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Abstract

Over the past decades, soccer has encountered an enormous increase in profes-
sionalism. Clubs keep track of their players’ mental condition, physical condition,
performances on the pitch, and so on. New technology allows for the automation of
some of these processes. For instance, position data captured from soccer training
and matches can be used to keep track of player fitness. There are opportunities
for the use of position data in artificial intelligence as well. In the current research,
position data gathered from matches played by a German Bundesliga team has been
used to predict goal-scoring opportunities. The problem was approached as one of
classification: given a snapshot of position data, is it more likely that a goal-scoring
opportunity will be created or that ball possession will be lost? Snapshots of position
data were taken and transformed to 256× 256 images, which were used as input for
machine learning algorithms. The performance of two deep convolutional neural
networks was compared: an instance of GoogLeNet and a less complex 3-layered net.
GoogLeNet came out as the best performing network with an average accuracy of
67%. Although the final performance was not spectacular, there are some promising
indicators for future research and possible practical uses.

iii





Contents

1 Introduction 1

1.1 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Capturing the dynamics of soccer 5

2.1 Machine learning: object trajectories and player formations . . . . . 5

2.2 Team centroids and surface area . . . . . . . . . . . . . . . . . . . . . 6

2.3 Clustering algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Neural networks 9

3.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Multi-layered perceptron and backpropagation . . . . . . . . . . . . 10

3.3 Guiding the learning process . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Weight decay . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.2 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.3 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 Typical elements . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Training a deep convolutional neural network . . . . . . . . . 18

3.5 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.2 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.3 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Dataset definitions and exploration 25

4.1 Dataset contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Data filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Data cleansing . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.3 Addition of derived variables and quantities . . . . . . . . . . 27

4.3 Definition: goal-scoring opportunities . . . . . . . . . . . . . . . . . . 27

4.4 Definition: ball possession . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Dataset exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5.1 Player positions . . . . . . . . . . . . . . . . . . . . . . . . . . 31

v



4.5.2 Team centroids . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5.3 Ball possession . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5.4 Backline crossings . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5.5 Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Methods, experiments and results 37
5.1 Classification problem . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Constructing images for learning . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Negative examples . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 The images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2.3 Enhanced images . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.1 Experiment 1: GoogLeNet . . . . . . . . . . . . . . . . . . . . 42
5.3.2 Experiment 2: 3-layered CNN . . . . . . . . . . . . . . . . . . 43
5.3.3 Experiment 3: KNN baseline . . . . . . . . . . . . . . . . . . . 44

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Discussion, conclusion and future research 47
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.1 More data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2.2 Higher number of classes . . . . . . . . . . . . . . . . . . . . 49
6.2.3 Using a more specialized neural network . . . . . . . . . . . . 49
6.2.4 An ensemble of classifiers . . . . . . . . . . . . . . . . . . . . 50

Appendices 51

A GoogLeNet 53

vi



1Introduction

Over the past decades, soccer has encountered an enormous increase in profession-
alism. The major clubs spend millions on transfers and salaries. Performances on
the pitch are not only reflected in the standings, but also have substantial financial
consequences. When a team does not do well for a number of matches, the coach is
often quickly replaced.

The increase in professionalism includes extensive monitoring of players. Clubs keep
track of their players’ mental condition, physical condition, performances on the
pitch, and so on. New technology allows clubs to partially automate some of these
processes. For example, position data of players can help in analyzing the physical
condition of players, as it can be used to calculate the distance a player has covered
during a match, what their average speed was, how fast the player did accelerate,
etcetera.

The large amount of available data offers opportunities in the field of computer
science and artificial intelligence. When every position of every object on the field
at any time is known, one could try to use these data in order to predict certain
match events right before they occur. Particularly interesting is the occurrence and
prediction of goal-scoring opportunities. In the end, scoring goals is what clubs,
coaches and players want to achieve during a soccer match.

The prediction of goal-scoring opportunities can be approached as a classification
problem. The occurrence of a goal-scoring opportunity then takes the role of a
positive example, while the occurrence of the opposite (the non-occurrence of the
aforementioned event) fulfills the role of a negative example. When labels are
present, supervised machine learning methods can be applied in order to classify
snapshots of a soccer match as either possible goal-scoring opportunities or as less
promising states.

In the current research, goal-scoring opportunities were detected by analyzing soccer
match position data. Abstract image representations of the intervals around goal-
scoring opportunities (and non-opportunities) were used as input to convolutional
neural networks [37]. Convolutional neural networks are particularly interesting
because they might be able to detect higher-order tactical patterns in soccer by
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repeated convolutions. The convolutional neural networks could then be used to
classify soccer snapshots into a class indicating that a goal-scoring opportunity might
arise and a class which indicates the opposite scenario.

1.1 Research question

The main research question of this research is as follows:

Research question Can convolutional neural networks be used to classify and
predict goal-scoring opportunities when presented with position data from
soccer matches?

1.2 Thesis structure

This thesis mainly focuses on machine learning methods. After all, these are the
methods that were used to predict goal-scoring opportunities. In chapter 2, however,
some background about soccer game dynamics from a sports science perspective
will be given. Only a small subset of all research on this topic used machine learning
methods on position data.

Chapter 3 is about neural networks and machine learning. Basic descriptions of
several types of neural networks are given. At the end of the chapter, an outline of
convolutional neural networks will be given. The chapter concludes with describing
several state of the art convolutional neural networks, which have shown spectacular
performance in the Imagenet challenge [9].

Chapter 4 is all about the dataset. The chapter zooms in on several characteristics of
the data set and how they were dealt with. Definitions of goal-scoring opportunities
and ball possession are given, because of their importance for extracting training,
validation and test data for machine learning. The last section of the chapter is about
data exploration: some traditional and less traditional visualizations are applied to
the data set in order to examine its contents.

Chapter 5 lists the experiments that were run and the results. While chapter 4 zooms
in on initial preprocessing of the data, this chapter describes the process of taking
processed data and transforming it to image datasets for machine learning. A total of
three experiments with sub-experiments are described whose results are presented
at the end of the chapter.

2 Chapter 1 Introduction



In the final chapter of this thesis, chapter 6, the results of the experiments are
discussed and a conclusion is formulated. Finally, suggestions for future research are
given.

1.2 Thesis structure 3





2Capturing the dynamics of soccer

The current standard to assess tactical performance is by game observation. Human
observers rely on their knowledge about the game to extract certain tactical per-
formance indicators, often guided by a set of rules, or handbook, which highlight
factors of attention [27]. As a consequence, this type of analysis is subjective and
slow. An automated system for tactical performance assessment would eliminate
these major downsides of game observation by humans.

The main problem with building an automated system is to determine which indi-
cators of performance it should take into account. A traditional method to capture
soccer match dynamics is to keep track of the frequency of occurrences of specified
events. These events can range from events which are relatively easy to detect
automatically, such as the total number of passes, the percentage of successful passes
and the number of shots on goal to more explicitly defined events such as the number
of key passes of a specific player. Frequencies of event occurrences have successfully
been used to predict the outcome of soccer matches [38] and have been shown to
be able to discriminate between successful and unsuccessful teams [7].

Frequencies of event occurrences of specified events do not tell all. One could miss
out on ‘complex series of interrelationships between a wide variety of performance
variables’ when not looking beyond frequencies [4]. Among factors that are missed
out on are higher-order tactical patterns which emerge during soccer. The following
sections go into further detail on attempts that have been made to extract these
higher-order tactical patterns from soccer position data.

2.1 Machine learning: object trajectories and player
formations

There has been some research on soccer position data focusing on trajectories of
objects and player formations involving machine learning techniques.

Knauf et. al. proposed a class of spatio-temporal convolution kernels to capture
similarities between trajectories of objects [22]. The clustering method has been
applied successfully to soccer data. Knauf et. al. distinguished two different trajectory
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sequences: game initiations and scoring opportunities. Game initiations began with a
pass from the goal keeper and ended when possession was lost or the ball was carried
to the attacking third of the field (or the start of a new game initiation). Scoring
opportunities marked the event of carrying the ball to a ‘predefined zone of danger’
in the attacking area of the field. After clustering on a particular set of trajectory
sequences, the clusters represented tactical patterns which could ultimately be used
for classification.

A similar approach involving a variant of self-organizing maps [23] focused on
detecting formations rather than trajectories [13]. Two interactions between players
were investigated: the interaction between the four attacking players of the French
team, the four defending players of the Italian team and the ball during FIFA World
Cup 2006, and vice versa. The tactical patterns that were fed to the network were
short game initiations and long game initiations. Both tactics started when the ball
was won from the opposing team by either the goalkeeper or the defense players.
When the pass following this gain of ball possession exceeded 30m, the tactical
pattern was classified as a long game initiation. Otherwise, the tactical pattern was
called a short game initiation. After training and manual expert labeling of the
self-organizing map’s output layer, the self-organizing map successfully detected
84% of all game initiations.

Memmert et al. outline other opportunities in the field of self-organizing maps [28].
A special self-organizing map was trained with examples of defensive and offensive
patterns from the UEFA Champions League quarterfinal of FC Bayern Munich against
FC Barcelona from the 2008/2009 season. The research illustrates the use of self-
organizing maps in evaluating tactical formations. The neural network that they
used to train on formations found that the most frequent defensive pattern of FC
Bayern Munich (formation 3) led to obtaining ball possession for 40% of the total
occurrences against the most frequently used offensive formation of FC Barcelona
(formation 2, see figure 2.1).

