binary segmentation setting it is possible to use a single channel for all classes in the output
mask, in which values are normalized to the [0,1] range with the sigmoid activation function for
example. However, part of the segmentation experiments involved three classes in the output mask
and therefore all experiments were set up with multiple output channels for a fair comparison, as
opposed to using different activation functions for the binary and three-class setting. In the multi-
class output configuration, each channel contained the probabilities for a particular object class. This
allowed for the use of a pixel-wise softmax function so that the output probabilities of all classes
within each element of the output mask sum up to 1.

4.2.2 Driveline tube segmentation

Two class configurations were used in the driveline segmentation experiments. The first configura-
tion was a binary segmentation objective, in which each pixel is classified either as driveline tube or
other. In the second configuration three classes were considered, in which the first class contained
background, the second class contained driveline tube and the third class contained any additional
occlusive objects (such as hands or partially removed wound dressing) which were not present in all
annotated images. The three-class setting was aimed at discovering whether the trained U-net is ca-
pable of distinguishing different shapes/materials of objects, instead of classifying anything that is
not tube-shaped as background.

To discover if the capacity of a U-net using the author’s convolutional parameters [43] exceeds the
capacity required to generalize beyond our data set, we trained a U-net in which the number of filters
in each convolutional layer was halved with regard to the original values. The standard U-net could be

19

seen as unnecessarily complex for this data set if the network retains close to identical segmentation
performance with half the number of filters. A smaller network is also less susceptible to overfitting
and, in turn, less susceptible to poor generalization on test images.

Dilated convolutions (Section 2.1.5) were used to increase the perceptive field of the network
without introducing additional convolution layers. If the perceptive field of the network is too narrow
for larger segments, the network may not have access to contextual features around the segment,
such as object edges. Larger segments occur in the class of occlusive objects, suggesting that dilated
convolutions may be valuable when occlusive objects must be segmented as foreground objects.

As the Felzenszwalb algorithm benefits from smoothing the input image, various parameter set-
tings for the Kuwahara filter were applied to images as the first step in U-net preprocessing to inves-
tigate the effect of edge-preserving smoothing in combination with a deep convolutional network.

The same validation set used in the unsupervised segmentation experiments (Section 3.3.1) was
used for evaluating driveline segmentation quality.

Baseline configuration

The baseline U-net model has an architecture similar to that of the model proposed in [43], except for
the addition of zero padding. The baseline model failed to converge on a small training set, which is
why initial experiments were aimed at finding a stable baseline. A stable binary setting was achieved
with an affine transformation augmentation factor of 8, 32 starting filters and class weights set to 0.1
and 0.9 for background and foreground respectively. By reducing the number of filters from 64 to
32 in the first convolution block, the number of filters in each subsequent block is also halved, as the
number of filters in each block is doubled. The lower number of starting filters allowed for a larger
batch size (16) and increased the training speed. The hyperparameters for the stable baseline are
displayed in Table 4.1

Parameter Value Notes
Input size 512x512x3
Pixel preprocessing Standard scaling Mean-centering and scaling to unit standard deviation.
Augmentation factor 8x Number of augmented images as a factor of number

of training samples.
Starting filters 32 Number of feature filters in the first layer.
Dilation factors [1, 1, 1, 1, 1] Dilation factor for each convolutional block

in the contracting path.
Class weights 0.1, 0.9 Weight assigned to the background and foreground

class, respectively, during optimization.
Optimization method Adam [17]
Learning rate 0.0001
Epochs 75
Batch size 16 Limited by GPU memory (NVIDIA Titan X 12 GB).

Table 4.1: Baseline hyperparameters for U-net semantic segmentation experiments. The configuration
is binary, in which background is separated from foreground (driveline tube).

4.2.3 ROI segmentation

Region of interest segmentation is the process of predicting the ROI of the driveline exit site given
an input image. We used a U-net architecture very similar to that used in the driveline tube segmen-

20

tation experiments, trained on manually labelled ROIs1. Since a ROI is a larger part of the image
compared to the driveline tube, no cropping was done and the aspect ratio of the input image was
retained. After preliminary experiments, the resolution was set at 384x288. Class weights were set
uniform, as the pixel distribution between ROI and background was not extremely unbalanced. Since
there were many more ROI-annotated images available compared to driveline-annotated images, the
augmentation factor was set to 2.

In classification experiments, ROIs were required to be rectangular in shape. Figure 3.3 shows an
example of a ROI output mask. In order to transform the "blobs" output by U-net to a rectangle, a
postprocessing step was implemented in which a rectangle was fit on the U-net output by maximizing
the overlap of the rectangle area and the output mask, constrained by a minimum rectangle size of
10% of the total image size.

The ROI segmentation performance was evaluated by computing the unweighted Dice coefficient
score in a 5-fold cross-validation setting on 683 annotated images.

4.2.4 Dice score coefficient

When training a segmentation model, we are interested in the overlap of the predicted output mask
with the corresponding label mask. The Dice score coefficient (see Section 2.2.4) was used as a
measure of overlap during both training and evaluation. In multi-class segmentation the Dice score
of each individual class mask is computed separately. A weighted average was used to aggregate the
Dice scores of each class into a single value. The weights allowed us to assign importance to particular
classes, as the classes in the labelled segmentation masks are unbalanced (Table 3.2).

4.3 Generative adversarial networks

In this section experiments are described in which generative networks were used to generate data
samples. Samples generated from a learned data distribution can be used as data augmentation,
as one can modify the latent variables to vary high-level feature representations. The training set
consisted of 745 images at the time, of which 732 were labelled.

4.3.1 DCGAN

Since convolutional networks are suitable for image processing, a deep convolutional generative ad-
versarial network (DCGAN, Section 2.3.1) is used for generating image data, in which we use up-
sampling layers in combination with convolutional layers in the generator and regular convolutional
layers in the discriminator.

The DCGAN architecture by Radford and Metz [40]was used as a baseline. Their research provides
guidelines for image generation based on empirical experiments. As training GANs is often unstable,
these guidelines were used to confine the large space of hyperparameters to a narrower range.

If there are too many learnable parameters in the generator convergence may be affected. To
investigate this, a ‘compact’ version of the generator was tested, which has two layers instead of four,
with 128 and 64 filters in the convolution layers.

In the DCGAN experiments, label smoothing was explored. This technique has been shown to
improve the quality of generated samples [44]. Instead of using values of 0 and 1 to represent fake
or real, the labels are smoothed to lie in the interval between 0 and 1.

Learning in a GAN is realized by alternating generator and discriminator updates. In a default
configuration, the number of updates for the generator and discriminator is equal for each epoch.
However, one of the two networks could be converging at an accelerated rate compared to the other,

1My colleague, Michiel van de Steeg, was responsible for the experiments described here.

