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Abstract

This thesis dives into the role structural graph learning can play in digital foren-
sics by using real-world data collected by Web-IQ. Using real-world forensic data
provides challenges for machine learning that not many fields offer, as forensics
concerns itself with possibly incriminating data that owners often intentionally ob-
scure.

We compare different approaches used in graph learning and pattern recognition
on graphs, listing strengths and weaknesses for this project. We find that many ap-
proaches do not have the scalability to perform on the large graphs used in practice.
Modern graphs often are entity graphs, often containing millions of nodes with dif-
ferent types of vertices and edges to more expressively visualize different relations
in the graph. We find that many approaches in graph learning make the assump-
tion that all vertices and edges are of the same type, not exploiting the semantic
information gained by using different types.

A system was built that solves all these problems by using representation learn-
ing. This is done with node embeddings created by random walks guided by meta-
paths. Representation learning makes it so there is no explicit feature engineering
required, reducing the problem of intentionally obscured data. Random walks are
chosen for their efficiency, to ensure scalability to the large graphs used in prac-
tice. Finally metapaths restrict the choices of a random walk in each step by forc-
ing it to choose a specific type of edge or vertex, resulting in a walk that honors
the higher level relations in the graph. The pipeline shows similarities to the well-
known word2vec, but adapted to graphs.

We test this system with a supervised classification task on a dataset contain-
ing albums of images, predicting the category of the album. The dataset contains
around 1.35 million nodes, of which 41291 are albums. We compare embeddings
generated by walks created by different combinations of metapaths, and find a sig-
nificant improvement in classification results in all cases using metapaths over cases
not using metapaths.
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Chapter 1

Introduction

Machine learning is steadily making its way into many areas of every day life. Es-
pecially with the massive volumes of data now being gathered on all subjects, it be-
comes more and more desirable to process this data automatically. One area where
machine learning is making progress is the field of law enforcement and forensics.
Examples range from mining email content [17], using eye specular highlights to
determine a photograph’s authenticity [51], or determining the authenticity of a
document with linguistic approaches [62]. In short, machine learning is used in
a variety of tools that can help gather evidence or can help to identify potential new
offenders.

One way machine learning can help to identify potential new offenders is by
looking at the network of known suspects. A suspect’s network should be taken in
the broadest meaning of the word, from his (her) family and neighbours, social me-
dia connections, but also conversations he takes part in on online messaging boards
and phone contacts. The smallest interaction can be significant, as when a suspect
is indeed partaking in illegal activities, he will try his best to hide it. It is possible to
identify irregularities in the suspect’s network that could be a sign of possible ille-
gal activity, or identify other suspects when they share a part of their network with
the known offender. Even when a new suspect does not share part of his network
with a known offender, when their network graphs show similarities it could still
be an indication of possible criminal activity. This research will therefore take a look
at the role machine learning can play in forensic tasks revolving around network
structures.

This research is conducted in cooperation with Web-IQ1, a Groningen based
company that identified the potential that the internet brings for criminal activity,
and devoted itself to crawling data and developing tools that law enforcement agen-
cies can use to combat internet related crime domains. The data gained by crawling
sites of interest to law enforcement agencies is stored in a format that can easily
be visualized in a graph, so that relations between entities present in the data can
quickly be spotted. The expressiveness that graphs provide is well appreciated by

1http://www.web-iq.eu/
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customers, so they wondered whether it is possible to extract additional data from
the graph structure. From there this research projected emerged.

1.1 Research questions

The objective of this thesis can best be formulated as a single sentence by:

How can machine learning contribute to digital forensic research con-
cerning graph structures?

The research will concern the following sub questions:

• What challenges for machine learning are brought forth by Web-IQ’s real world
data of forensic interest?

• Which features perform sufficiently well on the graph model?

• How can these features be used for machine learning?

1.2 Outline

This thesis is divided into two parts: part I spans from chapters 2 to 5 and cov-
ers the theoretical background that is relevant for this thesis, part II spans from
chapters 6 to 9 and covers the implemented system, experiments and discusses the
results. Chapter 2 contains an overview of approaches in graph learning, listing
(dis)advantages of each approach and illustrates each approach with an explana-
tory algorithm. Chapter 3 goes further into one particular approach that will be
used for the system, node embeddings. Chapter 4 concerns heterogeneous graphs,
a class of graphs that is rising in popularity in graph learning and particularly in
business. Finally chapter 5 finishes part I with a brief look into the theory behind
the classifiers used in the system. Chapter 6 opens up part II with a breakdown of
the system implementation, including practical constraints and discussing choices
made. Chapter 7 describes the data used in this thesis. Chapter 8 describes the
experiments ran and discusses the results. Finally chapter 9 summarizes the the-
sis with a closing statement that goes back to the research questions and discusses
future work.
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Theoretical background



Chapter 2

Overview of graph learning methodology

Abstract

This chapter provides a brief, high level overview of graph learning methodology. Ap-
proaches that left a considerable mark will be looked at in more detail, highlighting their
strengths and weaknesses and discussing their applicability to current day problems.

2.1 Introduction

Graphs have existed as a medium to represent data for decades, yet until recently
they have never really been a first choice for machine learning and pattern recogni-
tion, with the exception of a few niche cases requiring a specific structure. Graphs
have been overshadowed by other forms of data representation such as images and
vectors. Though enthusiasts have continued their work on using graphs for ma-
chine learning and pattern recognition tasks, and their work will prove to be an
excellent starting point to find how graph learning can contribute to modern day
forensic tasks. In particular two survey works by Foggia and Vento provide a tax-
onomy of graph learning methodology used through the last decades. One work
considers work on graph learning (or more specifically, graph matching) up until
2004 [14], another on the ten years thereafter [24].

An interesting distinction between graph matching and graph learning is al-
ready present in the titles of these two works and will turn out to be a red thread
though this overview. In the earlier years graphs were small and their main strength
was their strong representation of structure between components, and thus most re-
search focused on finding a way to match different graphs to find their similarity -
graph matching. As the years progressed it became technologically possible to work
with larger datasets, and graphs started to become an attractive medium to visual-
ize the structure in massive datasets. In accordance, research shifted from working
on entire graphs at once to working with (subsets of) a single, large graph - what
Foggia and Vento refer to as graph learning.

Graphs may not have been a front-runner in the pattern recognition and machine
learning communities, but there is one growing research area in which they have
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been for decades: social network analysis. Stemming from the social sciences this
research uses graphs to map out social relations, and uses graph theory to reason
about individuals and groups. Because of the many different angles networks have
started gaining popularity there is no formal definition of social network analysis,
but Otte [41] comes with a strong attempt:

”Social network analysis (1) conceptualises social structure as a network with
ties connecting members and channelling resources, (2) focuses on the charac-
teristics of ties rather than on the characteristics of the individual members, and
(3) views communities as personal communities, that is, as networks of indi-
vidual relations that people foster, maintain, and use in the course of their daily
lives.”

From that definition it is easy to see how social network analysis contributes, maybe
not always knowingly, to graph learning methodology. Some methods listed in this
overview even find their origins in social network analysis.

Many surveying works have grouped methods by task; e.g clustering, node clas-
sification, outlier detection or link prediction. This lends itself well for readers who
come looking for tips on how to perform their desired task, but may not be the most
suited hierarchy to really distinguish approaches. After all, all of these different
tasks on graphs mentioned have one underlying problem in common: how to trans-
form the information given by the graph structure into a workable medium? Once
this problem is solved and there is a dataset with entries in a workable format, tasks
like clustering, node classification and similar can all be applied. It is then no sur-
prise that many of the surveys structured by task have recurring trends. Therefore
this overview will be structured by these trends of information extraction instead,
explaining the key elements of each approach and giving an example algorithm to
illustrate.

2.2 Tree search

Traditionally graphs are presented as a superclass of trees, so it is not surprising
that many of the earliest approaches to do with graphs proposed by the pattern
recognition community attempt to solve a graph matching problem by applying tree
search. In particular this family of approaches gained popularity in determining if
two separate graphs are isomorphic. Two graphs are isomorphic if the vertices of
graph G1 have a 1:1 correspondence to the vertices of graph G2, and if for all edges
in one graph there is an edge between the two corresponding nodes in the other
graph. The classic area of application and perhaps most illustrating example stems
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from the field of biochemistry, where tree search based graph matching algorithms
have been applied to determine whether two molecules are the same [49]. To explain
the tree search based approach of graph matching in more detail, we will take a look
at Ullmann’s algorithm [60], which has become the de facto baseline approach for
tree search based graph matching algorithms.

Ullmann’s algorithm is a method to solve a problem that is intuitively very sim-
ple. Let’s start with a few definitions following [60]: We take two graphs Gα “
pVα, Eαq and graph Gβ “ pVβ , Eβq. pα, pβ denote the number of vertices in each
respective graph, and qα, qβ the number of edges (points and lines in Ullmann’s
terms). A = raijs denotes the adjacency matrix of graphGα andB = rbijs denotes the
adjacency matrix of graph Gβ . The key intuition here is that if Gα is isomorphic to
Gβ , here must exist a matrix M that transforms A into B. To be more precise, there
must exist a matrix C = M 1pM 1BqJ such that the following condition is satisfied:

@i@j
1ďiďpα
1ďjďpα

: paij “ 1q ñ pcij “ 1q (2.1)

If condition 2.1 is satisfied, then we can say that an isomorphism exists between Gα
and at least a subgraph of Gβ ; there might be more vertices in Gβ but the entirety of
Gα has at least been found in Gβ .

The question of course is then how to find if such a matrix M exists. To do so
we build a search tree where the root is M0 “ rm0

ijs, where m0
ij = 1 if the j’th vertex

of Gβ is of equal or larger degree than the i’th vertex of Gα, and 0 otherwise. This
means that M0 contains all possible vertex mappings from Gα to Gβ . The next step
is to create a search tree of depth pα where at each layer d deep there is a leaf with a
matrix Md where d rows of M0 have been replaced by a row of zeros with a single
one. This then leads to the conclusion that at depth d = pα there is a leaf with exactly
pα ones, and thus a matrix representing an exact 1:1 mapping of the vertices from
Gα to the vertices of Gβ .

Now a tree of candidate matricesM 1 is built, the question becomes how to find if
there exists a matrixM that satisfies condition 2.1. Although a brute force solution is
possible, it goes without saying that the computation quickly goes out of hand. It is
likely that many of the branches of such a large tree can be pruned much earlier, and
Ullmann shows that this is indeed the case by proposing the following condition as
a test for isomorphism in conjunction with equation 2.1:

@x
1ďxďpα

: ppaix “ 1q ñ Dy
1ďyďpβ

: pmxy ¨ byj “ 1qq (2.2)

This condition is a formulation of the insight that if vertex i in Gα is correctly
mapped to vertex j in Gβ , then for each neighbor x of i there should be a vertex
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y connected to j, shown by a 1 on position myj in M . If this is not the case, then this
mapping from i to j is incorrect and mij can be put to 0. That can result in a matrix
M that has a row of only zeros, meaning that there is a node i in Gα for which no
corresponding node j can be found in Gβ and thus this branch of the search tree can
be pruned. An advantage of using equation 2.2 over condition 2.1 is that it holds for
any matrix M in the tree while 2.1 only holds for the matrices M 1 found at the leaf
nodes, resulting in much fewer intermediary matrices generated in the search tree.

