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Disclaimer
All numbers used in this report do not reflect the actual property of HMC assets but are

considered as a good all-in-all representation of the reality. The usage of all images regarding
HMC vessels and projects are restricted. They are not allowed to be used for any purpose
without the permission of HMC.
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Reinforcement Learning For Offshore Crane Set-down Operations

by Mingcheng DING

Offshore activities are usually carried out in one of the worst working environments where
vessels and objects are affected by weather all the time. One of the most common offshore
operations is to set down a heavy object onto the deck of a floating vessel. A good set-down
always requires a small impact force as well as a short distance to the target position. It can
be quite challenging to achieve due to various reasons, such as ship motions, crane mechan-
ics, and so forth. It takes years to train crane operators to make as many correct decisions
as possible. Any small mistake might cause severe consequences. In this project, we inves-
tigated the feasibility of solving this practical offshore set-down problem using Reinforce-
ment Learning (RL) techniques. As a feasibility study, we started from the simplest possible
environment where only the heave motion and impact velocity are considered. Then, we
gradually upgraded the simulation environment by adding more environmental and phys-
ical features with respect to a practical situation. The results under different environments
bring us an overview of the possibilities and limitations of standard RL algorithms. We
demonstrated that the methods suffer from the general challenges of RL, such as sparse re-
wards and sample efficiency in solving the long-term objective set-down problem. We tried
various methods to work around this issue, such as transfer learning, hierarchical RL, and
using simulation-based methods.
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Chapter 1

Introduction

1.1 Offshore Set-Down Operation

The term of commercial offshore industry was first introduced in the 1940s when the global
demand for oil was booming, and the petroleum industry thus realized the opportunity of
creating a whole new way of producing natural oil (Schempf, 2007). Typical offshore con-
struction incorporates the installation and transportation of offshore structures in a marine
environment. Modern offshore structures include fixed or submersible platforms, floating
platforms, offshore wind power, and submarine pipelines (Reedy, 2012).

Offshore structures are installed by crane vessels with lifting capacities of up to 14,000
tons (Mouhandiz and Troost, 2013). Now modern crane vessels are semi-submersibles and
have good stability, making them less sensitive to sea swells and harsh weather. Some ves-
sels are equipped with more than one heavy-lifting crane, which allows operations to be
done in tandem for heavier loads and better controls.

One of the most common offshore operations is to set down a heavy object onto a target
position, which is either a floating vessel or a fixed platform. A good set-down always re-
quires a small impact force as well as a short distance to the target position. In reality, a good
set-down can be quite challenging to achieve due to various reasons, such as ship motions,
crane mechanics, crew communication and so forth. Most of the actions and decisions dur-
ing the set-down are made based on the spatial arrangement and dynamics between objects.
The crane operator should not only be accurate at operating the effectors of the crane, but
also capable of understanding ship motions in order to judge the best moment to take differ-
ent actions. The set-down can only be done with excellent cooperation between these two
factors. In this project, we simulated an ordinary heavy-lifting set-down operation where
the load is simply a cubic suspended from the vessel (Sleipnir), and the target position is on
the deck of a floating barge indicating by a horizontal guide. The motion of the vessel is
only affected by the unidirectional wave and the actions taken during the operation.

1.2 Reinforcement Learning

Reinforcement learning (RL) is a field of machine learning that is aimed at training an artifi-
cial agent to achieve the maximum accumulated reward in a specific environment by taking
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a sequence of actions (Wiering and van Otterlo, 2012). At every time step, the agent is sit-
uated in a particular state, and a reward is assigned after it takes an action and reaches the
next state. The agent keeps interacting with the environment until it reaches the terminal
state. An action is sampled from the policy which is a distribution over all possible actions
given the current state. The policy can be represented by means of a look-up table, a neural
network or any type of machine learning technique. This type of learning provides solutions
to many classical control problems, such as the mountain-car and cart-pole problems.

Recently, a great deal of research in deep neural networks and computer vision has
shown that RL has a strong potential to generate good policies even in high-dimensional,
complex input spaces, such as images (Arulkumaran et al., 2017). During the set-down
operation, multiple sensory signals are captured simultaneously. These time-series signals
particularly describe the current situation of objects as well as the underlying dynamics of
the environment. This creates the possibility of training such an agent in the nature of RL.

1.3 Heerema Marine Contractors

Heerema Marine Contractors (HMC) is the world’s leading marine contractor based in Lei-
den, the Netherlands. The company is specialized in delivering high-quality solutions to
issues related to transportation, installation, removal of offshore facilities. In addition, HMC
occupies the entire supply chain from design to construction. HMC currently owns three of
the world’s top 10 crane vessels, which are "Thialf" (14,200- ton lifting capacity), "Balder"
(8,100-ton lifting capacity) and "Aegir" (4,000-ton lifting capacity). The new flagship, "Slep-
nir", is being assembled and will be introduced to the market in 2019.

1.4 Project Motivation and Scope

There are several motivations for this project. With regard to engineering, if the quality of
set-down could be controlled consistently by the assisting machine learning algorithms, the
engineering limits can become less restricted, meaning that HMC can use lighter bumpers
for guiding the target and this extends the life of a barge. On the other hand, the offshore
set-down is a highly empirical and complex activity that requires outstanding operating and
perception skills. Even crane operators are unable to explain many of their actions, which
they perform instinctively. Hence, the result of this project can contribute to gaining insight
of their behaviors for further studies.

Therefore, this project is mainly focused on exploring to what extend the complex set-
down operation can be simulated by using machine learning techniques especially in the
field of RL. Since this whole research study was fully carried out from scratch, we began the
study from an extremely simplified environment and gradually moved to a more realistic
environment. Given the time and physical constraints, all the experiments were conducted
exclusively in simulators provided under the license of HMC.
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1.5 Research Questions

The main research question of this project is as follows:

How can machine learning techniques be combined to simulate manual set-down operations of off-
shore cranes?

There are two major concerns with regard to the main question: the simulation environ-
ment and the algorithm itself. To create a valid environment, it is necessary to understand
how the objects and vessels are moving in reality. Furthermore, since the set-down is a phys-
ical procedure, it is necessary to make a metric for evaluating the result of the set-down such
that the agent can improve based on this signal. The first two sub-questions are as follows:

1. What are the main factors and limits that form the offshore operating environment?
How should we model and extend those limits for the simulation environment of Re-
inforcement Learning?

2. What is the metric and how should we shape the reward/quality of the set-down
operation in terms of physical phenomena?

Due to the environmental setting, the result of a set-down is normally given at the end
of every attempt, which causes a delayed credit assignment. Additionally, based on the way
we built the environment, the dynamics of the environment and reward function are fully
defined, which allows us to employ search-based methods. In this sense, the main research
question is divided into the following sub-questions:

1. How can we deal with the sparse/delayed reward in each of the set-down simula-
tions?

2. How can the performance of the agent be improved by learning with Monte Carlo tree
search?

3. To what extent can the simulation environment be upgraded toward the real-world
and what is an effective way to deal with partial observability in the environment?

1.6 Outline

The thesis contains eight chapters. Chapter 2 mainly covers the basics about the hydrody-
namics and wave statistics in the simulation environment for the set-down. It contributes
to the solution to the first sub-question. Chapter 3 reviews the theoretical frameworks of
RL algorithms that are relevant to the experiments. Each of the chapters from Chapter 4 to
Chapter 7 contains an introduction of the features, the experiments, and related results that
answer the rest of the sub-questions. Chapter 8 includes a discussion and draws conclusions
of this project.
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Chapter 2

Offshore Environment and Set-Down
Operation

An offshore set-down is usually executed between two independent structures. In the mar-
itime environment, ocean surface waves cause motions on every floating structure in the
sea, and thus the offshore operation has to take into consideration the motion of the effector
as well as the ships themselves. In order to build such an environment, it is important to
analyze the mathematical properties of the waves and how they affect ship motions.

2.1 Irregular Wave Statistics

Mathematically, irregular waves can be represented by linear superpositions of multiple
regular wave components. Regular waves are harmonic waves traveling with kinematic and
potential energy. Figure 2.1 shows a single harmonic wave component. The peak position
is the crest, and the lowest point is the trough. The amplitude of the wave ζa is the distance
from the mean water level to the crest. The wave height H is calculated vertically from crest
to trough. For a sinusoidal wave, H is twice ζa. The wave length λ is measured from the
distance between two consecutive crests. In the time domain, the wave length is described
by the wave period T. The total energy per unit area of a regular wave can be represented by:

E =
1
2

ρgζ2
a , (2.1)

where ρ and g are water density and gravitational acceleration.
The irregular wave elevation is generated by the linear summation along a series of sin

and cos functions. Due to the superposition, the absolute wave period varies in every mea-
surement. Statistically, irregular waves are described with a set of estimated variables over
a certain period of time called sea states. In practice, the length of the recording should be
at least 20 minutes being sampled every half second (Journée et al., 2000). The most com-
monly used variables are significant wave height Hs and peak wave period Tp. The significant
wave height Hs is the mean of one-third of the highest wave heights in the recording. The
Hs provides an good approximation of the most probable wave height in a time period. The
Tp is the wave period with the most energy.
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FIGURE 2.1: Description of regular sea wave.
FIGURE 2.2: Wave energy spectrum describes
energy per frequency per unit sea surface area

In principle, given a measured irregular wave for T seconds, if one can derive the coef-
ficients of every frequency component, then this typical irregular wave can be re-generated
by:

ζ(t) = ΣN
n=1(ancos(

2πn
T

t) + bnsin(
2πn

T
t)), (2.2)

where an and bn are real and imaginary part of the coefficient. Notice that:

ancos(
2πn

T
t) + bnsin(

2πn
T

t = Ancos(
2πn

T
t− βn), (2.3)

where
An = ζn =

√
a2

n + b2
n, βn = εn = tan−1(bn, an), (2.4)

ζ(t) = ΣN
n=1ζncos(ωnt− εn), (2.5)

in which ζn is the amplitude of component n. ωn(
2π
T n) and εn are the radian frequency

and the phase angle of component n. Therefore, given a measured wave elevation for a
long period, one can carry out a Fourier analysis to transform the wave into the frequency
domain by plotting amplitude with respect to frequency, and thus results the wave ampli-
tude spectrum. However, the instantaneous wave amplitude is a random variable that is
parameterized by a Gaussian distribution with zero mean. By a small time shift, one might
find a different series of ζn. It can be mitigated by calculating the mean of several squared
amplitude components ζ̄2

n. Multiplied with constants ρ and g (see equation 2.1), the wave
spectrum can be expressed as the wave energy spectrum Sζ(ωn) (see Figure 2.2) by:

Sζ(ωn)∆ω = Σωn+δω
ωn

1
2

ζ2
n(ω), (2.6)
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where ∆ω is the difference between two consecutive frequencies. If ∆ω goes to 0, the energy
spectrum extends to a continuous function defined by:

Sζ(ωn)dω =
1
2

ζ2
n. (2.7)

Based on the energy spectrum from the measured wave, one can generate new wave eleva-
tions by using the inverse Fourier transform to compute amplitudes and assign a random
phase angle εn to every wave component. The wave amplitude ζn can be calculated by:

ζn = 2
√

Sζ(ωn) · ∆ω, (2.8)

where ∆ω represents the interval between two discrete frequencies. Thus, an artificial series
of wave elevation should carry the same energy as a measured one.

In practice, there are many theoretical energy spectra to represent ocean waves. The one
used for this project is the Joint North Sea Wave Project (JONSWAP), which was carried out
about 100 miles from the coast into the North Sea. The project began in 1968 and 1969 with
an extensive measurement of energy waves. The formulation of the JONSWAP wave energy
spectrum (Journée et al., 2000) requires two aforementioned sea-state variables, Hs and Tp,

Sζ(ω) =
320 · H2

s
T4

p
·ω−5 · e

−1950
T4

p
·ω−4
· γA, (2.9)

with

γ = 3.3, A = e−(
ω

ωp −1

0.08
√

2
)2

, ωp =
2π

Tp
.

This can be considered as a tool to approximate the energy distribution of the waves in
the North Sea given the intended sea state. It is extremely helpful for simulating the ship
motions of an offshore activity that will take place in regions with the same sea state. The
resultant spectrum is thus a function of ω, and is drastically influenced by the input sea
states. Eventually, the wave elevation is generated by the linear superposition of every
wave amplitude ζn derived by equation 2.8. It is worth noting that, in this project, all the
waves are assumed to be unidirectional. In other words, all waves are coming from the same
direction, which is called a long-crested sea.

2.2 Vessel Dynamics

Suppose a vessel is moving in a constant speed, the origin is at the center of gravity (CoG),
the (x,y) plane is parallel to the sea surface at origin and z is pointing upwards. The coordi-
nate system is called steadily translating, which follows the right-handed orthogonal rule.



2.2. Vessel Dynamics 7

FIGURE 2.3: Definitions of ship motions in six
degrees of freedom.

FIGURE 2.4: RAO is a transfer function of ω for
each of six motions

The ship motions are defined in 6 degrees of freedom (DoF) (see Figure 2.3), which con-
sist of three translations of CoG in the direction of the x-, y- and z-axes and three rotations
with respect to the x-, y- and z-axes. Formally, we assume that waves are regular for now.
Then, wave elevation at origin is defined as ζ(t) = ζacos(ωt), where ζa is the wave ampli-
tude. Then the motions at CoG are given as follows:

Surge : x = xacos(ωt + εxζ),

Sway : y = yacos(ωt + εyζ),

Heave : z = zacos(ωt + εzζ),

Roll : φ = φacos(ωt + εφζ),

Pitch : θ = θacos(ωt + εθζ),

Yaw : ψ = ψacos(ωt + εψζ).

(2.10)

The motion of each individual DoF has the same frequency as the encountering wave, but
the actual motion amplitude is dependent on the response and phase shift (e.g., for heave
motion, the amplitude and phase shift are za and εzζ). The convention for phase shifting is
that if the motion happens earlier than the wave elevation passes zero, then its correspond-
ing phase shift is positive and negative otherwise. If a ship is a rigid body, when the six
motions at CoG are determined, the motion at any location P(xb, yb, zb) on the ship is given
by:

xP = x− ybψ + zbθ,

yP = y + xbψ− zbφ,

zP = z− xbθ + ybφ,

(2.11)

where x, y, z, φ, θ, and ψ are surge, sway, heave, roll, pitch, and yaw motion at CoG of the
vessel. For a set-down, the point of interest (PoI) is usually at the tip of the boom where
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the heavy object is hung. Thus, it can be directly transferred from the motions of CoG.
Therefore, the key issue is to calculate the motions of CoG. For the rest of this section, we
only analyze the motion on the z-axis (heave). The other motions can be studied in similar
ways.

According to linear wave theory, any irregular wave amplitude can be achieved by the
summation over amplitudes of different regular waves. Recalling the derivation of wave
energy spectra Sζ(ω), one could also derive the ship motion induced by irregular waves
in terms of the motion response of every regular wave component. This is called the motion
response spectrum Sz(ω) of the vessel. The motion response spectrum can be simply obtained
from wave energy spectra via a transfer function,

Sz(ω) · dω =
1
2

z2
a(ω)

= | za

ζa
(ω)|2 1

2
ζ2

a(ω)

= | za

ζa
(ω)|2Sζ(ω)dω.

(2.12)

The transfer function | za
ζa
(ω)|2 is called the response amplitude characteristic. In offshore

engineering, it is also known as the Response Amplitude Operator (RAO). In particular, the
coefficients of the RAO are dependent on the hydromechanics properties of the vessel. It is
essentially a function of regular wave frequencies ωn as defined in the wave energy spec-
trum:

za

ζa
= e−kT

√
(c− aω2) + (bω)2

(c− (m + a)ω2)2 + (bω)2 , (2.13)

where a, b, and c are added mass, damping, and stiffness coefficient. It outputs a relative
ratio between the absolute motion response and the wave amplitude for a given regular
wave frequency. For example, a heave RAO of 0.5 in a wave amplitude of 2m indicates that
the vessel has an up-and-down motion (heave) from -1m to +1m from origin. A pitch RAO
of 2 in the same wave means that the vessel has rotation around y-axis from -4 to + 4 degrees.

Knowing the motion response spectrum Sz(ω), the total motion can then be calculated
by adding the motion responses of every individual wave component:

za(ω) =
√

2Sz(ω) · ∆ω,

z(t) = ΣN
n=1zncos(ωn(t)− εzn).

(2.14)

When the motion response spectra for all the six motions are presented, one can generate
artificial time traces at CoG for the six DoFs. According to the principle of transformation,
the time traces of motion of any PoI can be derived by equation 2.11. Hence, by far, we can
fully generate the artificial wave and resultant vessels motions given a particular sea state
in absence of any additional forces.
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In summary, the pipeline of creating motions in the simulation environment is as fol-
lows: First, create a theoretical continuous wave energy spectrum (by the formulation of
JONSWAP). Second, derive the RAOs of the vessel (which are directly available in HMC)
and generate a response spectra transferred from the wave energy spectrum. Finally, gen-
erate the time traces of motions of interest by the inverse Fourier transform with random
phases, as shown in equation 2.14.

As a preliminary study, in the simulation environment, the waves were unidirectional,
which means that only up to three motions (two translation and one rotation) were applied
on a vessel. Two translational motions are heave and surge in y-z plane, and the rotational
motion is the pitch about x-axis. The RAOs were chosen from one of the crane vessels owned
by HMC. Each of the vessel motions was expected to be non-periodical since the phases of
regular wave components were randomized.

2.3 Crane Vessel Properties

Offshore construction is mainly completed by crane vessels. Figure 2.5 presents a general
arrangement of one of the crane vessels owned by HMC-Sleipnir from the port side. Nor-
mally, the crane vessels used for heavy-lifting activities are semi-submersible crane vessels
(SSCV).