21

potentially leading to mode collapse (Section 2.3). For this reason, we experiment with a varying
update ratio between generator and discriminator during training.

Ideally generated images are identical in resolution to the real images. However, a resolution
of 128x128 is already considered high resolution when generated by a DCGAN architecture [36].
Experiments were set up to discover what the maximum achievable resolution was, which is defined
as the highest resolution for which the network converged to a stable (local) optimum. As image
resolution increases, the number of parameters in the network increases non-linearly, requiring more
GPU memory during training and an increased difficulty for the model to converge. A significant
increase in achievable resolution was not expected, as the DCGAN architecture was designed for
images up to 128x128 resolution. Significantly higher resolutions likely requires more data and a
different architecture and/or training approach, such as progressively growing GANs [14].

In addition to what is listed above, a number of other parameters are varied in the experiments.
These parameters include standard scaling pixel preprocessing, dropout probability and the update
ratio between generator and discriminator.

4.3.2 Latent space interpolation

Radford and Metz [40] demonstrate that the latent space of a DCGAN is semantically structured, al-
lowing arithmetic on latent vectors. In the DCGAN experiments, some insight into the latent structure
was achieved by interpolating between samples which were generated with random latent vectors.
The hypothesis here was that if two random latent vectors lead to samples of sufficient quality, then
the space between the samples must represent a smooth transition between the samples. Spherical
interpolation was used to explore the latent space between two random points of the space.

4.3.3 Baseline configuration

After initial exploration with images of size 64x64 it appeared that the DCGAN architecture was able
to converge with images of size 128x128. Therefore, this image resolution was set in the baseline
parameters. Table 4.2 lists the baseline hyperparameters which were partially copied from [40].

Each convolution layer in the generator consists of an upsampling operation, a 3x3 convolution,
batch normalization and a non-linear activation function. Each layer in the discriminator consists
of a 3x3 convolution with stride 2 (except the last layer which has stride 1), batch normalization, a
non-linear activation function and a dropout operation. The final feature map output is flattened and
connected to a single validity output node via a fully connected layer. The validity output is binary,
therefore its activation is fed through the sigmoid function.

4.3.4 FC-GAN

For augmentation purposes in a classification problem, generated data must have the correct labels.
In order to generate labelled data using a DCGAN one can use a fast conditional GAN as explained in
Section 2.3.2. During training, the infection labels of the real data are added as an auxiliary input to
the generator. An artificial class for generated samples is added to the labels. In addition to a single
real/fake output for the discriminator, the predicted class label is produced in an auxiliary output of
the discriminator.

The DCGAN model baseline was used in the FC-GAN setting. In the generator an additional
embedding layer was added which encoded the class label after which the embedded label was mul-
tiplied by the noise vector. Auxiliary multi-class output nodes were added to the discriminator and
their values were constrained to the [0, 1] range by the softmax activation function.

22

Parameter Value Notes
Discriminator input size 128x128x3
Augmentation factor 3x Number of augmented images as a factor of

number of training samples.
Pixel preprocessing min-max scaling Normalize values to the range [-1, 1].
Latent dimensionality 100 Size of the latent noise vector.
Generator upsampling upsampling Nearest interpolation + 1x1 convolution

+ ReLU.
Generator activations ReLU Activation function used in the generator.
Discriminator activations Leaky ReLU Activation function used in the discriminator.
Dropout 25% Dropout probability after each layer in the

discriminator.
Generator filters [1024, 512, 256, 128] Number of filters in each convolution layer

of the generator.
Discriminator filters [64, 128, 256, 512] Number of filters in each convolution layer

of the discriminator.
Optimization method Adam [17]
Learning rate 0.0002
G:D ratio 2:1 Update ratio between generator and

discriminator.
Iterations 12000 Number of batches trained on.
Batch size 32

Table 4.2: Baseline hyperparameters for the DCGAN architecture.

An FC-GAN allows for generating multiple classes using a single generator so that features that are
independent from the infection features can be learned independently of the features that correlate
with the label encoding.

4.3.5 Quality of generated samples

Due to the disadvantages of the Inception Score metric mentioned in Section 2.3.3, the choice was
made to assess generated image quality manually by inspecting the output of the generator. An indi-
rect performance measure of generated samples is given by applying labelled generated samples as
augmentation to training data in an infection classification experiment, as described below.

4.3.6 Training a classifier with GAN augmentation

Generated image samples from a DCGAN network are used as augmentation method by adding these
samples to the infection classifier training data (Section 4.5.1). FC-GAN was not able to learn the
data distribution at a reasonable image resolution for classification (192x192). Therefore, DCGAN
was trained to generate image samples of only the largest class (no/minor infection). The other
classes were augmented with images modified by affine transformations (Section 4.4) in a stratified
fashion. This prevents a full comparison of GAN augmentation versus affine transformations, however,
it allows for a comparison of the performance of only the no/minor infection predictions. The severe
infection class would have been the best candidate to augment with realistic samples, however, due
to the class imbalance there was not enough data available in this class to train a DCGAN with.

23

4.4 Data augmentation

For each of the experiments described in this section data augmentation was applied. The variance
within the image training data was artificially increased by applying affine transformations. It was an
attempt to distort images in a way that does not compromise relevant visual features. The amount
of variance added depends on the number of affine operators applied to each image and to what
extent the transformations modified the original image. Applied transformations consisted of: flipping
(horizontal and vertical), rotation, translation and zoom. After applying translation, zoom or rotation
values that are not a factor of 90 degrees, undefined pixels are introduced. These were filled by
reflection padding (Section 2.1.1). See Figure 5.9 for a visual example of reflection padding.

An infinite number of generated images can be created by applying affine transformations. How-
ever, each generated sample remains a distorted version of the original, thus making it unlikely that
the correlation between the number of generated samples and the network’s ability to generalize
exists for extreme application of data augmentation.

In balanced augmentation, more affine transformations of the classes that were least represented
in the training data were created. This method results in an augmented data set with an equal class
distribution. In the classification experiments, this entails that many affine transformations would be
generated from the samples labelled as severe infection, as their representation in the original training
data was very low (Chapter 3).

4.5 Infection type classification

Infection type classification is the process in which a patient photo is assigned one out of the three2

infection classes. To accurately predict an infection class for unseen images a trained classifier is
required. This section describes the details of the classifier and the approach used for training and
validation.

4.5.1 Inception v3 pretrained

The available data set at the time of experiments consisted of 732 labelled images and each image
has a resolution of approximately 16 megapixels, which means it may be difficult for a deep neural
network to learn representations of the infection features embedded in the images. Therefore, the
Inception v3 network (Section 2.1.7) was used for feature extraction.