Of course, Ullmann’s insight is in essence just one optimization over a brute
force solution where undoubtedly many more can be found. Finding the most ef-
fective and efficient method of traversing the search tree is the crucial question in
tree search based graph matching and the field is full of papers proposing different
optimizations. But the given example of Ullmann should be adequate to explain the
tree search based approach to graph learning for this thesis.

Allthough tree search is an effective method for finding exact matches of differ-
ent (sub)graphs, in a world where graphs are increasingly being used as a single
large graph connecting different entities rather than a way to represent a single en-
tity, the task of matching exact graphs is not as relevant as it once was. One note-
worthy paper of recent years by was written Ullmann himself reflecting on the field,
listing many different improvements over his own algorithm [61].

2.3 Spectral approaches

Continuing with approaches finding their roots in graph matching are spectral ap-
proaches. In short, spectral approaches make use of eigenvalues of Laplacians of a
matrix as they exhibit all kinds of interesting properties that have been extensively
studied in linear algebra. And as graphs can be represented as matrices with specific
properties, plenty of work has been done on graph spectra as well. Some notewor-
thy books are [16], [12] and more recently [8]. The key property of eigenvalues is
that they represent some form of invariance in a linear transformation, and from
there the connection to their applicability to graph matching is easily made. An-
other example of why spectral approaches are suitable for graphs is that in the case
of an undirected graph the adjacency matrix, Laplacian and normalized Laplacian
are all symmetric. That makes their eigenvalues all real and non-negative, which
makes them easy to work with. Many ways of how eigenvalues of the normalized
Laplacian relate to certain graph properties are listed by Chung in [12].

One application area where spectral approaches have been particularly success-
ful is that of graph partitioning. Graph partitioning traditionally tries to find the
optimal cut in a graph G to partition a graph into two (ideally near-equal sized) sets
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of vertices V1 and V2, where the optimal cut is defined informally as the partition-
ing that cuts the least edges between V1 and V2. Formally the objective function to
minimize is:

cutpV1, V2q “
ÿ

iPV1,jPV2

Mij (2.3)

where M is the adjacency matrix of G [19]. From there it is easy to make the next
step to graph clustering, simply partition the graph into k clusters instead of 2:

cutpV1, V2...Vkq “
ÿ

iăj

cutpVi, Vjq (2.4)

It depends heavily on the application whether the minimal cut is sufficient to define
a desirable clustering.

One particular instance that brought a lot of attention to spectral graph partition-
ing was a paper by Pothen et al. [46]. They first show that the components of the
second eigenvector of the graph Laplacian of a path graph can divide the vertices
of the path graph in a correct bipartite graph relatively easily. It turns out that by
taking the median component, it very rarely happens that the corresponding com-
ponents of two adjacent vertices are both below or above this median value. They
then go on to show this method holds for more complex graphs to partition any
graph into a bipartite graph. Second they define a way to derive the smallest vertex
separator (that is, the smallest set of vertices that if they were removed, V1 and V2
are no longer connected to each other) from this bipartite graph.

But, in order to compute eigenvectors there is still the need for computation on
the matrix representation of the graph at some point. Which as mentioned before
is not an issue when dealing with graphs having up to around 100 vertices, but
modern graphs have thousands if not millions of nodes and computations on full
matrix representations are just not feasible on graphs of that size.

2.4 Graph kernels

One last approach from the linear algebra corner that deserves a mention are graph
kernels. Graph kernels are a group of functions that take two (sub)graphs as input,
and return a single value as output. This value can be interpreted as a measure of
similarity between these two graphs. Foggia’s survey [24] more formally defines a
graph kernel as a function k satisfying:

k : GˆGÑ R (2.5)

@G1, G2 P G : kpG1, G2q “ kpG2, G1q (2.6)
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@G1, G2 P G,@c1...cn P R :
n

ÿ

i“1

n
ÿ

j“1

ci ¨ cj ¨ kpG1, G2q ě 0 (2.7)

where G represents the space of all possible graphs. Thus, a graph kernel is a sym-
metric, positive semidefinite transformation on two graphs. Graph kernels share
many similarities with the dot product vectors, and therefore have been applied in
tasks where the dot product plays a significant role for vertices, such as support
vector machines and principal component analysis (PCA) on different graphs.

Graph kernels have many different implementations, such as Kashima’s marginal-
ized kernels [30], where they introduce a sequence of path labels generated from
graph G1 as a hidden variable. This hidden variable is then compared in a proba-
bilistic manner with graph G2. Another approach is a kernel based on Graph Edit
Distance, pioneered by Neuhaus and Bunke [40]. Graph Edit Distance is a regu-
lar concept in the graph matching field, extrapolated from the string edit distance
where instead of adding, removing or substituting characters the distance is made
up of a series of insertions, deletions or substitutions of vertices and edges. This
sequence of operations can be used as a kernel function as well.

Yet despite all the approaches in graph kernels, Vishwanathan [63] shows that
most graph kernels, if not all, can be reduced to a kernel based on random walks.
Vishwanathan’s kernel is based on the observation that the similarity between walks
on two different graphs can be described as a single walk on the product graph of
those two graphs. In the product graph the vertices are composites of a vertex in G1

and a vertex in G2, and edges between these composite nodes exist if there exists
an edge between both the vertices of G1 and both vertices from G2 as well. For
example, in figure 2.1 there is an edge between 11’ and 24’, because there is an edge
between 1 and 2 inG1 and an edge between 1 and 4 inG2. Formally Vishwanathan’s
kernel has the following definition:

kpG1, G2q :“
8
ÿ

k“0

µpkqqJˆW
k
ˆpˆ (2.8)

which requires some additional explanation.
in which these composite edges are present in equation 2.8 in as W k

ˆ, which are
best interpreted as a measure of similarity between the two edges in the original
graphs. In equation 2.8 pˆ and qˆ represent starting probabilities and stopping
probabilities, or the probability that a random walk starts or ends in a specific node.
Finally µpkq represents a manually chosen, application specific coefficient to ensure
the equation converges into a single value. But if the particular application has
additional stopping conditions, those can be quantified in µpkq as well.

Graph kernels are one of the most powerful and generic tools for graph matching
out there, but for other tasks they unfortunately suffer from the same problem as
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Figure 2.1: The product graph of two smaller graphs G1 and G2 (top). Vertices represent
all combinations of vertices in G1 and G2, which are connected by edges if there is an edge
between both the components of G1 and both components of G2 (taken from [63]).

all the other linear algebraic approaches so far: they just don’t scale well enough
to modern day graphs. This problem is acknowledged and an attempt at finding
graph kernels with better scaling was done by Shervashidze et al. in [53]. Their
approach was to select a number of small graphs they refer to as graphlets, then
create a featurevector fg of the frequencies of occurrence of graphlets and define a
kernel function over fg . That admittedly creates a very efficient kernel computation,
but essentially just shifts the hard work from a computationally complex kernel to
the preprocessing step where they have to efficiently count graphlet frequencies.
They do provide some insights into how to do so efficiently, but still end up with an
algorithm with a complexity no better thanOpn2q, where n is the number of vertices.
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2.5 Frequent subgraph mining

Graphlet kernels provide a nice bridge into the next area of graph learning method-
ology, an approach with the rather self-explanatory name of frequent subgraph
mining. This field tries to learn the structure of graphs by mining the recurring
subgraphs, and use their frequencies to represent a graph. Mining of frequent sub-
graphs can be used to compress graphs, find hierarchies within the graph or to sim-
ply discover interesting data patterns that are a composite of multiple nodes.

Perhaps the most influential subgraph mining algorithm is Subdue [15], because
of its robustness and its wide applicability. Subdue finds the substructures in one or
multiple graphs that best compress the graph when the substructures are replaced
by a single node. It does so by optimizing the Minimal Description Length [50],
which is formally minimizing the objective:

IpSq ` IpG|Sq (2.9)

in which IpSq is the number of bits required to represent a substructure, and IpG|Sq
represents the number of bits required to represent the input graph(s) G when all
substructures S are replaced by a single node. To find the optimal substructures S
Subdue performs a beam search that starts with taking all different instances of a
different label, and iteratively extending them with one edge and vertex at a time.
Once these most common substructures are found,G can be expressed as occurrence
frequencies of the most common substructures.

An advantage of Subdue over its competitors is that Subdue was designed in
a way that domain specific knowledge could be applied at many different stages,
allowing the substructure discovery process to be guided. Constraints can be put
on the beam search by limiting the number of substructures kept, limiting the max-
imum size of the substructure, cutting of a branch when a certain vertex is found,
etc. On top of that, equation 2.9 can easily be extended with terms that represent
domain specific values. For example, occurrences of vertices with a specific label
can be weighted higher or lower.

Although the flexibility of Subdue is nice, it suffers from being a rather slow
algorithm due to the fact it needs to do two computationally expensive passes over
G: first to discover the most common substructures, then to represent G in terms of
the found substructures.

2.6 Random walks

So far the majority of approaches have their upsides outweighed by their downside
of poor scalability. A common cause for this being that they rely on computations
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on a matrix representation of the entire graph, resulting in algorithms with a com-
plexity of at least Opn2q. Of course there are approaches that do not require matrix
representations of a graph. One of these approaches already made an appearance:
random walk based approaches. A random walk is a sequence of vertices, con-
nected by edges epvi´1, viq P E. The gist of random walk based approaches is that
when vertices v1 and v2 are close to each other they should have a higher chance of
appearing in random walks starting on either v1 or v2 than when they are far apart
from each other in the graph. Nodes can then be described based on their proximity
to other nodes, resulting in a representation of the graph structure.

Not directly explained as a random walk but very much capitalizing on the same
strengths is the well known algorithm PageRank [43]. In the words of authors Page
& Brin, PageRank is an attempt to see how good an approximation to ”importance”
can be obtained from the link structure between webpages. How good of an approx-
imation the link structure gives in reality is evident by the impact of search engines
on our lives. PageRank assigns a score Ru to page u, given by the sum of scores
of all pages v P Bu that link to u (inlink), divided by the out degree Nv of each v.
Similarly, u passes on its score to his outgoing links (outlink), divided by u’s total
number of outlinks. This way pages with many incoming links - thus considered as
important by many other pages - should receive a higher score than those with only
a few incoming links. The formal definition from [43] introduces two additional
parameters c and Epuq:

R1puq “ c
ÿ

vPBu

R1pvq

Nv
` cEpuq (2.10)

c denotes a normalization factor, and Epuq denotes a vector of web pages corre-
sponding to the source of a rank. The web pages present in Epuq are pages the user
can jump to at any moment, to make sure that the PageRank algorithm can deal
with ’dangling links’ (web pages that have no outlinks) and ’rank sinks’ (pages that
link to each other, but no other outlinks).

Though not explicitly explained as a random walk, Page & Brin do note the sim-
ilarities. PageRank can be seen as a user that randomly clicks on links on webpages
while browsing, and once he finds no new outlinks he goes back to a page he knows.
In a similar fashion random walks on a graph randomly go to neighbors of the ver-
tex they currently reside on until a stopping criterion is met. The strength of this
approach is in its simplicity: it doesn’t require a full representation of the graph in
memory, only knowledge of the neighbours of the current node. That makes ran-
dom walk based approaches very efficient and easily applicable to larger graphs.
For example, at the time Page & Brin invented PageRank to be used on their graph
of ’the entire visible web’ contained 150 million nodes. Of course, compared to to-
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day 150 million pages is an almost endearingly small fraction of all web pages, but
a graph with 150 million vertices is still considered a large graph in today’s culture.