FIGURE 2.5: SSCV Sleipnir
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Compared to normal floating vessels, the SSCVs offer better motions on the deck. Such
response is obtained mainly by its hull shape of the pontoon under the water. The pontoons
are connected to the four columns. Due to its water area plane, the SSCV has a different
behavior than the hull of normal vessels. This makes SSCVs less responsive to worst sea
waves. Additionally, SSCVs keep their own position by thrusters and dynamic position (DP)
systems. These systems ensure the station keeping while lifting extremely heavy objects.

On the deck, there are two main cranes with heavy-lifting capacity. The crane is installed
at the corner of the deck (bow side). For heavy-lifting activities, the load is hung by blocks
(see Figure 2.6). Depending on the weight and technical specifications of the load, there are
three blocks for different purposes. The whip block has the fastest speed and the longest
reach with the least lifting capacity. The main block offers the largest lifting capacity, but
its operating speed is the slowest. The auxiliary block is faster than the main block, but its
lifting capacity is smaller.

FIGURE 2.6: Heavy-lifting crane on Sleipnir

Blocks are connected to the boom by hoist wires. Hoist wires are reeled at the winches on
the backside of crane cabin. The action to lower the block is called payout, where the winch
extends length of hoist wire to the block; conversely, for the lifting operation, the crane op-
erator has to haul-in the hoist wire. The maximum payout/haul-in speed of each block is
dependent on the angular velocity of the connected winch. Since electrical motors drive the
winch, it takes a small amount of time to actually reach max speed. The delayed time for
reaching maximum RPM is referred to as ramp-up time. Ramp-up time varies between differ-
ent blocks. For real applications where ship motions are presented, it is critical to consider
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the dynamics within the period of ramp-up, which requires an additional prediction of ship
motions.

The blocks are suspended from the boom. The boom can move independently to go up
(boom up) or down (boom down). In this project, we assume that the position of the boom
always remains fixed. Furthermore, the boom can be rotated about the z-axis with respect
to the deck, which is known as slewing. With the rotation in both directions, it transports the
load to the target position of the set-down. Note that the slewing speed is also affected by
the ramp-up time.

In the simulation environment, for every time step, the agent is only allowed to operate
one of five actions: payout, haul-in, slew left or slew right, and, of course, do nothing.
The ramp-up and motion are based on HMC vessels. More details with concern to the
environmental configurations are covered in Chapter 4 to Chapter 7.

2.4 Prerequisites of Set-Down

A real set-down operation is presented in Figure 2.8. In practice, the completion of a set-
down comprises several pre-requisites. First of all, the weather condition. The weather con-
ditions determine the workability of an entire project schedule. The downtime due to the
weather conditions is known as weather down time or waiting on weather (WOW). The WOW
is primarily affected by the Metocean conditions, which consist of the aforementioned sea
states, wind and the long-term forecasting of currents. The sea state is a statistical descrip-
tion of the wave characteristics over a long period. Typically, the sea state will not change
for about three hours, and it takes few days to undergo radical changes.

In HMC, the workability is assessed by assigning operability criteria to activities. Typical
ways to assign the criteria include using provided sea-state forecasting and vessel motion re-
sponses. For heavy-lifting activities, the most commonly used criterion is HsT2

p . Depending
on the weight of load and type of barge, this limit is normally set to 150, which essentially
constrains the value of Tp (peak period) to be relatively small; thus, wave peaks come more
often. The intuition of this limit has to be combined with the RAO (see Figure 2.4). Assume
the wave is regular in a long period and remains steady. Then, the value on the y-axis rep-
resents the relative ratio of heave response with respect to the wave amplitude. Assume
a ship is a spring-mass system; the responses of low frequencies are dominated by spring
coefficients, which are essentially the hydrostatic properties of the vessel. The responses for
higher wave frequencies are affected by the added-mass term which is similar to the mass
of a vessel. As shown in Figure 2.4, the higher the wave frequency is, the less response the
vessel produces. Nevertheless, if the wave frequency is low, the vessel has the risk of falling
into the response range dominated by the damping term, which causes the vessel resonance.
It is not ideal because it produces huge heave motions. Therefore, higher frequency waves
are preferred for the sake of ship motions. The high frequency is equivalent to shorter wave
periods. In practice, a SSCV is still able to maintain good motion response against high
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amplitude waves as long as the wave period is short. Therefore, the peak period (Tp) has
a higher impact on operability criteria, and we normally take the term of HsT2

p for a quick
assessment.

FIGURE 2.7: Wave envelope

FIGURE 2.8: Photo of a real execution. (Left) suspended module on
crane. (Right) Module on barge for transport. [Photo: Bo B. Randulff

og Jan Arne Wold/ Equinor.

Second, any irregular wave owns the shape of a wave envelope (see Figure 2.7). The mo-
tion response to irregular waves can be split into several wave groups with distinct lengths
and transitions. Suppose we connect crests and troughs all together by lines. It turns out
that the distance between the upper and lower outline is varying on time. This information
is particularly useful in set-down operations. If the vessel response is too high, it implies
that the vessel is probably in the middle of the current wave group. Then, the better option
is to wait for the transition of the next wave group because the response might be lower
there. Therefore, the recognition of the wave patterns and knowing exactly when a favor-
able moment will come make the offshore set-down more challenging. Meanwhile, many
actions have to be taken in advance in order to be able to utilize the favorable moment.

2.5 Set-Down Simulation Environment

The target of the set-down is to transfer the heavy object (yellow) onto the barge (the platform
in green in Figure 2.9). The horizontal positional guide (in blue) is known as the bumper,
which the crane operator is allowed to bounce against for keeping positioning. However,
the maximum allowed contact on the bumper is strictly constrained according to the engi-
neering design of the bumper in HMC. The dimension of the load is 20m (l) x 20m (w) x 40m
(h), and the initial distance between the bottom side and the barge deck is about 17m. The
dimension of the bumper is 40m (l) x 5m (w) x 5m (h). At the beginning of every episode,
a random initial swing amplitude is posed at the hoist wire in y-z plane to ensure that the
initial position is always different.

In this project, we have created four different simulation environments with distinct lev-
els of simplification. As a feasibility study carried out completely from scratch, we started
the experiments under the simplest possible environment, namely basic 1D (see Chapter
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FIGURE 2.9: Visualization of advanced 2D simulation environment

4). In basic 1D, we assume that waves only produced heave motions on a vessel and the
ramp-up times of payout and slewing were completely ignored. Moreover, in advanced 1D
environment (see Chapter 5), we maintained the constraints on vessel motion but took into
account the ramp-up and evaluation on re-impacts, which significantly increased the diffi-
culty of the problem. Furthermore, in Chapter 6 and Chapter 7, we continued challenging
the agent in more sophisticated 2D environments where lateral motions were enabled. More
details about the simplifications and differences of environments are elaborated on from
Chapter 4 to Chapter 7. A quick glimpse of the 2D environment is presented in Figure 2.9.

2.6 Evaluation Metrics

The evaluation of a set-down operation consists of multiple factors, the first of which is the
set-down precision. In most set-down cases, the load is expected to be placed on a specific
location of the barge, which is especially important when the barge deck is relatively full or
the load mode to be sea-fastened to certain details. Any unexpected collisions against other
objects should be avoided, which explains engineers’ concerns about the distance that the
load deviates from the targeted position. In practice, positional guides (bumpers) are placed
around the targeted position on the barge. The bumper allows the crane operator to bounce
against it to make the position better. For the 1d environment, we assumed that the load
was always on top of the targeted position, and all objects only had heave motions. In that
sense, the set-down precision did not apply. For 2d environments, however, the set-down
precision was evaluated by the distance between the lower right-hand corner of the load
and the left edge of the bumper.
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The second evaluation concerns the impact force. The impact force could occur on both
the barge and the bumper whenever there is contact. Most offshore structures are quite
sensitive to impacts (i.e., the blades of wind turbines) and the structures must be well pre-
served before the installation. Therefore, the magnitude of impact force is essentially the
most important factor for a set-down.

Under ideal conditions, a set-down can be seen as an elastic response problem. At the
moment of contact, we assumed that the barge was perfectly elastic, and it was fully con-
verted to incoming kinetic energy Ek to spring deformation energy Ep with stiffness k:

Ek = Ep, (2.15)

provided,

Ek =
1
2

mv2,

F = kx,

Ep =
∫ xmax

0
Fdx =

∫ xmax

0
kxdx =

1
2

kx2
max.

Since Fmax = kxmax, we get the following equations:

1
2

mv2 =
1
2

kx2
max,

1
2

mv2 =
F2

max
2k

,

F = v
√

mk. (2.16)

For a specific operation, m and k are constants. According to Equation 2.16, the impact force
is linearly dependent on the relative velocity at the moment of contact and sub-linearly on
the stiffness of the barge. In 1D environments, we assumed that objects only had relative
heave motions, therefore, the impact force can be simplified by the impact velocity, which is
essentially the sum of the distances traveled by the load and the barge within a single time
step during the contact. Based on the HMC experience, the common limit on the vertical
impact velocity for a set-down is 0.4 m/s.

For 2D environments, measuring the contact is slightly more complicated because the
object has velocities in two directions with a certain amount of momentum and inertia. We
read the measurement directly from the analyzing toolboxes provided by the simulator. We
evaluated the max contact force applied to the bumper and the barge separately. In HMC,
there are strict engineering limits on the maximum allowed impact force on the bumper,
which is 10% of the total mass of the load.
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2.7 Practicalities

In reality, there are some pitfalls that might drastically influence the quality of a set-down.
These thoughts can be very useful to shape the reward function for training the agent.

One of the most common phenomena during this process is the pendulum swing of the
load. Because the load is suspended from the hoist wire with huge weight and inertia, the
swing motion occurs easily even with small actions or movements at the crane tip. It is
always the first priority to slow down the swing in order to reduce the horizontal impact
force. However, it is tricky because in some cases, due to the ship motions caused by waves,
the swing still occurs automatically even if the crane operator has not taken any action,
which makes it harder to stabilize the load in offshore environments. In addition, the actual
position of the vessel is also affected by the actions of the crane operator (e.g., induced roll
motion due to the slewing of the crane).

Another issue is re-impact. Re-impacts are the follow-up contacts between the load and
the barge when the set-down is completed. The re-impact is caused by the difference in
the motions of the load and the barge after the first impact. Suppose the load contacts the
barge when the barge deck is just about to descend. If the barge deck descends much faster
than the subsequent payout of the load, a gap will appear, which may eventually lead to
unexpected impact forces. In practice, the crane operator always switches to the maximum
payout speed as soon as the load contacts the barge to ensure that the length of extra payouts
in hoist wire can cover the distance that the barge travels after the set-down. However, the
pay-out speed is significantly slower than wave induced motion.

However, under 2d environments, the re-impact is even more harmful in the sense of
horizontal motions. For heavy loads, a sudden upward motion occurs on the crane vessel as
soon as the vessel loses the weight of the load. If the hoist wire is still connected to the load,
it suddenly lifts the load and pulls the load away from the target potision in both vertical
and horizontal directions. Suppose the load is very close to the bumper with its own pitch
motion. A huge impact force occurs when they collide with the highest horizontal relative
velocity in the opposite direction. Therefore, the abnormally high impact forces on bumpers
are sometimes due to the re-impact in the horizontal direction, which needs to be strictly
controlled by the "10%" criterion.
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Chapter 3

Reinforcement Learning

The core of this project is about training an agent to complete the set-down. In this chapter,
we briefly review the theoretical framework of RL that contributed to the methods used to
train the agent.

3.1 General Definition

Reinforcement learning is about mapping states to actions in order to maximize the reward
given from the environment by sequential decision making. The problem that RL solves
can be formally described as a Markov decision process (MDP). The solution to an MDP is
a general rule to select an action that leads to the maximum reward signal of the episode.
In particular, the Markov property specifies that the environment is fully observable, which
means that the future state is independent of past states given the current state. However, it
does not hold for most practical applications.

Formally, an MDP is a tuple in the form of < S, A, P, R, γ >, where S is a finite subset
of all possible states in the environment, A is a finite set of all actions that are valid in the
environment, P is a state transition probability matrix that provides the probability of enter-
ing the next state from a given current state and action, R is a reward function of entering
the current state given the action, and γ is a discount factor ranging from 0 to 1. The value
1 simply implies that all rewards should be treated equally, and 0 means that only the next
reward is relevant. The common selection is between 0.9 and 1.

The goal of solving the MDP is to find a policy π(a|s) to choose actions that lead to
the maximum expected return. A stochastic policy is a probability density function over
all actions given by π(a|s) = P[At = a|St = s]. There are two distinguished classes of
algorithms that are used to solve MDPs: the value-based and policy-based approaches. For
the value-based approach, a policy is derived from a value function Vπ(s) of states. The
value of a state refers to the expected return starting from the current state s until the end of
the episode by following the current policy π. Alternatively, a policy can be derived from
an action-value function Qπ(s, a), which estimates the expected return from state s, taking
action a, and following the current policy π. The value and action-value functions can be
decomposed into instant reward Ra

s of taking action a at state s plus the value of the next
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state V(s′) that eventually satisfies the Bellman expectation equation:

Vπ(s) = ∑
a∈A

π(a|s)(Ra
s + γ ∑

s′∈S
Pa

ss′Vπ(s′)),

Qπ(s, a) = Ra
s + γ ∑

s′∈S
Pa

ss′ ∑
a′∈A

π(a′|s′)Qπ(s′, a′).
(3.1)

Accordingly, given an MDP, one can derive its value-function. This procedure is known
as prediction. If the transitions of MDP Pa

ss′ are known, iterative methods such as dynamic
programming can be applied. If they are unknown, methods such as Monte Carlo (MC)
and temporal difference (TD) learning (Sutton, 1988) are applicable, which are classified as
Model-free methods. However, the actual solution to an MDP is to find the optimal value
function V∗(s) or Q∗(s, a) provided an initial policy, which is commonly known as a control
problem. The solution to the control problem satisfies the Bellman optimally equation:

V∗(s) = max
a

(Ra
s + γ ∑

s′∈S
Pa

ss′V∗(s
′)),

Q∗(s, a) = Ra
s + γ ∑

s′∈S
Pa

ss′ max
a′

Q∗(s′, a′).
(3.2)

and specifies the best possible performance in the MDP. The other class of algorithms is
policy-based methods. In contrast to value-based methods in which the optimal policy
π∗(a|s) is found by maximizing over all Q(s, a), policy-based methods directly find the op-
timal parameterization of the policy πθ(s, a) = P[a|s, θ]. The action can thus be sampled
directly from the prediction of the algorithm.

3.2 Value-Based Methods

Recall that the value function is the expected return of a state Vπ(s) = E[Rt|St = s]. The
return is defined as the total discounted reward from time t until the end of the episode:

Rt = rt + γrt + γ2rt+2 + ... + γT−1rt+T−1, (3.3)

and the new value of V(s) is updated toward the difference in true outcome versus the
estimation. There are two critical ways of describing the error term, which are Monte Carlo
(MC) and temporal difference (TD). The former uses the empirical mean return instead of
expected return Gt. Formally, in order to update the value of state s, the error is calculated
by the true return of the episode minus the old value of state s and the error is scaled by
dividing by the number of visitations N(s) of state s:

V(st) = V(st) +
1

N(st)
(Rt −V(st)), (3.4)

V(st) = V(st) + α(rt+1 + γV(st+1)−V(st)). (3.5)
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which requires the algorithm to complete the entire episode. On the other hand, TD com-
putes the error by introducing a target value (TD target) (see equation 3.5), which is the
discounted expected return from s′ plus the reward of entering s′ from s, and α is the learn-
ing rate. The TD error is simply a difference between a more realistic estimation (TD target)
and the current estimation (V(s)).

There are mainly three significant differences between MC and TD updates. First, the
MC method must wait until the end of an episode in order to know the true return, whereas
TD can perform an update for every time step as long as a value function exists. Hence,
MC is only applicable for episodic environments. The second difference concerns the bias
and variance trade-off. The MC method introduces huge variance because the error for the
update is composed by the true value, which is computed from a long horizon. It might
be possible that one episode has a much stronger influence than the others such that the
algorithm might just update toward it and get closer to optimum. However, TD meth-
ods are biased because the TD error measures the difference between two estimated terms.
Therefore, the TD error is less accurate, especially when the value function is just initialized.
Finally, TD methods are more useful for states with Markov properties because the TD error
merely compares with two successive states. Conversely, due to using the future trajectories
to compute the return, MC methods are more effective in non-Markovian environments.
One way to facilitate the advantages of both methods involves using λ returns (TD(λ)). The
intuition is that, for evaluating the value of state st, instead of only bootstrapping one step
(TD target) or waiting for the true return (MC), we accumulate n step immediate rewards
from Rt to Rt+n plus the estimated return onwards V(st+n+1):

R(n)
t = rt + γrt+1 + γ2rt+2 + ... + γn−1rt+n−1 + γnV(st+n), (3.6)

Rλ
t = (1− λ) ∑

n=1
λ(n−1)R(n)

t ,

V(st)← V(st) + α(Rλ
t −V(st)).

(3.7)

Then, we take a weighted average in terms of λ over a number of different "n-step" returns,
which eventually leads to a TD(λ) error (see equation 3.7). The factor λ determines how
fast the importance of long-term return is decayed. When λ is 1, it becomes standard Monte
Carlo and pure TD when λ is 0.

For most problems, we want to achieve an optimal policy based on an initialization.
In the sense of value-based methods, the optimal policy can be derived from the optimal
value function V∗(s). Suppose we have obtained a value function Vπ(s) based on policy π,
and the MDP (model) is unknown, then the only way to derive the improved policy is to
select actions greedy over the action-value function π(s) = argmaxa∈A Q(s, a). This policy
iteration is known as model-free control. When the policy is far from optimal, especially for
the beginning, it is important to encourage exploration over all possible actions. An overall
of common exploration methods was given in (Wiering, 1999). For the value function, one of
the common ways is ε− greedy exploration. It chooses an action at random with probability
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ε and chooses an action with the highest action value a = argmaxa Q(s, a) with probability
1− ε. According to the policy improvement theorem (Jaakkola et al., 1995), if the ε− greedy
policy π is improved, then the equivalent value function Vπ is also improved.