2.2 Team centroids and surface area

The previous section focused on raw position data, where algorithms were used to
extract the relevant information. Sometimes it is beneficial to guide an algorithm in
the right direction, by pointing out which derived variables from position data could
possibly be of use. Two of these derived variables are team centroids (the mean
positions of the team’s players) and the surface area of teams.
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Fig. 2.1.: Most frequently used offensive formation from FC Barcelona (formation 2) and
most frequently used defensive formation from FC Bayern Munich (formation 3)
during the UEFA Champions League quarterfinal during the 2008/2009 season.
Image copied from [28].

Frencken et al. found that the centroid position of a soccer team can provide valuable
information about the ‘coordinated flow of attacking and defending’ in 5 versus 5
soccer matches [12]. A positive linear relation was found between the two teams’
centroids: when the centroid of a team moved in a specific direction, the other
teams’ centroid did as well. This positive linear relation was present for both the
y-direction (length) and x-direction (width). More interesting, deviations from the
above described pattern occurred during the build-up of goals. For 10 out of 19
scored goals, a crossing of the centroids occurred, deviating from the positive linear
relation.

While interesting findings, they do not directly extrapolate to 11 versus 11 soccer
matches. For 11 versus 11 matches, the team centroids showed low variability. The
interaction between each player and his position-specific centroid, however, has
shown more potential to capture player movement behavior [36]. Two methods have
been particularly successful in capturing player movement dynamics with respect
to their team defending, midfield or forward centroids. An approximate entropy
method evaluated the time series of individual player distances with respect to their
accompanying centroids, and classified players into classes of predictability (low,
medium and high predictability) [36, 34, 33]. A second method examined the
relative phase of position-specific centroids, by analyzing two centroids as oscillators
which could either be in-phase or not [25, 10].

Frencken et al. also examined possible linear relations between the surface areas of
opposing teams, but none were found for 5 versus 5 matches. Other research has
shown that the surface area of a team depends on the strength of the opposition [6].
When attacking, the surface area of a team was larger against weaker teams, while
when defending, the surface area was larger against stronger opponents.

2.2 Team centroids and surface area 7



2.3 Clustering algorithms

Voronoi analysis of electronic soccer games has given some insights into soccer game
dynamics [21]. Because it was, at the time of publication, hard to get data from
real-world games, the video game FIFA Soccer 2003 (developed by EA Sports) was
used to obtain a data set. It was argued that FIFA Soccer 2003 resembles soccer
well and is similar to the actual game. Kim [21] used the positions of the players on
the field as the point set to construct Voronoi diagrams. Kim argues that, when the
total area of Voronoi segments of a team is larger than the area of the opponent’s
segments, the first team dominates the latter. Fonseca et al. found a similar result by
analyzing games of futsal with Voronoi diagrams [11]. It was found that the area of
the Voronoi segments - the total area of the ‘dominant regions’ of the players - was
greater for the attacking team and smaller for the defending team.
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3Neural networks

This chapter gives a theoretical background of several types of neural networks.
These types of neural networks will later be used to predict goal-scoring opportunities
in soccer by using position data as the neural network’s input.

3.1 Perceptron

The smallest building block of modern day’s neural networks is the perceptron [35].
A perceptron maps its input vector x to a binary output f(x) by computing the dot
product between the input and a vector of weights w (see equation 3.1). If the
outcome of this calculation is above a certain threshold value, the output of the
perceptron is 1. If otherwise, the output is 0. In modern artificial neural networks,
the threshold value is incorporated into the network by a bias term b. Figure 3.1
shows a schematic example of a perceptron.

f(x) =
{

1 if w · x + b > 0
0 otherwise

(3.1)

-1

x1

x2 Σ

w1
w2

b
y

Fig. 3.1.: A perceptron with two inputs.

A single-layer perceptron is a linear classifier: the parameters of the network (weight
vector and bias term) can be set to approximate a linear function. The parameters of
a perceptron are determined by a learning process. In order to train a perceptron, a
training set is required. In the training example below, D = {(x1, d1), . . . , (xs, ds)}
is the training set where s is the number of training examples, xj is the input vector
of example j and dj is the label (1 or 0) of example j.
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A simple learning algorithm to train a perceptron is as follows:

1. Initialize the weight vector w to either zeros or random small values;

2. For each example j in the training set D:

a) Calculate the actual output:

yj(t) = f [w(t) · xj ] = f [w0(t)xj,0 + w1(t)xj,1 + · · ·+ wn(t)xj,n] (3.2)

b) Update the weights:

wi(t+ 1) = wi(t) + (dj − yj(t))xj,i (3.3)

3. Repeat step 2 until

a) iteration error on time t is less than a user-specified threshold; or

b) the algorithm has run for a predetermined maximum number of iterations.

3.2 Multi-layered perceptron and backpropagation

An extension of the perceptron is the multi-layered perceptron (MLP). An MLP
consists of multiple neurons, where the perceptron only contained a single neuron,
and can distinguish data that are not linearly separable. It has been shown that
MLPs are capable of approximating any measurable function to any desired degree
of accuracy [17].

MLPs consist of at least three layers: an input layer, one or more hidden layers and
an output layer. An MLP is fully-connected: every neuron of layer k is connected to
every neuron in layer k + 1 by corresponding weights. To guarantee that an MLP is
able to learn non-linear functions, non-linear activation functions are applied to the
summed output of the hidden neurons. The outcome of the activation functions is
then passed through to the neurons in the next layer. For MLPs, sigmoid functions
are often used as activation functions, such as the hyperbolic tangent:

f(vi) = tanh(vi) (3.4)
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or the logistic function:

f(vi) = (1 + e−vi)−1 (3.5)

where vi is the weighted sum of the inputs connected to the ith neuron in a certain
layer, and f(vi) is the output of that neuron.

Training an MLP differs a lot from training a perceptron, especially because of added
non-linearities and an additional hidden layer. First, we would have to define a
cost function which we would like to minimize in order to decrease the error. A
frequently used cost function is the mean squared error:

E(n) = 1
2

∑
j

e2
j (n) (3.6)

where ej(n) = dj(n) − yj(n) is the error of output neuron j for the nth training
example, dj(n) is the target value and yj(n) is the computed value by the MLP. The
main problem is now to determine to which extent specific neurons have contributed
to the error value. This is also known as the credit assignment problem in artificial
neural networks: how much should a particular weight be adapted in order to
minimize the error [14]?

The most common way is to propagate the error value through the network, starting
from the output layer. This method is called backpropagation of the error [43]. Using
gradient descent, we find the following general update rule for a weight wij(n)
where i reflects the node in the layer which is closest to the input.

∆wij(n) = −η ∂E(n)
∂vj(n)yi(n) (3.7)

where η is the learning rate and yi the output of the previous neuron. Note that
the weights are adapted in the direction of the negative gradient, hence the term
gradient descent. The derivative term in equation 3.7 varies for hidden nodes and
output nodes. For output neurons:

− ∂E(n)
∂vj(n) = ej(n)f ′(vj(n)) (3.8)

and for hidden neurons:

3.2 Multi-layered perceptron and backpropagation 11



− ∂E(n)
∂vj(n) = f ′(vj(n))

∑
k

− ∂E(n)
∂vk(n)wjk(n) (3.9)

where f ′ is the derivative of the activation function used in the neural network. The
sum term in equation 3.9, which sums over all output neurons k to which hidden
neuron j is connected, shows that the hidden weight updates rely on computing
the cost function derivative with respect to the output weights first: the error is
backpropagated. Although the above example is for a perceptron with only one
hidden layer, deeper neural networks with a much more complex structure can still
be trained by backpropagation. The weight update for a neuron then relies on all
neurons that are located between this particular neuron and the neural network’s
output.

3.3 Guiding the learning process

Neural networks can contain thousands or millions of parameters which all have
to be set to appropriate values to approximate a certain function. It is not hard to
imagine that the process of learning is not straightforward. Over the past decades
several methods have been developed that guide the learning process by making
changes to the weight update equations for the neural network’s parameters. The
following sections will be about some of these methods, particularly the ones that
are often used in deep neural networks.

3.3.1 Weight decay

It has been shown that penalizing large weights in a neural network can aid general-
ization [29]. The easiest way to achieve this is by adding a penalty term for large
weights to the neural network’s cost function:

E(w) = E0(w) + 1
2λ

∑
i

w2
i (3.10)

where E0 is the original error function (such as sum of squared errors as in equation
3.6), w the weight vector containing all free parameters in the network and λ

a hyper-parameter which determines to what extent large weights are penalized.
When using gradient descent, the weight update function becomes as follows:
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wi(t) = wi(t− 1)− η ∂E

∂wi(t− 1) − ληwi(t− 1) (3.11)

By penalizing large weights, it is attempted to push learning in a direction where all
connections between neurons participate in producing the neural network’s outcome.
When weights are not penalized for becoming larger and larger, there is a possibility
that only a few of the network’s parameters are of importance and the majority
is neglected. In such a scenario, using a much smaller network would then be
able to achieve similar performance: the bigger network does not live up to its full
potential.

3.3.2 Momentum

When adapting the weights in the direction of the negative gradient based on single
examples (or single batches of examples), the weight adaptations tend to fluctuate.
The weights are changed too much based on single examples, which blocks the path
for the weights to find their optimal values. A simple method to counter this issue,
is to introduce some sort of momentum to the network’s weight update function
[41, 19]. When certain weights are changed in the same direction for consecutive
iterations, their momentum grows and the weights tend to be adapted in the same
direction for the next iteration. Momentum can be implemented by altering the
weight update function as follows:

wi(t) = wi(t− 1)− η ∂E

∂wi(t− 1) + α∆wi(t− 1) (3.12)

where α is the momentum parameter which decides how much the previous weight
adaptation weighs.