There are some disadvantages to random walks. The largest one is in the name:
the heavy randomness involved means the algorithm is different every run and thus
there is not always a guarantee that the optimal result is found. But as is the case
with many machine learning problems, given enough data and iterations the results
should even out and become quite reliable.

2.7 Property based

There is a feature of graphs that has mostly been ignored up until now: vertices
and edges in graphs generally have properties attributed to them. Most research
on graphs is targeted towards finding out how different entities are related to each
other, so the properties are often passed aside to keep the focus on the structure.
But it is not uncommon that the properties can give insight into why nodes are
related. For example, in a social network two users can be related because they
went to the same high school, or were members of the same sports team. That
fact can be represented in the edge label between these two users as well, but often
edge labels are kept more generic and the precise relation is explained by these two
users sharing a property. Vertex properties are also often easily included in many
different structural approaches. For example in an approach that tries to define the
similarity between nodes based on random walks, the final similarity score could
be a compound of random walk similarity and another describing to what degree
vertex properties are shared.

Research including vertex properties in graph learning mostly stems from so-
cial network analysis. To get an idea of the point of view taken by researchers from
social network analysis, we will take a look at Akoglu’s OddBall algorithm [2]. Odd-
Ball is an algorithm intended to spot anomalous vertices in a graph, combining two
metrics gathered frome each vertex’ egonet. An egonet contains the vertex itself,
its neighbours and all edges between those neighbours. As it turns out, egonets
show powerful relations while features based on egonets are fairly easy to calculate.
As said, OddBall combines two metrics to determine ’outlierness’: one metric is a
heuristic proposed in the OddBall paper that plots two sets of features against each
other and then performs a linear regression. Formally this metric is defined as:

out´ linepiq “
maxpyi, Cx

θ
i q

minpyi, Cxθi q
˚ logp|yi ´ Cx

θ
i ` 1q (2.11)

in which yi is the actual value of vertex i and Cxθi the model’s predicted value for
i. out ´ line penalizes the deviation twice, first by the number of times a vertex’
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actual score deviates from the norm, then by how much. Akoglu et al demonstrate
that many relations in egonets follow a power law, hence the logarithmic distance.
This way an anomaly is singled out even more when its deviation from the norm is
larger.

The second metric employed by OddBall is Local Outlier Factor (LOF)[7], but
the authors state that any metric giving an idea of local outlierness in contrast to
out ´ line’s global outlierness will do. The goal of LOF in OddBall is to capture
data points that may not regress too far off the norm, but don’t really have any
similarities with other data points either.

OddBall is efficient and powerful, but has a major drawback: it requires addi-
tional feature generation from these egonets. Akoglu et al. propose a few possible
metrics to use as features, such as the number of nodes vs. the number of nodes and
edges in egonet, the total sum of all edge weights, or the principal eigenvalue of the
weighted adjacency matrix. Those are all structural features, but it is easy to extend
to OddBall to features based on vertex properties such as the label distribution on
all neighbors. Unfortunately different graphs have different properties that all im-
ply different relations. This makes property based features potentially incredibly
powerful, but also very case dependent.

2.8 Relational classification

A different class of approaches that are not reliant on matrix representations are
those based on relational classification. Relational classifiers try to predict the label
of node u based on the label and/or attributes of u’s neighbors. Sen et al. [52] show
that the methodology in this field can be divided in two classes: local methods and
global methods. The local methods build models to predict the label of an individual
node and are often found in semi-supervised learning where part of the vertex labels
are known. The global methods try to formulate global class dependencies and then
optimize a joint probability distribution.

The local methods are quite intuitive, but the global approaches may require
some additional explanation. To illustrate we will take a look at what is likely the
most established relational classifier: Loopy Belief Propagation (LBP). LBP was not
directly invented to be used with graphs [44], but has properties that make it very
suitable for graph learning. The intuition behind LBP is that every node u sends a
message to its neighbors v, based on properties of v seen by u. The classification of
v is then updated based on all incoming messages. A formal definition is given by
Murphy [38]. LBP calculates its belief BELpxq of what a node’s labels should be as:

BELpxq “ αλpxqπpxq (2.12)
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where α represents a learning rate, λpxq represents messages received by outlinks
y P Y of x, defined as:

λptqpxq “ λXpxq
ź

j

λ
ptq
Yj
pxq (2.13)

and πpxq represents the messages received by inlinks u P U , defined as:

πptqpxq “
ÿ

u

P pX “ x|U “ uq
ź

k

πptqx pukq (2.14)

in whichX denotes the current vertex v, U is an actual parent ofX , and λXpxq is the
belief X has to be a certain vertex x. Then we need two more definitions, one for a
single message passed to x by its inlinks (λXpuiq) and outlinks (πYj pxq), defined as:

λ
pt`1q
X puiq “ α

ÿ

x

λptqpxq
ÿ

uk;k‰i

P px|uq
ź

k

π
ptq
X pukq (2.15)

and
π
pt`1q
Yj

pxq “ απptqλXpxq
ź

k‰j

λ
ptq
Yk
pxq (2.16)

respectively. From these definitions the iterative nature of LBP is clear, in every
iterationBELpXq is updated for all x P X . Unless a different, user-defined stopping
criterion is met, LBP iterates until BELpXq no longer changes for any x.

LBP provides an efficient, generic way of learning class labels, but the downside
is that LBP still requires additional input features. Which is an issue because simi-
larly to OddBall discussed in the previous section, LBP mostly uses property based
features and these features are heavily case dependent.



Chapter 3

Graph embeddings

Abstract

In this chapter we move on to methods that represent a graph or its vertices as a feature
vector, which creates opportunities for many different approaches of machine learning to
be applied to graph data.

3.1 Introduction

In the previous chapter we’ve seen a number of approaches taken in attempts to use
graphs for machine learning. During the overview two major issues were identified.
The first issue is that many approaches represent the graph as a matrix, which works
fine for small graphs but doesn’t scale too well to graphs with millions of nodes
as being used in practice today. The second issue that was identified is that it is
hard to generate generic property based features, as different graphs have different
structures and the performance of generic property based features is vastly different
between graphs. There is one last class of approaches that was not yet mentioned,
and that does not suffer from either of these faults: graph embeddings.

Similar to matrix representations, graph embeddings are an attempt to transform
a graph from its intuitive representation with vertices and edges to a medium that
can be used with known machine learning algorithms. Machine learning algorithms
typically run on data represented as a feature vector, or as data represented as points
in a n-dimensional space. Graph embeddings attempt to map all vertices to a point
in space. There is one problem with doing so: data points are usually assumed to be
independent, but graph vertices certainly are not. Edges indicate relations between
vertices, and those are no longer present in the point mapping. And ironically, visu-
alizing these relations is often precisely the reason to use a graph in the first place.
The key question of graph embeddings is then how to preserve the edge relations in
a point mapping.

There are some approaches to answer this question. OddBall solved it by engi-
neering features that contain edge information within the egonet of a node. Other
methods to capture structural information seen in the previous chapter could also
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be used, such as graph kernels. However using these manually engineered features
for graph embeddings brings forth the same problems as using these methods stan-
dalone; they are inflexible, hard to generalize and time consuming to generate.

3.2 Representation learning

When classical machine learning ran into these issues with hand-engineering fea-
tures for a certain task, a solution that turned out to be powerful is to let an algo-
rithm learn features by itself [4]. Teaching an algorithm to learn features by itself is
called representation learning. Representation learning moves the feature extraction
from preprocessing to the training phase. It solves the problem of inflexibility by
implicitly updating the features used during training, and the problem of general-
ization by the simple fact that different input data will cause the same algorithm to
look for different features. Representation learning has led to significant progress in
all kinds of fields, from natural language processing [13] to image recognition [31].

With the success of representation learning in classical learning established, it
seems natural to try it out on graphs as well. A nice exposition on this topic was
written by Hamilton et al. [29], which will serve as a guideline for this section. In
this exposition they propose to view representation learning as an encoder-decoder
framework. The intuition behind this framework if that if an algorithm is able to
encode high dimensional graph data into lower-dimensional feature vectors, and
then successfully decode them back into the original data, then the feature vectors
contain all necessary information to represent that data. This framework then con-
sists of two functions, the encoder and decoder. Formally they define the encoder
as a function:

ENC : V Ñ Rd (3.1)

which maps a node vi P V to an embedding zi P Rd. The decoder leaves more room
for freedom and often depends on use case, but often the decoder takes the shape of
some form of basic pairwise decoder, formally defined as:

DEC : Rd ˆ Rd Ñ R` (3.2)

Such a pairwise encoder takes a pair of vertex embeddings and maps it to a real val-
ued proximity measure, which then gives a metric to quantify the distance between
the two original vertices in the graph. That metric can be seen as reconstruction of
the real distance between the two nodes. Formally the reconstruction can be written
as :

DECpENCpviq, ENCpvjqq “ DECpzi, zjq « sGpvi, vjq (3.3)
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where sG is a real-valued, user-defined proximity measure over vertices on graph
G. The reconstruction objective then constitutes minimizing the difference between
DECpzi, zjq and sGpvi, vjq. In order to do this, a loss function is required. Typically
in graph representation learning a user-defined empirical loss function ` is used,
formally defined as:

L “
ÿ

vi,vjPV

`pDECpzi, zjq, sGpvi, vjqq (3.4)

With this we now have all the elements of a generic encoder-decoder system to
perform representation learning: an encoder function ENC(vi), a decoder function
DEC(zi, zj), a proximity measure sG and a loss function `. With these functions we
can train the embeddings zi until satisfaction, and then use the embeddings as input
to any machine learning task.

Having defined a generic framework, let’s take a look at how we can fill it in. Of-
ten graph encoding algorithms fall under what Hamilton et al. call direct encoding.
In direct encoding algorithms the encoder function can be formally written as:

ENCpviq “ Zvi (3.5)

where Z is a matrix of size dˆ |V |, and vi is a one-hot vector matching vi to its cor-
responding vector in Z. Within direct encoding approaches Hamilton et al. distin-
guish between matrix factorization approaches and random walk approaches, but a
recent study argues that random-walks can also be seen as matrix factorization [47].

The matrix factorization approaches stem from the fact that early graph research
used matrices to represent graphs, thus it is logical that early attempts at representa-
tion learning on graphs also used a matrix representation. Examples are approaches
based on Laplacian Eigenmaps [3] and multiple approaches that decode using the
inner product of two embedding such as GF [1], GraRep [11] and HOPE [42]. These
approaches each have slightly different ideas and implementations, but all optimize
a (somewhat) similar loss function that can be defined as:

L « ||ZJZ´ S||22 (3.6)

in which Z is again a matrix containing all embeddings and S is a matrix represent-
ing pairwise proximity measures in which Sij “ sGpvi, vjq.