For control problems, it is more straightforward to use TD methods than MC meth-
ods. This is simply because the TD target can be directly plugged into Bellman equations
for policy evaluation, and the update can be performed in every time step, which is much
more promising in terms of sample efficiency. Depending on the rules of updating Q-values
(action-value of a state Q(s, a)) for policy evaluation, there are mainly two different classes
of methods. Recalling the TD target of the value function in equation 3.5, which consists
of an immediate reward r and an estimation of expected return onwards, then we convert
it in terms of state-action values, which immediately raises two options. For estimating
the return from state s′, if we stick to the state-action value indicated by the current policy
Q(s′, a′), we will get an on-policy evaluation rule:

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)), (3.8)

which satisfies the Bellman expectation equation (equation 3.1), which is also known as state-
action-reward-state-action (SARSA) (Sutton, 1996). Another on-policy method is QV-learning
(Wiering, 2005). In QV-learning, a separate value function V is learned in addition to the
action-value function Q, and in contrast to SARSA, the action-value function Q used for
computing the TD target is replaced by the independent value function V, which results
in better estimations of state-value function by using more experiences (Wiering and van
Hasselt, 2009). On the contrary, suppose we completely ignore the current policy and choose
the maximal Q value of state s′ for calculating the TD target; then, the policy evaluation
becomes off-policy:

Q(s, a)← Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)), (3.9)

satisfying the Bellman optimality equation (equation 3.2). The updating rule of the action-
value function in equation 3.9 is known as Q-learning (Watkins and Dayan, 1992). The con-
vergence to the optimal action-value function of SARSA and Q-learning are theoretically
guaranteed for tabular cases (Sutton and Barto, 1998).

In practice, considering the dimensionality of the state space, the value functions are
normally represented by differentiable function approximations instead of a look-up table.
The value function V(s) is parameterized by a set of weights θ such that Vπ(s) ≈ Vθ(s). One
of the most popular choices of the function approximation is a neural network. The weights
are updated toward the gradient of error in the approximated value function. In practice,
the true value for computing the error in the objective function is substituted by a target
return in a TD or MC fashion. Due to the non-linearities of the activation functions of neural
networks, the convergence of TD approaches is not guaranteed (Sutton and Barto, 1998).
It is widely accepted in Supervised Learning that the gradient update over a mini-batch
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is much more efficient than having an on-line update. Therefore, for off-policy methods,
an experience buffer is created to store the experience transitions (s, a, r, s′) that the agent
has experienced. Then, a small subset of all experiences is sampled to compute the gradient.
This procedure is known as experience replay (Lin, 1992), which largely decouples correlations
in the sequence of observations.

3.3 Policy-Based Methods

Another branch of RL algorithms is policy-based methods. Contrary to value-based meth-
ods, which obtain the policy from value functions, policy-based methods do not use value
functions but directly return the policy π(s, a) with a parameterization of input states π(s, a) =
P(a|s, θ). One of the advantages of policy-based methods is their effectiveness in high-
dimensional and continuous action spaces. Recall that value-based control algorithms ex-
clusively compute the state-action value for all possible actions given a state. If the action
space is continuous, then the number of actions is infinite, which makes it less efficient to
learn the optimal policy. This typically happens in robotic control where the policy is the
rotation angle of a joint. Furthermore, the policy gradient method is guaranteed to converge
to a local optimum given a differentiable function approximation (Sutton, McAllester, et al.,
2000). However, value-based functions have no convergence properties using non-linear
function approximations and sometimes might even diverge.

We are looking for an optimal policy that maximizes the expected return of the episode.
The objective function is thus simply J(θ) = Vπθ (s0), where s0 is the initial state of an
episode. Then, a single update can be achieved by ascending the gradient of J with re-
spect to θ. According to the policy gradient theorem (Sutton, McAllester, et al., 2000), the
gradient of any policy object function can be represented by:

∇θ J(θ) = Eπθ
[∇θ logπθ(s, a)Qπθ (s, a)], (3.10)

which is the expectation of the product of the gradient of the policy value and the long-term
return given state and action Qπθ (s, a). Therefore, suppose we update the policy by only
one episode and use an unbiased Monte Carlo return for Qπθ (s, a), then the update rule for
the policy function is given in equation 3.11, which formulates the REINFORCE algorithm
(Williams, 1992) with MC return:

θ ← θ + α∇π logπθ(st, at)Rt. (3.11)

The vanilla REINFORCE suffers from the same issue as MC control methods, which
is the high variance due to the unbiased return. In light of the policy gradient theorem
in equation 3.10, a natural idea is to replace the long-term expected reward of the action,
Qπθ (s, a), with a function approximation with a parameterization of w, that is, Qw(s, a) ≈
Qπθ (s, a), which leads to the class of actor-critic algorithms (Konda and Tsitsiklis, 2000). The
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actor is parameterized by θ for generating the policy given the state, and for the critic, an
action-value function approximation is used to estimate the long-term return of the current
state and action. The actor is updated using the estimation from the critic while the critic is
updated using the TD error (equation 3.5). The actor-critic system approximates the policy
gradient in the following equation:

δ = r + γ max
a′

Qw(s′, a′)−Qw(s, a),

θ = θ + α∇θ logπθ(s, a)Qw(s, a),

w← w + αδ∇wQ(s, a).

(3.12)

This introduces bias due to the nature of value function approximation. According to the
compatible function approximation theorem (Sutton, McAllester, et al., 2000), if the error of
a critic is small enough in estimating the expected long-reward return, then the convergence
property of the method will follow the exact policy gradient. Therefore, the variance of the
standard actor-critic method can be further degraded by actually reducing the bias in ap-
proximating the policy gradient, that is, the bias in the critic. Such reductions fall into the
definition of using an advantage function. The advantage function intuitively quantifies the
extra gain of reward of taking action a at state s over the average such that the benefit of a
particular action over others are clarified. This is done by subtracting the baseline B(s) from
the critic. A common selection of baseline is the value-function of state s with another set
of weights, e.g., Vv(s) (see equation 3.13). Given the chain rule of ∇θ log f (θ)|θold , the policy
update can be represented in terms of importance sampling (equation 3.14), which is the ratio
rt = πθ(at|st)/πθold(at|st) in proportion to differences between the output of new and old
policies given the same state st:

Aπθ (s, a) = Qw(s, a)−Vv(s), (3.13)

∇θ J = Eπθ
[∇θ logπθ(s, a)Aπθ (s, a)],

∇θold J = Et[
πθ(at|st)

πθold(at|st)
Aπθold (st, at)].

(3.14)

As stated in the section above, a more appealing way to estimate the return in the advan-
tage function is TD(λ), which estimates the return of a state-action value by the weighted
average over multiple roll-outs. The results in (Mnih, Badia, et al., 2016) show that combin-
ing TD(λ) and the value function in approximating the policy gradient leads to much better
convergence in practice.

Besides using advantages functions, van Hasselt and Wiering (2007) introduced the Con-
tinuous Actor Learning Automaton (CACLA) that uses the sign of the temporal difference error
instead of its magnitude. Cacla can be implemented directly in the continuous action space,
especially for the problem where the distance to the optimal action is more informative than
the estimation of the value improvement. CACLA is thus invariant to the scaling of reward
functions, and the results in (van Hasselt and Wiering, 2007) show that CACLA outperforms
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other policy-based methods in continuous action spaces.
Above all, policy-based methods are, in general, limited by sample efficiency and step

size. Due to the nature of on-policy methods, it is only possible to perform one gradient
update for each sampled trajectory; that is, the samples are discarded as soon as the gradient
is computed. Additionally, if training episodes are generated in a random manner but the
algorithm uses a fixed step size, then the algorithm might converge to a local minimum
caused by the updates on bad trajectories and may not be able to converge.

3.4 Recent Advances in RL

3.4.1 Value Function

The recent advances of RL comprise deep neural networks (DNN) and RL algorithms. The
former harnesses a deep network topology to extract high-level features and generates rele-
vant abstractions of the input state. This allows RL algorithms to solve very complex tasks.
Simultaneously, advances in RL algorithms also improve the performance of many baseline
algorithms.

One of the first algorithms to couple DNN and value-based methods is the deep Q-net-
work (DQN) (Mnih, Kavukcuoglu, et al., 2015). The core of DQN is model-free, off-policy Q-
learning using the value function approximation; DQN was initially applied to play Atari
games by taking graphical inputs as human do. The inputs are first processed by convo-
lution layers, which are widely used in image classification DNNs such as CNNs (LeCun
et al., 1998) to extract high-level features from the input. Note that, instead of separately
computing a Q value for every action, the FA of DQN computes all Q values at once. Like
other value-function approximation methods, the objective of DQN (see equation 3.15) is to
minimize squared temporal difference (TD) errors. Due to the non-linearity of the function
approximator, the convergence of the control problem using Q-learning is unstable and not
guaranteed. The policy is pretty sensitive to small updates of the value function, and the cor-
relations between observations might increase the variance of the update. Therefore, DQN
degrades the correlations between inputs by using an experience replay buffer D initially
proposed by Lin (1992). The gradients of a batch are calculated by the TD error of randomly
sampled transitions (s, a, s′, r):

L(θ) = Es,a,s′,r D[(r + γ max
a′

Q(s′, a′; θ−)−Q(s, a; θ))2]. (3.15)

Additionally, DQN uses two value functions for calculating targets and estimations sep-
arately, and they are updated asynchronously. The benefit of introducing a separate target
network is to stabilize correlations between target and value estimations. Intuitively, the
value network is a student to imitate the target network. It will be easier for a student θ to
learn if the distribution of target network θ− remains fixed for a while than if it changes all
the time. For every input, DQN stacks multiple frames so as to extract high-order features
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such as motions due to the partial observability in the nature of image input. There are a
couple of enhancements based on vanilla DQN. Since standard Q-learning takes maximum
operators for updating the function approximation (see equation 3.9), it involves an opti-
mistic bias in calculating the error if the true value is rather small. Therefore, an incorrect
action might get learned too fast in the beginning, which is known as maximization bias
(van Hasselt, 2010). A natural idea is to replace the max operator in the target value by a
less biased estimation. Thanks to the two-network framework of DQN, double DQN (van
Hasselt, Guez, et al., 2016) removes the bias by calculating the TD target (Q2) using the
action indicated by the value network (Q1):

Q1(St, At)← Q1(St, At) + α[Rt+1 + γQ2(St+1, argmax
a

Q1(St+1, a))−Q1(St, At)]. (3.16)

Moreover, for every update, batches are sampled uniformly from the buffer. For prob-
lems with rewards that are delayed or given seldomly, the importance of each sample is
largely in difference. One way is to correct the sampling probability in proportion to the
magnitude of TD error (equation 3.5). Therefore, effective samples are seen more often. In
order to avoid overly large step sizes, Schaul et al. (2015) attempted to correct the step size
by importance sampling. Furthermore, since actions do not always have huge impacts on
rewards, it is also particularly common that the selection of actions does not make a huge
difference since all the actions lead to a similar future. Based on this intuition, Wang et al.
(2015) proposed dueling DQN, which estimates the Q value for every action by aggregating
separate estimations of the state value and the advantage value. The advantage function
essentially measures how much more important an action is than others. By providing this
dueling aggregating module, Wang et al. (2015) achieved a substantial enhancement over
vanilla DQN.

3.4.2 Policy Gradient

With regard to policy-based methods, the standard policy gradient suffers from two issues:
sample efficiency and step size. For the vanilla policy gradient, trajectories are generated
following the on-policy manner, which only allows the trajectory to be used once and dis-
carded right after. On the other hand, the standard policy gradient, in general, is high in
variance because the gradient is computed based on correlated trajectories. If the gradient
update is derived from poor samples, the policy will probably be shifted to a local mini-
mum with a large step size. However, too small a step size will slow down the optimization
procedure.

Schulman, Levine, et al. (2015) successfully addressed the issue of step size by intro-
ducing a trust region. Intuitively, we assume that any policy update within the trust region
does not dramatically change the policy distribution. The goal of policy optimization is to
keep improving the expected long-term return R(π) of policy π. Given the definition of
advantage in equation 3.13, the improvement of the new policy R(π̃) − R(π) is essentially
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the expected advantage value of taking actions sampled from the new policy at ∼ π̃(at|st)

on the trajectory of old policy π:

R(π̃) = R(π) + Et[∑
t=0

γt Aπ(st, at)]. (3.17)

Assuming the state visitations ρπ(s) of the old π and new policies π̃ are close, a local ap-
proximation to the expected return (given in equation 3.17) of the new policy Lπ(π̃) can be
formed by:

Lπ(π̃) = R(π) + ∑
s

ρπ(s)∑
a

π̃(a|s)Aπ, (3.18)

R(π̃) ≤ Lπ(π̃) + CDmax
KL (π, π̃). (3.19)

Kakade and Langford (2002) proved that the expected return of a policy R(π̃) is guar-
anteed to increase monotonically as long as a policy update improves the right-hand side of
equation 3.19, and the improvement is bounded by a distance measure (KL divergence DKL)
of the policy update. Therefore, in order to improve the lower bound, the "surrogate" loss
objective function for trust region policy optimization (TRPO) is proposed in equation 3.20.
The objective is to maximize the expected advantage of the new policy while minimizing
the KL penalty of two consecutive policy updates. In that sense, a trust region constrains
the largest allowed change of one policy update:

maximize
θ

Et[
πθ(at|st)

πθold(at|st)
Aπθ (st, at)− βDKL[πθold(st), πθ(st)]]. (3.20)

A novel extension called proximal policy optimization (PPO) proposed by Schulman, Wol-
ski, et al. (2017) significantly reduces the computation on the conjugate gradient in equation
3.20. Moreover, PPO replaces the constraint on KL divergence in the surrogate loss of TRPO
by a clipping function given by: 3.21.

LCLIP(θ) = Êt[min(it(θ)Ât, clip(it(θ), 1− ε, 1 + ε)Ât)]. (3.21)

It clips the policy update (product of importance sampling it = (πθ(at|st))/(πθold(at|st))

and advantage) by a hyperparameter ε within the range 1− ε to 1 + ε. The clipping allows
the change of the policy within a range and essentially restricts that the new policy does
not change too much from the old policy, which satisfies the original idea of a trust region.
Accordingly, multiple steps of stochastic gradient ascent are actually possible on this sur-
rogate objective, which improves the sample inefficiency issue of standard policy gradient
methods.

One of the key techniques in the variance reduction of policy gradient methods is the use
of the advantage function. One popular choice is the finite-horizon estimator initially intro-
duced in (Mnih, Badia, et al., 2016), where the state-action value in the advantage function
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is estimated by the sum of the discounted reward in a finite horizon l = T− t from time t to
terminal T (see equation 3.22). However, the variance is still high when the horizon is very
long.

Ât
(l)

= rt + γrt+1 + ... + γl−1rt+l−1 + γlV(st+l)−V(st). (3.22)

Motivated by the forward view of the TD(λ) backup, Schulman, Moritz, et al. (2015) intro-
duced the generalized advantage estimator. The state-action value is instead estimated by the
weighted summation over multiple finite-horizon estimations with various lengths:

δV
t = rt + γV(st+1)−V(st),

Ât
(l)

= δt + (γλ)δt+1 + (γλ)2δt+2 + ... + (γλ)l−1δt+l−1

(3.23)

Ât = (1− λ)(Ât
(1)

+ λÂt
(2)

+ λ2Ât
(3)

+ ...)

Ât = ∑
l=0

(λγ)lδV
t+l .

(3.24)

Each finite-horizon estimation with length l is discounted by λl , which results in equation
3.24.

3.4.3 Hierarchical Reinforcement Learning

For many goal-driven problems, the reward for feedback about agent behavior can be very
sparse, requiring the agent to have levels of abstraction of the environment and use hi-
erarchical policies. Sutton, Precup, et al. (1999) introduced the concept of option for the
generalization of primitive actions in an MDP setting. The option consists of a policy with
the validity from its initial state until the terminal state. As soon as an option is activated,
all actions are selected according to the policy of the option until termination. Any MDP
that includes the selection of options is called a semi-Markov decision process (SMDP), which
allows each action to take various amounts of time.

Many researchers have worked on such hierarchical policies for complex problems. Wier-
ing and Schmidhuber (1997) proposed HQ-learning that learns ordered sequences of sub-
policies for each of the sub-goals. The sub-goal is a specific state that is chosen according
its corresponding HQ-table. Every HQ-table is updated toward the expectation of the fu-
ture reward of the subsequent sub-goal. Contrary to HQ-learning, Dayan and Hinton (1993)
initially introduced the idea of feudal control that decomposes the hierarchy into "super-
manager and sub-managers" at levels with different explicit goals. Managers reward and
select sub-tasks for sub-managers all the way down to primitive actions. Each sub-task
refers to its own MDP. The manager recursively satisfies its super-manager until the goal
of the highest-level manager is satisfied. Dietterich (1998) extended feudal control by in-
troducing the MAXQ method that represents the optimal value function of an MDP by the
value functions of the MDP at lower levels and ensures the Markov property for sub-tasks
at each level of the hierarchy. The FeUdal network (FuN) (Vezhnevets et al., 2017) and hi-
erarchical DQN (h-DQN) (Kulkarni et al., 2016) incorporate the hierarchical RL with deep



26 Chapter 3. Reinforcement Learning

networks. A meta-controller computes sub-goals based on a recursively optimal policy, and
corresponding controllers try to achieve maximum intrinsic rewards from the sub-goal. As
a variation of DQN, h-DQN uses action-value functions for both the meta-controller and
the controller while FuN adopts recurrent networks for all controllers and derives policy-
by-policy gradient methods, as in the option-critic method (Bacon et al., 2017). They both
represent substantial improvements on Montezuma’s Revenge, one of the most challenging
games on ATARI, where rewards are given rarely in particular states. Alternatively, the
H-DRLN given in (Tessler et al., 2017) demonstrates a better policy can be achieved if the
controller is allowed to select from all primitive actions as well as from pre-trained skills
that are good at solving the sub-tasks of a complex problem.