Here, a version of the Inception v3 network pretrained on ImageNet [6] was used for feature
extraction. The ImageNet data set contains over 14 million images divided across 1000 classes of
common objects. Therefore, the pretrained Inception v3 network will have learned to extract high
level features from a wide variety of images.

To use the pretrained network for infection classification the final fully connected layer of the
network was removed, which is responsible for converting the activations from the last global pooling
layer to probabilities for each of the 1000 ImageNet classes. The output of the global pooling layer
is a one-dimensional vector of 2048 features. A logistic regression trained using a one-versus-rest
approach was used to convert the extracted features into an infection class prediction. Because the
classes in the training data are imbalanced the class weights in the logistic regression were set to be
inversely proportional to the class distribution.

The default input size for the Inception v3 network for ImageNet data is 299x299. After prelimi-
nary experiments this was changed to 500x500 in the infection classification baseline model because
of improved performance. Figure 4.1 demonstrates that images smaller than 299x299 and larger than
800x800 had a negative effect on classification accuracy. For the classification baseline an input size

2The two lowest infection classes were combined, see Chapter 3.

24

of 500x500 was chosen as a middle ground between prediction accuracy and memory efficiency. Pixel
values in the RGB channels were normalized to be in the range [−1,1] to match the ImageNet input
value range.

Figure 4.1: Relation between image size and infection classification accuracy in cross-validation using
a pretrained Inception v3 feature extraction network.

Figure 4.2: Relation between number of images in the training set and infection classification accuracy
in cross-validation using a pretrained Inception v3 feature extraction network.

It is more fair to create a separate test set when evaluating different model configurations, how-
ever, the training set was small for a deep learning application, especially at the beginning of the
project (Chapter 3). Preliminary experiments showed that adding more training samples slightly im-
proved the classification accuracy when using a pretrained feature extraction network (Figure 4.2).
More training data also led to a lower accuracy standard deviation between folds. The relation be-
tween number of images and classification performance supports the use of cross-validation for model
evaluation.

25

Since the pretrained Inception v3 network was only used for feature extraction in the pretrained
experiments, no further training of the network was done. Instead, the logistic regression weights
were optimized using the feature vector output by Inception as input data. This process is much
quicker than training a CNN which allowed us to apply repeated 10-fold stratified cross-validation
(CV). It is identical to regular stratified CV, however the total collection of 10 folds is repeated, each
time with random folds. The reason for repeated CV is to average out folds causing performance
outliers, as with 10-fold CV each validation fold contained approximately 73 images.

With an imbalanced evaluation set, the average accuracy or F1 score across classes can be a de-
ceiving metric. If the model is optimized towards correctly predicting the most frequent classes yet
misclassifies the less frequent classes, then the accuracy will automatically be high. That is why the
performance metrics that were recorded for each fold were the average accuracy over all classes, in
addition to macro-average (unweighted) F1 score, which is an average metric that is not weighted
proportional to the class distribution. The metrics per fold were aggregated by taking the median and
calculating the standard deviation of the macro-average F1 scores.

4.5.2 Applying driveline segmentation masks

Binary driveline segmentation masks as described in Section 4.2 were used to mask the driveline
tube in the input image. By masking irrelevant features in the classification input data, the classifier
would not be ‘distracted’ by irrelevant features. The masking was done by making all pixels that were
classified as belonging to the driveline tube black, before pixel value normalization. An alternative
approach, in which the driveline pixels were set to a value of 0 after pixel normalization, led to a
lower classification performance.

4.5.3 Inception v3 finetuning

The experiments described in this section explore transfer learning, where a pretrained Inception v3
network was finetuned on the LVAD training photos3. This allowed the network to learn to extract
features relevant to LVAD data. Early layers in the pretrained network, which contain global features
independent of the data set [54], were frozen while the later layers containing high level features
were retrained to specialize in extracting the high level features relevant to the LVAD data set.

The transfer learning experiment was done in two stages. In the first stage, all layers of the Incep-
tion network were frozen and the connections from the final average pooling layer to the ImageNet
classes layer were replaced by a fully connected output layer containing 3 nodes, representing one
output for each infection class. Only the output layer was trained.

In the second stage of the experiment, the last two Inception modules (Section 2.1.7) were un-
frozen to allow finetuning of the high-level feature extraction part of the network, along with the
classification layer.

Experiments were done to find the optimal hyperparameters for the transfer learning experiments.
These experiments fall outside the scope of this thesis, therefore, only the optimal configuration is de-
scribed. Unless otherwise specified, the training configuration is the same as the pretrained Inception
v3 baseline configuration (Section 4.5). Initial results showed that an input resolution of 500x500
did not work well in the finetuning experiments. Instead, a resolution of 512x384 was found to be
optimal for classification performance. This resolution removed the need for center cropping, as the
aspect ratio was the same for the majority of the training images. The region of interest crop was
used during training and testing, as in the pretrained Inception v3 baseline.

Training of the top layer was done with a learning rate of 1×10−4 for 60 epochs. The finetuning
of the inception modules was done with a lower learning rate (1×10−5) for 70 epochs. In both stages

3My colleague, Pim van der Meulen, was responsible for the experiments described here.

26

the batch size was set to 60. Just as in the original Inception architecture, dropout was added to the
final average pooling layer to prevent overfitting, with a probability of 0.2.

A stratified set of 139 images was used for evaluation, while the rest of the labelled images were
augmented and used in training. The same metrics as in the pretrained experiments were measured;
the macro-average F1 score and average accuracy. More detailed results are given by confusion ma-
trices.

27

Chapter 5

Results

This chapter presents and discusses the results from the experiments described in Chapter 4. Sec-
tion 5.1 contains the results on driveline tube and ROI segmentation, measured by the overlap be-
tween predicted and ground-truth segmentation masks. Section 5.2 presents the GAN experiments
results, largely supported by illustrations. Section 5.3 lists the results of infection classification exper-
iments with the Inception v3 network.

5.1 Segmentation

5.1.1 Felzenszwalb driveline segmentation

Figure 5.1a shows examples of driveline tube segmentation masks. The scale parameter value of 700
and a minimum component size of 1% of the total image area determined in preliminary experiments
worked well for regular data samples. For data samples that deviated from the norm, such as pa-
tient photos displaying suture marks and stitches, the scale value of 700 sometimes resulted in a bad
segmentation. However, no obvious pattern was found that gave insight into what scale value was
suitable for data samples containing surgical revisions or other irregularities.

The median Dice score coefficient on the segmentation validation set was 0.49.

5.1.2 U-net driveline segmentation

An overview of the results of the driveline segmentation experiments on the validation set (containing
29 images) is given in Table 5.1. The median Dice score was used as the performance measure, since
the Dice score distribution on the validation set contained outliers which would strongly affect the
mean Dice score.