In between matrix factorization approaches and random walk approaches lies
another algorithm that has seen success: LINE [58]. Similar to random walk based
approaches LINE decodes embeddings by proximity measures showing how many
hops away vertices are in a graph. But where random walks show these proximities
by generating many walks and see how many times node vj occurs in a random
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walk starting from vi , LINE calculates proximity explicitly by using the adjacency
matrix and two-hop adjacency neighborhoods.

The approaches based on random walks are DeepWalk [45] and node2vec [25].
As the name of node2vec gives away, this and DeepWalk both draw heavy inspi-
ration from the success of the family of word embedding algorithms known as
word2vec, so before diving in these algorithms it is useful to take a detour to look
at word2vec.

3.3 Word2vec

Word2vec is the popular term for a class of probabilistic word embedding algo-
rithms where the embeddings are representations of the probability of one word ap-
pearing in the context of another. They especially gained popularity when it turned
out that the embeddings created by word2vec allowed for algebraic operations of
the form vector(King) - vector(Man) + vector(Woman), where the most similar remain-
ing became vector(Queen) [34]. Word2vec algorithms take the form of a neural net-
work that tries to learn which words are likely to appear in the context of others.
In the basic form this network consists of one input layer size |V | (with V being
the vocabulary) representing input words v P V as one-hot vectors, and then two
fully connected layers. Most importantly a hidden layer of size D ! |V |, where D
is the size of the to be generated word embeddings, and an output layer of size |V |
representing the probability of word ui P V appearing in the neighborhood of v.
All neurons of the hidden layer are connected to each word of both input and out-
put layer, so for each input word D weights are trained. Once the word2vec model
has converged these D weights of each hidden neuron for each input word form
the embedding vector for that input word. So to be clear, the primary goal is to find
these word embeddings, not to match input words to context words with maximum
accuracy. Although the more accurate words are matched to their context, the more
certain we can be of the word embedding quality.

It should be noted that word2vec algorithms fit quite well into the encoder-
decoder network Hamilton et al describe. Word2vec encodes a one-hot vector rep-
resentation of word v a word into a feature vector of size D, and then decodes that
embedding into another one-hot vector of size |V | representing word u. The loss
function tries to minimize the difference between the decoded output vector and
the one-hot vector representing u for all wordpairs pu, vq appearing in the input
sentences.

Taking this point of view, the big questions that remain are then obviously what
to use as encoder and decoding functions. The encoding algorithm is another case
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of direct encoding, thus equation from 3.5 applies, just with vi being a word instead
of a vertex. Mikolov et al. introduce the word2vec algorithms with the skip-gram
[34] achitecture, and hierarchical softmax as a decoding algorithm, but propose to
approximate the softmax with negative sampling (along with other optimizations)
in a second paper [35]. The optimizations proposed in the second paper not only
cause an improvement in computational feasibility, but in performance as well. It is
this setup, the skip-gram architecture that approximates the softmax decoder with
negative sampling that is recommended by Mikolov et al., and the setup generally
referred to when one speaks of word2vec. Therefore it is the approach that will be
formally looked at here, and what is meant with the term word2vec from here on.

3.3.1 Skip-gram

Skip-gram is an architecture for word2vec algorithms that convert words in sen-
tences to feature vectors that picks word pairs pu, vq from a sentence, using a one-hot
representation of v as input and a one-hot representation of u as output. It is an evo-
lution of n-grams [9], the dominating approach in statistical linguistics. N-grams
take a word and the n-1 closest words in the sentence. Then a simple frequentist
approach is used to predict the most likely word given another. The skip gram ar-
chitecture does a similar thing. Skip-gram creates word pairs by pairing word v

with all words u in a window of size N , which is a hyperparameter. As a rule of
thumb N takes value 5, meaning the 5 words before and after word v. The differ-
ence between N-gram is that where with n-grams the training pairs are always the
n-closest words, in skip-gram it can be any word in a n-size window. Thus some
words could be skipped, from where the architecture acquires its name.

In the same paper as skip-gram the authors first propose continuous bag-of-
words (CBOW). In essence it is exactly the same architecture as skip-gram, but with
input and output reversed; so where skip-gram tries to predict the probability of a
word u appearing in the context of v, CBOW tries to predict which word v represents
given the words u in its context. The difference is shown in figure 3.1 taken from
[34]. It turns out that resulting feature vectors returned by each contain significant
difference in predictive performance, with (dis)advantages for each architecture in
different tasks. Mikolov et al provide a nice comparison of the performance of both
in [34].

3.3.2 Negative sampling

With the architecture established, the focus shifts to the details of how the embed-
dings are obtained. As said these are the weights of the hidden layer of a neural



3.3. Word2vec 21

Figure 3.1: Illustrations of the CBOW and skip-gram architecture for word2vec (taken from
[34]).

network that predicts the context of a word with a softmax. Mikolov et al. formally
describe their skip-gram architecture as maximizing the average log probability of
a sequence of training words w0, w1...wT :

1

T

J
ÿ

t“1

ÿ

´cďjďc,j‰0

log ppwt`j |wtq (3.7)

In which c is the context window size parameter, representing how many words
before and after the target word are sampled from sentences to create word pairs.
ppwt`j |wtq is determined using classical softmax:

ppwj |wiq “
e
vJwj

vwi

ř|V |
w“1 e

vJwvwi
(3.8)

Theoretically sound, but as can be seen in equation 3.8 the computational cost of
classical softmax is proportional to the number of words in the vocubulary |V |. This
raises a problem as the vocabularies used in NLP problems often contain thousands
if not millions of words.

When proposing skip-gram, Mikolov et al. used hierarchical softmax to combat
the computational complexity of exact softmax. Hierarchical softmax was first intro-
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duced to neural network language models by Morin and Bengio in [37]. Hierarchical
softmax approximates the exact softmax calculation by creating a binary search tree
of the output layer where each leaf represents a word in V . The probability ppwj |wiq
is then calculated by performing a random walk over the tree, assigning probabili-
ties to the nodes that lead to wj along the way. That way only log2p|W |qweights are
updated each step instead of |V |. Of course it does add the additional problem of
creating said tree, a problem that was explored for language modeling by Mnih and
Hinton [36].

Hierarchical softmax poses a significant improvement over exact softmax, but
Mikolov et al. propose a different approach that fits better in the skip-gram architec-
ture: Negative Sampling (NS). Negative Sampling is a simplified version of Noise
Contrastive Estimation (NCE), an algorithm based on the idea that a good model
should be able to differentiate data from noise by means of logistic regression [35]
that was first introduced by Gutmann and Hyvrinen [26]. NCE defines two proba-
bilities ppD “ 1|w, cq (word w appears in the data with context c) and ppD “ 0|w, cq

(word w does not appear in the data with context c), which after some algebraic
juggling [22] can be written as:

ppD “ 0|w, cq “
k ˆ qpwq

uθpw, cq ` k ˆ qpwq
(3.9)

ppD “ 1|w, cq “
uθpw, cq

uθpw, cq ` k ˆ qpwq
(3.10)

in which uθpw, cq represents some model u with parameters θ that assigns a score to
word w given context c, k represents the number of words chosen from qpwq, and
qpwq represents a ’noise distribution’, which in language processing corresponds
to the unigram distribution and in practice is often uniform and empirically deter-
mined.

Because word2vec is primarily interested in generating weight vectors for word
embeddings rather than optimizing ppw|cq, the NCE can be simplified as long as
the word embeddings retain their representative quality. NS therefore defines the
conditional probabilities from NCE as:

ppD “ 0|w, cq “
1

uθpw, cq ` 1
(3.11)

ppD “ 1|w, cq “
uθpw, cq

uθpw, cq ` 1
(3.12)

which is equivalent to NCE iff k = |V | and qpwq is uniform. However, NS leaves k as
a hyperparameter and empirically chose the noise distribution (Pnpwq in [35] to be
the unigram distribution Uw raised to the power 3{4. That leads to NS not requiring
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the numerical probabilities of the noise distribution, but rely solely on samples in
contrast to NCE, which requires both. The downside is that NS not longer accurately
approximates the log probabilities of the softmax, but as mentioned that is not the
primary objective of NS. Formally the final objective for NS that replaces the log
probability of the softmax in equation 3.7 can be written as:

log σpvJwuvwv q `
k

ÿ

i“1

Ewi„Pnpwqrlog σp´v
J
wivwuv qs (3.13)

in which σ is the sigmoid function, k is the aforementioned hyperparameter and
Pnpwq is the noise distribution, empirically determined by Mikolov et al. to be U3{4

w .
The optimal value for k is dependent on the size of |V |, but Mikolov et al. recom-
mend k between 5 and 20 for small datasets, or as small as 2-5 for large datasets. In
the end, NS reduces the number of words for which the weights are updated from
|V | to k.

The same paper [35] proposes two additional (smaller) optimizations to word2vec,
improving both training time and classification accuracy. The first being to expand
the vocabulary V with bigrams, as a bigram of two words often has a different mean-
ing than the two unigrams individually (e.g, ’New York’ conveys a different mean-
ing than ’New’ and ’York’). The second optimization is to subsample frequent words
as the frequency of words in vocabularies often exhibit a heavy-tailed distribution.
The subsampling is performed by giving every word wi P V a probability P pwiq to
be discarded, given by:

P pwiq “ 1´

d

t

fpwiq
(3.14)

in which fpwiq is the frequency of wordwi and t is a treshold which is left as another
hyperparameter, but Mikolov et al. suggest values around 10´5.

3.4 DeepWalk & node2vec

When word2vec is clear, the two remaining representation learning algorithms Deep-
Walk [45] and node2vec [25] are easily explained. Both of these algorithms are based
on the observation that a random walk over a graph has a striking resemblance to a
sentence of words. Both sentences and random walks are sequences of elements rep-
resenting the context these elements appear in, just where the elements in sentences
are words, the elements in random walks are vertices. DeepWalk and node2vec
then simply define a word2vec architecture, but use random walks as input instead
of sentences. Both algorithms use the skip-gram architecture over CBOW, but Deep-
Walk uses hierarchical softmax, and node2vec uses negative sampling.
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Figure 3.2: An illustration of how parameters p and q affect the transition probabilities. In
the previous step the walk went from t to v (taken from [25]).

That is all there is to say about DeepWalk, but node2vec makes an additional in-
novation. In contrast to the space of all words to create sentences from, the space of
all vertices on a graph to create random walks from is much more tangible. This
allows for more control over generating random walks in contrast to sentences.
Grover & Leskovec start ’guiding’ the random walks generated by node2vec with
two hyperparameters p and q. In the transition probabilities πpv, vt`1q “ αpvt´1, vt`1q¨

wv,vt`1
between vertices v and vt`1 in each step of the random walk, p and q affect

the term αpvt´1, vt`1q as follows:

αpvt´1, vt`1q “

$

’

’

&

’

’

%

1
p if dpvt´1, vt`1q “ 0

1 if dpvt´1, vt`1q “ 1
1
q if dpvt´1, vt`1q “ 2

(3.15)

in which dpvt´1, vt`1q is the number of hops between vt´1 and vt`1. At step t “

0, α “ 1. When dpvt´1, vt`1q equals 0 the random walk does a step back, when
dpvt´1, vt`1q equals 2, the random walk visits a vertex that is not a neighbour of the
previous vertex and thus moves deeper into the graph. A visualization is provided
in figure 3.4, taken from [25]. Grover and Leskovec liken these phenomenons to
classic BFS and DFS, and setting p and q can encourage walks to either stay close to
the original node (low p, high q) or to prioritize exploring the graph (high p, low q).