3.4.4 RL with Monte Carlo Tree Search

Monte Carlo tree search (MCTS) methods have already significantly aided in solving com-
plex problems that require sequential decisions and planning. Numbers of MCTS variants
have shown great success in playing many combinatorial games, such as Go, Hex, as well
as some other non-game applications like combinatorial optimization and scheduling tasks
(Browne et al., 2012).

In contrast to traditional exhaustive tree search algorithms, such as Minimax, MCTS
builds a search tree within a certain computational limit. Every node of the tree represents
an action and is associated with a value that represents the expected total reward of taking
this action unitl it is terminal. Although action values are estimated by random simulations,
MCTS enables the estimations to be achieved efficiently with respect to the computation
limit. In principle, one might perform a complete MCTS for the selection of every action.
An MCTS consists of four stages. 1) Selection: Starting from the root node s, a tree pol-
icy πtree is applied recursively to picking child nodes (s, a) until it reaches an expandable
node that has unexplored children. 2) Expansion: Add a few nodes at the expandable node
according to the tree policy. 3) Simulation: Run several simulations starting from nodes
that are unexplored or expanded in the Expansion stage until the terminal state. Note that
the policy used in the simulation πrollout is different than selection. 4) Backpropagation:
Update the state-action value of a node Q(s, a) by averaging the rewards of all simulations
that include this node. In other words, the value of a node reflects the average rewards of
taking the action over several simulations. The most popular choice of the tree policy is
the upper confidence bound for trees (UCT) (Kocsis and Szepesvári, 2006). Instead of always
selecting child nodes by maximum state-action value Q(s, a), UCT encourages exploration
with concern to the number of visitations:

πUCT(s) = argmax
ai

Q(s, ai) + c

√
2 ln n(s)
n(s, ai)

, (3.25)

where n(s) is the number of visitation of node s, and n(s, ai) is the number of times that
child node (s, ai) is selected. Equation 3.25 reduces the chance of a child node with good
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value being selected too often while keeping the probability of being selected for nodes that
are less explored.

The recent advances in RL have achieved remarkable improvements by incorporating
MCTS. Silver, Sutton, et al. (2008) introduce the Dyna-2 framework, which selects actions for
TD learning by MCTS with the minimum of initial knowledge of the model. For every state
s, MCTS is implemented given the current transition model, and the value function Q(s, a)
is updated toward the TD error derived from the action a selected by MCTS. The transition
model is then updated according to the observed subsequent state s′ such that planning and
learning happen concurrently. Instead of updating the value function, the AlphaGo Zero al-
gorithm proposed in (Silver, Schrittwieser, et al., 2017) shows that it is of great effectiveness
to just maximize the similarity between policy and MCTS search results in a way analogous
to supervised learning. Similar to its predecessor AlphaGo in (Silver, Huang, et al., 2016),
the AlphaGo Zero improves the efficiency of MCTS with regard to breadth and depth by the
policy and value networks. The policy network indicates the prior for the reduction of child
nodes for selection, and the value function predicts the expected return such that it truncates
the depth of the simulation. AlphaGo has had great success in translating human knowl-
edge into a policy network that can be used for MCTS, and AlphaGo Zero directly takes
the output of MCTS for training, which results in a much simpler and better performance.
AlphaZero, as proposed in (Silver, Hubert, et al., 2017), further generalizes the algorithm of
AlphaGo Zero for some other board games.

3.4.5 Imitation Learning

The goal of imitation learning is to train a policy that tries to mimic the behavior of demon-
strators/experts given the distribution of states in the testing environment. The simplest
approach is reducing the imitation learning to a supervised learning problem (i.e., behav-
ior cloning) that minimizes the difference between model predictions and an expert’s action
along the trajectories generated by the expert. This is impractical because it fails to general-
ize to the states that are not presented in the training set, and the policy is unable to recover
from making a mistake. Ross and Bagnell (2010) argued that, in the worst case, the per-
formance of naive behavior cloning degrades superlinearly with respect to the horizon of
the trajectory. The forward training algorithm proposed in (Ross and Bagnell, 2010) manages
to reduce the growth of the performance loss to linear complexity. It maintains individual
policies exclusively for every time step on a trajectory. For every time step, the algorithm
queries for the action made by the expert and updates its learning policy, which minimizes
the difference between actions. Therefore, the dataset actually includes the corrections made
by the expert for states encountered by the training policies. However, it still fails to be ap-
plicable for problems with longer horizons.

As a more robust approach, the algorithm dataset aggregation (DAgger) proposed in (Ross,
Gordon, et al., 2011) demonstrates that a better performance guarantee can be achieved in
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a stationary policy. Unlike the forward training algorithm, DAgger only maintains a sin-
gle deterministic policy that trains on a dataset that is iteratively aggregated by experiences
generated by the policy mixed with the learning and expert policy. Therefore, the dataset
contains states induced by the learning policy with the feedback by the expert and states
resulting from the expert policy. Alternatively, as a variant of DQN, deep Q-learning from
demonstration (DQFD) proposed by Hester et al. (2017) shows the effectiveness of directly
adding a supervised loss to the objective function of DQN. In addition to the agent expe-
rience buffer, experiences of the expert are stored in a separated expert buffer and remain
unchanged. For each batch update, experiences from the agent and the expert are sampled
simultaneously. The agent is asked to give actions on states sampled from the expert buffer
and this results in a supervised loss with respect to the expert’s action. Adding such a term
leads to a faster learning procedure as well as higher average accumulated rewards for some
control problems.

3.5 Transfer Learning

In reality, different problems might require similar skills for making decisions, and it is a big
waste that the agent has to learn every similar problem from scratch. Therefore, the motiva-
tion of transfer learning (TL) is to transfer the knowledge of a source task to a related target
task for a better training process. Taylor and Stone (2009) argued that the evaluation met-
rics of a TL method consist of jump-start rewards, asymptotic rewards, total accumulated
rewards, and the transfer ratio (i.e., the ratio of total accumulated rewards gained by using
TL and not using TL).

One of the common classes of TL is transferring between tasks sharing the same state and
action variables. In that sense, the allowed differences between tasks can be initial/terminal
states, reward functions, and the transition model of the MDP. Selfridge et al. (1985) dis-
covered that knowledge can be transferred to an MDP with slightly different transition dy-
namics. They found that the agent balances a heavy pole faster if it starts off learning on a
lighter pole and then switches to a heavier one once the easier problem is solved. Similarly,
Asada et al. (1994) demonstrated that the knowledge of reaching the goal state from an easy
initial state can be transferred to solving a problem that starts from a much harder initial
state, which is also called starting-point method in (Torrey and Shavlik, 2009). Moreover,
Atkeson and Santamaria (1997) transferred the source task to a target task by only changing
the reward function, which resulted in a significant improvement on jump-start and asymp-
totic rewards. With regard to batch RL methods, Lazaric (2008) showed that it is useful to
manually add the experiences from source tasks that are relevant to solving target tasks to
the replay batch for updating the target-task policy. In that sense, useful experiences are
available earlier than with random exploration.
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3.6 Partial Observability

Suppose the state of an existing MDP satisfies the Markov property such that:

P[st+1|st] = P[st+1|s1, ...st]. (3.26)

In practice, the true states are not always available due to perception devices; therefore the
agent only receives an observation ot determined by a function of the current state Za

so =

P[o|s, a] such that ot ∼ Za
stot

. Then, the next state st+1 is no longer fully dependent on the
agent’s current observation such that the agent might be unable to provide optimal actions
based on this partial observability:

P[ot+1|ot] 6= P[ot+1|o1, ...ot]. (3.27)

Formally, this is known as a POMDP formulated by the tuple < S, A, O, P, R, Z, γ >, where
S, A, P, R, γ is the same as in an MDP, O is a set of observations, and Z is an observation
function.

Since the agent does not have access to the true state St of the environment, in the
POMDP setting, the agent uses a belief state b(st|Ht) as a probabilistic estimation of the cur-
rent state St given the history Ht, that is, all the observation-action pairs ht = a1, o1, ...at−1, ot−1

from the past. Note that the MDP can be seen as a special case of POMDP, assuming that the
observation is identical to the state and that the observation function always returns true
states to the agent. The optimal value function of a POMDP is then obtained by a policy
π(ht, a) that maximizes the expected return onwards given the history ht:

V∗(ht) = max
π

E[Rt|ht]. (3.28)

A common choice is to facilitate the internal memory state of recurrent neural network (RNN)
(Hochreiter and Schmidhuber, 1997) to maintain the belief state for the estimation of the true
state.
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Chapter 4

Basic 1D

4.1 Basic 1D Environment

Basic 1D produces the simplest abstraction of a set-down operation. In this environment, the
load and the barge were initially separated by 7 meters. The load (block) and the barge are
represented by two points only with relative heave motions in the time domain (see Figure
4.1), and their mass and stiffness are completed ignored and set to 1 (refer to equation 2.16).
In addition, we assume the heave response of the barge is 1 to all frequencies such that the
barge position is always identical to the wave amplitude generated by a specific sea state,
and the load is not affected by waves.

FIGURE 4.1: Basic 1D set-down environment.

FIGURE 4.2: Episode ends when
distance of block and barge is

negative. Key is to reduce contact
angle α before they collide.

In every time step, the environment calculates a relative distance Dr between the load
and the barge by subtracting the adjusted length of the hoist wire and the barge position
from the initial distance. Then, the agent is allowed to select a payout speed to change the
hoist wire length for the next time step. Note that the ramp-up time is not considered in
this environment, so the hoist wire length is adjusted immediately according to the agent’s
action. This procedure repeats until the relative distance is reduced to be negative (See
Figure 4.2), in which case we assume a set-down episode terminates.
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The goal is to ensure that the change of the relative distance Dr (thus the velocity) is
small in the time step where Dr is changed from positive to negative. In other words, the
agent needs to reduce the angle between the blue and orange curves before they collide (see
Figure 4.2). If the barge is static, it is extremely easy to achieve by always lowering the load
at the smallest payout speed. However, it becomes much more tricky when the barge is
moving.

FIGURE 4.3: Examples of good set-down episodes.

Figure 4.3 displays a few examples of possible good set-down attempts with regard to
the basic 1D environment. It indicates that a good set-down is quite dependent on the shape
of the barge motion and the way the agent to prepare itself to be involved in a position that
potentially leads to a good set-down.

The settings of the environment are summarized in Table 4.1. Note that the wave of
every episode is randomly generated from the JONSWAP spectra created by the same sea
state. Therefore, the wave elevation differs between episodes but not the statistical property.
Note that, in basic 1D, we assumed the action space was discrete, in order to meet the range
of the actual pay-out speed of the auxiliary block (-5/30 to 5/30 m/s), the numerator of the
speed can only be an integer between -5 and 5, and the denominator is always 30.

In this environment, the goal is to reduce the impact velocity vi. Based on the limit ac-
cording to HMC experience, we designed the reward function in terms of vi in equation 4.1.
We consider any episode with vi > 0.3 unacceptable, and such episodes receive a penalty.
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Setting Value

Initial Dr 7m
Time step 0.2s
Episode length 300s
Hoist speed range from -5/30 to 5/30 m/s
Size of action space 11
Input space 11 (2s future motion+current Dr) or 151 (30s history+current Dr)
Sea state Hs:1.5m, Tp: 15s

TABLE 4.1: Environment settings of basic 1D.

Setting Value

Learning rate 0.0001
Gamma 0.99
Exploration ε 0.5-0.1
ε decay to 0.1 in 50000 steps
Batch size 32
Target update frequency 10000
Replay buffer 50000
Update frequency 1
Num hidden layers/units 1/100
Activation Sigmoid
Optimizer Stochastic Gradient Descent (SGD)

TABLE 4.2: Hyperparameters for training end-to-end.

The vi was simply derived from the sum of the last positive Dr and the absolute of the first
negative Dr, and then we divided the sum by time step 0.2, which is equivalent to the angle
between the blue and orange curves in Figure 4.2.

r =


max(200, 10

vi
), if 0 < vi < 0.3,

−30, if vi > 0.3,

−0.01, else,

(4.1)

where vi impact velocity.

4.2 Training for End-to-End

The goal of the first experiment was to learn to set down directly from 7m. Considering the
hoist speed and time step, it actually requires a long sequence of actions in order to achieve
the final reward. In that sense, the real useful reward is very much delayed, and the reward
assignment is very sparse. Hence, we named it end-to-end set-down. We prepared two distinct
state variable inputs (see Figure 4.1). Both contained the current relative distance Drt , but
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with one knowing the barge heave history for the most recent 30s (2 wave periods) and for
the other one, the agent was fed by the true barge motion of 2 seconds in the future (1/7 of
single wave period). For both inputs, the time step is 0.2s. Note that, since we pre-generated
the wave elevation array for every episode, the "true" wave prediction could be obtained by
simply extracting subsequent elements in the wave time trace from the current time step.

We used vanilla double Q-learning with experience replay and target network, as pro-
posed in (van Hasselt, Guez, et al., 2016), with the hyperparameter provided in Table 4.2 for
training. The pseudocode of double q-learning can be found in Appendix A.1. We tested
two agents on 500 random episodes with no exploration. In addition, for benchmarks, we
also created a "monkey" that always selects the maximum payout speed regardless of states
for the benchmark.

The results are presented in Figure 4.4. The figure shows the probability density of im-
pact velocity over 500 testing episodes. Apparently, both agents managed to obtain a better
policy than just constantly fully speeding down. The peak of the histogram is shifted to the
left of 0.3, indicating that the majority of the testing episodes are quite acceptable.

4.3 Results

FIGURE 4.4: Results of end-to-end training of
three agents.

FIGURE 4.5: Accumulated reward and state-action
value during for training agent knowing "future".

However, it is notable that the state did not have an impact on the results because both
agents performed equally well on the 500 testing cases. So the agent is not doing anything
useful with the state. Furthermore, the reward and mean state-action value curves in Figure
4.5 indicate that the agent converged to a policy at early stage of the training. Since the trick
was to reduce relative velocity between objects, using a low payout speed already guaran-
teed the reduction as long as the barge was slow. Therefore, we made another comparison
between the agent and another "monkey" with a constant payout at a low speed (see Figure
4.6). It turns out that the agent’s policy was very similar to the new monkey. This implies
that the learned policy is probably as simple as just getting closer to the barge as slowly
as possible and then performing some random actions regardless of the information in the
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input. Most likely, the action is dominated only by the relative distance provided in the in-
put. The agent failed to utilize the "future" we provided or predict the "future" based on the
history.

The algorithm probably suffered from the sparse rewards that led to the early conver-
gence to a local optimal policy. The agent only received a reward for the last action before
the terminal, whereas all immediate steps were not actively rewarded. Since we basically
used Q-learning with experience replay, it failed to maintain the sample efficiency when
most of the experiences in the buffer were not rewarded.

4.4 Learning Sub-Tasks

Considering a regular set-down procedure, it can be divided into three different sub-tasks
(see Figure 4.7). First, when the load is far away from the barge, the crane operator usu-
ally implements constant payout regardless of barge motion (full speed down). Second, as
soon as they are getting closer, the crane operator becomes more patient and starts search-
ing for a proper moment for set-down while keeping the load close to the barge (following).
Finally, he recognizes the possibility and completes the set-down. Therefore, the set-down
skills are mostly required only when the load and the barge are very close. Therefore, we

FIGURE 4.6: Comparing to a slower "monkey". FIGURE 4.7: End-to-end set-down decomposition.

further simplified the end-to-end set-down by using a closer starting position. A shorter
initial distance allows the agent to take significantly fewer steps to finish an episode and get
rewarded sooner. The chance of having experiences with effective rewards being sampled is
thus higher. Following the same hyperparameters provided in Table 4.2, the results of learn-
ing an "easier" set-down are presented in Figures 4.8, 4.9, and 4.10. This confirms that in this
simplified setting, we achieved a more efficient learning progress than with an end-to-end
set-down. Figure 4.10 shows a robust improvement on the accumulated rewards along the
episode. The policy of the new agent outperforms the end-to-end agent at the very begin-
ning of the training. Furthermore, the data in Figure 4.8 indicate a clear distinction between
different input state variables. Given the same initial distance of 1m, the agent knowing
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FIGURE 4.8: Histogram of impact velocity of 1m
initial distance.

FIGURE 4.9: Effect of various prediction lengths
provided to agent.

FIGURE 4.10: Reward curves of training from different initial positions.

about the history still struggled to deal with state inputs. However, the agent fed the pre-
diction started to harness this information to make better decisions. The examples given in
Figure 4.3 are attempts made by this agent with quite reasonable decisions. Counterintu-
itively, a longer prediction did not seem to improve results much more in this experiment
(see Figure 4.9). Given different lengths of prediction, agents performed almost equally.

We further obtained an agent with substantial improvements (see Table 4.3) by feeding
extra information about a upper "boundary", which is the offset of barge motion by 2m. The
boundary specifies a range that encourages the agent to stay in (see Figure 4.11).

State variables Mean impact velocity(m/s)

2s prediction + 2m boundary 0.0732± 0.0521
2s prediction 0.126± 0.0786
5s prediction 0.119± 0.0649
30s history 0.265± 0.134

TABLE 4.3: Set-down from 1m using different input state variables.
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In addition, we trained the agent to stay within a "safe-zone" that followed the barge
motion without hitting it. As shown in Figure 4.11, the maximum allowed margin (between
the blue and green curves) was determined by a vertical limit to the barge position by 1m.
The reward was given for every time step where the agent did not hit the barge or the limit.
The "following" sub-task actually helped the agent always to retain a good starting position
before utilizing the aforementioned "set-down" sub-task, which resembles the second stage
in Figure 4.7. In general, it is easy to learn because the reward is assigned to every action
and is less dependent on actions from history.