Generating additional training images using affine transformations increased the segmentation
performance, to an extent. At an augmentation factor of 8x, the number of images in the training
set is 1035. Adding even more data via augmentation had a negative effect on the validation set
performance.

Adding dilated convolutions increased the performance compared to the baseline in most config-
urations. This may be due to the increased receptive field created by the dilated convolutions.

The larger network which starts at 64 filters in the first convolution layer achieved a slightly higher
Dice coefficient score than the network starting with 32 filters, at a difference of 0.001.

Applying Kuwahara to the images did not improve the Dice score from the baseline score. A
possible explanation for this result is that the U-net network attempts to find skin and plastic features
to distinguish background from foreground, and the application of a Kuwahara filter results in washed
out details which may represent important descriptors of the features.

28

The Dice score coefficient on a three-class segmentation setting was 0.6284. The three classes were
background, driveline tube and occlusive objects. The Dice score coefficient was significantly lower than
the binary baseline in the multi-class segmentation setting. This was expected, since the multi-class
problem is more complex and only a portion of the training and evaluation images contained objects
belonging to the occlusive objects class. Adding dilated convolutions improved the score to 0.6330,
an increase of 0.0046 on the median. However, the binary baseline increased by 0.0085 after adding
dilated convolutions and the binary baseline score was closer to the the maximum possible Dice score.

Configuration Median Dice Mean Dice Std. Dice

Augmentation factors
augmentation 1x 0.9248 0.8932 0.0921
augmentation 2x 0.9406 0.9085 0.0810
augmentation 3x 0.9364 0.9050 0.0882
augmentation 5x 0.9404 0.9176 0.0769
augmentation 8x 0.9473 0.9142 0.0871
augmentation 12x 0.9470 0.9160 0.0879

Dilation factors
[1, 1, 1, 2, 3] 0.9497 0.9140 0.0899
[1, 1, 2, 2, 3] 0.9407 0.9109 0.0866
[1, 1, 1, 2, 4] 0.9450 0.9203 0.0812
[1, 2, 2, 2, 3] 0.9396 0.9120 0.0853

Starting filters
64 0.9504 0.9088 0.1044
32 0.9494 0.9236 0.0799

3-class output: background, driveline, objects
no dilation 0.6284 0.6292 0.0546
dilated; [1, 1, 1, 2, 3] 0.6330 0.6368 0.0573

Table 5.1: Results of U-net configurations on the segmentation validation set which contains 29 im-
ages. Each of the settings was tested using the baseline model (Section 4.2.2, note that the augmen-
tation x8 setting is identical to the baseline), with the exception of the starting filters configurations.
These used class weights of 0.03 and 0.97 for background and foreground, respectively.

The authors of [43] claim U-net is able to produce precise segmentation masks, which is shown in
Figure 5.1b. The segmentation masks match the borders of the tube object well. The driveline tube
is identified correctly in most cases with very few false positive pixels.

Figure 5.2 shows examples of U-net segmentation trained in a 3-class setting, where annotations
of foreground objects other than the driveline tube were assigned a separate class. The tube segmenta-
tion in the multi-class setting is in some cases negatively affected by the added complexity, however, if
we compare the third example from the left in Figure 5.1b with Figure 5.2b it is clear that the network
is able to correctly identify the visible dressing as a separate entity in this case.

5.1.3 U-net ROI segmentation

The Dice score coefficients of each sample in each of the five CV folds were combined. The mean Dice
score of all test samples in ROI segmentation was 0.8402 (median 0.8579) with a standard deviation
of 0.090.

29

(a) Felzenszwalb segmentation masks, at k = 700 and σ= 1.0. The algorithm sometimes produces far from
optimal results for complex images.

(b) U-net binary segmentation masks. The examples show that U-net is able to produce accurate segmentation
masks for images that are visually more complex.

Figure 5.1: Examples of driveline segmentation masks from (a) Felzenszwalb and (b) U-net. The blue
overlays represent the driveline tube component, the rest of the image is classified as background.

Comparing the Dice score coefficients of the ROI segmentation experiments to the driveline tube
segmentation Dice scores is not reasonable, because there is a difference in ground-truth mask de-
tail between the two segmentation experiments. The ground-truth masks for driveline segmentation
contain the exact shapes of the objects to be segmented, however, the ground-truth masks for ROI
segmentation were less strictly defined.

5.2 Generative adversarial networks

5.2.1 DCGAN experiments

To evaluate the convergence of generative adversarial models during training, every 75 iterations
nine samples were generated. Figure 5.3 shows generated samples from the baseline model. After
600 iterations it was clear that the network had learned to generate skin-colored images with a distinct
blob near the center. After 6000 iterations samples were generated that resemble photos of exit sites,
while driveline tubes were missing. By 12000 iterations generated samples generally included at least
part of a driveline tube. The network was further trained beyond 12000 iterations to see if the quality
of generated samples kept improving. It was more difficult to judge the difference in quality beyond
12000 iterations. At 60000 iterations it seemed that the visual features in the images were more
clearly defined, however, not in all cases. As is visible in Figure 5.3d, some generated samples still
lacked a realistic structure. After convergence it appeared that the baseline model was capable of
learning that the background of the image should consist mainly of skin features and that the image
should contain a driveline tube which exits from the skin at a wound area near the center of the image.

The ‘compact’ version of the generator which contains two layers instead of four was still able

30

(a) (b)

Figure 5.2: Examples of U-net segmentation masks in a multi-class setting (three classes). Top left:
Original image (center square cropped). Top right: ground truth mask. Bottom right: U-net output
mask. Bottom left: U-net mask overlayed on original image, where the blue area is the driveline tube
and red areas include other objects that obstruct the view of the skin.

to generate samples of similar quality as samples generated by the baseline model (Figure 5.4a). A
difference was noted early in training, where the model was not able to generate skin-like features
in the background unlike the baseline model. This observation suggests that fewer parameters in the
generator may lead to slower convergence with regard to sample quality.

Label smoothing during DCGAN training was found to have an adverse affect, contrary to the
claims in [44]. Label smoothing was applied in two configurations with probabilities of 5% and 15%
for smoothing to occur, which modified the validity labels up to 0.4 in the direction of the opposite
label. In both configurations the generator did not converge to produce realistic samples.

The baseline DCGAN used a generator to discriminator update ratio of 2:1. The network still
converged at a ratio of 3:1, however the sample quality appeared to be slightly lower than the baseline.

A varying amount of dropout after each layer in the discriminator was tested, up to a maximum
of 50%. The baseline had 25% dropout. The DCGAN was still able to converge at 50% dropout
(Figure 5.4b), however the objects in the generated images were less defined. At a dropout probability
of 10% the train run resulted in mode collapse, suggesting that dropout is important to prevent the
discriminator from outperforming the generator.