Grover and Leskovec observe that choosing p and q such that BFS is prioritized
results in embeddings that exhibit structural similarity, while choosing p and q such
that DFS is prioritized results in embeddings that show a more macro-oriented view
of the network, which is essential for inferring communities based on homophily
[25]. They do however observe that for walks that explore deep into the graph
it is important to check how the visited vertices in a a ’DFS’ path are dependent
on each other, since node2vec only keeps track of the previous node visited when
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selecting the next one. This can lead to a DFS path to move to nodes that are not
actually far away from the starting node. That problem becomes more prevalent
with longer walks, as well as more complex dependencies being present in longer
walks in general.



Chapter 4

Heterogeneous graphs

Abstract

In this chapter the concept of heterogeneous graphs is introduced. Until now the assump-
tion was that all nodes in graphs are of the same type, while in practice this assumption
does not always hold. Some consequences and ways to take advantage of this heterogene-
ity are discussed and evaluated, most notably the concept of metapaths.

4.1 Introduction

Up until this point we have made the assumption that all vertices in a graph are of
the same type, for example all vertices in a social network graph represent an in-
dividual person. But in practice graphs often contain different types of entities, re-
sulting in a much more expressive representation of the relations between vertices.
To take the example of a social network with all vertices representing an individ-
ual again: we can draw an edge between all people that take the same class, or we
can add an additional vertex representing that class and draw an edge between said
class node and all the people taking it. The latter provides a much more intuitive
relation, especially since members of a class can be related in more ways than just
that. Once that class node is established, we can take the next step and for exam-
ple connect all classes given at the same university by adding a vertex representing
that university. You can see where this is going: a graph with multiple entity types
allows for much more expressive relations to be shown in a single graph. This kind
of graph with multiple entity types are called heterogeneous graphs. Sun provides a
definition of ’information network’ in her dissertation that captures the difference
between homogeneous and heterogeneous graphs as well as providing a nice frame-
work for explaining heterogeneous concepts [54]:

Definition 4.1.1. Information network [54]: An information network is a directed graph
G “ pV, Eq with an object type mapping function τ : V Ñ A and a link type mapping
function φ : E Ñ R, where each object v P V belongs to one particular object type τpvq P A,
each link e P E belongs to one particular relation type φ P R and if two links belong to the
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same relation type, the two links share the same starting object type and the same ending
object type.

This chapter will use this definition, but we use ’edges’ instead of ’links’ and
’entities’ instead of ’objects’. From this definition the formal difference between
homogeneous and heterogeneous can be explained as a graph being homogeneous
when |A| and |R| are both equal to 1, and heterogeneous otherwise.

As seen in the previous chapters, typical research on graphs does not really take
diferent entity and relation types in account. Graphs are typically either projected
as a homogeneous graph, or types that are not the primary focus are simply left out.
Both of these options result in a loss of information, so what are the consequences
of graphs being heterogeneous? Sun lists three somewhat intertwined principles to
account for [54]:

1. Interdependency between different entities. Many network analysis and
pattern recognition approaches rely on propagating information such as sim-
ilarity scores and class labels along edges. This is trivial for homogeneous
graphs, but the type of entity and edge relation can impact the way this is
done. This creates for an interdependency between entities, and should be
taken into account.

2. Interdependency creates meta structure. In contrast to homogeneous graphs
heterogeneous graphs are typed, and the interdependency between different
entity types typically creates recurring patterns in a graph. These patterns
can be exploited and help during search and mining tasks, but especially with
analyzing and understanding semantic meaning of different entities.

3. Meta structure improves user guidance. And lastly with patterns in entity
types expressing deeper semantic relations, it becomes much easier to tailor
tasks to user preferences, or leverage expert knowledge to improve results.

Of this list it is only the first principle that could insinuate a drawback of het-
erogeneous graphs over homogeneous graphs. As we saw the vast majority of
graph learning algorithms try to transform the graph data into a medium suitable
for classic statistical approaches, and a core assumption of most classical statisti-
cal approaches is that data entries are independent from each other. The existence
of meta structure and improved ability to tailor to user preferences are both only
upsides, as both can be exploited to improve performance.

The question then immediately becomes how to leverage these principles. A
straightforward and intuitive way is to use a schema-graph: a graph that contains
one entity of each type in A, and one edge of each type in R. Or, with a formal
definition given by Sun:
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Figure 4.1: A small heterogeneous network (left) and its corresponding schemagraph (right)
(taken from [54]).

Definition 4.1.2. Network schema [54] The network schema, denoted as TG “ pA,Rq,
is a meta template for a heterogeneous network G “ pV, Eq with the object type mapping
τ : V Ñ A and the link mapping φ : E Ñ R, which is a directed graph defined over object
types A, with edges as relations fromR

A visualization of a small heterogeneous network and its schemagraph is given
in figure 4.1, taken from [54]. The schema-graph gives an expressive representa-
tion of the meta-structure of heterogeneous graphs and plays a crucial role in graph
learning on heterogeneous graphs.

Sun proposes two different approaches to network analysis on heterogeneous
graphs: Ranking-based Clustering and Metapaths. The first one is based on combining
two powerful approaches from network analysis; ranking to find the most ’impor-
tant’ entities and clustering to group different entities together. The second defines
a notion of similarity that makes use of the schema-graph to guide random walks
on a graph.

4.2 Ranking-based clustering

Sun shows how to perform ranking-based clustering on two different kinds of het-
erogeneous graphs: bipartite graphs with |A| = 2, and star-graphs where the schema
graph takes the form of a star. Graphs where the schema-graph takes the form of
a star have one central type of entity, and one or more types of entities that are in-
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terdependent with the central entity. Star graphs are commonly used in practice,
as graphs are often designed with a central entity in mind. But with less different
entities, it is easier to study the impact of different entities in a graph so ranking-
based clustering was first developed for bipartite graphs with RankClus [56], and
later extended to more general graphs (star-graphs) with NetClus [57].

The idea behind ranking-based clustering is to first cluster the entities by some
metric, e.g in a bipartite network of paper authors and scientific venues you could
cluster by field. Then a ranking is created for both types of entities, making use
of some kind of ranking metric. The ranking metric proposed by RankClus is one
that Sun calls authority ranking. Using the author/venue example, the authority
metric goes of the idea that an important venue attracts many good authors, and
an important author publishes in many important venues. Formally, the authority
ranks of entity type Y and X can respectively be defined as:

rY “

řm
i“1WY Xpj, iqrXpiq

řn
j1“1 rY pj

1q
(4.1)

rX “

řn
j“1WXY pi, jqrY pjq

řm
i1“1 rXpi

1q
(4.2)

where m and n denote the number of nodes in X and Y , and W denote transition
matrices. Authority ranking is generic, but it’s still a fairly straightforward algo-
rithm based in essence on summing the weights from each entity’s neighbors. That
can be easily exploited, e.g in the author/venue graph a venue could get a high au-
thority rank by simply accepting every paper. Generally using domain knowledge
is the strongest way to combat such exploitation, and some more refined alterna-
tives to authority ranking could be adapted from TrustRank [27] or the well known
personalized pagerank [43]

These ’rankings within a cluster’ are then used as features to actually generate
clusters, with the idea that a datapoint belonging to one cluster should have a high
rank in that cluster, but a low rank in all the other ones. This lends to using a mixture
of models approach using these conditional rankscores as a measure to calculate the
likelihood of an entity belong to a specific cluster. This likelihood takes the following
formal definition, where Θ is the vector containing ppkq for all k clusters:

LpΘ|WXY q “ ppWXY |Θq “
m

ź

i“1

n
ź

j“1

ppxi, yj |Θq
WXY pi,jq (4.3)

with ppxi, yj |Θq representing the probability that an edge pxi, yjq exists given cur-
rent parameters Θ [54]. Θ is approximated by using the Expectation-Maximization
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algorithm following [5]. In the expectation step the conditional distribution ppz “

k|yj , xi,Θ
0q based on the current value of Θ, Θ0 is calculated:

pz “ k|yj , xi,Θ
0q 9 ppxi, yj |z “ kqppz “ k|Θ0q “ pkpxiqpkpyjqp

0pz “ kq (4.4)

In the maximization step, Θ is updated according to current Θ0:

ppz “ kq “

řm
i“1

řn
j“1WXY pi, jqppz “ k|yj , xi,Θ

0q
řm
i“1

řn
j“1WXY pi, jq

(4.5)

These steps are then iterated until equation 4.3 converges, giving the final cluster
membership πi,k of entity xi: [54]

πi,k “ ppz “ k|xiq “
pkpxiqppz “ kq

řk
l“1 plpxiqppz “ lq

(4.6)

Finally the entities are each assigned to 1 of k clusters, and the whole algorithm
is repeated until the clusters no longer change. It is worth nothing that in Sun’s
experiments, no dataset required more than 10 iterations of the clustering algorithm
[54]. A more elaborate explanation of the mathematics behind RankClus can be
found in [56].

NetClus extends the idea of RankClus from 2 to k clusters, and then in particular
to networks having a star structure. In the mathematics, the main extension is that
instead of having 2 classes X and Y a class Z is added, which represents the central
class and this explains why NetClus is limited to graphs with a star shaped schema-
graph. There are a few more deviations from RankClus involved when increasing
the number of entity types, but because the intuition is so similar we’ll leave out the
details of NetClus. Sun poses that the most difficult problem that has to be solved
to extend NetClus to even more generic structured graphs is to find the target entity
types, which would then be used as central class Z. This is not always trivial be-
cause of the interdependency between entity types, and to my best knowledge the
best generic ’solution’ to date to extend ranking based clustering to any graph is to
create several models with all candidates for the central class.

4.3 Metapaths

Metapaths are a way to systematically explore a network structure adhering to the
network’s meta-structure indicated by the schemagraph, that keep the different se-
mantic implications from different relations in tact. Formally a metapath can be
defined as:
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Definition 4.3.1. Metapath [55]: A metapath P is a path defined on the graph of the
network schema TG = (A,R), and is denoted in the form of A1

R1
ÝÝÑ A2

R2
ÝÝÑ ...

Rt
ÝÝÑ At`1,

which defines a composite relation R = R1 ˝ R2 ˝ ... ˝ Rt between type A1 and type At`1,
where ˝ denotes the composition operator on relations.

This provides a nice general definition, and when looking at some practical ex-
amples it shows that metapaths are a very intuitive way of representing these com-
positional relationsR. For example, in figure 4.2 the schemagraph of before is shown
again, this time with two metapaths APA and APV. In the case of APA, R denotes
the co-authorship relationship, and in the case of APV R simply denotes than an
author has a contribution to a venue.

Figure 4.2: A schemagraph with two metapaths that follow the schemagraph (taken from
[55])

Metapaths were originally introduced as a method for similarity search in het-
erogeneous graphs by Sun et al. in their PathSim algorithm, which is still by far the
most influential paper on metapaths [55]. Similarity often takes the form of find-
ing k most similar entries to a given entry, but can also be encountered in answering
queries on a given graph. PathSim defines a new metric that finds the k most similar
entities of the same type as a given entity using metapaths.