3.3.3 Dropout

A recently developed technique which helps to prevent over-fitting in neural networks
is dropout [39, 40]. When training data is limited, noise in the input data can cause
the network to train on noise as if it were features of the input patterns. This
ultimately leads to worse generalization and a lower test accuracy. Dropout tackles
this issue by disabling neurons with a certain, pre-specified probability during
the training phase. During one training iteration, each neuron is dropped with
probability p. When p = 0.5, roughly half of the neurons are used for the forward
and backward pass. Because fewer neurons are given the task to generate the desired
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output, they have to be more flexible and learn more general features. While this
generally results in a higher training error, the test error is often greatly reduced, as
has been shown with different sets of data [40].

Dropout can also be considered a form of model combination. With neural networks,
it is often desirable to combine the output of multiple independently trained neural
networks to obtain a better prediction [5, 2]. With very deep neural networks, for
instance the convolutional neural networks used in the Imagenet competition, it is
practically impossible to train multiple neural networks. The training time is simply
too long. With dropout, for every iteration a unique model is used, due to the unique
combination of available neurons.

3.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural networks which exces-
sively make use of mathematical convolution to learn a function which is non-linear
in nature. CNNs are particularly suited for image data because of convolution kernels
which are shifted over an image. A fully-connected multi-layered perceptron would
have too many connections and therefore focus too much on single pixels instead of
patterns spanning multiple pixels.

The first CNN appeared in literature in 1990. LeCun et. al. used a small neural
network incorporating two convolutional layers to recognize handwritten digits [26].
Over the last few years, CNNs and deep learning have experienced an enormous
boost in popularity. This can mainly be ascribed to their recent successes in the
Imagenet competition, which will be described in more detail in section 3.5.

The typical elements of CNNs are listed in the following subsections. For training
deep neural networks, the training algorithm, or solver, differs slightly from the ones
described before. The last part of this section lists the main differences between the
training processes.

From now on, it is assumed that the convolutional neural networks are used for
classification. The outputs of these networks are class-conditional probabilities: the
networks output k numbers which indicate the probability that a presented input
matrix belongs to a specific class.
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3.4.1 Typical elements

A typical CNN consists of multiple layers. The first few layers of a CNN are often
convolutional layers or pooling layers. The convolutional layers typically contain
added nonlinearities (ReLUs) which process the output activations of the neurons.
After the convolutional layers, mostly one or more fully-connected feedforward
layers are used to obtain activation scores for every class. A softmax on the final
output layer yields final class-conditional probabilities.

Convolutions
Theoretically, convolutional layers in a CNN can be described as being con-
straint fully-connected layers (where the constraints are that severe that the
layers are not fully-connected anymore). The nature of the constraints, such as
shared weights amongst subsets of neurons (the neurons belonging to a specific
filter or kernel) and sparse connectivity (not every hidden or output neuron is
connected to every input neuron), make that we can consider convolutional
layers in a more practical way by addressing the principle of mathematical
convolution. This section will primarily make use of the latter description.

The first convolutional layer in a CNN convolves an input representation, often
in the form of multiple arrays, with a set of filters. Every filter, or kernel, in a
convolutional neural network detects distinct features. A filter has its own set
of weights which can be trained to extract specific features. For example, the
weights of a 5× 5 filter can be set to 1 around the edges and to 0 in the center.
When an input is convolved with this filter, the output activity is high for areas
containing 5× 5 rectangles, and low for other regions.

Filters in a CNN operate through the full depth of the input representation.
In case of an RGB image, the input is represented as three stacked 2D arrays:
one array for every color channel. The kernels thus operate on all three layers,
taking every color into account. The convolution operations, however, are
still two-dimensional of nature: convolutions are applied to independent two-
dimensional slices (e.g. the red-colored channel of a kernel acts on the red
input channel).

The number of filters in a convolutional layer determines the depth of the
output volume of that particular layer. Let us consider an arbitrary activation
on position (x, y, z) in an output volume of a convolutional layer. x and y tell
us something about the spatial location where the filter was applied to the
input. The height of z however, tells us the filter number or depth slice. For
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every layer, the number of filters, or depth, can be set manually: it functions as
a hyperparameter for the CNN.

There are a couple of other hyperparameters which can be set for every layer.
The stride of a kernel determines how much a filter slides when it is applied
repeatedly. It determines the spacing between applied filters. With a stride
of 1, a filter slides 1 ‘pixel’ (when dealing with an input image real image
pixels are meant; in higher layers the term ‘pixel’ refers to ‘convolutional
pixels’) to the side after applying the filter. When the stride is lower than the
dimension of the kernels, there is a certain overlap between the filters. Another
hyperparameter is zero-padding. When the dimensions of the output volume
need to be controlled, one could add zeros to the sides of the input volume.

A single convolutional layer is not very effective in detecting higher-order
patterns that are suitable for image classification. The strength of CNNs lays
in stacking convolutional layers. The first layers will detect primary image
features, such as edges. The latter layers, which take the output of the former
layers as their input, will be able to detect higher-order features. In other
words, the latter layers will detect patterns of patterns. When using kernels
that are large enough and a sufficient amount of convolutional layers, the
higher-order patterns can be very global when compared to the input image.

Rectified Linear Units
In order for a CNN to learn a non-linear function, nonlinear activation functions
have to be added to the net. Traditional neural networks often use a hyperbolic
tangent f(x) = tanh(x) or a logistic sigmoid function f(x) = (1 + e−x)−1 for
added nonlinearities (see section 3.2).

Most modern, deep CNNs, however, use Rectified Linear Units (ReLUs) to
implement nonlinearities. A ReLU outputs its input if it is above zero, and zero
otherwise:

f(x) = max(0, x) (3.13)

One of the most important advantages or ReLUs is that it has been shown
that neural networks with ReLUs tend to converge faster than networks with
traditional activation functions [30].

Pooling
Pooling layers effectively subsample an input volume. Pooling layers shift a
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small filter, often 2x2, over an input volume, every time selecting the maximum
value of the 4 numbers. Other forms of pooling exist, such as average and frac-
tional pooling. In this thesis both max pooling and average pooling were used
for the GoogLeNet architecture, and only max pooling for a self-constructed
3-layered convolutional neural network.

x1 x2

x3 x4
⇒ MAX(x1, x2, x3, x4)

The hyperparameter stride functions the same as for kernels: it determines
how much the pooling filter is shifted every time it is applied. For pooling, the
stride is often equal to the filter dimension (e.g. a stride of 2 for 2× 2 filters),
although there are exceptions such as 3x3 filters with stride 2 (e.g. AlexNet
[24]).

Besides reducing the amount of computation in a network, pooling layers
also prevent overfitting and therefore aid generalization. Because for every
2x2 region the maximum value is selected, a kind of translation invariance is
introduced. For example, when an object is moved one pixel up on an input
image, the pooling operation ensures that the final outcome is still similar to
the non-translated version of the image.

Fully-connected layers
In a typical CNN, multiple convolutional and pooling layers are followed by
one or more fully-connected layers. These fully-connected layers take the
output of the last convolutional layer and yield output activities for every
single class.

Softmax regression
The output of the last fully-connected layers is k-dimensional, where k repre-
sents the number of classes in the training data. As a final step, the output
activations have to be transformed to k numbers which reflect the probability
that a certain input belongs to a certain class. These probabilities will then be
used for calculating the loss or error for training and test examples. For the
transformation to class-conditional probabilities, a softmax function is often
used. Softmax regression is a form of logistic regression and expands it to a
multi-class scenario:
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where x(i) is a presented input, p(y(i) = n|x(i); θ) the probability that the
model output y(i) = n given x(i) and all model parameters θ. θTnx

(i) is the
intermediate output for class n by passing input x(i) through the for class n
related parameters in the model. The softmax function is then computed over
all output activations.

3.4.2 Training a deep convolutional neural network

The most common way to train a deep convolutional neural network is by applying
variants of gradient descent. The solver method used in this research is Nesterov’s
accelerated gradient, which uses gradient descent as a basis but also includes
momentum in its gradient computation:

Vt+1 = µVt − η∇L(Wt + µVt) (3.15)

Wt+1 = Wt + Vt+1 (3.16)

where µ is the momentum value, η the learning rate and ∇L the gradient.

Deep neural networks are often not trained in an online fashion where the input
matrices are presented sequentially. Instead, the input matrices are presented in
mini-batches. For every mini-batch, containing a pre-defined number of examples
(typical values are 8-64, depending on the computational power of the available
GPUs), dot products with the model’s parameters are computed for the full mini-
batch to generate the network’s output. Usually, the larger the size of the mini-batch,
the better the generalization, as the weight adaptations of the model depend less on
single examples.

Another characteristic of deep neural networks is that, when dealing with a lot of
model parameters, the models tend to overfit quite easily when not enough training
examples are presented. To overcome this issue, forms of data augmentation are
used to artificially enlarge the training data (e.g. [24]). Methods include extracting
patches from the original images and altering color channel intensities.
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3.5 State of the art

The Imagenet Large Scale Visual Recognition Challenge (ILSVRC) is a yearly recur-
ring competition for object detection and object localization algorithms [9]. The
Imagenet challenge consists of multiple sub-challenges, of which the image classifica-
tion task has probably received most attention. For the image classification task, the
classes (of a total of 1000 classes) of objects depicted on images have to be predicted
by an image classification algorithm. The decisive performance measure is the top-5
error rate which has to be as low as possible. A top-5 error occurs when the actual
class of an image is not among the top-5 predicted classes by the algorithm.