The unstable nature of a DCGAN became clear when experimenting with minor changes to the
configuration. When the activation functions within the generator were changed from ReLU (base-
line) to leaky ReLU the generated samples after 12000 iterations were significantly worse than the
baseline as shown in Figure 5.4c. Similarly, the network failed to converge when the training data
was normalized via mean centering and standard deviation unit scaling as opposed to normalizing
each pixel to the [-1, 1] range.

Augmenting the training data by using affine transformations helps to artificially enlarge the size
of the training set, however, the DCGAN may be harmed by the unnatural features created in certain
transformations. Some examples of affine transformations are given in Figure 5.9. Using reflection

31

padding makes sure that the distribution of artificially created pixels is similar to that of real pixels.
However, the reflected area may contain unnatural features, such as multiple driveline exit sites. If
these features are learned by the DCGAN, the generator may generate images with multiple driveline
tubes which a human might consider to be flawed examples, while in reality the distribution of the
generated images still matches the augmented training data.

(a) (b)

(c) (d)

Figure 5.3: Generated samples from the DCGAN baseline, after (a) 600 iterations, (b) 6000 iterations,
(c) 12000 iterations, (d) 60000 iterations. Each image is 128x128 in resolution.

For non-adversarial neural networks, analyzing the error over time during training is often a good
way to track convergence. Figure 5.5 shows that interpreting the error metrics of an adversarial
model is not trivial. The errors of the discriminator and generator are at their lowest values after
approximately 15000 iterations. After this point, the generator error increases, however, this could
indicate that both the generator and discriminator improve, even though the discriminator might be
improving at a faster rate than the generator.

32

(a) Compact generator (2 layers) (b) 50% dropout in discriminator (c) Leaky ReLU in generator

Figure 5.4: Generated DCGAN samples from multiple configurations after 12000 iterations of training.
Each image is 128x128 in resolution.

Figure 5.5: DCGAN baseline cross-entropy error during training.

High resolution

The maximum resolution that still allowed the DCGAN architecture to converge was 192x192, com-
pared to the 128x128 baseline. This means the image dimensions in the first convolution layer of
the generator was 12x12. Any resolution higher than 192x192 prevented the DCGAN from learning,
even when adding an extra layer to the generator to reduce the image resolution in the first layer.
The higher resolution required some changes to fit training batches in GPU memory. The batch size
was reduced to 25 and the number of filters in the layers of the generator were set to [500, 250, 125,
62]. Figure 5.6 shows examples of generated images at 192x192 resolution. The image quality is
arguably lower than the baseline generated samples at 128x128, so a trade-off exists between image
quality/diversity and resolution.

Latent space interpolation

An example of latent space interpolation is given in Figure 5.7. A smooth transition between the two
randomly generated samples is observed. The driveline tube first disappears and later appears in a
different orientation. In addition, a change in skin color is observed.

33

Figure 5.6: Samples generated from high resolution DCGAN (192x192) after 46000 iterations.

Figure 5.7: Latent space spherical interpolation between two generated samples from DCGAN at
192x192 resolution. The left-most and right-most images were generated using random latent vectors.

5.2.2 FC-GAN experiments

The FC-GAN model was not able to learn the distribution of the training data at a resolution of
128x128. At a resolution of 64x64 the model was able to converge and generate samples with speci-
fied class labels. Figure 5.8 shows a number of examples for each class. Mode collapse has occurred
in the severe infection class which is likely due to the large imbalance in class labels in the training
data. Only approximately 5% of the training images were labelled as severe infection, which is likely
not enough for the FC-GAN model to learn to generate samples of sufficient quality while at the same
time learning to separate severe infection features from the other two classes.

5.3 Infection classification

5.3.1 Inception v3 pretrained

Table 5.2 shows the cross-validation results on infection classification with a combination of Inception
v3 and a logistic regression. The table contains both macro-F1 and accuracy metrics. A discussion of
the results of each configuration is found below.

34

Figure 5.8: Samples generated by the FC-GAN architecture
after 50000 iterations at a resolution of 64x64. Left column:
no/minor infection class, middle column: mild infection class,
right column: severe infection class in which mode collapse
is observed.

Figure 5.9: Examples of
random affine transforma-
tions applied to a single
image. Making use of
reflection padding means
that transformed images
can contain several drive-
line exit sites kinks in the
driveline tubes.

Augmentation

The standard method of training data augmentation was applying affine transformations to each
image, where the augmentation factor determines how many random transformations were created
for each image. Table 5.2 shows that an augmentation factor of 5 leads to the best F1 score on a data
set containing 732 images. At an augmentation factor of 2, balanced augmentation performs better
than standard affine augmentation. An increase in prediction performance on the severe infection
validation samples was expected, as the balanced training set contained many more images of this
class compared to baseline augmentation. The confusion matrices in Figure 5.10 show that indeed
images were more often correctly classified as severe infection when using balanced augmentation,
however, the classifier seems to have become more biased towards predicting severe infection, as the
other classes were more often misclassified as severe infection compared to the baseline.

The baseline confusion matrix in Figure 5.10a indicates why there is a large difference in value
between macro-average F1 and average accuracy metrics. The classes that occur more frequently in
the training data were classified correctly more often proportional to the least frequent class. The
fact that F1 scores across classes were unequal when using balanced augmentation does not prove
that the class balance in training data is irrelevant. Augmentation by affine transformations is not
the same as adding unique data samples. However, it is still possible that the less represented severe

35

Configuration F1 σF1 Accuracy

Augmentation
augmentation 1x 0.472 0.078 0.719
augmentation 2x [b] 0.481 0.078 0.716
augmentation 3x 0.481 0.079 0.725
augmentation 5x 0.484 0.088 0.716
augmentation 40x 0.476 0.080 0.712
balanced 2x 0.484 0.074 0.693

Region of interest
ROI cropped [b] 0.481 0.078 0.716
Full image 0.445 0.075 0.676

GAN Augmentation (192x192)
affine augmentation x2 0.431 0.080 0.667
GAN augmentation x2 0.434 0.079 0.642
affine augmentation x10 0.451 0.085 0.667
GAN augmentation x10 0.448 0.072 0.567

Driveline masking
Driveline visible [b] 0.481 0.078 0.716
Driveline masked 0.466 0.069 0.712

Table 5.2: Results of multiple infection classification configurations on 10-fold repeated stratified
cross-validation using a pretrained Inception v3 network in combination with a logistic regression
classifier. The [b]-tag indicates the baseline configuration. The F1 score is the macro-average across
all classes.

infection class is harder to distinguish from other classes because there simply are fewer visual clues
in the image that define it as a severe infection.