To understand the intricacies of PathSim, a couple of notational definitions are
required. First, a path p “ pa1a2..at`1q is an instance of metapath P “ A1A2..At`1 if
@iφpaiq “ Ai and epai, ai`1 has relation Ri. The reverse of metapath P is denoted as
P´1, and similarly p´1 is the reverse of path p. Two metapaths P “ pA1A2..Alq and
P 1 “ pA11A

1
2..A

1
lq are concatenable if Al “ A11, and a concatenated metapath is de-
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noted as P “ pP1P2q “ pA1A2..AlA
1
2..A

1
lq. For example, the aforementioned meta-

path APA indicating co-authorship can be seen as a concatenation of two smaller
metapaths AP and PA.

Besides being designed for homogeneous graphs, issues with common similar-
ity measures such as random walks or shared neighbor count is that they are biased
towards nodes with a high degree. Sun et al. argue that a strong way to define
similarity is to look for ’similar peers’ shared between vertices, those that share sim-
ilar properties or in a heterogeneous networks, share connections to different entity
types in the graph. To combat the bias towards high degrees they propose the fol-
lowing metric for PathSim [55]:

spx, yq “
2ˆ ||pxùy : pxùy P P|

|pxùx : pxùx P P| ` |pyùy : pyùy P P|
(4.7)

where |pxùy : pxùy P P| denotes the number of path instances p from node x to
node y following metatpath P . So PathSim is defined as double the number of
paths between x and y divided by the number of paths from x to x and y to y,
counteracting the bias towards high-degree node somewhat - though it should be
noted that if there is a high degree difference between x and y this is noticeable in
the final PathSim score.

Definition 4.7 is the score under a single metapath P . The strength of metap-
aths is that by computing scores for each metapath can give an indication of how
strongly vertices are connected per relation, unlike homogeneous graphs where we
can only model a single relation. Several PathSim scores for different metapaths can
be combined in any way desired to achieve a more user-defined representation of
the ’overall’ similarity score of a pair of vertices. Sun et al. then provide an alge-
braic way to compute the PathSim score of composite metapaths which could be
more computationally efficient compared to just running PathSim again with the
longer composite paths, but this is dependent on use case and graph representation.
More importantly, it is not guaranteed that any composite path pppx, yq, ppy, zqq ex-
ists between vertices x and z for all combinations of the individual paths.

PathSim is just one example of how metapaths can be used on heterogeneous
graphs. Metapaths are in essence a fairly generic refinement over random walk
methods, creating a way to guide random walks to user preference. The idea of
guiding random walks was encountered before with node2vec, which guides ran-
dom walks with two parameters p and q. An idea is to replace the guidance pa-
rameters p and q in node2vec with metapaths, and extend the powerful results of
node2vec to heterogeneous graphs in a way that requires minimal adaptation. It
seems a logical step, and to my knowledge the first appearance of metapaths in
graph representation learning is Dong et al.’s metapath2vec [20].
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Dong et al. define two versions of node2vec with metapaths: the simple metap-
ath2vec simply generates input paths following metapaths instead of random walks
guided by p and q, and metapath2vec++ where they try to include different entity
types in the skip-gram architecture. They do so by introducing what they call het-
eregeneous negative sampling: where regular negative sampling selects n random
negative samples to update, heterogeneous negative sampling selects n of each type
t. This results in a multinomial distribution for each type t instead of the one output
distribution seen normally. The adaptation metapath2vec++ makes to skipgram can
be seen in figure 4.3, together with Dong et al.’s implementation of metapath2vec
using normal skip-gram. Both versions show exceptional performance on learning
the AMiner dataset, a dataset containing authors, papers, conferences and terms.
However, metapath2vec++ shows no improvement over simple metapath2vec be-
sides that the type of an entity starts playing a stronger role in the resulting embed-
dings in metapath2vec++. That can be shown by the fact that entities of the same
type are more grouped compared to metapath2vec when plotted. But it is debatable
whether this is actually beneficial, because separating different kinds of entities kind
of goes against the idea of using heterogeneous graphs in the first place (which was
to integrate different types of entities to give more expressive representations).

Figure 4.3: Architectures used by metapath2vec (left) and metapath2vec++ (right). Metap-
ath2vec’s architecture is identical to skip-gram used by node2vec, metapath2vec++ extends
skip-gram by creating seperate distributions for each entity type (taken from [20]).



Chapter 5

Classifiers

Abstract

In this chapter we will discuss possible classifiers to be used. Two classifiers will be
compared in the experiments, multinomial logistic regression and a simple multilayer
perceptron.

5.1 Introduction

This thesis is about how to apply machine learning to entity graphs, and thus al-
though the primary focus is how to solve the challenges given by graphs and how
to exploit graph specific properties, some classifiers should be evaluated. In this re-
search two different classic classifiers will be used, multinomial logistic regression
and the Multi-Layer Perceptron (MLP). Multinomial logistic regression is a natural
choice since the ’fake’ network that creates the embeddings in skip-gram uses a soft-
max function to update weights, and MLP’s serve as a indicator for the performance
of neural networks as an MLP is the most basic form of a neural network. More ad-
vanced neural networks have been applied to graph embeddings [10], but because
the method of classification is not the primary focus of this thesis we will stick to
these two basic classifiers.

5.2 Multinomial logistic regression

We’ve already encountered the softmax function in previous chapters, but here we
will dive a bit deeper into its inner workings, its strengths and designed applica-
tions. The multinomial logistic regression extends a binary logistic regression to
multiple classes. Logistic regression is used when the variable to be predicted is
binary, and the predictor is the sigmoid function defined as:

σptq “
1

1` e´t
(5.1)
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in which t is the output of a linear function β0 ` β1x. Filling in the linear function
for t results in the probability ppxq, indicating predictor x is a positive case:

ppxq “
1

1´ e´pβ0`β1xq
(5.2)

ppxqwill always be a continuous value between 0 and 1, so to classify the case x as a
positive or negative case some threshold θ is used. The value of θ is case dependent
and can be determined with e.g. ROC curves.

Going from binary logistic regression to multinomial means to expand the num-
ber of possible categorical values the dependent value can take from 2 to n, resulting
in a probability for each case instead of just one. The multionomial logistic regres-
sion is defined by:

P py “ j|xq “
ex
Jwj

řK
k“1 e

xJwk
(5.3)

in which x is a feature vector, and wi P w denotes a weighing vector that in parallel
to binary logistic regression is best interpreted as a linear transformation, as the
equivalent of w in binary logistic regression are the variables β0 and β1.

From equation 5.3 the relation between multinomial and binary logistic regres-
sion becomes clear, and it shows that multinomial logistic regression could also be
interpreted as a set of K ´ 1 binary logistic regression, with 1 class as the pivot. The
binary logistic regression would then determine the probability of a class belonging
to the pivot class, or the chosen one of K ´ 1 other classes.

Multinomial logistic regression is often an attractive choice of classifier, because
it does not require its data to be normally distributed, linear or have the same vari-
ance for all entries. Some conditions do have to be met before multinomial logistic
regression can be applied, like the choices of the dependent variable need to be in-
dependent from each other. That condition is easily met however, which makes
multinomial logistic regression a widely applicable classifier and therefore a popu-
lar choice.

5.3 Multilayer perceptron

A multilayer peceptron is perhaps the most common neural network. It refers to
a feed-forward network with at least 3 layers: an input layer, a hidden layer and
finally an output layer. The input layer generally represents some form of feature
vector as input, and often the output layer represents some kind of class distribu-
tion. The hidden layer is the characteristic element of the MLP, which lies between
the input and output layer and is connected to both with a set of activation functions
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each having their own weights. It is these weights in the activation functions that
are updated in each step while training an MLP.

The role of the activation function is to take the weighted value from all of its
incoming neurons and transform that into an output value to pass on to its out-
going neurons. Classically activation functions have a sigmoid shape such as the
hyperbolic tangent or the logistic sigmoid in equation 5.1, but recently rectified lin-
ear units (ReLU) [39] are taking over to become the primary choice of activation
function [48]. ReLUs are a very simple function that correspond to the positive part
of the input:

maxp0, xq (5.4)

This simplicity leads to efficient calculations and sparse activations, which are ben-
eficial properties when training huge deep neural networks. But there is also bio-
logical justification for using ReLUs over sigmoidal activation functions. [28].

The last and most crucial part of the MLP is how the weights are updated during
training. This is done with some form of backpropagation, most commonly stochas-
tic gradient descent. [33], To explain this concept, consider the generic objective
function Qpwq that calculates the objective Q based on parameters w:

Qpwq “
1

n

n
ÿ

i“1

Qipwq (5.5)

in which Qi represents the objective Q for data entry i. In an MLP Q represents the
loss giving weights w. To minimize the objective Q, traditionally w can be updated
by:

wt`1 “ wt ´ η
1

n

n
ÿ

i“1

∇Qipwtq (5.6)

in which η represents the learning rate. This method is commonly known as batch
gradient descent, but it has a drawback in that when used with large datasets - as
is commonly the case in machine learning - this computation can become expensive
as the gradient of Qi needs to be computed for every point i. Therefore a variant
of batch gradient descent called stochastic gradient descent is often used instead,
which selects a sample i each training iteration that is used to update w instead of
looking at every sample:

wt`1 “ wt ´ η∇Qipwtq (5.7)

This does come with the remark that the loss will show much higher variance over
training iterations depending on which samples are used, resulting in more train-
ing steps before convergence. However, this phenomenon is far outweighed by the
immense speedup gained per iteration in comparison to batch gradient descent [6].



Part II

System and Experiments



Chapter 6

System

Abstract

This chapter will describe and discuss the developed system that will be used for experi-
ments, explaining different components of the pipeline and discussing decisions made.

6.1 Introduction

After investigating several techniques to use graph data as a baseline for machine
learning, eventually a conclusion was reached to go with a system based of node2vec
that makes use of metapaths. The factor’s that lead to this were two-fold: node2vec
does not require hand-engineering of features, and node2vec’s ability to scale to
larger graphs. These benefits stem from the fact that node2vec uses random walks
to determine neighborhood representations rather than a transition matrix, which
puts less constraints on memory usage and can therefore scale to larger graphs than
traditional methods. What contributes to this scalability is that node2vec makes use
of word2vec1, which was designed to be used on text corpora magnitudes larger
than the number of different nodes in most present day graphs. This setup just
needs random walks as an input, and does not care how these random walks are
acquired, e.g there is no transition matrix used anywhere. This allows us to use
methods used in business practice to store large graphs, and use these as our graph
representation.

The generation of these random walks can be guided using metapaths, which as
explained in chapter 4 are an expressive way to explain relations between different
entities and are an excellent way to leverage expert knowledge to guide machine
learning on graphs.

1as before, word2vec refers to the skip-gram architecture with negative sampling
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6.2 Graph

The graph is stored with the help of Apache’s cassandra database software and Tin-
kerpop stack. Tinkerpop encompasses multiple software components to facilitate
storing and performing queries on a graph. A graph is stored in Tinkerpop/cassandra
using three tables: one contains all the vertex ids, a second one contains all the
edges between vertices, and the last table contains all the other non-id features of
the vertices. Tinkerpop is a suitable way to store graphs for this research, as our
methodology does not require any graph data to be kept in memory, making it so
that graphs containing over 1.5 million nodes can be processed locally on a single
laptop. Tinkerpop provides its own query language gremlin, used to interact with
a graph stored in the Tinkerpop format. The last software component provided by
Tinkerpop is a server for processing gremlin queries on a stored graph, used as the
interface between the graph and the program created in python.