FIGURE 4.11: "Following" sub-task, agent (blue)
collides with the limit (green), episode ends. FIGURE 4.12: Visualization of "following" policy.

rbarge = min(10,
1

Dr
), (4.2)

rmiddle = min(10,
2

|Dr − Dlimit|
), (4.3)

where:

Dr = relative distance between the load and the barge
Dlimit = distance to the middle of the "safe-zone"

The goal is to stay inside the "safe-zone" for as many time steps as possible. We pro-
posed two reward functions with different focuses. The first idea was to reward the agent
by the relative distance Dr between the load and the barge (see equation 4.2), and the other
was to reward based on the distance to the middle of the "safe-zone" |Dr − Dlimit| so as to
balance the distances to the boundaries (see equation 4.3). They both received -100 for hit-
ting boundaries. We tested the agent under different input observations. Full observations
consisted of 2-second "true" predictions on both the barge and the limit. We also tested the
observation that excluded the prediction on the limit.
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Observation Reward function Mean survival time (s)

barge rmiddle 138.31± 42.32
barge rbarge 168.45± 47.83
barge+limit rmiddle 192.74± 23.92
barge+limit rbarge 179.86± 44.63

TABLE 4.4: "Following" barge with different settings.

Table 4.4 summarizes the results for the different state and reward configurations. In
general, knowing about both boundaries is very useful in order to complete the "following"
even if the limit is just a simple offset. The reward on the distance to the "middle" is more
effective than only on the relative distance, which makes sense because the agent can then
prepare better for any significant changes. Furthermore, note that the result in the first row
of Table 4.4 is worse than the those of the others. Since rmiddle is fully explained by Dr and
Dlimit, this implies that a better reward is a function of input variables, and the performance
will be influenced if the reward function includes information which is inaccessible by the
agent.

It is also interesting to visualize the policy (see Figure 4.12). The x-axis stands for the
distance to the barge, the y-axis indicates to which direction the "safe zone" is deviating
from the center. It is obvious that the agent generally follows the change of the safe zone. It
tries to get away from boundaries as fast as possible when they are about to contact.

4.5 Back to End-to-End

Our original ambition was to set-down from 7m, and the preceding sections showed that
every sub-task is feasible to learn individually. Finally, there should be a method to leverage
the sub-policies in a more generalized setting. Motivated by the HRL and TL approaches
described in Chapter 3, we considered two distinct methods: TL and using hierarchy.

Firstly, we investigated the feasibility of using the hierarchy following the framework of
h-DQN (Kulkarni et al., 2016). The idea was to decompose a complex task into sub-tasks,
and we trained a meta-controller to select one of the sub-tasks to solve at different states. Each
sub-task was associated to a particular controller that provided the option for the sub-task
until it reached its goal state. When a controller was selected, the meta-controller gave it the
complete mastery until it completed the sub-task. Intuitively, the meta-controller learned a
master-policy of all the sub-policies/options. The controller learned a sub-policy over all
primitive actions of a specific sub-task. In theory, controllers were updated through intrinsic
rewards, which were only valid for the sub-task, and the meta-controller was rewarded by
extrinsic rewards. The goal of the meta-controller is to maximize the expected discounted
extrinsic rewards as standard value-based methods.
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Sub-tasks Intrinsic reward Termination condition

Full speed down equation 4.2 1 second
Full speed down equation 4.2 2 seconds
Full speed down equation 4.2 3 seconds
Following equation 4.3 1 second
Following equation 4.3 2 seconds
Following equation 4.3 3 seconds
Set-down equation 4.1 Dr < 0

TABLE 4.5: List of options for controller

Following the idea of hDQN, we defined the controllers and meta-controllers in Table
4.5 based on our original assumption in Figure 4.7. The original hDQN requires clear dis-
tinctions between sub-tasks in terms of goal states. For the end-to-end set-down, the dis-
tinctions are less straightforward. Instead, we set the goal states of following and full speed
down sub-tasks to have different lengths of duration. Depending on the motion of the barge,
the meta-controller was allowed to select one of seven sub-tasks to perform. We initialized
the controllers for following and set-down sub-tasks by the pre-trained models in section 4.4.
Finally, the extrinsic reward for the meta-controller was the same as the reward function of
the training set-down sub-task.

The learning progress results of hDQN are shown in Figure 4.13, and two figures in the
middle show the height and the moment of selecting the set-down controller. After a few
episodes, the meta-controller figured out that it is better to select the set-down option as
the distance is becoming smaller. This makes senses because the policy of the set-down
controller was trained particularly for the short distances, which is more effective if used
from the same initialization point.

FIGURE 4.13: Mean state-action value of selecting options, height that agent decides to use set-down option,
moment of an episode that set-down option is selected, total extrinsic reward

Alternatively, regarding TL, as proposed by Asada et al. (1994), we transferred the old
policy by setting a more difficult starting position, but we did not change the MDP of the
environment. We initialized the weights of the new agent by the policy of setting down from
1m and started a new training session where the new initial position was set to 7m.

In fact, the idea of learning from easier tasks worked very well (see Figure 4.14). Figure
4.14 illustrates a moving average of the accumulated rewards along episodes. The reward at
the very beginning of TL is already much higher than the maximum reward of the end-to-
end learning agent, which indicates that the old set-down policy generalizes quite well to a
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FIGURE 4.14: Reward curve of transfer set-down
sub-task back to end-to-end.

FIGURE 4.15: Histogram of impact velocity by TL,
hDQN and end-to-end.

different initialization within a few episodes. In other words, through TL, the agent quickly
learns to proceed to a familiar part of the state space from different parts of the state space
without radically changing the policy distribution.

4.6 Conclusion

In Figure 4.7, it is noticeable that both TL- and HRL-based methods significantly outper-
formed end-to-end learning. In terms of asymptotic performance, hDQN performed slightly
better because all sub-policies were already hierarchically optimal before the training. Then,
the algorithm was able to reach the recursive optimality without changing the sub-policies
too much. For TL, instead, the policy was changed in order to fit a different initial position,
which might reduce the level of performance. Nevertheless, with respect to the compu-
tational complexity of training, TL is more efficient because it only maintains one param-
eterization of policy, whereas hDQN requires one for the controllers of each sub-task. The
promising result of TL shows the potential of improving the learning progress for more ded-
icated environments where multiple skills are required. These sub-skills can be trained in
sequence or separately with a more efficient reward function that only focus on achieving
the goal of sub-skills.
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Advanced 1D

5.1 Advanced 1D Environment

In the basic 1D environment, simplifications were implemented to reduce the difficulty for
the agent, which makes basic 1D extremely impractical for use in real situations. In new
environment, substantial changes were made on top of basic 1D (see Table 5.2) such that
it reflected some of the practical concerns. From now on, we will call this environment
advanced 1D. In advanced 1D, the motion was still the heave motion between the vessel and
the load, and the load was instead hanging 3m above the barge.

The first substantial change was including the ship response amplitude operator (RAO).
We obtained the RAO of the relative motion between the crane tip and the barge and sub-
sequently translated the wave spectrum defined by sea-state variables into a response spec-
trum. Then, we generated the relative heave motion in the time domain by IFT. By adding
the motion of the SSCV, we could simulate the effect of a second ship in the environment and
the effect of their relative motion between each other. In practice, a good set-down moment
is always located at the transition between two wave groups where the relative motion is
smaller (see Figure 5.1). In advanced 1D, we set Hs to 1.5 and Tp to 8, which were carefully
chosen based on the operability assessment criteria (see section 2.4) at HMC.

FIGURE 5.1: Wave elevation and corresponding heave motion responses. Heave motions can be separated
by the number of wave groups, indicated by blue vertical lines. Relative motions are smaller at those

transitions between wave groups.
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% max speed Ramp-up (s) End speed (m/s)

0% to 50% 3s 2.5/30
50% to 100% 3s 5/30
100% to 50% 3s 2.5/30
50% to 0% 3s 0

TABLE 5.1: Ramp-up time of changing hoist speeds.

In addition, we included the ramp-up time (see Table 5.1). As introduced in section 2.3,
the ramp-up plays a role as the delay in reaching the intent payout/haul-in speed. In basic
1D, we assumed that the hoist moved in the selected speed as soon as the action was taken,
which is unrealistic. Instead, in the crane cabin, the operator controls the hoist speed by
manipulating a joystick. The further the joystick is pushed, the faster the speed the hoist
will reach with a longer ramp-up. In this case, the joystick is similar to a gas / brake pedal.
Pushing forward accelerates and pulling backward decelerates. In practice, before executing
a maneuver with the joystick, the crane operator first determines a speed by imagining the
outcome of taking that speed with regard to ramp-up and relative motions. In many cases,
common speed choices are 50% and 100% of max speed. In that sense, we limited the action
space of advanced 1D to only three actions: gas, brake, and hold. Based on Table 5.1, the gas
action linearly increases the payout speed by 50% of max speed in 3 seconds, and the brake
slows down the payout by 50% of max speed in 3 seconds. The gas and the brake are no
longer be used after reaching maximum speed. The hold only lasts for a single time step
(0.2s).

FIGURE 5.2: Plots A and B are good examples of set-down in basic 1D but unacceptable in advanced 1D
because they cause new spacing between the load and the barge (gray area) again due to barge motions,

which yields larger impact velocities at re-impact (see set-down angle as explained in Figure 4.2). In C and
D, the agent managed to avoid re-impacts: the trick is to find a position where the load is faster than the

barge motion.
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Most importantly, advanced 1D also included an evaluation of re-impacts. As intro-
duced in section 2.4, slacking for heavy loads takes a long time, the re-impacts provide
additional contacts due to the barge motion after the first contact, and re-impacts sometimes
could get out of control and damage the load. In addition, re-impacts also cause safety
issues as there are many people on the deck. In 1D environments, in order to avoid re-
impacts, there should not be a positive relative distance after the first contact. In reality,
what the crane operators normally do is always take maximum payout speed as soon as the
load touches the barge such that the increment of the length of the hoist wire is fast enough
to cover any barge motion within the slacking period. An illustration is presented in Figure
5.2, where the agent needs to reduce the gray area as much as possible. In that sense, many
of the successful episodes in basic 1D are no longer acceptable because they failed to avoid
re-impacts.

However, avoiding re-impacts and resulting smaller impact velocities are somehow con-
tradictory. As shown in Figure 5.2, the safety zone for small impact velocity does not always
guarantee no re-impacts and vice versa. In that sense, the advanced 1D environment is
more challenging than basic 1D because it requires the agent to have a better understanding
of relative motions with a much lower control frequency.

FIGURE 5.3: Input state variables include current speed, relative distance, and true motion prediction for 15s
and 8 "wave heights."

The agent’s input state variables are visualized in Figure 5.3. As stated before, identi-
fying transitions between wave groups is a key tool to find proper set-down moments. We
"spoiled" the agent by feeding "true" future motions. In practice, a wave group normally
lasts for 10 wave periods. We therefore prepared the information about the future motion in
two formats. For the nearest two periods of about 15 seconds, we fed the actual time trace of
the motion, which is similar to basic 1D. The remaining eight periods were represented by
eight corresponding wave heights. Intuitively, for set-down, only the nearest future is rel-
evant, so we supplied the full detail. For recognizing wave group transitions in the future,
wave heights are the most useful information.

It is worth noting that, in practice, haul-in is not used very often in set-down. This is
the case simply because the total ramp-up time from haul-in mode to maximum payout
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Setting Value

Initial Dr 3m
Time step 0.2s
Episode length 300s
Hoist speeds: 0, 4.5/60, 9/60
Actions Gas (speed up by 4.5/60), brake (slow down by 4.5/60), hold
Ramp-up 1.5/60 m/s2

Action duration 3s for gas and brake, 0.2s for hold
Sea state Hs:1.5m, Tp: 8s
Response model RAO between barge and crane tip

TABLE 5.2: Environmental settings of advanced 1D.

will certainly cause re-impacts (e.g.,. see bottom right example in Figure 4.3). Therefore, in
advanced 1D, we excluded haul-in mode, and the agent switched to the maximum payout
mode as soon as the first contact was made.

Finally, based on the reward function of set-down in basic 1D, we added an additional
penalty on re-impact with proportion to the integral of the relative distance after first con-
tact (the gray area in Figure 5.2). Since the task becomes harder, we slightly loosened the
threshold on impact velocity by 0.5 m/s. The reward function is defined by:

r =


max(200, 10/vi), if 0 < vi < 0.5,

−30, if vi > 0.5,

10 · Ar, if Ar > 0.

(5.1)

where:

Ar = area of grey region in Figure 5.2, magnitude of re-impact
vi = impact velocity

5.2 Results

Based on the hyperparameters suggested in Table 5.3, the results were positive in general.
As shown in Figure 5.5 and Table 5.4, the agent obtained a better policy than simply using
full speed down. Over 500 testing attempts, the agent improved the mean impact velocity by
50%. Note that the agent’s distribution is right tailed, which probably implies that the agent
prioritizes avoiding re-impacts over large impact velocities because the allowed velocity
was increased to 0.5 m/s.

In Figure 5.6, examples of good trails are displayed with the agent’s actions along the
trajectory. Apparently, the agent generally made correct decisions. When the agent saw
there was an opportunity nearby, it took aggressive actions to get closer (see plots B and C
in Figure 5.6). In addition, when the waves were pretty strong, the agent waited many steps
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Setting Value

Learning rate 0.001
Gamma 0.99
Exploration ε 0.5-0.1
ε decay to 0.1 in 50000 steps
Batch size 32
Target update frequency 10000
Replay buffer 50000
Update frequency 1
Num hidden layers/units 1/200
Activation Sigmoid
Optimizer Stochastic Gradient Descent (SGD)
Algorithm Double Q-Learning

TABLE 5.3: Hyperparameters for training in advanced 1D.

FIGURE 5.4: Learning progress in advanced 1D.
FIGURE 5.5: Histogram of impact velocity of 500

testing episodes by agent and "Monkey".

until it saw the chance (see A and D in Figure 5.6). The agent prepared itself to set down
on those transitions of wave groups where the motion amplitude was in general lower than
that of other positions. Unsurprisingly, these are the most probable positions where rewards
on re-impacts and impact velocities do not contradict each other.

5.3 Improving by MCTS

The results in Table 5.4 indicate that the agent still caused a notable number of re-impacts,
which accounted for 8% of the total episodes. Meanwhile, many actions of the examples
shown in the Appendix B are obviously not optimal where the agent should have waited
longer or responded more quickly. For that reason, the current policy seems still far from
satisfactory. For many board games (e.g., Go and Othello), it is almost a common choice to
use simulation-based search methods for policy improvement (Browne et al., 2012). One of
the most fundamental requirements of executing simulations is the presence of a transition
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FIGURE 5.6: Examples of good set-down attempts with small impact velocities and no re-impacts.

Mean impact velocity (m/s) Number of re-impacts

"Monkey" 0.341± 0.14 121
Q-Learning agent 0.176± 0.085 35

TABLE 5.4: Results for 500 testing episodes in advanced 1D

function of the MDP s′ = P[s′|a, s] and a reward function r = E[r′|s]. Therefore, in advanced
1D, the search methods can be carried out because the barge motion is predefined and not
affected by the agent’s actions such that the transition model and the reward function are
fully determined.

Motivated by the AlphaGo algorithm (Silver, Huang, et al., 2016), during the testing,
we executed Monte Carlo tree search (MCTS) to improve state-action value estimations.
For the roll-out policy, we used the policy obtained from section 5.2. For the selection and
expansion stage, the child nodes were selected by UCT (see equation 3.25). Instead of using
the extra value function, we simply backpropagated state-action values by the true return
of simulations. Deviating from the standard tree search, we only executed MCTS at the
moments of interest (see in Figure 5.7).
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FIGURE 5.7: MCTS is executed when the policy
suggests changing speed.

Setting Value

Max depth 2
UCT exploration constant 1
Reward re-scale [0,1]
Simulations per search 100
Roll-out policy Achieved in 5.2

TABLE 5.5: Settings of MCTS

Num. searches Num. re-impacts Mean imp. vel. (m/s)

0 35 0.176± 0.085
10 0 0.129± 0.095
20 0 0.123± 0.104
30 0 0.118± 0.108
>30 0 0.108± 0.072

TABLE 5.6: Results on 500 testing episodes executing a different number of MCTS searches per episode.

Specifically, at every time step, we first sampled an action from the roll-out policy. Then,
the MCTS was carried out only if the sampled action would suggest to speed up or slow
down. This is mainly because most of the failures are due to incorrect decisions about chang-
ing speeds, and they last for 3 seconds (see the examples in Appendix B), which are more
worthy of re-evaluation than the "waiting" action, which only lasts for 0.2 seconds.

FIGURE 5.8: Given the same barge motion, the agent (left) failed to avoid re-impact, but MCTS (right)
succeeded.

Based on the settings in Table 5.5, we tested the performance of combining MCTS with
respect to the maximum number of searches allowed per episode (see Table 5.6). It turns out
that the policy had already significantly improved after only 10 total searches. Meanwhile,
using more searches does not produce much better results. Using 30 or more MCTS only
improved the impact velocity by 0.015, which probably implies that the search implemented
at the beginning guided the agent to an advantageous position where the agent could rely
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Num. searches Num. re-impacts Mean imp. vel. (m/s)

0 35 0.176± 0.085
5 16 0.174± 0.181
10 9 0.182± 0.205
15 5 0.173± 0.184

TABLE 5.7: Results on 500 episodes that allow MCTS only when the relative distance is smaller than 1 meter.

on its own actions from that position onwards. An example is shown in Figure 5.8, and the
MCTS’s choice is on the right. It is obvious that a lot of gas actions from the agent were
rejected by MCTS. Instead, it encouraged the agent to wait longer for a better position.

Moreover, in order to know how well MCTS can recover from the mistakes made by
the agent’s policy, we did another experiment that only executed MCTS when the relative
distance between the load and the barge was small. The load was firstly transported by
the agent’s policy until the distance was smaller than 1m then MCTS was used for selecting
actions. The results are presented in Table 5.7. Interestingly, MCTS only avoids re-impacts
with more searches, but it does not improve impact velocity. This is probably because the
agent wrongly entered a strong wave group on its own where it was only possible to avoid
re-impacts. Therefore, it is more effective to plan thoroughly at the beginning instead of
asking for MCTS when the agent is already in a difficult situation.