Region of interest

A comparison was made between the baseline classification model, which used the ROI crops as input
images, and a configuration in which the full images were used. The comparison in Table 5.2 shows
that cropping the ROI is beneficial for infection classification. An explanation for this difference is
that the ROI crop contains fewer segments of background and more explicitly, fewer segments that
are uncorrelated with the driveline wound. This allows the logistic regression classifier to ignore
irrelevant background features as these should occur less frequently in the feature vectors generated
by the pretrained Inception v3 network.

GAN data augmentation

The configuration with a GAN-augmented data set (Section 4.3.6) cannot be directly compared to
the classification baseline as the resolution of GAN samples was 192x192. Therefore, the baseline
was adapted to use an input size of 192x192. Table 5.2 includes a comparison between affine and
GAN-based augmentation for two augmentation factors. From the reported metrics it appears that a
data set augmented with GAN generated images yields similar performance metrics compared to the
baseline, however the conclusion of the figures is not straightforward. As mentioned in Section 4.3.6,
GAN images could only be generated for a single class (no/minor infection), all other classes were

36

(a) Each training sample is augmented twice, not af-
fecting the class distribution

(b) Samples are augmented such that class labels are
balanced

Figure 5.10: Confusion matrices of 10 times 10-fold CV on infection classification with an augmenta-
tion factor of 2. Class labels are (0, 1): minor/no infection, 2: mild infection, 3: severe infection.

augmented with affine transformations. At an augmentation factor of 10x, 90.9% of all images in the
no/minor infection class were generated samples, which means that the classifier may have learned
to recognize whether an image is a GAN-generated example instead of belonging to the no/minor
infection class. The effect on classification performance can only be determined accurately if all classes
are augmented with GAN samples.

Driveline masking

The bottom part of Table 5.2 shows the comparison between the baseline model and the experiment
in which driveline tubes were masked by black pixels. The baseline model performs better with
regard to F1 score and accuracy. There are multiple possible explanations for this. The Inception
v3 classification network was pretrained on ImageNet, which likely means it does not know how
to handle sections of black pixels in natural images. The structure of the extracted feature vectors
may suffer because of the black pixels, affecting the embedded features that correlate highly with the
type of infection. Even if the network was finetuned on data containing masked sections, the sharp
transitions between the masked sections and the rest of the image may have been difficult to learn to
ignore by a CNN. Lastly, the generated segmentation masks are not always perfect, in other words,
the errors from the segmentation network propagate to the classification model.

5.3.2 Inception v3 finetuned

The results of the two stages of the Inception v3 finetuning experiments are displayed as confusion
matrices in Figure 5.11. Some differences can be observed between the two stages. After training only
the top classification layer, the model seems biased towards predicting samples as class 2, whereas
after finetuning the Inception layers, the model seems more biased towards predicting samples as
class 1. Additionally, after finetuning the Inception modules, the model is more likely to incorrectly

37

predict images as class 3, leading to a lower precision on this class. The recall on class 3 is identical
in both stages.

The increase in performance from stage 1 to stage 2 may be solely accredited to the classification
layer, which is trained in both stages. However, training only the classification layer for the same
number of epochs as the total epochs of both stages resulted in lower performance measures, com-
pared to finetuning the Inception modules. This entails that the classification layer was trained to
convergence in stage 1.

From these results it cannot be said whether the pretrained Inception v3 plus logistic regression or
the finetuned version of the Inception network is more suitable for infection classification. The macro
F1 score of 0.470 obtained in stage 2 finetuning is lower than the macro F1 of the baseline of the pre-
trained experiments (Table 5.2), however, it is a comparison of a single train-validation fold result to a
10 times 10-fold cross-validation result. Given that the standard deviation on the pretrained baseline
result is 0.078, the difference between the F1 scores of the pretrained and finetuning configurations
is not significant.

(a) Stage 1: Only the top classification layer is trained
from scratch. Macro F1: 0.438; average accuracy:
0.525.

(b) Stage 2: The final two Inception modules, in ad-
dition to the classification layer, are finetuned. Macro
F1: 0.470; average accuracy: 0.669.

Figure 5.11: Confusion matrices of the evaluation set of 139 images for two stages of Inception v3
finetuning.

38

Chapter 6

Conclusion

In this thesis a deep learning approach for classification of skin infections in patients with heart assist
devices (LVADs) was explored. A number of different methods for getting more value out of small
data sets were investigated.

6.1 Segmentation

6.1.1 Unsupervised segmentation

Without ground truth data for segmentation, unsupervised segmentation methods such as the Felzen-
szwalb algorithm are suitable for coarse image segmentation. However, it proved difficult to gen-
eralize the method to obtain accurate segmentation masks for each image in the evaluation set. A
successful unsupervised segmentation approach would likely involve tuning the parameters of the
method based on the properties of any particular image. Additionally, postprocecssing was required
to convert a generated segmentation mask into a semantic segmentation mask.

6.1.2 Supervised segmentation

Experiments with a U-net CNN confirmed that it is a powerful tool for accurate driveline segmentation
without requiring a large data set, as claimed in [43]. A Dice score of 0.956 was achieved on a binary
segmentation task (driveline tube versus background). It was demonstrated that U-net was partially
capable of multi-class semantic segmentation, even though most training images only contained two
classes.

In addition to driveline segmentation, it was shown that the U-net architecture and hyperparam-
eters were transferable to a significantly different semantic segmentation problem: region of interest
segmentation, where the ROI is the area around the driveline exit site.

As an alternative method to direct ROI segmentation, accurate driveline segmentation masks could
be used to discover the region of interest in non-standardized LVAD photos. The only assumption that
would need to be made is that a driveline tube enters the image from one of the borders and ends
at the driveline exit site, which is where features are located which correlate with infection type.
Whether this alternative to ROI segmentation is worth the effort is left for future research. It likely
depends on which problem is easier to solve for a U-net; directly locating the driveline exit site, or
creating an accurate segmentation mask of the driveline tube.

39

6.2 Data augmentation

The first part of research question 1, which asks what classification performance gains are discovered
when applying affine transformation augmentation to the training data set, can now be answered.
Experiments with supervised segmentation, generative adversarial networks and infection classifica-
tion all indicated that training data augmentation by method of random affine transformations helps
during training, as suggested by earlier research [38]. Transformed images could be seen as distorted
copies of the original, however, they give a model opportunities to learn from identical features oc-
curring in varying shapes, orientations and positions.

The number of augmented images added to the training set affects the performance of a trained
model. An infinite number of random affine transformations exists, however, these suffer from di-
minishing returns as the variety in generated images does not increase linearly with the number of
transformed training samples. No heuristic was found for determining the optimal augmentation fac-
tor. For infection classification a factor of 2 yielded the best prediction performance, while a factor of 8
worked best in the semantic segmentation experiments. The original number of training images was
almost four times as large in the classification experiments compared to the segmentation training
data, which could explain the difference in the best found augmentation factors.