Tinkerpop stores every vertex, edge and all properties of vertices in a separate
table, where each vertex has a link to its incoming and outgoing edges with their
corresponding vertices as well as a link to its properties. This shows how Tinkerpop
does computation on graphs: it can be seen as having a ’traveler’ that has a posi-
tion on the graph moving from vertex to vertex. On a vertex it sees the incoming
and outgoing vertices, and gremlin allows to look at details of or move to those ver-
tices. A user-given query creates a traversal, which is a log of the path taken by the
’traveler’ required to generate results for the query. This design makes it extremely
efficient to generate walks on a graph.

6.3 System pipeline

Aside from Tinkerpop to store graphs, the system is written entirely in python mak-
ing heavy use of the NumPy2 and scikit-learn3 packages. The gensim4 package is
used for an efficient implementation of the skip-gram architecture using negative
sampling. The entire system runs on a Lenovo IdeaPad Y50-70-01132, using an Intel
Core i7-4710HQ CPU and 8 gigabytes of DDR3L memory. Training of models and
experiments were run on the same machine.

2www.numpy.org/
3http://scikit-learn.org/stable
4https://radimrehurek.com/gensim/
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6.3.1 Initialization

For the experiments run in this thesis, the system requires an entity type t as input,
and a property of said entity type l that will be used as labels. The first step is to
gather the identifiers of all vertices having said entity type, and store them along
with their label. The labels are not used until we get to the classification task itself,
but because the first iteration over all vertices is fairly costly we might as well gather
the labels while we do it. This doubles as an initialization of the graph in Tinkerpop,
as it caches the query used to look up any or all vertices of type t. This caching of
queries saves a lot of time when we want to traverse them later to generate walks.

Once we gathered the identifiers and labels for vertices, they are divided into a
training set and test set. Because of the skewed class distribution in the data used,
the system shuffles the members of each class and puts a user-specified proportion
of each class into the training set and the remainder in the test set. This ensures that
every class appears at least once in training. This per-class split turned out to be
necessary for the experiments ran in this thesis, but depending on use case different
approaches of splitting train- and validation set could be more desirable.

6.3.2 Walk generation

After gathering the identifiers with their labels the next step is to generate walks.
The idea of generating a walk is intuitively simple: given user-defined hyperpa-
rameters walk length and num walks representing the length of a single walk
and the number of walks per vertex respectively, start on a vertex v and choose the
next vertex until a walk contains walk length steps, and repeat this num walks

times for each vertex.
To compare walks generated using metapaths with ’base’ node2vec, the usage of

metapaths is left optional. The version of node2vec implemented here is a Tinker-
pop/python adaptation of the implementation by Grover & Leskovec refered to in
[25]. The different storage method constitutes some significant architectural changes
however, so there is still merit in explaining it.

The primary difference is that Grover & Leskovec’s implementation represents
a graph by storing a list of edges, which can easily be transformed into a transi-
tion matrix. This means that to determine the next vertex in the walk, they have to
infer the neighbors from the transition matrix in every step which is a costly pro-
cess.Therefore their algorithm starts with calculating transition probabilities before-
hand, storing these transition probabilities as a vector for each vertex. Calculating
all transition probabilities is however also a time and memory consuming process
when working with larger graphs, as it is at least quadratic in the number of vertices
|V |.
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There is one additional part that requires attention. Edges in a graph can have a
weight indicating their importance, in which case we refer to the graph as ’weighted’
and if not, a graph is ’unweighted’. In the case of unweighted graphs, transition
probabilities πk from vertex a to b is simply 1 divided by the number of neighbors
of a (K), but for weighted graphs the edge weight modifies the transition proba-
bilities. The simplest way is to multiply the probabilities given by 1/K by their
respective edge weight, and then normalizing again so that they sum to 1. But that
creates a non-trivial situation to draw a sample as we are sampling a discrete but
non-uniform distribution. That means that taking the floored result of a random
float between 0 and 1 times the number of neighbors of a to find the index of the
next vertex does not suffice, as it would with a uniform discrete distribution.

The way node2vec tackles this is to use alias sampling [32], implemented follow-
ing the approach proposed in [18]. The intuition behind alias sampling is based on
the observation that a non-uniform discrete distribution over K possibilities can be
transformed into a uniform discrete distribution over (possibly degenerate) binary
outcomes. As mentioned taking a sample form a uniform discrete distribution takes
constant time, so the trick becomes to define an appropriate mixture of binary out-
comes. To do so we take kmin = argminkpπkq and kmax = argmaxkpπkq. Because
the distribution is non-uniform, kmin has to be smaller than 1{K and kmax has to
be larger than 1{K. These two values can now be used to create a binary mixture
between kmin and kmax such that this component contains all of the probabilistic
mass for kmin but only 1{K ´ πkmin of the probabilistic mass for kmax. Then the
remainder is a discrete distribution with K - 1 outcomes, for which the process is
repeated until there is a component for each outcome in K. For proof, refer to [32].
The result is a set ofK binary mixtures, containing a lower and a higher value for all
of the K outcomes. These K binary distributions can be sampled from as if it was a
uniform distribution, taking either the lower or the higher value depending on the
actual probability of πk. 5

Because of their choice of graph storage, node2vec needs to calculate these bi-
nary distributions for each vertex on the graph, but with Tinkerpop we can skip
this step, as the neighbors become a simple lookup in an efficient database. That
makes it a minimal cost to calculate transition probabilities and sample during walk
generation.

There is one additional feature of node2vec that comes in to play during selection
of the next vertex: the hyperparameters p and q that characterize node2vec. p and
q are both multipliers over the base transitions probabilities if some conditions are
met. The transition probability ppvt, vpt`1qq is divided by p if vt`1 = vt´1, and divided
by q if vt`1 is a neighbor of vt`1 as well as being a neighbor of vt. Of course p and q

5For a more visual breakdown: http://www.keithschwarz.com/darts-dice-coins/ (17 may 2018).
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do not come into play at t “ 0 as there is no previous vertex at that point.

6.3.3 Metapath generation

The node2vec version making use of metapaths extends the walk generation pro-
cess described in the previous section by guiding the walks with types given in one
or more metapaths. The generation of metapaths is done on the schemagraph. The
starting point is the chosen entity type t, and then all possible metapaths up to a
user-given length are generated. It depends on use case up to what length is re-
quired, but in the datasets in this thesis metapaths longer than 7 were no longer
showing any new patterns. Brute forcing this way generates many meaningless
metapaths, for example paths that keep bouncing between two types. So some ad-
ditional filtering is required. For now my belief is that heterogeneous graphs should
not contain so many different entity types and relations that it is feasible to per-
form this filtering by handpicking metapaths using domain knowledge, but there
are arguments for selecting metapaths in a more automated fashion. Though then
the question becomes how, and the approach of selecting metapaths is likely to be
based on domain knowledge anyway.

Having gathered a set of metapaths, the walk generation process described in
the previous section is altered such that instead of looking at all the neighbors of
each node in each step, the algorithm only looks at the neighbors that have the
same type as the next type in the metapath. For example, when following metapath
APV and the current is of type of A, only neighbours of type P are considered as
next candidate. This brings the upside of having less possible outcomes in the alias
sampling algorithm, but brings the downside of having the chance that there are
zero neighbors having the same type as the next type in the metapath. This is not
uncommon at all, as a certain relation rpt1, t2q may only exist between a handful of
pt1, t2q vertex pairings. I will refer to walks where this situation occurs as unfinished
walks. In contrast, walks that do have a corresponding vertex on every step are
referred as complete walks. Complete walks also excludes mirrored walks: walks
performing half of the path successfully, and then revisiting the same vertices in
reverse order to complete the walk.

How to best deal with these unfinished walks is a worthy point of discussion.
Complete walks give the most ’pure’ representation of a graph’s neighborhood, but
there is definitely information in unfinished walks that could be beneficial. We’ve
decided to go with two options: either the walk may continue after ’skipping’ the
missing type in the metapath, resulting in a shorter final walk, or the incomplete
walk is cut entirely from the set of walks used to generate embeddings. Experiments
will be run with both options, as word2vec does not require its input sentences
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(walks if working with graphs) to be of fixed length.
Another issue that occurs is that metapaths can be shorter than walk length.

For example I mentioned that metapaths longer than 7 vertices showed only re-
peated patterns, but commonly research using random walks on graphs make use
of walks with lengths between 80 and 120 steps [55]. A way to generate walks of
such length using shorter metapaths is to concatenate the reverse metapath to the
initial metapath, repeating until the given walk length is reached. The result is
that the walk follows the metapath back and forth until termination. A downside of
this is that the chance to run into an impossible step increases the longer the walk
has to be.

6.3.4 Embedding creation

Transforming the walks into embeddings is using a generic implementation of skip-
gram with negative sampling, taking embedding size, window sample size and
the number of iterations used to generate embeddings as hyperparameters together
with the set of walks as input. Because of the default implementation of skip-gram
and negative sampling there is not much to add to the theoretical background sec-
tion on skip-gram and negative sampling, but the use of graphs with word2vec
warrants some remarks on the preprocessing of the vocabulary. Normally word2vec
filters out low-frequency words because they are often typographical errors, names
or similarly deviating words that are not essential to the corpus. With node2vec
however, the inputs aren’t words but vertices, indicating relations of which a low
frequency does not necessarily indicate irrelevance. Thus low frequency vertices
can’t be filtered out. We ran some short experiments on creating word embeddings
based purely on the entity type to be classified, thus removing all vertices of dif-
ferent types from the vocabulary, but it did not improve embedding quality. That
was to be expected, as the entire strength of heterogeneous graphs is to represents
data of a certain type in how they relate to different types in the first place. It also
strengthened our doubts of metapath2vec++ separation of types in the output layer
being beneficial. In the remaining experiments the vocabulary of vertices is there-
fore not prepocessed and all vertices of a graph are present in word2vec, returning
an embedding for each vertex as well.

6.3.5 Classification

Having embeddings and combining them with the earlier generated labels we have
all the required ingredients for the final element of the system pipeline: classifi-
cation. The embeddings need to be tested and the data lends itself for a classifi-
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cation task. As mentioned two classification approaches will be tested on how well
they work with node embeddings, multinomial logistic regression (softmax) and the
multilayer perceptron (MLP). Both softmax and MLP classifiers are implemented
using their scikit-learn implementation.

Before classification happens the embeddings are split according to the training
and test set generated at the start of the pipeline, and the labels and embeddings are
aligned such that each embedding has its correct label. This is an actual process as
the preprocessing steps of the vocabulary in word2vec uses a different ordering than
the default order given by requesting all vertices with Tinkerpop. In this process the
labeling could also be altered, e.g some labels can be grouped together in an attempt
to counter the skewed distribution of classes in the dataset. Some class groupings
will be explored in the experiments.