During the last couple of years, the image classification challenge has been dominated
by deep convolutional neural networks [24, 42, 16]. Even among convolutional
neural networks the accuracy has drastically improved over the past years. Only from
2012 to 2015 the top-5 error has decreased from 15.3 (AlexNet) to 4.49 (ResNet).
The increase in accuracy is partially an effect from new types of deep convolutional
architectures, but can be ascribed to the availability of more computational power
as well.

The next sections describe three ILSVRC winners from the past years: AlexNet
(2012), GoogLeNet (2014) and ResNet (2015). These convolutional neural networks
all have a very different structure, which makes it interesting to list all of them and
not only the best performing one.

3.5.1 AlexNet

AlexNet is a deep convolutional neural network which was entered in the ILSVRC2012
competition by Alex Krizhevsky et al. [24]. AlexNet achieved top-1 and top-5 error
rates of 40.7 and 18.2 when using a single CNN, and error rates of 36.7 and 15.3
when averaging predictions of 7 similar CNNs.

The overall structure of AlexNet is depicted in figure 3.2. The first five layers of
AlexNet are convolutional of nature. Convolutions with 96 kernels of size 11×11×3
and stride 4 act on the 3-dimensional input data. The second convolutional layer has
256 kernels of size 5× 5× 48 which act on the normalized and max-pooled output
of the first convolutional layer. Note that the depth of the kernels in the second
convolutional layer is half of the number of kernels in the previous layer: this is due
to parallel processing on 2 GPUs. The third convolutional layer contains 384 kernels
of size 3 × 3 × 256 which are connected to the normalized, max-pooled output of
the second convolutional layer. The last two convolutional layers also use 3 × 3
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convolutions: 384 kernels of size 3× 3× 192 and 256 kernels of size 3× 3× 192 for
the fourth and fifth layer, respectively.

The five convolutional layers are followed by two fully-connected layers. These
layers both contain 4096 neurons. The output of the last fully-connected layer
is used for 1000-way softmax classification. Rectified Linear Units (ReLUs) were
used as the activation function throughout the network, for fast computation and
convergence.

AlexNet is a large CNN with around 60 million parameters. Krizhevsky et al. use
several methods to improve the training process and reduce overfitting. Dropout [39,
40] (see section 3.3.3) was used in the fully-connected layers to prevent the network
from overfitting. Two forms of data augmentation are used with the same purpose in
mind. From the original ImageNet data, which contained 256× 256 images, patches
of 224× 224 were extracted as well as mirrored versions, effectively increasing the
amount of data by a factor 2048. These patches were used during training1. The
other form of data augmentation encompassed altering the RGB channels in training
images by adding a small quantity to every pixel related to the principal components
of the image.

A small amount of weight decay (0.0005) and momentum (0.9) was used to facilitate
learning.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224× 224 patches (and their horizontal reflections) from the
256×256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 × 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224× 224× 3-dimensional.

5

Fig. 3.2.: The full AlexNet architecture. Parallel computations are done on two GPUs, which
is illustrated in the above figure by two separate pathways. Image copied from
[24].

3.5.2 GoogLeNet

GoogLeNet [42], the winning convolutional neural network in the ILSVRC2014
classification challenge, is very different compared to the previously described
AlexNet. Where AlexNet used relatively few convolution kernels which acted on

1During testing, five 224 × 224 patches (and mirrored versions) were extracted from an original
256 × 256 image: the four corner patches and a center patch. The final classification was then the
result of averaging softmax predictions of ten distinct patches.
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big volumes of data, GoogLeNet introduced so-called Inception modules, where
convolutions with differently sized kernels are applied in parallel. The outputs of
the multiple convolutional layers within a module were concatenated and passed to
the next layers. Figure 3.3 shows an illustration of a single Inception module. In the
full CNN, Inception modules were stacked on top of each other, where the output of
the previous module functioned as the input for the next.

Deep convolutional neural networks have the undesired property that the volumes
of data, due to repeated convolutions, quickly become too large to be handled by
current computer hardware. Some networks attempt to tackle this issue by using
subsampling methods such as average or maximum pooling. In GoogLeNet, every
time the computational requirements would increase too much to be handled by
the hardware, the dimension of convolutional volumes is reduced. This is achieved
by using max pooling or average pooling and by applying 1× 1 convolutions. This
is clearly visible in figure 3.3: before 3 × 3 and 5 × 5 convolutions, the input is
convolved with small 1× 1 kernels. 1× 1 filters can be used to reduce the dimension
of convolutional volumes by using less filters than the depth of the input volume:
the depth of the convolutional volumes is reduced.

x

5x5 conv3x3 conv

1x1 conv 3x3 max pool1x1 conv

1x1 conv

1x1 conv

Filter
concatenation

Fig. 3.3.: A single Inception module. Image based on [42].

Because GoogLeNet is a very deep network with 22 layers with parameters (excluding
pooling layers which do not have parameters/weights), it can be hard to correctly
adapt the weights using backpropagation. There is a problem of vanishing gradients:
the error vanishes when it is propagated back into the network, leading to insufficient
weight changes in the neurons near the input [3]. GoogLeNet deals with this
problem by adding two auxiliary classifiers to the network, which are connected
to intermediate layers. The output of these layers was taken into account for
backpropagation during training: the error of the auxiliary classifiers was weighted
with a factor 0.3 (opposed to 1.0 for the final, ‘third’ output). In this way, the
error did not vanish as much as it would had there only been one output, as the
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intermediate classifiers were closer to the input than the final classifier. The auxiliary
classifiers were not taken into account during test and validation time.

The network was trained on the Imagenet dataset by using a momentum of 0.9 and
by decreasing the learning rate by 4% every 8 epochs. Dropout was used only in the
fully-connected layers, with a value of 0.7 for the branches used for intermediate
classification and with a value of 0.4 in the main classification branch. The designers
of GoogLeNet [42] do not give any further details on the training process, and
mention that it is hard to give a definitive guidance to the most effective way to train
the network.

For testing, seven independently trained versions of the same GoogLeNet model
were used. These models were used for ensemble prediction. The only differences
between the training processes of these models was in sampling methodologies and
the randomized input image order. Aggressive cropping was applied to the test data,
leading to 144 crops per image. The softmax probabilities were then averaged over
multiple crops for all individually trained networks, leading to a final classification.

The performance of GoogLeNet in terms of top-5 error was very good: a top-5 error
of 6.67% was achieved, which is significantly better than the error rate of AlexNet
(15.3%) and ILSVRC2013 winner Clarifai (11.2%) [44].

The full layout of GoogLeNet can be found in appendix A.

3.5.3 ResNet

Convolutional neural networks with a very high number of layers have the potential
to learn more complex functions than networks which are shallower. Deeper net-
works do, however, not always perform better in terms of reducing the training error
[15]. This is called the degradation problem. Note that this can not be ascribed to
overfitting, because then the test error would be higher and not the training error.
The winners of the ILSVRC2015 challenge, MSRA, think that the phenomenon occurs
due to an inability of the deeper network to learn identity mappings when necessary
[16]. The additional layers of the deeper network fail to map the identity function
(note that when all additional layers map the identity function, performance would
be identical to the more shallow network).

MSRA introduced a deep residual framework that deals with this issue by letting
one or more successive convolutional layers learn residual functions rather than
full mappings. Let H(x) be the desired mapping of a few stacked convolutional
layers. Normally, this set of layers would learn the direct mapping F (x) = H(x).
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Instead, the input x is not only passed to the convolutional layers, but also passed
through the identity function after which it is added to the convolutional output
F (x): F (x) + x. Instead of the direct mapping H(x), now the residual mapping
F (x) := H(x)− x is learned. An illustration of a building block for deep residual
learning can be found in figure 3.4.

Conv. layer

x

ReLU

I
Identity

function

Next layer
ReLU

Conv. layer

Fig. 3.4.: Residual learning building block. Image based on [16].

The best performing full residual network consisted of building blocks which are
a bit more complex than depicted in figure 3.4. Instead of two-layer blocks of
3× 3 convolutions, three convolutional layers were present within a block. The first
convolutional layer, with 64 kernels of dimensions 1 × 1, was presented an input
with depth 256. After ReLUs were applied to the output of the first layer, a second
convolutional layer (3× 3, 64 kernels) processed the data. ReLUs were applied to
the intermediate data volume, followed by the third and last convolutional layer
(1× 1, 256 kernels). The convolved result was added to the input, after which the
data was passed through another ReLU.

The best accuracy on the Imagenet dataset was reported with a network consisting
of a total of 152 convolutional layers. The full network consisted solely of residual
learning building blocks, apart from initial 7 × 7 convolutions, and two pooling
operations at the beginning and at the end of the net. With some momentum
and weight decay but without dropout, training went fluently and the degradation
problem that deep networks often show was not present. The final top-5 accuracy of
a 152-layered ResNet on the Imagenet validation set was as low as 4.49: significantly
better than previous year entries in the ILSVRC competition.
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4Dataset definitions and
exploration

This chapter is about the dataset that was used for the experiments. Pre-processing
methods are described, important definitions are given and the dataset is explored
with visualization methods.