6.3 Generative adversarial networks

Despite the fact that generative adversarial networks are generally difficult to train and display unsta-
ble convergence characteristics, the DCGAN architecture was applied to learn the data distribution of
LVAD infection photos. A proper evaluation metric for generated images was not available, therefore it
was hard to evaluate the quality and variation of DCGAN models. As affine transformations were used
to augment the DCGAN training set, the DCGAN generator was essentially instructed to learn unnat-
ural infection features, such as multiple driveline exit sites. However, without affine transformations
to augment the training data the data set was too small to be learned by a DCGAN architecture.

In a standard DCGAN configuration an image resolution of 128x128 for generated samples is con-
sidered high resolution [36, 40]. The maximum resolution generated by the DCGAN architecture in
this research was 192x192, which is still not optimal to be used as augmentation data for infection
classification (Figure 4.1). The second part of research question 1 can therefore be answered. With-
out being able to generate realistic class-conditional images of sufficient resolution, the classification
performance suffers when augmenting training data with GAN-generated images.

The FC-GAN architecture was not successfully applied to the data set available during this re-
search. The data set was heavily imbalanced and the class-conditional aspect of an FC-GAN likely
made convergence during training too complex.

6.4 Infection classification

A number of infection classification configurations which made use of the Inception v3 CNN, pre-
trained on ImageNet, were explored. Experiments demonstrated that a feature extraction network
trained on a very different data set was still able to extract generalized feature vectors that are indica-
tive of infection type, and can be used by a simple logistic regression to make predictions on infection
class. The motive behind using a pretrained feature extraction network was the fact that the LVAD
data set was likely too small and imbalanced for training a deep feature extraction CNN from scratch.

Finetuning the high-level feature extraction part of the Inception v3 network on infection classes
resulted in similar classification performance as in the pretrained Inception classification experiments.

40

On a single validation set, the performance increased when finetuning high-level Inception modules
when compared to only training the classification layer.

Applying segmentation masks to input images did not lead to improved classification performance,
however, the method of masking the driveline tube was very basic. Improved results may be achieved
by masking the tubes in a more natural manner, such as reflection filling along the axis of the tube.
Research question 2, which asks what performance increase is realized by segmenting the driveline
tube during classification, is therefore still open for future research.

Despite the fact that the segmentation masks could not be applied directly, the experiments showed
that using a region of interest (ROI) led to a higher classification performance compared to using full
images. Therefore, the ROI segmentation U-net used to infer the ROI within images would be a
valuable component in a production setting.

The difficulty of the infection classification task became apparent in classification experiments, as
a maximum macro-average F1 score of 0.484 was achieved. A likely explanation is the scarce repre-
sentation of the severe infection class in the training set. However, it is also possible that assessing the
infection type based only on a patient photo is a difficult problem even for humans. To gain insight
into this hypothesis, a stratified set of 100 images was selected from the training set, unlinked from
their class label and presented to two LVAD experts for visual evaluation. Both experts achieved a
macro F1 score of 0.56 (average accuracy of 0.66 and 0.69). This implies that without additional
information besides the patient photos, it is difficult even for medical experts to correctly predict the
infection type, possibly impossible in some cases. A possibility for future research is to combine pa-
tient photos with thermographic scans which capture the infrared channel and can reveal sub-surface
heat sources which are often associated with skin infections.

41

Acknowledgments

I would like to thank Dr. Ioannis Giotis for introducing me to the medical image processing field, Dr.
Rolf Neubert for supporting scientific research within the Medolution project, Sybren Jansen for his
valuable ideas and input on various algorithms and models, Dr. Marco Wiering for providing a clear
direction to the experiments and a critical view on the scientific writing, and my colleagues at Target
Holding for creating an enjoyable working environment.

42

Bibliography

[1] Kumar Abhishek and Ghassan Hamarneh. Mask2lesion: Mask-constrained adversarial skin le-
sion image synthesis. arXiv preprint arXiv:1906.05845, 2019.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

[3] Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint arXiv:1801.01973,
2018.

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv
preprint arXiv:1412.7062, 2014.

[5] Noel CF Codella, David Gutman, M Emre Celebi, Brian Helba, Michael A Marchetti, Stephen W
Dusza, Aadi Kalloo, Konstantinos Liopyris, Nabin Mishra, Harald Kittler, et al. Skin lesion analy-
sis toward melanoma detection: A challenge at the 2017 international symposium on biomedical
imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In 2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI 2018), pages 168–172. IEEE, 2018.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248–255. Ieee, 2009.

[7] Lee R Dice. Measures of the amount of ecologic association between species. Ecology, 26(3):297–
302, 1945.

[8] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning.
arXiv preprint arXiv:1603.07285, 2016.

[9] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau, and
Sebastian Thrun. Dermatologist-level classification of skin cancer with deep neural networks.
Nature, 542(7639):115–118, 2017.

[10] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image segmentation.
Int. J. Comput. Vision, 59(2):167–181, September 2004.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pages 2672–2680, 2014.

[12] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

43

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1125–1134, 2017.

[14] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[15] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models. Inter-
national Journal of Computer Vision, 1(4):321–331, 1988.

[16] Jeremy Kawahara, Aicha BenTaieb, and Ghassan Hamarneh. Deep features to classify skin le-
sions. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pages 1397–
1400. IEEE, 2016.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[19] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Advances in neural information processing systems,
pages 3581–3589, 2014.

[20] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. In Advances in neural information processing systems, pages 1097–
1105, 2012.

[22] Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86, 1951.

[23] M Kuwahara, K Hachimura, S Eiho, and M Kinoshita. Processing of ri-angiocardiographic im-
ages. In Digital processing of biomedical images, pages 187–202. Springer, 1976.

[24] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Au-
toencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300,
2015.

[25] Chengcheng Li, Zi Wang, and Hairong Qi. Fast-converging conditional generative adversarial
networks for image synthesis. In 2018 25th IEEE International Conference on Image Processing
(ICIP), pages 2132–2136. IEEE, 2018.

[26] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I
Sánchez. A survey on deep learning in medical image analysis. Medical image analysis, 42:60–88,
2017.

[27] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3431–3440, 2015.

44

[28] Adria Romero Lopez, Xavier Giro-i Nieto, Jack Burdick, and Oge Marques. Skin lesion classifi-
cation from dermoscopic images using deep learning techniques. In 2017 13th IASTED Interna-
tional Conference on Biomedical Engineering (BioMed), pages 49–54. IEEE, 2017.

[29] J. MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1:
Statistics, pages 281–297, Berkeley, Calif., 1967. University of California Press.