5.4 Improving by Imitation Learning

Although using MCTS improves the overall performance, it is impractical to execute MCTS
in real-time applications. We would rather have a model that imitates the decisions made by
MCTS. In that sense, MCTS can be considered as an expert providing good demonstrations
to the learning agent.

FIGURE 5.9: Training accuracy curves of different
network topologies.

Setting Value

Num of samples 123994
Batch size 32
Learning rate 1e-4
Num of layers 1
Optimizer Adam
Total epoch 1000
Loss Categorical cross-entropy
Dropout 0.2

TABLE 5.8: Hyperparameters for
behavior cloning.
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Given the expert data, the simplest approach is to learn through behavior cloning, where
a model is trained to map state variables to the expert’s action or the action-value function
to end up with classification or regression problems. Guo et al. (2014) discovered that such
methods were very effective in some Atari games. They collected expert data by running
offline MCTS planning and used cross-entropy function for the loss. They found that the
classification model achieves higher online testing scores than the regression model. Fol-
lowing this concept, we prepared a dataset that contains 2,000 episodes (123,994 experi-
ences) completed by executing MCTS with the configuration in Table 5.5 and launched the
training session based on Table 5.8. The learning curves presented in Figure 5.9 indicate that
the training converged at nearly 70% accuracy. According to the testing results displayed in
Table 5.10, the behavior cloning is even worse than the policy obtained in section 5.2. As ar-
gued by Ross and Bagnell (2010), naive behavior cloning can easily fail because the network
is only trained under the distribution of the expert’s policy. The agent is unable to recover
from the state, which is either induced by a mistake or unseen in the training set.

Therefore, we implemented the dataset aggregation (DAgger) algorithm. DAgger is sup-
posed to achieve a "no regret" property (Ross, Gordon, et al., 2011) by aggregating data that
contain all previous experiences by the expert and the learner. The pseudocode of DAgger
is presented in Appendix A.2. We started with an initial dataset that was used for train-
ing behavior cloning and initialized the learner by the model of behavior cloning (iteration
0). We then ran another 2,000 episodes using the learner and query MCTS for every time
step. We augmented the dataset by the MCTS action (expert) whenever it differed from the
learner’s action. The action was decided by stochastic sampling with a 50% chance for both
the learner and the expert. Hence, we maintained a dataset that contains the trajectories of
the expert as well as mistakes by the learner with corrections provided by the expert. The
learner was then updated through supervised learning on the aggregated dataset using the
same hyperparameters as those in Table 5.8 (iteration 1).

FIGURE 5.10: Training accuracy curves of iterations.

Model New entries

Before training 123994
Iteration 0 (Behavior cloning) 11970
Iteration 1 8920
Iteration 2 5570
Iteration 3 5420

TABLE 5.9: Number of new entries being appended
to the dataset by the model. Note that an entry is
added only if expert and model provide different

actions.

We completed 3 iterations of this procedure. As depicted in Table 5.9, the model of itera-
tion 3 produced almost as many new entries as iteration 2 to the dataset; that is, the model of
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the new iteration resulted in the same amount of mistakes as in the previous iteration. Thus,
the model did not improve. The learning curves of the DAgger iterations are presented in
Figure 5.10. Most of the learning happened in iteration 0 and iteration 1, and it contributed
mostly to the new entries of the dataset. However, the learning curves do not seem very
promising since they all converged at 70%, which is still similar to the results produced by
behavior cloning.

Apart from supervised learning, we also tested the possibility of directly imitating the
underlying policy of the expert. We simply stored the expert’s experience in the agent’s
replay buffer and sampled mini-batches to compute the TD error using the same hyperpa-
rameters displayed in Table 5.3.

Surprisingly, the mean state-action value is improved but the reward largely decreased
(see Figure 5.11). Therefore, the agent expected to achieve a higher reward by actually taking
wrong actions. This probably means that the agent is getting closer to the expert’s action-
value function, which is only workable in these demonstration episodes. Because the update
of action-value function merely occurs through samples from the expert’s experience, it fails
to interact with the current learning environment. Therefore, it probably over-fits to the
distribution of the expert’s policy while failing to generalize to the unseen states.

FIGURE 5.11: Q learning by replaying expert’s
memory

FIGURE 5.12: Accumulated rewards of DQFD and
Double Q-Learning. DQFD slightly outperforms

Double Q-Learning in the end.

Eventually, we implemented the DQFD algorithm (the pseudocode is presented in Ap-
pendix A.3), which facilitates the concept of supervised learning in the context of RL. This
was mostly done by introducing a supervised loss term JE in the object function (see equa-
tion 5.3). In every replay batch, a fixed partition (sE1, aE1, sE2, aE2, ...) of the expert’s dataset
was sampled together with the regular agent’s experiences. The expert dataset contains the
state sE and corresponding action aE determined by the expert. For every sampled SE from
the expert dataset, the supervised loss JE was achieved by subtracting the state-action value
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of the agent’s choice and the expert’s choice:

JE = max
a∈A

[Q(sE, a) + m]−Q(sE, aE), (5.2)

where m is a constant margin set to 0.8, The overall loss function is given by:

J(Q) = JDQ + λ1 JE + λ2L2(Q), (5.3)

where JDQ is the standard double Q learning loss (equation 3.16), and it is regularized by
L2-norm. Therefore, the supervised loss provides additional feedback on actions that are fa-
miliarized by the expert, which enables interactions between the agent and the environment
while querying the expert. We used the dataset aggregated during the last iteration by the
DAgger algorithm as the expert dataset (155,874 entries) and kept the proportion of the ex-
pert data at 20% in every mini-batch. We compared the learning curve of DQFD and vanilla
Double Q-learning (see Figure 5.12). Both algorithms were initialized by the same policy
obtained from section 5.2. The result shows that Double Q-learning did not improve fur-
ther on its initial policy when the reward of DQFD was low at the beginning but eventually
exceeded Double Q-learning.

Method Num. re-impacts Mean imp. vel. (m/s)

Double Q-learning 35 0.176± 0.085
MCTS 0 0.108± 0.072

Behavior Cloning 40 0.189± 0.101
DAgger 30 0.162± 0.095
Q-learning with expert’s experience replay 168 0.392±0.35
DQFD 40 0.154± 0.07

TABLE 5.10: Results of 500 testings of all imitation methods proposed in this section. Note that the Double
Q-learning agent is the policy achieved in section 5.2, and MCTS is best configuration according to Table 5.6

The summary of all imitation methods is presented in Table 5.10. Obviously, none of
the methods provided a substantial improvement on the original policy. The DAgger and
DQFD were slightly better in terms of impact velocity but still failed to significantly reduce
the number of re-impacts. Regarding MCTS, the action was chosen by the averaged return
of rollouts, so the action was not necessarily fully dependent on the current state. Therefore,
the action could even differ given the same state variables such that the distribution of the
expert dataset could be inconsistent, which makes it difficult to imitate.

5.5 Conclusion

In advanced 1d, we extended the basic 1d environment by the realistic relative motion and
the ramp-up time for each of the actions. We also took the magnitude of the re-impact into
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account. The standard Q-learning was not consistent at reducing re-impacts while it was
fundamentally improved by applying the tree-search method. We therefore tried to imitate
the behavior of the search-based method so as to have the policy working for a real-time
case. However, the improvement of the imitation learning was quite unremarkable. It could
be that the input features are still insufficient to determine the optimal action or that the
reward function of the re-impact is not appropriate.
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Chapter 6

Basic 2D

6.1 Basic 2D Environment

For this section, we extended the environment to two dimensional space. A general visual-
ization of this environment in given in Figure 6.1. In contrast to the 1D environments, the
load and the barge are presented in different shapes. The goal is to set down the load as
close to the left of the bumper as possible while reducing the impact force as much as possi-
ble on the bumper and the barge in both the vertical and horizontal directions. Since objects
are no longer points, the agent has to consider geometries and the dynamics of the load.
Notably, the barge here is not affected by waves, and it keeps standing-still; however, the
hoist is moving with respect to crane vessel’s RAO on heave (z-axis) and sway (y-axis). In
addition, ramp-up time is ignored. Therefore, we named the environment basic 2D.

FIGURE 6.1: Visualization of basic 2D environment.
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Specifically, the load was an 8m x 8m square hanging by a crane hoist located 90 meters
above the barge. The origin was located at the intersection of the barge and the hook exten-
sion line (see Figure 6.1). For every episode, the 10m-bumper was placed perpendicularly at
a random location. We also set a random swing amplitude θ representing the angle between
the hoist wire and a vertical line for a different initial loading position (see Figure 6.1). The
action space contains five actions: payout, haul-in, slew-left, slew-right, and hold. Payout
and haul-in are the same as those in the 1D environment, and slew-left/right moves the
hoist laterally. For the sake of simplicity, we ignored the ramp-up time for every action, and
we assumed all actions were operating at the same speed (see Table 6.3), which resembles
the properties of the auxiliary hoist used in the 1D environment.

We used the pymunk library to define physical objects in the environment and compute
impact forces between objects. The episodes terminated whenever there was a continuous
impact load exerted on the barge for 5 seconds. Instead of measuring the impact velocity
and subsequent relative motions, we evaluated the set-down by looking at the maximum
impact force during the whole episode, which allowed us to include the influence of re-
impacts. The time step of simulation was set at 0.2 seconds.

One of the added challenges in this environment is the control of lateral movement. The
set-down can be considered as a pendulum system, where any action causing a change in
the length of the hoist wire or the hoist position will have an impact on the period of the
pendulum. In practice, due to the vessel motion and hoist movement, the swing might
emerge in any moment. It is crucial to avoid the swing motion for any unexpected contacts,
which requires an explicit skill to control the lateral movement of the load. In that sense, it
is considerably difficult to directly solve the problem solely with the information provided
about the set-down goal. As a result, the problem might suffer from the same issue as
in basic 1D, (i.e., the sparse reward and long-term objective credit assignment). Based on
the results of TL in basic 1d, we defined necessary skills for have a good set-down and
transferred the knowledge of easier skills to harder skills.

6.2 Skills Transfer

Inspired by real set-down operations, the set-down in 2D can be divided into several skills
(see Table 6.1). In contrast to basic 1D, skills under this division are implicitly correlated, and

Skill Goal Requirement

Stabilizing "Kill" swing motion NA
Aligning Find and align with bumper No swing motion
Approaching Stay right above bumper Stay aligned with bumper
Set-down Be close to bumper and small impact force Approaching

TABLE 6.1: 2D set-down sub-skills definitions.



54 Chapter 6. Basic 2D

FIGURE 6.2: Visualization of skill transferring.

advanced skills can only be learned with the mastery of low-level skills. For instance, the
result of the aligning skill is only acceptable if the swing motion is killed. For the approaching
skill, the load can not move horizontally away from the bumper. Otherwise, a good set-
down distance can not be achieved. A clear visualization is presented in Figure 6.2. In
relation to the value function of a skill, the high-valued parts of the states of an advanced
skill are essentially the subset of the high-valued states of a lower-level skill. The agent
was encouraged to shape the value function of advanced skills starting from the lower level
ones. Unsurprisingly, such logic aligns with the nature of TL.

6.2.1 Training Details

We implemented TL following the order in Table 6.1. The transfer was achieved by changing
the reward function from the source task to the target task while fixing the state and action
space (Atkeson and Santamaria, 1997). The details about the state and action space are
described in Tables 6.2 and 6.3. Note that the coordinate system follows the illustration in
Figure 6.1, where yn stands for the y coordinate of PoI n, and vy stands for the velocity along
the y-axis. The initialization of every episode is presented in Table 6.4.

PoI State variable

Hoist yh
Hook θho, yho, vho

y , vho
z

Load lower right ylr, zlr
Load lower left yll , zll
Bumper lower ybl , zbl
Bumper upper ybu, zbu

TABLE 6.2: State space of basic 2D.

Action Definition Speed(m/s)

Payout Extend hoist wire 0.15 (5/30)
Haul-in Shorten hoist wire 0.15
Slew-left Move hoist left 0.15
Slew-right Move hoist right 0.15
Hold 0

TABLE 6.3: Discrete action space of basic 2D.

In addition to Double Q-learning, we included the state-of-the-art policy gradient algo-
rithm, proximal policy optimization (PPO) (Schulman, Wolski, et al., 2017). This algorithm
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Setting Value

State space 13
Action space 5
Episode length 1,500 time steps
Time step 0.2 second
Initial swing amplitude θ 10 to 15 degrees
Initial hoist wire length 55 to 65 m
Initial bumper position -10 to +10m away from origin
Sea state Hs:1.5, Tp:8
RAO Crane vessel heave, sway, surge

TABLE 6.4: Environmental settings for basic 2D.

specifies the "trust region" by a clipping constant on the advantage value, which allows
multiple epochs of batch updates in every gradient update (the pseudocode is presented in
Appendix A.5). The advantage value was estimated by the generalized advantage estima-
tor (GAE) (Schulman, Moritz, et al., 2015) based on the TD(λ) return. The main motivation
for using the policy-based method here was the better convergence property. The proposed
sub-skills are quite straightforward and simple, implying that the loss function could be
smooth without a complex local concave. The convergence property of the policy gradient
enables faster updates toward local optima. The hyperparameters of Double Q-learning and
PPO for training sub-skills are provided in Tables 6.5 and 6.6.

Setting value

Learning rate 0.0001
γ 0.99
Exploration ε 0.5-0.1
ε decay to 0.1 in 500k steps
Batch size 32
Target update frequency 100k
Replay buffer 500k
Update frequency 1
Num hidden layers/units 2/64
Activation sigmoid
Optimizer Adam

TABLE 6.5: Hyperparameters for Double Q-learning.

Setting value

Learning rate 0.0001
Discount factor γ 0.99
Clipping factor ε 0.2
Trajectory length 1500
Num mini-batches 32
Num epochs 10
λ return 0.95
Num hidden layers/units 2/64
Activation tanh
Optimizer Adam

TABLE 6.6: Hyperparameters for PPO.

6.2.2 Stabilizing

The goal of stabilizing is to slow down ("kill") the swing motion induced by any action.
In other words, given a random initial state, the load should be stabilized at the equilib-
rium position of a pendulum with a low horizontal velocity as quickly as possible. We thus
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defined the reward function based on the goal (see equation 6.2), where θho is the swing am-
plitude defined in Figure 6.1, and vho

y is the horizontal velocity of the hook. We encouraged
the agent to kill swing without moving too far away from the origin. We initialized every
episode by a random swing amplitude between 10 to 15 degrees and a random hoist wire
length between 50 and 60 meters. We carefully configured the general damping of the pen-
dulum system in the basic 2d such that the swing wouldn’t stop by itself for at least 1,500
time steps. This prevents the agent to cheat by just waiting for the swing being killed by
itself. The condition for the stabilization is:

|θho| < 1 and vho
y < 1, (6.1)

with the reward function:

r =


1, if Eqn 6.1,

−1, if |yh| > 5,

0, else.

(6.2)

In fact, the problem is quite simple; The optimal action is fully determined by the relative
position and speed, which are θho, yho, vho

y and yh. Figure 6.3 displays the reward curves of
PPO and Double Q-learning when only feeding those four state variables. Both algorithms
worked but PPO learned much faster than Double Q-learning and led to a much higher
asymptotic reward. Since the episode length was set at 1,500 time steps, the curve indicates
that PPO was able to stabilize the load within 400 steps.

FIGURE 6.3: Reward curve on training stabilizing
with only most useful state variables.

FIGURE 6.4: Reward curve of PPO and Double
Q-learning on training stabilizing with full state

variables.

However, when the algorithms were fed by all state variables in Table 6.2 without chang-
ing hyperparameters, they both had difficulties in terms of feature selection (see Figure 6.4).
Nevertheless, PPO eventually managed to solve the problem, whereas Double Q-learning
failed to reproduce the same results as in the previous experiment.
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6.2.3 Aligning

The aligning skill is used to minimize the horizontal distance between the lower right corner
of the load and the bumper while satisfying the condition on stabilization (see equation 6.1).
Note that for every episode, we randomly placed the bumper on the barge between -10 and
10m away from the origin. From that point on, we fed the agent with all state variables
displayed in Table 6.2.

We proposed two types of reward function (see equations 6.4 and 6.5). The step reward
was assigned as soon as the load and the barge were close dlb horizontally. The continuous
reward incorporated the distance measurement inversely. The function approximation was
initialized by the weights of the stabilizing skill. Therefore, the agent was already capable
of killing swing. The condition for the alignment is:

dlb = ybl − ylr,

0 < dlb < 2 and Eqn 6.1, (6.3)

with the reward function:

r = 1, if Eqn 6.3, (6.4)

r = min(1,
2

dlb
), if Eqn 6.1. (6.5)

As presented in Figure 6.5, the continuous reward function led to a more robust enhance-

FIGURE 6.5: Learning curve of PPO based on
stabilizing skill with two types of reward function.
Note that the y-axis represents the number of steps

of an episode where agents satisfy the same aligning
requirements (0 < dlb < 2 and no swing).

FIGURE 6.6: Learning curves of Double Q-learning
and PPO training from scratch and PPO training

with the initialization of stabilizing skill.

ment of performance, but the step reward seemed to be faster but less stable, and the policy
switched between local optima dramatically. Moreover, the results in Figure 6.6 reveal a sig-
nificant influence on transferring the skill when we compare the learning progress of TL and
non-TL approaches. This implies that the agent found the "sweet zone" of the new reward



58 Chapter 6. Basic 2D

function on the state space much faster with a good initialization on the policy. Moreover,
running PPO from scratch required many more episodes to start improving, whereas Dou-
ble Q-learning just failed.