4.1 Dataset contents

The dataset consists of two-dimensional position data of a selection of matches
played by a German Bundesliga team during the 2008/2009 and 2009/2010 season.
The positions for every player on the pitch were captured by the Amiscor multiple-
camera system. The Amiscor system consists of multiple cameras placed around the
stadium and tracks all moving players on the soccer field at a sampling frequency of
25 Hz [1]. Computer vision techniques are used to track objects and estimate their
positions.

Because the ball position was originally not tracked by the system, it was manually
added to the data. Therefore, the position of the ball is not as precise as the player
movement. When the ball was passed or shot, only its start position and end position
were marked. As a result, the ball always moved in straight lines, even in cases of
curved shots or passes. When a player had ball possession and dribbled with the ball,
the x- and y-coordinates from the player were copied and used as ball position.

As a follow-up step the data were imported into soccer analysis software developed
by Inmotio [18]. Consecutively, the raw export function of the Inmotio software was
used to export match data at a downsampled frequency of 10 Hz.

4.2 Preprocessing
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4.2.1 Data filtering

Three matches were deleted from the original dataset. The position data of these
matches were incomplete: in all three cases data from the opposing team’s players
were missing. The actual dataset therefore included a total number of 29 full-length
matches. Only one of these matches was an away game.

4.2.2 Data cleansing

When dealing with continuous data measured in a dynamic environment, it is no
surprise that parts of the data contain errors. In the used dataset, there existed time
intervals for which the coordinates of a certain player were not measured correctly.
In the dataset, such measurements were indicated by the coordinates adopting very
high values (in the order of 1.0 · 105 meters).

When inspecting the data, it was apparent that there were two main reasons which
caused the errors. The first reason is because of players being not between the lines
of the soccer field. For this category a distinction can be made between players
which were not between the lines for only a limited amount of time, and players
which had left the pitch indefinitely. For the first category, coordinates were linearly
interpolated for the interval that contained erroneous data. For the second category,
erroneous data rows were deleted. Note that this did not negatively impact the
continuity of the dataset: the players had left the soccer field indefinitely, and did
not return to the pitch.

The second cause for erroneous data is the computer vision algorithm not being able
to correctly capture the position of a player. This effect seemed to be present most
during corner kicks, during which the players were standing very near to each other,
causing tougher extraction of individual players. In these cases the player position
was linearly interpolated as well.

Figure 4.1 shows the distribution of the duration of noisy intervals: time intervals
during which the coordinates were not measured correctly for at least one player.
The figure shows that the erroneous intervals do not make up a large part of the
data. This indicates that linear interpolation would not affect the data too much in a
negative way.
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Fig. 4.1.: (a, b) Duration of noisy intervals.

4.2.3 Addition of derived variables and quantities

The raw dataset lacked information in certain aspects, as it did only contain a
timestamp, two-dimensional coordinates, object velocity, object id, object name
and shirt number for all players and ball. Missing essential parts of the data were
added manually. Every player had to be assigned to a team, which was either
the Bundesliga team or the opposing team. This was done manually. The playing
direction of the teams was extracted by looking at the position of players at the
beginning of the matches. When most players belonging to one of the teams were
located on a particular side of the field, their playing direction was set to the other
side, and vice versa. Finally, a variable representing the direction of movement for
players and ball was added. Coordinates of two adjacent samples were taken into
account for determining the direction of movement.

4.3 Definition: goal-scoring opportunities

There are many ways to define a goal-scoring opportunity in soccer. One could
state that possession of the ball in a certain area of the soccer field, for instance
the penalty area, is a goal-scoring opportunity. Frequency statistics about soccer
matches often include the total number of shots and the number of shots on goal,
which could both also be considered goal-scoring opportunities.

Due to the two-dimensional nature of the data, it is impossible to distinguish between
shots which were on goal and shots which went over the bar. Taking these limitations
into account, goal-scoring opportunities have been defined as shots which (almost)
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crossed the end line near the goal. A shot which is a little wide would still be
classified as a goal-scoring opportunity, as will a shot which crosses the goal on the
upper side. A movement of the ball was considered a shot when:

1. the ball had moved in a more or less straight line towards the goal;

2. the velocity of the ball was above a certain threshold all the time;

3. before the velocity of the ball passed this threshold, a player belonging to the
attacking team was near the ball.

Algorithm 4.3 shows pseudocode of the algorithm which was used for finding goal-
scoring opportunities. Start index, end index and the side of the field where the
goal-scoring opportunity occurred were returned for each opportunity. The algorithm
relies on several constants that affect the threshold settings for detecting goal-scoring
opportunities, which are listed below. Between brackets are the actual values that
were used for extracting opportunities.

min-velocity [set to: 20 km/h]
The minimum velocity for the shot. Velocity had to be above this threshold for
a movement of the ball to be considered a shot.

max-p-distance [set to: 1.5 m]
Maximum distance from attacking player to ball at the start of a goal-scoring
opportunity.

max-angle-change [set to: 20 degrees]
Maximum change of direction of the ball during a shot. In section 4.1 it was
stated that, due to the later addition of the ball to the dataset, the ball always
moved in a straight line when it was shot. This variable may seem unnecessary
at first sight, but imagine the case of a shot which is touched by another player
halfway through. It would not be appropriate to consider this as a single shot.

max-dist-to-goal [set to: 1.0 m]
When the ball was directed towards goal in the previous sample, but is not
anymore in the current sample, this parameter determines the maximum
distance from the ball to the end line for the shot to be considered a goal-
scoring opportunity. By setting this threshold to a value higher than zero, shots
which do not directly pass the end line can still be detected as opportunities. A
shot stopped by the goal keeper before the goal line will then still be classified
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as an opportunity. Another advantage of assigning a slightly positive value to
the threshold is that it helps to tackle noisy measurements.

min-shot-time [set to: 0.5 s]
Minimum duration for a shot.

opp-margin [set to: 5.0 m]
Goal-scoring opportunity margin on both sides of goals. This parameter deter-
mines how far a shot can go wide while still being classified as a goal-scoring
opportunity. Note: for clarity, this parameter is not listed in algorithm 4.3.

Algorithm 4.3 Algorithm to find goal-scoring opportunities
1: function FIND–OPPORTUNITIES(data)
2: opportunities← empty list
3: for each sample ∈ data do
4: if sample.ball-velocity < min-velocity then
5: continue
6: if sample.ball-direction is towards one of the goals then
7: near ← list of players whose distance to ball ≤ max-p-distance
8: team-att ← team attacking the goal to which the ball is directed
9: if there is a player ∈ near belonging to team-att then

10: for end-sample ∈ [sample + 1, sample + 2 ... sample+ n] do
11: dir-diff ← diff in direction between end-sample and end-sample − 1
12: if dir-diff > max-angle-change then
13: break
14: if ball at end-sample is not anymore directed towards goal then
15: if distance at end-sample to goal ≤ max-dist-to-goal then
16: if time between sample and end-sample ≥ min-shot-time then
17: Add (sample − 1, end-sample) to opportunities
18: Outer for loop: jump to sample end-sample + 1
19: else
20: break
21: else
22: break
23: return opportunities

4.4 Definition: ball possession

The ball possession was assigned to the team whose player was closest to the ball.
Some extra parameters were added to avoid the algorithm from switching ball
possession when the ball passed a player closely, but did not undergo a change in
direction or a significant decrease in velocity.

Algorithm 4.4 shows pseudocode of the algorithm used for ball possession detection.
For every sample in the data, an integer indicating possession for the German
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Bundesliga team (1), the opponent (2) or none (0) was returned. The parameters
which could be set are as follows:

max-p-distance [set to: 1.5 m]
The nearest player at a specific time had to be closer than max-p-distance to
the ball to have ball possession.

max-ball-velocity [set to: 10 km/h]
When a player was close enough to the ball to be considered for ball possession,
the ball velocity had to be under max-ball-velocity for actually getting
possession assigned. There is one exception, which involves the last constant.

min-ang-chg [set to: 20 degrees]
When the angular change of the ball was very high while it was close to a
player, it was implied that the player had caused the change of direction.

Algorithm 4.4 Ball possession algorithm
1: function GET–BALL–POSSESSION(data)
2: possession← empty list
3: Add 0 to possession
4: for each match sample ∈ data except the first do
5: nearest← nearest player to ball at sample
6: if distance(nearest, ball) at sample ≤ max-p-distance then
7: ang-chg ← change of ball direction between sample− 1 and sample
8: if sample.ball-velocity ≤ max-ball-velocity or ang-chg ≥ min-ang-chg then
9: team← team to which nearest-player belongs

10: possession(sample.idx)← team
11: else
12: possession(sample.idx)← possession(sample.idx− 1)
13: else
14: possession(sample.idx)← possession(sample.idx− 1)
15: return possession

4.5 Dataset exploration

This section is about dataset exploration. The main focus will be around the 349
goal-scoring opportunities that were found: what was the distribution from attacking
and defending players’ positions in the built-up to goal-scoring opportunities, how
did ball possession fluctuate, how did both team centroids correlate, etcetera.
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Fig. 4.2.: Average proportion of attacking and defending players per zone before goal-
scoring opportunities. t = 0 indicates the exact moment of a goal-scoring oppor-
tunity: the instant the ball was shot.