[30] Amirreza Mahbod, Gerald Schaefer, Chunliang Wang, Rupert Ecker, and Isabella Ellinge. Skin
lesion classification using hybrid deep neural networks. In ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1229–1233. IEEE, 2019.

[31] Ammara Masood and Adel Ali Al-Jumaily. Computer aided diagnostic support system for skin
cancer: a review of techniques and algorithms. International journal of biomedical imaging,
2013, 2013.

[32] Danilo Barros Mendes and Nilton Correia da Silva. Skin lesions classification using convolutional
neural networks in clinical images. arXiv preprint arXiv:1812.02316, 2018.

[33] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted Boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–
814, 2010.

[34] Jonas Natten. Generative Adversarial Networks for Improving Face Classification. Master’s
thesis, University of Agder, Norway, 2017.

[35] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts.
Distill, 1(10):e3, 2016.

[36] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier GANs. arXiv preprint arXiv:1610.09585, 2016.

[37] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis with
spatially-adaptive normalization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2337–2346, 2019.

[38] Luis Perez and Jason Wang. The effectiveness of data augmentation in image classification using
deep learning. arXiv preprint arXiv:1712.04621, 2017.

[39] Sean P Pinney, Anelechi C Anyanwu, Anuradha Lala, Jeffrey J Teuteberg, Nir Uriel, and Man-
deep R Mehra. Left ventricular assist devices for lifelong support. Journal of the American College
of Cardiology, 69(23):2845–2861, 2017.

[40] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[41] Lillian J Ratliff, Samuel A Burden, and S Shankar Sastry. Characterization and computation of
local Nash equilibria in continuous games. In 2013 51st Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pages 917–924. IEEE, 2013.

[42] Nils Reiss, Thomas Schmidt, Frerk Müller-von Aschwege, Wolfgang Thronicke, Jan-Dirk Hoff-
mann, Jenny Inge Röbesaat, Ezin Deniz, Andreas Hein, Heiko Krumm, Franz-Josef Stewing,
et al. Telemonitoring and medical care of heart failure patients supported by left ventricular
assist devices-the medolution project. In eHealth, pages 267–274, 2017.

45

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 234–241. Springer, 2015.

[44] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and
Xi Chen. Improved techniques for training GANs. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29, pages
2234–2242. Curran Associates, Inc., 2016.

[45] David W Shattuck, Stephanie R Sandor-Leahy, Kirt A Schaper, David A Rottenberg, and
Richard M Leahy. Magnetic resonance image tissue classification using a partial volume model.
NeuroImage, 13(5):856–876, 2001.

[46] Margarida Silveira, Jacinto C Nascimento, Jorge S Marques, André RS Marçal, Teresa Mendonça,
Syogo Yamauchi, Junji Maeda, and Jorge Rozeira. Comparison of segmentation methods for
melanoma diagnosis in dermoscopy images. IEEE Journal of Selected Topics in Signal Processing,
3(1):35–45, 2009.

[47] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[48] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso. Gen-
eralised dice overlap as a deep learning loss function for highly unbalanced segmentations. In
Deep learning in medical image analysis and multimodal learning for clinical decision support,
pages 240–248. Springer, 2017.

[49] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[50] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2818–2826, 2016.

[51] Changhan Wang, Xinchen Yan, Max Smith, Kanika Kochhar, Marcie Rubin, Stephen M Warren,
James Wrobel, and Honglak Lee. A unified framework for automatic wound segmentation and
analysis with deep convolutional neural networks. In 2015 37th annual international conference
of the IEEE engineering in medicine and biology society (EMBC), pages 2415–2418. IEEE, 2015.

[52] Tom White. Sampling generative networks. arXiv preprint arXiv:1609.04468, 2016.

[53] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

[54] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in
deep neural networks? In Advances in neural information processing systems, pages 3320–3328,
2014.

[55] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. CoRR,
abs/1511.07122, 2015.

46

[56] Andreas Zierer, Spencer J Melby, Rochus K Voeller, Tracey J Guthrie, Gregory A Ewald, Kim
Shelton, Michael K Pasque, Marc R Moon, Ralph J Damiano Jr, and Nader Moazami. Late-onset
driveline infections: the achilles’ heel of prolonged left ventricular assist device support. The
Annals of thoracic surgery, 84(2):515–520, 2007.

47

	Contents
	1 Introduction
	1.1 Project scope
	1.2 Deep learning applications
	1.2.1 Infection classification
	1.2.2 Data set augmentation
	1.2.3 Segmentation

	1.3 Research questions

	2 Theoretical background
	2.1 Convolutional neural network
	2.1.1 Padding
	2.1.2 Pooling
	2.1.3 Global pooling
	2.1.4 Transposed convolution
	2.1.5 Dilated convolution
	2.1.6 Activation functions
	2.1.7 Inception v3

	2.2 Segmentation
	2.2.1 Felzenszwalb segmentation
	2.2.2 Kuwahara filter
	2.2.3 U-net semantic segmentation
	2.2.4 Dice score coefficient

	2.3 Generative adversarial network
	2.3.1 Deep convolutional GAN
	2.3.2 Fast conditional GAN
	2.3.3 Inception score

	3 Data set
	3.1 Labelling method
	3.2 Region of interest
	3.3 Segmentation masks
	3.3.1 Train and test partitioning

	4 Methods
	4.1 Unsupervised segmentation
	4.1.1 Felzenszwalb segmentation

	4.2 Supervised segmentation
	4.2.1 U-net
	4.2.2 Driveline tube segmentation
	4.2.3 ROI segmentation
	4.2.4 Dice score coefficient

	4.3 Generative adversarial networks
	4.3.1 DCGAN
	4.3.2 Latent space interpolation
	4.3.3 Baseline configuration
	4.3.4 FC-GAN
	4.3.5 Quality of generated samples
	4.3.6 Training a classifier with GAN augmentation

	4.4 Data augmentation
	4.5 Infection type classification
	4.5.1 Inception v3 pretrained
	4.5.2 Applying driveline segmentation masks
	4.5.3 Inception v3 finetuning

	5 Results
	5.1 Segmentation
	5.1.1 Felzenszwalb driveline segmentation
	5.1.2 U-net driveline segmentation
	5.1.3 U-net ROI segmentation

	5.2 Generative adversarial networks
	5.2.1 DCGAN experiments
	5.2.2 FC-GAN experiments

	5.3 Infection classification
	5.3.1 Inception v3 pretrained
	5.3.2 Inception v3 finetuned

	6 Conclusion
	6.1 Segmentation
	6.1.1 Unsupervised segmentation
	6.1.2 Supervised segmentation

	6.2 Data augmentation
	6.3 Generative adversarial networks
	6.4 Infection classification

	Acknowledgments
	Bibliography