6.2.4 Approaching

Next, we tested the transfer from the aligning to the approaching skill by adding extra crite-
ria on height hlb from the load’s lower right corner zlr to bumper’s lowest point zbl (see equa-
tion 6.6). For every episode, we randomly initialized swing amplitude, hoist wire length,
and bumper position.

hlb = zlr − zbl , (6.6)

r = 1, if Eqn 6.3 and hlb < 5, (6.7)

r = min(1, 1− hlb

100
), if Eqn 6.3. (6.8)

Similarly, we proposed two reward functions, as we did for training aligning. As shown in
Figure 6.7, the continuous reward function (see equation 6.8) was slightly better because it
assigned the reward more frequently than the step reward (see equation 6.7). The shaping
reward provides information on the level of goodness of an action, which might be useful
during backpropagation.

FIGURE 6.7: Number of steps in which the agent satisfies hlb < 5.
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FIGURE 6.8: A typical example of policy learned directly from end-to-end; the agent is approaching the
barge without the control of lateral movements, which is very likely to cause unexpected contacts on the

bumper, leading to a poor set-down. The bumper turns green when it gets hit.

6.3 Results

We executed the final transfer based on approaching skill, which is subject to the reward on
the max impact force Fmax of the episode:

r = (
5000
Fmax

)2. (6.9)

The lower the max force is, the higher the reward the agent receives. As a reference, we
also trained a PPO agent completely from scratch. It used the reward in equation 6.9 plus a
shaping reward (see equation 6.5) because the distance is also a strict requirement.

As seen in Table 6.7 and Figure 6.9, the policy achieved by TL significantly outperformed
the end-to-end method regarding the maximum impact force. Interestingly, we realized that
the distribution of the end-to-end method in Figure 6.9 is split into two clusters, which are
very scattered by the resultant distance to the bumper (y-axis). This is mainly due to the
policy that the agent learned. Figure 6.8 illustrates a typical set-down attempt done using
the end-to-end policy, where the agent completely neglects to slow down the swing motion
during payout. As the swing is continuous, it is very likely that one of the lower corners
of the load will hit the tip of the bumper at the highest excursion within a pendulum cycle.
The fortunate outcome is that the load hits the left side of the bumper such that a good
distance to bumper can be maintained (top right corner in Figure 6.8). However, if the load
first hits the right side of the bumper and does not recover, the load simply stays on the
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FIGURE 6.9: Distribution of impact force and distance of
two methods over 500 testing episodes.

Method
Mean Max

Impact Force
Mean

Distance (m)

End-to-end 1819.77 1.045
TL 1163.61 1.183

TABLE 6.7: Results of two training methods on
500 testing episodes with random initial

positions.

right side until the end, which results in a big margin to the target (bottom right corner in
Figure 6.8) and the two clusters in Figure 6.9. Moreover, both situations fail to reduce the
impact on the bumper because the lateral movement of load is rarely under control by the
policy until it hits the bumper. In contrast, the policy derived by TL does not suffer from
the issue because it is pre-trained in multiple supplementary skills that maintains a better
distribution of states for the set-down.

6.4 Partial Observability

In practice, due to the precision of sensing equipment, many of the states involve error, noise
or even the availabilities that are not ensured. Many crane operators still highly rely on their
visual perceptions to infer the movement of objects. Although crane operators are unable to
determine the actual value of every state, such as velocity and acceleration, they still know,
with a reasonable accuracy, the direction or trend in which a state variable is changing.

Motivated by this fact, we proposed an experiment for training the aforementioned sta-
bilizing skill but with insufficient state variables. The system dynamics is no longer deter-
mined by input state variables, resulting in the POMDP problem. For the input, we hid the
hook velocity vho

y such that agent only saw geometrical information, including the hoist po-
sition yh, the swing amplitude of the hook θho, and the hook position yho, which resembles
what the human eyes actually sees.

We tested two approaches by either stacking the four most recent frames of observations
or replacing the MLP of the policy network of PPO by 128 single-layer LSTM units. The
results are shown in Figure 6.10. It is obvious that the agent with only geometrical state
variables (in blue) failed to achieve as good a policy as the agent with information about full
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FIGURE 6.10: Reward curves of different methods of learning the stabilizing skill with partial observability.

states (in yellow). The stacking method fell slightly behind the full state agent by a number
of episodes, a situation that was probably influenced by the increased number of parameters
in the input layer. The recurrent version of PPO also indicated a promising result along a
calm reward curve. Both approaches were able to infer the dynamics given the geometrical
inputs. A recurrent network is more biologically plausible but less efficient than stacking
observations.

6.5 Conclusion

In basic 2d, we discovered the possibility of decomposing a "2d" set-down into sub-skills
with specific reward functions. Furthermore, it is of great effective if these sub-skills are
related, and we found the policy of a more difficult sub-skill could be converged faster
provided the initialization by the policy of an relevant easier sub-skill. In particular, the
policy-based method was more efficient than the value-based method because of the better
convergence property. Finally, we compared the progress of different methods in dealing
with partial observability on solving the "kill" swing task. Both LSTM method and the frame
stacking method were able to infer the missing information and provide fairly reasonable
policies.
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Chapter 7

Advanced 2D

7.1 Advanced 2D Environment

In contrast to basic 2D, the most significant upgrades under this environment were the vessel
motions and the realistic ramp-up times of hoisting and slewing. Here, the motions of the
barge and the crane vessel were concurrently affected by irregular waves in more DoFs and
the change of mass distributions. The load accounts for a significant portion of the vessel
weight, and any big movement of the load can lead to a change in the orientation of the
vessel. Furthermore, the physical effects of colliding were also enabled in order to model
the resultant motions of objects by impact forces. The environment resembled the most
realistic features with regard to practical situations and was considered as the most difficult
environment. We named it advanced 2D. We built advanced 2D in the Orcaflex GUI, which
is one of the most used packages for the dynamic analysis of offshore structures.

FIGURE 7.1: Visualization of Advanced 2D
simulation environment.

Motion Definition Barge
Crane
vessel

Surge Translation along x no no
Sway Translation along y no no
Heave Translation along z yes yes
Roll Rotation about x no yes
Pitch Rotation about y yes yes
Yaw Rotation about z no no

TABLE 7.1: Allowed motion in advanced 2D.
Note that the definitions of motion follow the

convention on the local coordinate system
shown in Figure 7.2. Unidirectional wave will

not cause the crane vessel’s pitch, but it
actually happens as soon as the load is all

transferred to the barge.



7.1. Advanced 2D Environment 63

FIGURE 7.2: Local axes of barge and crane vessel.

The general visualization of advanced 2D is presented in Figure 7.1. The global axes are
displayed in the upper right-hand corner of Figure 7.1, where the global origin is located at
the center of the stern (refer to Figure 2.5) of the crane vessel. The global y-axis is pointing
to the port side from the global origin. The global x-axis is pointing to bow of the vessel.
The z-axis is straight up from the origin.

Regarding the sea state, in order to resemble only 2D motions in the y-z plane, we limited
the wave to travel only unidirectionally along the global y-axis. This limit excluded the
motions on translation on the global x-axis (surge) and rotation on the global y- and z-
axes (pitch and yaw). A summary of allowed motions on vessels is presented in Table 7.1.
Note that the motions are defined with respect to the vessel’s local axes, and the local axes
of the barge are rotated 90 degrees around the global z-axis. Therefore, the barge pitch is
essentially the rotation about the x-axis in the global axes, which behaves as the roll of the
crane vessel. Besides that, we assumed that the crane tuggers were working perfectly such
that the load does not rotate around its own z-axis due to slewing. For advanced 2D, we
used the same sea state to generate irregular waves throughout all the episodes. The sea
states were carefully chosen to be Hs 1.5 and Tp 8s, a decision that follows the workability
assessment methodology used by HMC projects.

The physical properties of the load and barge were unchanged throughout the whole
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PoI Abbr. State

Load lower right llr
yllr, zllr
vllr

y , vllr
z

Load lower left lll ylll , zlll
Aux. hoist hoi vhoi

y , yhoi
Hoist wire hw φhw, Thw
Aux. hook ho vho

y
Bumper upper left buul ybuul , zbuul

Bumper lower left bull
ybull , zbull
vbull

y , vbull
z

Slewing vslew
Hoisting vhoist
Barge CoG bcog ωbcog,θbcog

TABLE 7.2: State space of advanced 2D. Definition
of components follows Figure 4.1. Note that φ

stands for swing amplitude in the y-z plane as in
basic 2D, θbcog stands for the pitch of the barge on
its local axes and Thw represents the instantaneous

tension in the hoist wire.

Action Definition Ramp-up

Payout increase hoisting +0.025 m/s2

Haul-in reduce hoisting -0.025 m/s2

Slew-left increase slewing +0.3 deg/s2

Slew-right reduce slewing -0.3 deg/s2

Hold do nothing 0

TABLE 7.3: Discrete action space of advanced 2D. Note
that the range of the hoisting speed is [-0.15,+0.15]

m/s, for slewing [-1.8,+1.8] deg/s.

experiment, which particularly ensured that the dynamics of the MDP would remain un-
changed (see Table 7.4). However, the agent still has to deal with the changing of the vessel
motion response due to the relative position of the load with respect to the crane and the
slewing/hoisting actions. This largely increased the difficulty of the problem. For this par-
ticular weight of load, the auxiliary block was selected. The action spaces were the same as
those in basic 2D. However, we included ramp-up time for reaching maximum speed, which
fulfilled the property of the auxiliary block as used in advanced 1D (see Table 5.1). Contrary
to advanced 1D, we no longer froze the action until it reached a certain payout speed; in-
stead, new actions could be taken in every time step. The effect of actions is now adapted
to increasing/decreasing the hoisting/slewing speed by a ramp-up acceleration (see Table
7.3). Regarding the slewing actions, the max slewing speed is 1.8 deg/s, and the ramp-up
time is about 5s.

Similar to basic 2D, we fed the agent the coordinates and dynamics of the relevant PoIs
in the y-z plane. We did not include all the possible dynamics (i.e., vlll

z and vlll
y ) because

we believed the agent would be able to infer that information based on simple geometri-
cal transformations from provided states. Since barge motion is also affected by waves in
advanced 2D, we fed the agent with the pitch θ and the angular velocity ω of the barge as
well as the velocities of the bumper so as to support the agent in reducing the impact force.
Moreover, we included the hoist wire tension Thw as an indication of degree of completion
of the set-down. In practice, the set-down can be considered completed only if the hoist wire
is slack, and its tension is neglectable compared to the load weight. The detail of input state
variables is presented in 7.2.
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Setting Value

Load mass 556t
Load size 20m (x) x 20m (y) x 40m (z)
Barge size 46m (x) x 120m (y) x 10m (z)
Barge critical damping ratio 8%
Barge stiffness 500e3
Bumper size 45m (x) x 5m (y) x 5m (z)
Bumper critical damping ratio 12%
Bumper stiffness 50e3
Hs 1.5
Tp 5
Initial y between hoist and barge CoG yhoi − ybcog 7.8m
Initial z between load and barge zllr − zbull 17 ∼ 20m
Initial hoist wire length 75m
Initial bumper position −5m ∼ 5m away from Barge CoG
Initial swing amplitude φah −2.5 ∼ +2.5 deg
Timeout 250s
Time step 0.2s
Explicit inner time step 0.01s

TABLE 7.4: Environmental setting of advanced 2D.

Finally, we set up simulation episodes based on the Table 7.4. We fixed the relative
positions between the barge and the crane vessel, as well as the hoist wire length for every
episode; however, we provided a random initial swing amplitude and bumper position
for different starting positions. The ultimate goal in advanced 2D was similar to that of
basic 2D regarding the impact force and set-down precision from a initial swing amplitude.
However, the difficulty increased significantly mainly because of the ramp-up and vessel
responses on irregular waves as well as during the transportation of the load. HMC has a
specific engineering design criteria for the maximum allowed force on bumpers with respect
to the load weight. Therefore, special attention was paid to the impact force on the bumper
because it is, in practice, more sensitive to impacts than barges are.

7.2 Skill Transfer

In basic 2D, we realized that it is of great effectiveness to decompose the set-down into in-
terrelated sub-skills and start training from the simplest skill. In advanced 2D, we explored
the feasibility of using the same methodology on more complex dynamics and a larger input
state space. We therefore followed the same sub-skills definitions used in basic 2d (see Table
6.1 in Chapter 6) but with newly designed reward functions.
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Goal Reward

Stabilizing Easy +1, if Eqn 7.3

Stabilizing Hard +1, if Eqn 7.4

Aligning min(1, 1
|d| ), if Eqn 7.4

Approaching Easy
17−h

10 , if Eqn 7.4 and 0 < d < 3

2 + d, if d < −2 and h < 7

Approaching Hard
17−h

10 , if Eqn 7.4 and 0 < d < 2

1.5 + d, if d < −1.5 and h < 7

TABLE 7.5: TL for advanced 2D.

7.2.1 Design of Reward Functions

The reward functions for training sub-skills are presented in Table 7.5. Regarding stabilizing
skills, we prepared two rewards with distinct difficulties in terms of the allowed swing
amplitude and the horizontal velocity of the hook. We started training with easier rewards
and then switched to harder ones. We defined the vertical distance between bumper lower
left and load lower right by:

h = zllr − zbuul . (7.1)

Horizontal distance between bumper lower left and load lower right:

d = ybuul − yllr. (7.2)

Stabilized condition:

Easy mode: |φhw| < 1.5 and |vho
y | < 0.5, (7.3)

Hard mode: |φhw| < 1 and |vho
y | < 0.2. (7.4)

The results in basic 2d showed that continuous rewards are more effective in distance-
control problems because of the information on the goodness of actions they provide. In
advanced 2D, we calculated all positive rewards linearly with respect to either distance or
height. Notably, for the approaching skill, we gave the agent negative rewards 2− d when-
ever there was an overlap between the load bottom surface and bumper top surface because,
in reality, the load was never allowed to step onto the bumper, and we punished the agent
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for any potential situation that might make it happen. For every time step, we applied a
constant penalty of -10 to any positive impact force measured by Orcaflex on the barge or
the bumper. Moreover, we excluded the reward for the final set-down for now because all
sub-skills before the set-down belong to the continuous control, whereas the set-down is an
episodic task, and it requires a completely different focus on state variables, which could
drastically change the policy.

7.2.2 Asynchronous Training

For training each sub-skill, we included asynchronous methods, an approach proposed by
Mnih, Badia, et al. (2016) in the implementation of A3C. For each of the policy iterations,
we initialized n workers by the policy of the previous iteration. We used them to run n
simulations concurrently and stored all experiences along the trajectories of every worker.
Then, we updated the policy by stochastic batch samplings over newly added experiences
for every fixed amount of total steps. The beauty of trust region methods is that they allow
multiple gradient updates within a single policy iteration. We used PPO for all the training
in advanced 2D. The hyperparameters are displayed in Table 7.6.

Setting value

Num worker 4
Learning rate 0.00003
Discount factor γ 0.99
Clipping factor ε 0.2
Trajectory length 1250
Num mini-batches 50
Num epochs 10
λ return 0.95
Num hidden layers/units 2/64
Activation tanh
Optimizer Adam

TABLE 7.6: Hyperparameters for PPO.

7.2.3 Results of Transfer Learning

We executed the training procedure following the order of reward functions in Table 7.5.
The initial weights of the policy were initialized by the policy of previous skill. The learning
curves of all sub-skills are presented in Figures 7.3, 7.4 and 7.5. New skills revealed positive
learning progress based on the parent skills, although they seemed to struggle at the begin-
ning due to the new reward function. Notably, for the stabilizing skill, the pre-training on
the easier stabilizing task (equation 7.3) enabled the agent to achieve a higher starting point
on the same problem with a more difficult reward function (equation 7.4) and also resulted
in a high reward given for the same amount of training resources. For the approaching
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skill, although the starting point was worse than the end of its pre-trained policy because of
the new reward (see the position where the reward function was switched in Figure 7.5), it
caught up quickly and eventually achieved significant improvements.

FIGURE 7.3: Reward curves of training the
stabilizing skill. The agent in red was continuously
rewarded by the strict reward function, whereas the

agent in green started from the easier reward
function and then switched to the strict one.

FIGURE 7.4: Learning curve of training the aligning
skill.

The effect of the policy of the approaching skill is shown in Figure 7.6. We observed that
the agent eventually stabilized the load at a very interesting position, where the load was
just right below the top surface of the bumper and a small horizontal distance away from the
bumper. The distance provided sufficient space to take actions in response to the bumper
motion while still satisfying the reward function of the approaching skill. The vertical dis-
tance prevented the impact from the barge as well as the risk of stepping over the bumper.
We tested the approaching policy for 500 episodes with a random initial position that lasted
250s. The agent, on average, was able to stay in the position for 146.6± 12.5s, as shown in
Figure 7.6.

FIGURE 7.5: Learning curves of approaching skill. FIGURE 7.6: Stabilized position of using
approaching skill.
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7.3 Separate Set-Down

As illustrated in basic 1D, it would be more efficient to learn set-down from an easier starting
position than by using end-to-end, especially as we have already achieved a good approach-
ing policy that enables the agent to stabilize the load very near the barge and the bumper.
Therefore, for the last part, we focused on training the agent to set down from the posi-
tion shown in Figure 7.6 assuming the rest of the episode was perfectly controlled by the
approaching skill.

7.3.1 Reward Functions

In advanced 2D, we defined the reward rt for every time step by the summation of set-down
reward rs, barge impact penalty rFy and bumper impact penalty rFz,

rt = rt
s + rt

Fy + rt
Fz. (7.5)

The set-down is done only if the tension in the hoist wire nearly disappears such that
the load weight is fully exerted on the barge. We therefore gave the positive reward on
every time step when the set-down was completed until the episode ended. The reward is
influenced by the set-down position d as defined by equation 7.2. The closer the load is to
the bumper, the higher the step reward assigned to the agent becomes:

rs =

 1
10 ·min(1, 1

d ), if 0 < d < 7 and Thw < 100,

0, else.
(7.6)

One of the challenges in using Orcaflex is that all simulations have a predefined length. To
prevent the reward from increasing with earlier set-down attempts, we applied rs only for
60 seconds after the set-down was completed and discarded the rest. It balanced the sum of
positive step rewards on whatever set-down moments. Otherwise, the agent would always
take risky actions to set down as early as possible to get a much higher sum of positive
rewards. The special condition on hoist wire tension in equation 7.6 also encouraged the
agent to avoid re-impacts. Because during a re-impact, hoist tension would increase again,
the agent would no longer receive positive step rewards.