4.5.1 Player positions

Studying player positions before goal-scoring opportunities can give insights into
the processes that led to the creation of the opportunities. Figure 4.2 shows the
average division of players over the soccer field at the exact instant of a goal-scoring
opportunity. Figure 4.2a shows the distribution of attacking players, figure 4.2b
shows the distribution of defending players. The proportions for each figure add up
to 1. The attacking players seemed to be rather equally divided over the attacking
half of the field, with a peak presence in the zones located around the penalty spot.
The defending players were predominantly located around their team’s penalty area.
Overall, the positions of the defending team’s players were much more concentrated
around one spot than the attacking players.

Note that the goal of this study is to predict goal-scoring opportunities. It might
be more interesting to zoom in on player location distributions moments before
goal-scoring opportunities were created. Figure 4.3 shows average divisions of
attacking and defending players 5 seconds (figure 4.3a and 4.3b) and 10 seconds
(figure 4.3c and 4.3d) before opportunities. The defending players were already
predominantly located around their penalty area, although a bit more divided over
the field. Interestingly, the attacking players were almost equally divided around the
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entire field 10 seconds before goal-scoring opportunities. This could indicate that
regarding the use of player positions for goal-scoring opportunity predictions, only a
short time interval before opportunities is of importance.
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Fig. 4.3.: Average proportion of attacking and defending players per zone 5 and 10 seconds
before goal-scoring opportunities.
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Fig. 4.4.: Mean distance to half-way line of front (attacking team)/back (defending team)
3 players during goal-scoring opportunities.

4.5.2 Team centroids

Frencken et al. found that the centroid position of a soccer team can provide valuable
information about the ‘coordinated flow of attacking and defending’ in 5 versus 5
soccer matches [12]. Among other findings, they found that team centroids crossed
for 10 out of 19 scored goals in the length direction of the field.

Figure 4.4 shows centroid positions before goal-scoring opportunities for the forward
3 (attacking team) and back 3 (defending team) players of each team. Goalkeepers
are excluded. Only the centroid coordinates from the axis over the length of the field
are plotted. The difference between the attacking and defending team is plotted
as well. The attacking team’s centroid seemed to approach the defending team’s
centroid during the built-up of goal-scoring opportunities. Over a time period of
15 seconds before opportunities, the difference in distance between the centroids
was decreased by approximately 8 meters. A crossing of centroids as described by
Frencken et. al., however, was not present.

The same effect seemed to be present for centroids of the back and front 4/5 players.
For 7 and 10 players the effect disappeared.
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Fig. 4.5.: Ratio of ball possession before goal-scoring opportunities for (a) all attacking
teams and (b) the Bundesliga team and other teams, when attacking.

4.5.3 Ball possession

Figure 4.5a shows the average ball possession for the attacking team during goal-
scoring opportunities. t = 0 marks the instant the ball was shot. The y-axis
(possession ratio) reflects the number of times the attacking team had ball possession
divided by the number of times the defending team possessed the ball. The ball
possession was determined as described in section 4.4. When inspecting figure
4.5a, there was a clear increase in ball possession starting at 20 seconds before
goal-scoring opportunities.

Figure 4.5b shows ball possession for attacking teams as well, but this time a
distinction is made between opportunities created by the same Bundesliga team
(blue line) and opposing teams (red line). The possession ratio seemed to be alike
for both the same Bundesliga team and opposing teams, except for the beginning.

The peak in the graphs towards a possession ratio of 1 at t = 0s was an effect of the
definitions of ball possession (section 4.4) and goal-scoring opportunities (section
4.3) that were followed. Goal-scoring opportunities were only able to occur when
a player of the attacking team had ball possession at the time of shooting the ball.
The drop in average ball possession just before the opportunities could possibly be
ascribed to opportunities created by capturing the ball near the opponent team’s
goal, quickly resulting in a shot on goal.
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4.5.4 Backline crossings

Figure 4.6 shows the distribution of y-coordinates where the ball crossed the backline.
The ball mostly crossed the backline near the goal. Note that the backline crossings
near the goal are considered goal-scoring opportunities, with a certain margin.

Distance to middle of goal (m)

-40 -30 -20 -10 0 10 20 30 40

C
ro

s
s
in

g
 f
re

q
u

e
n
c
y

0

20

40

60

80

100

120

140
Position of backline crossings

Fig. 4.6.: Distance from shots crossing the backline to the center of goal. A negative distance
reflects a shot crossing the backline on the left side of the goal.

4.5.5 Passing

Figure 4.7 shows the start and destination zones of passes before goal-scoring
opportunities. Most passes seemed to be short passes which stayed within their
zones. The center zones were best represented. The right side of the field (zones 12,
15 and 18) seemed to be equally important as the left side (zones 10, 13 and 16) for
opportunity creation. This is not a surprise at the highest level of soccer: when a
player is not sufficiently efficient, he is often quickly replaced.

A simple algorithm was used to extract passes from the data. A pass started when
the ball was near a player during the previous samples but not anymore during the
current sample. When ball velocity dropped afterwards or the ball changed direction,
the ending of the pass was marked. Passes with a duration under 0.2 seconds were
discarded.

The direction of the passes can be an interesting variable for analyzing team tactics.
Figure 4.8a shows the ratio of passes towards goal compared to all passes that
originated from that zone. It should be noted that passes did not have to reach its
intended destination. This would have been too difficult with the current dataset,
especially due to the manually added ball positions. A shot on goal would therefore
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still be considered a pass. This is one of the main reasons why the passes towards
goal ratio was very high for the zones in the penalty area.

Figure 4.8b shows the ratio of passes with a forward direction compared to all passes
sent from that zone.
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Fig. 4.7.: Start and destination zones for passes during a 10-second interval before goal-
scoring opportunities. Right image from [4].
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Fig. 4.8.: Ratio of (a) passes towards goal and (b) forward passes per zone.
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5Methods, experiments and results

5.1 Classification problem

The underlying problem of all experiments in this thesis is one of classification. Given
a specific combination of player positions and ball position, what is the probability
that a goal-scoring opportunity will emerge within reasonable amount of time?
When this estimated probability is above 0.5, the specific instance will be classified
as a goal-scoring opportunity. Otherwise, the instance will be classified as the
non-occurence of a goal-scoring opportunity.

It can be quite a challenge to classify a specific situation on the pitch into one of the
above categories. This challenge becomes even harder when the window around
goal-scoring opportunities is enlarged: when not only the exact instant of the shot
on goal is considered a goal-scoring opportunity, but also the 5 or 10 seconds before
the event. While more of a challenge, a bigger window is beneficial for the predictive
power of the classifier. It enables more practical uses as well: with an extended
window, one could possibly use the classifier for predicting goal-scoring opportunities
in the next couple of seconds. In this thesis, a goal-scoring opportunity window of
10 seconds is used. Explicitly, this means that the 10 seconds before goal-scoring
opportunities are considered goal-scoring opportunities, while the remainder of the
matches is not (for more information about goal-scoring opportunities, see section
4.3).

Convolutional neural networks are used to classify extracted samples from the
position data. Convolutional neural networks are suited for this task because of their
capability of extracting higher-order patterns in higher-dimensional data. As input
to the machine learning algorithms, RGB color images are used. Images are suitable
for visualizing player positions because the dataset consists of two-dimensional
coordinates of the objects on the field: the height of the objects was not captured.
The players and ball can therefore be represented by blobs on the images, such as
rectangles. Different colors can be used to distinguish between teams. The next
section describes the process from raw data to images in more detail.
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5.2 Constructing images for learning

The following steps sketch the process from raw data to images in a dataset. Multiple
datasets were created with different distributions for the train, validation and test
sets within the dataset. Every dataset consisted of approximately 7000 positive
examples and 7000 negative examples.

1. For every match out of 29 matches, goal-scoring opportunities were detected
using the algorithm described in section 4.3.

2. From a total of 349 detected goal-scoring opportunities

a) 45% were used for the training set;

b) 10% were used for the validation set;

c) 45% were used for the test set.

3. For every goal-scoring opportunity

a) 11 images were constructed from the 10-second window before the
opportunity with a spacing of 1 second (topp − 10, topp − 9, . . . , topp) and
added as positive examples to the appropriate set. Mirrored versions of
the images along the length axis of the field were added to the dataset as
well.

b) 11 images were constructed from the 10-second window before semi-
randomly selected timestamps marking negative examples. The negative
examples were extracted from the same match in which the currently
considered goal-scoring opportunity occurred, and the same team had
to be attacking (further details in section 5.2.1). The images, including
mirrored versions, were added to either the training, validation or test
set.

5.2.1 Negative examples

The process of extracting non-occurrences of goal-scoring opportunities, or selecting
negative examples, is not straightforward. There is a trade-off between the per-
formance of the classifier and practical applicability. When the negative examples
would have been selected entirely randomly, performance of the classifier would be
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best. The positive examples would differ a lot from the negative examples, making it
easy for the classifier to distinguish between them.

The question one should ask is how such a classifier would perform in practice:
can it be used to predict upcoming goal-scoring opportunities and is this prediction
reliable? This would probably not be the case. There is a danger of the classifier
extracting very simple differences between the positive and negative examples. The
mean ball position of the randomly selected examples will probably be around the
center of the field, while the mean position of the positive examples will be shifted
more towards the penalty area. The classifier would probably perform best by
learning a simple rule taking into account only ball position. Because the dataset is
not correctly balanced, the classifier can learn simple rules like this and ‘get away
with it’.

For the problems dealt with in this thesis, a more evenly balanced dataset has been
constructed by making positive and negative examples as similar as possible, while
still maintaining the main differences between the two classes.

We finally defined negative examples as follows: for every positive example, a
negative example was added from the same match half. Negative examples were
selected by looking at loss of ball possession from the team which was attacking in
the positive example. Possession loss had to occur on the attacking side of the field.
From all instances that met the above requirements, one was randomly selected and
added to the dataset. In this way the two classes could still be considered opposites
(loss of ball possession vs. a shot towards goal), but are not as different as the
example sketched above.

Note that this problem only exists when the classes are not strictly defined. When
objects from the real world have to be classified, the class definitions and border are
much clearer and the problem is close to non-existent.

5.2.2 The images

Figure 5.1a shows how player and ball positions were displayed on 256×256 images.
To facilitate learning, the same Bundesliga team was always playing from right to
left on the images, and marked as red (players) and yellow squares (goalkeeper).
The opposing team’s players’ positions were displayed as blue (players) and light
blue (goalkeeper) squares. The size of the squares for players was 7× 7 pixels, while
the ball was of size 11× 11 pixels. The ball was always printed on the background
and was colored green. When two players’ positions did partly overlap, the colors
of these players were mixed, resulting in a purple color for a red and blue player.
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(a) (b)

Fig. 5.1.: Example of images used as input for the convolutional neural networks. (a) shows
an example of a default image, (b) an enhanced image.

Some experiments were done for varying sizes of squares, but this did not affect the
performance of the classifiers much. Therefore the size for the players and ball was
kept as small as possible, to allow maximum detail.

Apart from moving objects, the goals were colored as well. The most important
lines of the field, such as the borders, middle line and penalty area were printed
as thin gray lines. By adding lines to the images, certain formation patterns can
become easier to detect. Ideally, one would not want to unnecessarily aid a learning
algorithm too much, because it can cause the classifier to neglect more complex,
deeper patterns. Because of the relative small amount of data, it was however
necessary to add at least some lines to the images. Some tests were done with
completely removing lines from the images and with a grid-like background pattern,
but they were unsuccessful, probably due to an insufficient amount of data.

To illustrate how samples belonging to the different classes were transformed to
images, figure 5.2 shows 4 randomly selected positive examples and 4 randomly
selected negative examples. Enhanced versions of the images were used, which will
be described in the next section. The top row images (a-d) belong to the positive,
or goal-scoring opportunity, class. Within 10 seconds of the depicted scenarios,
goal-scoring opportunities were created. The same applies to the bottom row images
(e-h) which show negative examples. Within 10 seconds of the shown scenarios,
ball possession was lost by the attacking team. Note that mirrored images along the
length of the field are used in the dataset as well.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5.2.: 8 enhanced images extracted from the intervals before different match events.
The top row images (a-d) belong to the positive, opportunity class; the bottom
row images (e-h) to the negative, loss of ball possession class.

5.2.3 Enhanced images

The default images were enhanced with information about the previous positions of
objects. This was based on the idea that when there is more information available
about how a specific situation arose, the easier it is for the algorithms to extract
dynamics from the images.

Information about the past was added in the form of trails for the players and ball,
which indicated what their positions were during the 2 seconds before the depicted
moment. The trails were 1 pixel wide and colored the same as the accompanying
object. Figure 5.1b shows an example of an enhanced image.

5.3 Experiments

Three experiments were carried out: GoogLeNet and a 3-layered convolutional
neural network were trained on soccer images, while k-nearest neighbors was
trained on ball positions. GoogLeNet is the most complex neural network featuring
in our experiments. Although GoogLeNet (and the other networks described in
section 3.5) achieved good performance on the Imagenet dataset, it should also be
suitable for images constructed from soccer data. There might be too many layers
because of the abstract data representation with relatively few features, but the
intermediate outputs of GoogLeNet could be sufficient measures to handle this.
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The convolutional neural networks in this thesis were implemented in Caffe: a
deep learning framework which efficiently makes use of modern day’s graphical
processing units (GPUs) for convolutional calculations [20]. The implementation
of GoogLeNet is distributed with Caffe1. This was one of the main reasons why
GoogLeNet was used instead of even more recent, better performing convolutional
nets.

The NVIDIA Deep Learning GPU Training System (DIGITS) was used as an interface
to Caffe. DIGITS offers tools which make it easy to queue tasks and quickly offer
insight into the training process [32]. It can be hard to get the hyperparameters
right for deep neural networks. DIGITS can visualize training and validation errors
for different timestamps during the learning process, making it easy to fine-tune the
values of hyperparameters and show their direct effects on learning.

All experiments described in this section were conducted 10 times on differently
constructed datasets. Every single dataset contained all of the detected goal-scoring
opportunities, although they were randomly distributed along the train, validation
and test sets. There was less overlap regarding the negative examples: these were
randomly selected for every dataset using the process described in section 5.2.1.

5.3.1 Experiment 1: GoogLeNet

GoogLeNet was both trained starting from scratch and from a pre-trained model
which was used for classification on the Imagenet dataset (which was distributed
with Caffe). Because the Imagenet dataset contained 1000 classes and in this thesis
we are dealing with binary classes, the last pre-trained layers from GoogLeNet could
not be re-used.

Training and testing was done with both default datasets and enhanced datasets.
This leads to a total of 4 experiments:

Experiment 1a GoogLeNet trained from scratch with default data;

Experiment 1b Pre-trained GoogLeNet, trained with default data;

Experiment 1c GoogLeNet trained from scratch with enhanced data;

Experiment 1d Pre-trained GoogLeNet, trained with enhanced data.

1https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
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The GoogLeNet models were trained for 8 epochs with a learning rate of 0.001 which
was decreased by a factor 10 every 33% of the epochs (2.67 epochs). A momentum
of 0.9 was used and a weight decay with λ = 0.0005. Nesterov’s accelerated gradient
was used as a solver for the network [31], which is a variant of stochastic gradient
descent with the difference that the gradient is taken on the current weights with
added momentum, as opposed to stochastic gradient descent which only takes the
current weights into account for computing the gradient (see section 3.4.2). The
mini-batch size for training was set to 8.

5.3.2 Experiment 2: 3-layered CNN

GoogLeNet may be too complex and deep for our soccer data, because of our abstract
image representation. Another, self-constructed convolutional neural network was
used to test this hypothesis. Its structure is straightforward: convolutions are
computed sequentially on big volumes of intermediate data. Figure 5.3 shows the
neural net’s structure.

Input image

256x256x3

7x7

Conv1

5x5

Conv2

3x3

Conv3

fc1 (1000 neurons)

fc2 (1000 neurons)

Output
class 1

Output
class 2

Fig. 5.3.: The 3-layered convolutional neural network used for experiment 2.

The first convolutional layer takes the input and convolves it with 48 kernels of size
7× 7 with a stride of 2. The number of kernels in this layer was intentionally left
low because of the very simple shapes that were used to construct the images in the
datasets. The convolutional layer was followed by a ReLU unit and a max pooling
layer with size 3×3 and stride 2 (similar to AlexNet [24]). The second convolutional
layer consisted of 128 kernels of size 5 × 5, and was followed by ReLU units and
a max pooling layer with the same hyper-parameters as described previously. The
third and last convolutional layer housed 192 kernels of size 3× 3 whose output was
passed through a ReLU and max pooling layer.
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Two fully-connected layers with 1000 neurons each formed the final part of the
neural network. ReLUs were applied to the activations of every neuron. To aid
generalization, dropout was added to both fully-connected layers as well, with a
dropout rate of 0.5. The final 2 output neurons were passed through a softmax
function to yield probabilities for both classes.

The 3-layered convolutional neural network, where the number ‘3’ points to the
number of convolutional layers in the net, was trained for 2 epochs on every dataset.
The learning rate was set to 0.00005 and decreased with a factor 10 every 33% of
the epochs (0.67 epochs). A momentum of 0.9 was used and a weight decay with
λ = 0.0005. Nesterov’s accelerated gradient was used for training the 3-layered
convolutional neural network. The mini-batch size for training was set to 8.

For the smaller CNN, two experiments were conducted: one with the original data,
and another with enhanced data.

Experiment 2a 3-layered CNN with default data;

Experiment 2b 3-layered CNN with enhanced data.

5.3.3 Experiment 3: KNN baseline

A final k-nearest neighbors experiment functioned as a baseline [8]. K-nearest
neighbours was trained on ball positions of 50 percent of a dataset. For testing, the
other half of the data was sequentially presented. To every testing example, the
class of the majority of the k = 25 nearest training examples was assigned2. The
euclidean distance was used as distance measure. The accuracy was then calculated
by dividing the number of correctly classified examples by the total number of test
examples.

Experiment 3 K-nearest neighbor classification

2Multiple values of k were tested. The best results were achieved with k = 25.
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Experiment Accuracy (10 runs)
1a: GoogLeNet scratch, original images 64.8 ± 2.4%
1b: GoogLeNet pre-trained, original images 63.3 ± 3.0%
1c: GoogLeNet scratch, enhanced images 67.1 ± 2.7%
1d: GoogLeNet pre-trained, enhanced images 65.4 ± 2.3%
2a: 3-layered net, original images 62.4 ± 2.1%
2b: 3-layered net, enhanced images 62.8 ± 1.7%
3: K-nearest neighbors 57.3 ± 1.2%

Tab. 5.1.: Average classification results for all experiments. The final accuracy is the result
of averaging 10 individual testing runs for a given experiment.