Let Fz denote the impact force on the barge along the z-axis. Since the load weight is
556t, for completing a set-down, the minimum Fz could not be smaller than 5,560kN. Thus,
we set the margin at 6,000kN as the maximum allowed impact force on the barge. For every
time step, any measured Fz higher than 6,000 was penalized (see equation 7.7).

rz = min(0, 6000− Fz)/20, (7.7)

ry = max(−10, min(500− Fy, 0)/50), (7.8)

ry = 10 min(0, 0.4− (vlly
y − vbull

y )). (7.9)
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Similarly, in order to prevent horizontal re-impacts, the engineering design criteria of bumpers
at HMC indicates that the maximum impact force on bumper Fy should not be higher than
10% of the total load weight, which leads to the maximum allowed force (500kN) in the
reward function for the bumper (see equation 7.8). In addition, the equivalent of avoiding
a huge impact force on the bumper prevents a high relative velocity between the load and
the bumper along the y-axis. We proposed an alternative reward function in terms of the
relative velocity (see equation 7.9).

7.3.2 Auxiliary Task Loss

Although the lateral control is still a key to a good set-down, it does not directly contribute
to the goal of the set-down. If we include the reward for the approaching skill in the reward
function, the agent stops exploring new positive rewards because it has already satisfied the
reward from the approaching skill, however, we also do not want to completely forget the
approaching skill. A compromise is to use the auxiliary task loss, as proposed by Jaderberg
et al. (2016) such that agent is asked to balance between episodic rewards and the rewards of
the auxiliary tasks. Besides the policy gradient loss of PPO, we included a loss of an auxiliary
task (see equation 7.10) associated with the value function for estimating the advantage of
PPO:

L(θ) = Lθ
pg + Lθ

vr + Lθ
vaux

. (7.10)

Specifically, Lpg is the ordinary clipping loss of PPO (see equation 3.21). Lvr is the TD error
of the value function with respect to the n-step return of the true reward function. Lvaux

denotes the TD error associated with the reward for auxiliary tasks. We used the reward
function of the approaching skill (see last row in Table 7.5) as the return in the auxiliary task
loss term. We initialized the policy by the weights of the approaching skill.

7.3.3 Results

We tested the effectiveness of adding the auxiliary task loss by plotting the distance between
the load and bumper d after set-down was completed (see Figure 7.7). Because the policy
was first initialized by the weights of approaching skill, the set-down distance did not show
much difference between loss functions. However, as the training continued, the policy be-
gan to be influenced by the reward function, and the standard PPO loss failed to maintain
the horizontal position of the load, which resulted in huge oscillations. Instead, the auxil-
iary task loss still controlled the changing of horizontal distance within a reasonable range
throughout the whole training.

Then, we compared the policies based on different rewards with concern for the impact
force on the bumper proposed in equations 7.8 and 7.9. As shown in Figure 7.8, neither of
the two reward functions indicated significant improvement on reward; however, it is obvi-
ous that the reward associated with force was less stable than the reward based on relative
velocity. It is logical in the sense that the force is dependent on all inputs, but is probably
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FIGURE 7.7: Horizontal distance between load and
bumper along policy updates.

FIGURE 7.8: Reward curves of two distinct reward
functions.

not directly indicated by any of them, whereas for the reward on the relative velocity, it can
be derived directly from the input, which makes it easier to be understood by the agent.

Moreover, in Figures 7.9 and 7.10, we visualized the distribution of maximum impact
forces on the barge (x-axis) and the bumper (y-axis) made by policies based on two reward
functions. We noticed that, in Figure 7.9, most impact forces on the bumper satisfy the
"10%" criterion, and the majority of the impact loads on barge is below 120% of the mass of
the load. Compared with Figure 7.10, the reward based on the relative velocity produces
much fewer outliers than the reward based on forces. This confirms again that the training
for the set-down would be more effective if we replaced the real goal with a straightforward
equivalent that can be easily accessed from input state variables.

FIGURE 7.9: 200 episodes done with the policy
rewarded by "high" relative velocity. The horizontal

red line specifies the engineering limits on the
impact force on bumper. The vertical red line shows

the majority of the impact force on barge is below
120% of the load mass.

FIGURE 7.10: 200 episodes done with the policy
rewarded by forces on the bumper.

Eventually, we investigated the general strategy that the agent had learned. Let 6,000
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Imp. Velocity vz0 Fzmax >6000 Kn Fzmax <6000 Kn Total Episodes

"Monkey" Agent "Monkey" Agent "Monkey" Agent
> 0.4 160 30 14 2 174 32
> 0.2 and < 0.4 14 55 9 44 23 99
< 0.2 1 25 2 44 3 69

TABLE 7.7: The number of "good" (F < 6000Kn) and "bad" (F > 6000kN) set-down attempts w.r.t. the
vertical impact velocity on the barge for 200 episodes done by a continuous payout policy and agent with

"set-down" skill.

kN be the threshold for classifying the quality of the set-down. Define the impact velocity
as the vertical relative velocity between two PoIs from the load and the barge, respectively,
that first contact vz0. There is a correlation between the impact velocity and the maximum
impact force Fzmax (see Table 7.7). The higher the first impact velocity is, the higher the chance
a set-down with larger impact force will happen. With that regard, as presented in Table 7.7,
the agent significantly reduced the number of higher first vertical impact velocities, which
implicitly brings a better set-down moment with respect to the relative motion. It echoes the
conclusion drawn from the results in the 1D environment.

FIGURE 7.11: Distribution of the set-down position w.r.t. the barge impact load for 200 testing episodes.

Regarding the distance to the bumper, the "set-down" skill managed to keep the distance
within 0.5 and 0.8 meters on average (see Figure 7.11).

7.4 Final Model

From any initial position, the "approaching" skill worked very well to transport and stabilize
the load at the position used as the starting position for the learning of the "set-down" skill.
Therefore, regarding the final model for solving the end-to-end set-down problem as defined
in Table 7.4, we decided to execute a "hard switch" between the "approaching" skill and
the "set-down" skill at the position where the load is 5 meters above the barge. In a more
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general setting, this switching moment can be optimized using hierarchical RL. Given the
time constraint on this project, we continued with this "hard switch". We further tested
the agent for 200 episodes from 17m with the random initial swing, and we achieved the
very similar result as the exclusive "set-down" skill (see Table 7.8). This indicates that the
"approaching" skill is very effective at transferring the load from any initial position to the
position where the "set-down" skill is familiar to carry on.

Imp. Velocity vz0 Fzmax >6000 Kn Fzmax <6000 kn Total Episodes

> 0.4 27 3 30
> 0.2 and < 0.4 59 44 103
< 0.2 22 45 67

TABLE 7.8: The number of "good" (F < 6000Kn) and "bad" (F > 6000kN) set-down attempts w.r.t. the
vertical impact velocity on the barge for 200 end-to-end episodes with initial swing by the agent using the

"hard switch" plan.
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Chapter 8

Discussion and Conclusion

8.1 Conclusion

In this project, we investigated the feasibility of solving the practical offshore set-down
problem using RL techniques. As a feasibility study, we started from the simplest possi-
ble environment where only the heave motion and impact velocity are considered. Then,
we gradually upgraded the set-down environment on top of the previous one by adding
carefully chosen features referring to the realistic set-down operation. The results under
different environments bring us an overview of the possibilities and limitations of standard
RL algorithms. We demonstrated that the methods suffer from the general challenges of RL,
such as sparse rewards and sample efficiency in solving the long-term objective set-down
problem. We tried various methods to work around this issue, such as transfer learning, hi-
erarchical RL, and shaping rewards. Moreover, the results of using searching methods and
recurrent neural networks provided us the option to include model-based methods with a
deeper network topology.

8.2 Answers to Research Questions

1.What are the main factors and limits that form the offshore operating environment?
How should we model and extend those limits for the simulation environment of Rein-
forcement Learning?

In an ideal situation, the offshore environment is mostly determined by the sea states and
corresponding ship motions. The link between waves and the resultant motion is the RAO
of a vessel. In this project, we assumed that irregular waves are unidirectional along the
vessel, and the sea states remain unchanged. We used the JONSWAP spectrum to generate
the wave energy spectra for the chosen sea state regarding the workability assessment at
HMC. We transferred the wave spectra into the motion response spectrum by the RAO of
an HMC vessel. Finally, we executed the inverse Fourier transfer with a random phase angle
to generate action ship motion in the time domain. For 1D environments, the ship motion
is only limited to 1 DoF (heave). For 2D environments, we included sway, heave and pitch
because they all effect in the 2D plane.
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2.What is the metric and how should we determine the quality of the set-down oper-
ation in terms of physical measurements?

In practice, the important criteria of the set-down are impact force and set-down pre-
cision. The impact force describes the maximum force applied to the barge as well as the
bumper during the set-down operation. That maximum usually occurs when a load con-
tacts the barge or the bumper. In 1D environments, the impact forces are represented by
the impact velocity, which stands for the relative velocity between the load and the barge
right before they contact. The key challenge of the project was to find the proper solutions
to reduce the impact velocity. Furthermore, in 2D environments, we also considered the set-
down precision, which is essentially a measurement of the distance between the load and
the bumper. In reality, it is extremely important, especially when the barge deck is full and
the margin is quite limited.

3. How should we deal with the sparse/delayed reward in each of the set-down simu-
lations?

In this project, we addressed this issue mainly by TL and shaping rewards. Sparse and
delayed rewards are, in general, the most challenging part of this study. The set-down is
mostly long-term and objective-oriented. However, it does require multiple skills during
the set-down, but they are not always correlated. We made clear distinctions between the
focuses and skills at different stages of the set-down. We trained every sub-skill separately
by shaping rewards. The shaping reward helps to decompose a long-term objective into
unit rewards associated to every action. Furthermore, we found that it was quite effective
to execute TL between multiple skills because many of the sub-skills are interrelated. There
was also a possibility to implement hierarchical RL, which is useful for more separated sub-
skills with clear distinctions between each other.

4.How can the performance of the agent be improved by learning with Monte Carlo
tree search? Monte Carlo tree search (MCTS) can be very powerful with the combination of a
valid roll-out policy. We experimented with MCTS mainly in the 1D environment where the
simulator provides the transitions of system dynamics. We used standard RL to train a roll-
out policy and executed MCTS that runs multiple simulations using the roll-out policy. It
leads to great improvements even without a large number of simulations. We further tested
the feasibility of imitation learning based on the trajectories of MCTS, but it did not provide
promising results. This is probably due to the inconsistent policy of MCTS. The actions
indicated by MCTS are not fully dependent on states but also on the results of simulations.
However, the goal of imitation learning is to map the observed state to the expert’s action.
Therefore, it is less effective to consider MCTS as the source of demonstration data under
this setting.

5.To what extent can the simulation environment be upgraded toward the real-world
and what is the effective way to deal with partial observability in the environment? The
simulation environment can be upgraded by increasing the complexity of object motions
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and action spaces. In this project, we upgraded the environment starting from unidirec-
tional to 3 DoFs and then upgraded the action space by adding practical constraints, such
as ramp-up time and action duration. However, there is still a huge gap between the sim-
ulation and a real crane operator cabin, which can be investigated further. In addition, we
tested the feasibility of inferring the dynamics of a partially observable environment for a
simple stabilizing problem. Both frame stacking and recurrent function approximations are
workable, which left open the option to test frames of images as the input instead of fully
relying on time-series sensor data.

8.3 Further Research

The first suggestion for the future work relates to the design of reward functions. The set-
down is generally a long-term, objective problem on which we have spent a lot of time
trying different shaping rewards, but they are not guaranteed to be optimal. It would be
more effective to have the agent itself learn the reward function from interactions with the
environment. Possible techniques could include Inverse RL. Second, in the project, only
model-free algorithms were tested. Given the simulator of the environment, it would be
possible to learn the transition probability between states in order to improve the approx-
imation of the value function by roll-outs. Third, for the input state variables, we could
combine the images from different perspectives for a better explanation of the geometrical
information of PoIs. Then, deep networks could be considered for use. Finally, the environ-
ment could be upgraded further by including the motions of the remaining DoFs, and we
could use different shapes of bumpers for training in order to improve the generalization of
the learned policy.
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Appendix A

Pseudocodes

A.1 Double Q-Learning

Double Q-learning

Initialize: Replay Memory D, two action-value functions Q(θ), Q(θ−) with initial
weights θ = θ−

Initialize: Replay Memory capacity Nr, batch size Nb, update target frequency N
for episode i = 0 to M do

for t=1,T do
With probability ε select random action at

Otherwise at = argmax
a

Q(st, a; θ)

Take at and receive reward rt and enter st+1

Store transition (st, at, rt, st+1) in D
Sample random Nb transitions (sj, aj, rj, sj+1) from D

Set yj =

rj, if episode ends at j + 1

rj + γQ(sj+1, max
a′

Q(sj+1, a′; θ); θ−), otherwise

Execute a gradient descent step w.r.t. θ on E[(yj −Q(sj, aj; θ))2]

For every N steps, reset θ = θ−

end for
end for
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A.2 Dataset Aggregation

DAGGER

Initialize: trajectory data-set D ← ∅, expert policy π∗

Initialize: student policy π̂(s; θ)

for Iteration i = 0 to N do
for t = 0 to T do

With probability β select action by student at = π̂i(st; θ)

Otherwise action selected from expert at = π∗(st)

Aggregate data-set by expert’s action: D ← D ∪ (st, π∗(st))

end for
Gradient updates w.r.t. θ to train π̂i+1 on D by supervised learning

end for
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A.3 Deep Q-learning from Demonstration

DQFD

Initialize: Expert data-set buffer DE, agent replay buffer Dreplay

Initialize: Two action-value functions Q(θ), Q(θ−) with initial weights θ = θ−

Initialize: Pre-training gradient updates K
Initialize: Batch size Nb, update target frequency N
for pre-training step k = 0 to K do

Sample a mini-batch of Nb expert transitions (sj, aj.rj, sJ+1) from DE

compute JDQ as yj in Double Q-learning
compute JE = max

a
[Q(sj, a; θ)]−Q(s, aj; θ)

compute a gradient descent step on JDQ + λ1 JE + λ2 Jl2−norm w.r.t. θ

if k mod N=0 then θ = θ−

end if
end for
for episode i = 0 to M do

for t=1,T do
With probability ε select random action at

Otherwise at = argmax
a

Q(st, a; θ)

Take at and receive reward rt and enter st+1

Store transition (st, at, rt, st+1) in Dreplay

Sample 0.8 · Nb transitions (sj, aj, rj, sj+1) from Dreplay

Sample 0.2 · Nb transitions (se
j , ae

j , re
j , se

j+1) from DE

compute JDQ as yj in Double Q-learning

Set l(ae
j , a) =

0, if ae
j = a

0.8, otherwise
compute JE = max

a
[Q(se

j , a; θ)− l(ae
j , a)]−Q(s, ae

j ; θ)

compute a gradient descent step on JDQ + λ1 JE + λ2 Jl2−norm w.r.t. θ

For every N steps, reset θ = θ−

end for
end for
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A.4 Generalized Advantage Estimator

Â(1)
t := δ

(V)
t = rt + γV(st+1)−V(st)

Â(2)
t := δ

(V)
t + γδ

(V)
t+1 = rt + γrt+1 + γ2V(st+2)−V(st)

Â(k)
t :=

k−1

∑
l=0

γlδ
(V)
t+l = rt + γrt+1 + γ2rt+2 + ... + γk−1rt+k−1 + γkV(st+k)−V(st)

Â(∞)
t =

∞

∑
l=0

γlδ
(V)
t+l =

∞

∑
l=0

γlrt+l

ÂGAE(γ,λ)
t := (1− λ)(Â(1)

t + λÂ(2)
t + λ2Â(2)

t + ...)

= (1− λ)(δ
(V)
t + λ(δ

(V)
t + γδ

(V)
t+1) + λ2(δ

(V)
t + γδ

(V)
t+1 + γ2δ

(V)
t+2) + ...)

= (1− λ)(δ
(V)
t (1 + λ + λ2 + ...) + γδ

(V)
t+1(1 + λ + λ2 + λ3...) + ...)

= (1− λ)(δ
(V)
t (

1
1− λ

) + γδ
(V)
t+1(

1
1− λ

) + γ2δ
(V)
t+2(

1
1− λ

) + ...)

=
∞

∑
l=0

(γλ)lδV
t+l
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A.5 Proximal Policy Optimization

PPO

Initialize: Trajectory length of single environment per gradient update T, number
of epochs per gradient update K, number of actors N.
Initialize: Replay Memory D with capacity N ∗ T, value function V(s; θ), policy π

with parameter θ, minibatch size M < NT
for iteration i = 0 to ∞ do

for n = 1 to N do
for t = 1 to T do

Run πθ for T steps, and store transition (st, at, rt, st+1, π(st; θ)) in D
end for
for t = 1 to T do

Compute ÂGAE(γ,λ)
t and Vt(s; θ), add them to the entry of t in D

end for
end for
for k = 1 to K do

Sample a mini-batch of M transitions (sj, aj, rj, sj+1, π(sj; θ), ÂGAE(γ,λ)
j , Vj(s))

Let k j = [
πθ(aj|sj)

πθold
(aj|sj)

]

Let LCLIP
j = Êj[min(k j(θ)ÂGAE(γ,λ)

j , clip(k j(θ), 1− ε, 1 + ε)ÂGAE(γ,λ)
j )]

Compute surrogate loss L = Êj[LCLIP
j − c1LVF

j ], where LVF
j = δ

(V(sj;θ))
j

Execute a gradient descent step w.r.t. θ on surrogate L
end for
Reset D ← ∅

end for



86

Appendix B

More Examples of Bad Attempts in
Advanced 1D
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