5.4 Results

The final classification results are shown in table 5.1. The accuracy is averaged over
10 runs with different datasets. GoogLeNet trained from scratch with enhanced
images (experiment 1c) performed best and achieved an accuracy of 67%. This
is almost 10 percent higher than the outcome of the k-nearest neighbors baseline
experiment (accuracy: 57%, experiment 3).

The convolutional neural networks in experiment 1 were trained for 8 epochs
on datasets with a total of approximately 14000 images (6300 training images,
1400 validation images and 6300 test images). The 3-layered net in experiment
2 was trained for 2 epochs, with the same amount and distribution of images
as in experiment 1. Figure 5.4 shows the training progress of a single run from
experiment 1c (GoogLeNet trained from scratch with enhanced images). Figure
5.5 shows an example of the training progress for a single run of experiment 2b
(3-layered convolutional neural network with enhanced images).
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Fig. 5.4.: Training process for a single GoogLeNet run with enhanced images.

Fig. 5.5.: Training process for a single 3-layered CNN run with enhanced images.
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6Discussion, conclusion and future
research

The most complex network used in the experiments, GoogLeNet, obtained the top
performance with an accuracy of 67%. This is not more than a reasonable result.
Possible improvements can be found later in this chapter, in section 6.2.

When we take a look at the training process, we see that the training error is greatly
reduced during the first epoch and does not decrease that much from epoch 2 to 8.
The same applies to the validation accuracy: sometimes the accuracy already peaks
after 1 epoch. The only reason why training was run for 8 epochs is that in some
cases the validation accuracy was very low in the beginning, possibly due to unlucky
initialization or an unfavoured sequence of presented inputs, so it did need some
iterations to get to a reasonable level.

The same phenomenon of early convergence of model parameters was visible for the
less complex 3-layered convolutional neural network. This network only showed a
drop in training error at the very beginning which did not decrease much afterwards.
The accuracy did not improve when it was trained for more than 2 epochs. It is
therefore hard to believe that the network successfully accomplished to learn all
higher-order patterns of soccer which are important for creating opportunities. The
network did probably only manage to learn a set of simple rules, which led to an
average accuracy of a little less than 63%.

The difference in performance and training between GoogLeNet and the 3-layered
convolutional neural network is interesting. The top-performing variant of GoogLeNet
(trained from scratch, enhanced images) achieved an accuracy more than 4% higher
than the 3-layered net. Although this is not a very big difference, it seems that
GoogLeNet is able to capture more complex tactical patterns than the other mod-
els.

The average accuracy increase of approximately 2% for enhanced images over default
images is promising as well. The added information in the form of object trails
seems to be picked up by the models. The images could possibly be enriched with
even more bells and whistles, which might be interesting to research in the future.
The absence of this difference for the 3-layered network suggests that GoogLeNet is
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indeed able to catch some higher-order patterns, in which the 3-layered net does not
succeed.

Then remains the question how bad an accuracy of 67% actually is. Of course it is
significantly higher than the 57% accuracy of the k-nearest neighbors baseline. But
what would the performance of the best performing human or artificial classifier
be for the current problem? Would an accuracy of, say, 90% be realistic? This is
probably not the case. Samples are extracted already 10 seconds before goal-scoring
opportunities. A lot can happen in the 10 second interval to the actual opportunity.
Even at the time of the shot itself, it can be hard to predict whether there is going
to be a shot on goal from position data only. The ball does not even move in the
direction of the goal yet, making it even harder. This illustrates that the problem is
not a straightforward classification problem.

6.1 Conclusion

Research question Can convolutional neural networks be used to classify and
predict goal-scoring opportunities when presented with position data from
soccer matches?

The research question above can be answered positively: the results indicate that
convolutional neural networks are capable of predicting goal-scoring opportunities
to a certain extent. The performance of the methods used in this thesis may not
be sufficient yet, but there are enough indicators of possible uses, which will be
discussed in more detail in the following section.

6.2 Future research

The results suggest that convolutional neural networks are capable of predicting
goal-scoring opportunities to a certain extent. The top performing net, however,
achieved an accuracy of only 67%. There are a couple of ways how the performance
of the convolutional neural networks could be improved.

6.2.1 More data

For this study 29 soccer matches were used, leading to a total of 349 detected
goal-scoring opportunities. These 349 opportunities differ a lot: they emerged from
corner kicks, counter attacks, carefully built-up attacking play, etcetera. Due to this
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variability within examples and the low number of examples, it is difficult for a
convolutional neural network to detect repeated patterns. Superficial patterns will
still be learned, but deeper, higher-order patterns may never end up in the neural
net’s parameters during training.

Another difficulty lies in samples extracted from the 10 second interval before goal-
scoring opportunities which were still fed to the classifiers as opportunities. The
game of soccer can only be controlled to a certain extent: sometimes opportunities
are created due to pure luck or coincidence. The other way around holds as well:
perfectly executed attacking play can be finished by an attacker missing the ball
completely. A lot can happen during the 10-second interval before a possible
opportunity. This problem could be eliminated by shortening the 10-second interval,
but then the predictive power of the neural network is affected (and there would be
even less examples to learn from).

6.2.2 Higher number of classes

Two classes were distinguished for this research: goal-scoring opportunities and
loss of ball possession. The class distribution could be enriched by detecting other
events in the data and using these for classification. The ultimate neural network
could estimate from every single soccer game snapshot in which state it was in. This
network could not only be used for prediction of opportunities, but also for other
purposes such as automated match highlights detection.

Another way to alter the approach in this thesis is to handle samples extracted
around goal-scoring opportunities differently. Now, every sample before goal-scoring
opportunities has the same weight: a sample extracted 10 seconds before an op-
portunity receives the same label as an extracted sample from the exact instance of
the shot on goal. An extension could be to introduce weights for samples around
opportunities. A sample at the exact occurrence of the shot could be weighted with
factor 1.0, while earlier samples are weighted less. The final output of the network
can either be a class or a number approximating the probability that a goal-scoring
opportunity is going to happen given a specific snapshot.

6.2.3 Using a more specialized neural network

The top-performing network on the soccer data was an instance of GoogLeNet,
trained from scratch on enhanced images. GoogLeNet, however, is a very deep
convolutional neural network originally designed to classify images from the Ima-
genet dataset into a spectrum of 1000 distinct classes. These images are from the
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real world, while the constructed soccer snapshots were abstract representations of
soccer formations. These fundamental differences between the data suggest that a
more soccer-focused convolutional neural network could achieve better accuracy.

Another cue which indicates that GoogLeNet might not be perfectly suitable for the
soccer task is the equal performance of all three outputs. The first auxiliary classifier
shows similar performance to the final classifier, while there are a lot of layers and
inception modules in between. Similar results could have probably be achieved with
a stripped-down version of GoogLeNet, using less than half of the layers.

6.2.4 An ensemble of classifiers

Training a convolutional neural network is a form of supervised learning: given
a set of input data and corresponding labels, the algorithm used for training sets
all parameters/weights in the network appropriately. It would be interesting to
add other methods which are grounded in sports science to form an ensemble of
classifiers of different types. Additional classifiers could take centroids into account,
surfaces of teams, focus on object trajectories, and so on.

As the previous sections indicate, there are still a lot of roads unexplored in the
field of applying deep neural networks to soccer position data. This research could
hopefully be a starting point for more research in this interesting field.
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• A linear layer with softmax loss as the classifier (pre-
dicting the same 1000 classes as the main classifier, but
removed at inference time).

A schematic view of the resulting network is depicted in
Figure 3.

6. Training Methodology

GoogLeNet networks were trained using the DistBe-
lief [4] distributed machine learning system using mod-
est amount of model and data-parallelism. Although we
used a CPU based implementation only, a rough estimate
suggests that the GoogLeNet network could be trained to
convergence using few high-end GPUs within a week, the
main limitation being the memory usage. Our training used
asynchronous stochastic gradient descent with 0.9 momen-
tum [17], fixed learning rate schedule (decreasing the learn-
ing rate by 4% every 8 epochs). Polyak averaging [13] was
used to create the final model used at inference time.

Image sampling methods have changed substantially
over the months leading to the competition, and already
converged models were trained on with other options, some-
times in conjunction with changed hyperparameters, such
as dropout and the learning rate. Therefore, it is hard to
give a definitive guidance to the most effective single way
to train these networks. To complicate matters further, some
of the models were mainly trained on smaller relative crops,
others on larger ones, inspired by [8]. Still, one prescrip-
tion that was verified to work very well after the competi-
tion, includes sampling of various sized patches of the im-
age whose size is distributed evenly between 8% and 100%
of the image area with aspect ratio constrained to the inter-
val [ 34 ,

4
3 ]. Also, we found that the photometric distortions

of Andrew Howard [8] were useful to combat overfitting to
the imaging conditions of training data.

7. ILSVRC 2014 Classification Challenge
Setup and Results

The ILSVRC 2014 classification challenge involves the
task of classifying the image into one of 1000 leaf-node cat-
egories in the Imagenet hierarchy. There are about 1.2 mil-
lion images for training, 50,000 for validation and 100,000
images for testing. Each image is associated with one
ground truth category, and performance is measured based
on the highest scoring classifier predictions. Two num-
bers are usually reported: the top-1 accuracy rate, which
compares the ground truth against the first predicted class,
and the top-5 error rate, which compares the ground truth
against the first 5 predicted classes: an image is deemed
correctly classified if the ground truth is among the top-5,
regardless of its rank in them. The challenge uses the top-5
error rate for ranking purposes.
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Figure 3: GoogLeNet network with all the bells and whistles.
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