The chosen classifier is then trained with the embeddings of the training set, and
then for each entry in the test set the most likely classification is calculated. From
these classifications the micro-f1 and (un)weighted macro-f1 scores are calculated,
and compared to classifications generated through random selection with the same
class distribution as the classification data. This should give a good indication of the
effectiveness of node embeddings as a representation of graph data.



Chapter 7

Datasets

Abstract

In this chapter the data used in the experiments is elaborated on. Two datasets will
be discussed, because the dataset originally intended turned out to be insufficient for
experiments. That dataset is refered to as Wolverine and contains a network centered
around advertisements, with means of contact and profiles of advertisers. The second
dataset is used for experiments and is centered around albums of images from a certain
image hosting site, with comments and profiles included.

7.1 Introduction

The premise of this research was to investigate how graph learning could help Web-
IQ on their data acquired by crawling sites of interest for digital forensics. That
interest means their work is performed in some circumstances that are not always
present in academic research and brings some challenges that need to be considered.
Not only does it concern personal information, the end goal is to build a system that
can spot possible illegal activity, perhaps creating a shortlist for law enforcement
agencies. That has the for this thesis unfortunate side effect that most details of the
data have to remain private.

The largest challenge to solve is how to acquire a labeling, as people are generally
not keen on disclosing their illegal activities. And when a perpetrator is caught his
peers will make sure not to make the same mistake. So once a working feature is
found, its possible that it no longer works on real-time data in a matter of days.
Because of this it’s perhaps easier to look for outliers instead of classification, and
that is where this research started.

7.2 Wolverine

Wolverine is the name of the dataset originally intended to be used for this thesis. It
is centered around advertisements, with links to the profile of the poster and means
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Figure 7.1: Schemagraph of the wolverine dataset including relations

of contact such as their phone number and email address. The schemagraph of the
wolverine dataset is given in figure 7.1.

The data is crawled of multiple sites, and as posters often advertise on multiple
sites there will be some overlap, primarily between phone numbers. What ends
up in wolverine can then be seen as an overarching profile of an advertiser, with
advertisements placed over different sites and all means of contact. Some properties
that could appear on an advertisement are the seller’s name, location, given age and
most notably the description itself. Examples of suspicious activity in this dataset
could be an advertiser using different names across websites or a large amount of
different phone numbers used.

Unfortunately applying machine learning to this dataset had some issues. Al-
though detecting outliers based on specific features was possible, it was often hard
to determine what exactly caused these advertisements to be outliers. That is not
a problem if we can be certain that the given feature is a good indicator of sus-
picious activity, but of that we can’t be sure either for reasons described earlier.
Thus research on this dataset making use of properties often resulted in cases where
even though it was possible to gather results, there was no good way to determine



7.3. Imagehost 47

Figure 7.2: Plot of the number of advertisements connected to a profile and the different
number of names used in these advertisements, which turned out to be an effective way to
find distributors.

whether the results were meaningful.
There are some basic features that could be used, such as frequencies of proper-

ties occurring, number of neighbours, etc. These showed some results, for example
when plotting the number of advertisements against the number of different names
used by the seller in figure 7.2. A clear group of outliers can be spotted, but it
turns out all of these outliers were distributors. Those are indeed deviations from
the norm, but could have been found much easier by analyzing the advertisement
descriptions instead of the graph structure.

At that point we moved to representation learning, but for that this dataset had
another issue: the dataset did not really consist of a single graph, but rather of a large
set of smaller islands. And thus generating walks with node2vec and derivatives
was unlikely to result in strong embeddings as the walks would get stuck on their
own island.

7.3 Imagehost

Because of the issues listed above we’ve swapped to a different dataset from Web-
IQ, one centered around albums uploaded to a certain image hosting site. Which
hosting site is used exactly unfortunately has to remain private, so this dataset will
be refered to as ’Imagehost’ from here on. The used image hosting site has a low
level of moderation, and has caught the attention of some sinister communities,
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Figure 7.3: Schemagraph of the Imagehost dataset, including relations

which in turn attract the attention of law enforcement agencies. This dataset con-
tains albums, images, comments on images, and users that have posted comments
or albums. The schemagraph can be seen in figure 7.3. Two relations comment-
mentions-album and album-mentions-profile were excluded, as there were only 12
edges in the entire graph representing this relation and with the exception of 2, they
were users linking their own content as promotion.

The albums in the Imagehsot dataset are uploaded in a certain category, which is
a hard label that can be used for classification. This graph is structured much more
like a single graph instance, making it more suitable for representation learning
with random walk methods than Wolverine (although, some islands still exist, for
example when a user did not interact with the site other than uploading albums
for private use). In addition, the relations in the Imagehost graph are much more
straightforward and easier created, thus the graph is much more interconnected
than Wolverine. To give an example, two users could be related because one left a
comment on the other’s album, they both commented on the same album, a third
person commented on an album of each, etc.

In total, the graph contains about 15 million vertices spanning all publicly avail-
able albums uploaded since the inception of the used image hosting site. That gives
a graph of a scale well suitable for large-scale graph research, but unfortunately the
experiments are run on a single laptop. A graph with the scale of 15 million vertices
is then simply unfeasible, and therefore we were forced to take a subset of the Im-
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agehost graph. This subset was created by selecting 1.5 million vertices representing
entities created in a timespan of 6 months. This selection was further reduced by do-
ing some clean up operations, consisting of removing all albums not assigned to a
category and then removing all vertices that are not connected to any edge. The
result is a graph containing 1.35 million vertices, of which 41,291 are albums span-
ning 64 different categories. To save additional space the images themselves are
not included in the data, which has no consequences as this research prioritizes the
relations between entities rather than the entities themselves.

However, the fact that a subset is used does have some significant consequences
for the dataset. The largest one is that a selection by date creates the situation that
an album or comment might not have a creator, because the comment or album can
be posted within the selected time frame but the user might have signed up years
before. That results in the situation where some paths that exist in the full dataset
don’t exist in the subset because the step looking for a user is missing. This is un-
fortunate, but a cut had to be made somewhere and a selection by time is the most
neutral method of selection. There is an argument to be made for certain biases
based on the era, but the time period was selected in such a way the class distribu-
tion was closest to the class distribution over the entire graph.



Chapter 8

Experiments

Abstract

This chapter describes the experiments ran for this thesis and discusses their results,
explaining thought processes behind chosen variables, metapaths and differences between
setups.

8.1 Introduction

In the previous chapters all the ingredients for the experiments were described and
now it is time to put them together. In general the experiments take the form of a
classification task on the categories of the Imagehost albums, using the walks gen-
erated by use of different metapaths as the variable. In addition the results of a
multinomial logistic regression classifier will be compared with the results of an
MLP classifier. Let’s start with listing some hyperparameters that are considered the
default settings, and are consistent through all experiments unless explicitly men-
tioned otherwise:

• Embeddingsize: 128

• node2vec’s p and q are both 1 1

• Train- and testset are the same across all experiments, containing 50% of al-
bums from each category in each.

• 25 walks per album per path for non-repeated walks

• 1 walk of length 80 per album per path for repeated walks

• MLP contains 1 hidden layer of 128 units

All of these hyperparameters have been experimented with and above settings
provided the best results within manageable time/memory constraints. They are

1Due to the structure of the Imagehost dataset, these values are irrelevant when metapaths are used
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mostly based around the embedding size of 128, which was chosen as baseline be-
cause similar research showed an embedding size of 128 to be the best trade-off
between performance and training time [25] [45]. The choice of using one hidden
layer with 128 nodes in the MLP then follows from the fact that the MLP then has
an input layer of size 128, and with 64 classes an output layer of size 64. Intuitively
the hidden layer should then contain between 128 and 64 nodes. Some experiments
were ran varying hidden layer size between these numbers. One hidden layer of
size 128 showed the best performance without drastic increases in training time.
The choice of 25 walks with unrepeated paths and 1 walk of length 80 with repeated
path was made in an attempt to have a comparable number of node visits consid-
ering a metapath is between 3 and 7 vertices long. Of course there is randomness
involved with random walks, so some differences can still be observed.

Then to decide which metapaths to test on, all possible metapaths starting and
ending with albums up to a length of 7 from the schemagraph of the Imagehost
graph were generated (See figure 7.3). As mentioned generating all possible metap-
aths generates many meaningless ones, but the number of paths is small enough that
the relevant ones can be picked by hand. That results in the following metapaths:

• APA album-profile-album

• APPA album-profile-profile-album

• AICPA album-image-comment-profile-album

• APCIA album-profile-comment-image-album

• APCCIA album-profile-comment-comment-image-album

• AICCPA album-image-comment-comment-profile-album

• APCCPA album-profile-comment-comment-profile-album

• APPCIA album-profile-profile-comment-image-album

• AICPPA album-image-comment-profile-profile-album

• AICPCIA album-image-comment-profile-comment-image-album

All of these different metapaths represent slightly different ways two albums can
be related, but they are all combinations of smaller relations present in the Image-
host dataset:

• AP: album-(created by)-profile, indicating that an album was created by a pro-
file
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• CP: comment-(created by)-profile, indicating that a comment was created by
a profile

• AIC: album-(child of)-image-(child of)-comment, indicating that a comment
was left on an image that is part of an album.

• CC: comment-(child of)-comment, indicating that a comment was left as a re-
action on a different comment.

• PP: profile-(is related)-profile, indicating that two profiles are somehow con-
nected.

All of these relations except PP are structural relations that can be seen on the
Imagehost site itself. PP is a relation that is inferred by Web-IQ and added between
profiles that can reach each other with a minimal number of steps. The fact all
metapaths are a combination of these basic elements may seem like there should be
a lot of redundancy within the paths, but reordering these basic elements results in
quite differentiating relations. For example, the AICPA and APCIA path are each
other’s mirrors, but the former shows albums created by users who commented on
the first albums, whereas the latter show albums the creator of the original album
commented on.

8.2 Base cases

Before looking at the effect of each of these different metapaths, it is useful to estab-
lish and compare some baseline cases using none or all metapaths, as well as com-
paring the differences between (un)completed paths and repeated paths. It should
be noted that because runs using only completed walks remove a lot of walks, it
can happen that not all starting vertices have relevant walks remaining in a run. It
also occurs that certain metapaths are just not relevant for an album, in which case
they don’t appear in the testset for walks generated for that metapath. And ran-
dom walks are random, so it could happen that some vertices are just never visited
during the walks. Because of that it serves to take a look at how many vertices are
visited during the runs, and how many albums of the testset remain. These numbers
are found in table 8.1. In this table the ’No MP’ row shows the number of vertices
visited without running metapaths, which like the runs with repeated walks con-
sists of 1 walk of length 80 from each album. ’Comp.’ means completed metapaths,
Unf. unfinished metapaths and Rep. repeated metapaths. The column ’Nr. vtx’
shows the total number of vertices visited, which is analogous to the vocabulary
size in word2vec research, and finally the column ’Nr. test’ shows the number of
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Nr. vtx Nr. test
No MP 721,464 20,644
Comp. 245,913 14,659

Unf. 1,039,241 20,644
Rep, Comp 31,625 12,063

Rep, Unf 978,499 20,644

Table 8.1: Number of total vertices and albums in the testset visited for runs without metap-
aths, only completed metapaths, runs that include unfinished metapaths, runs with repeated
and completed metapaths and runs with repeated unfinished metapaths.

albums from the test set present in this vocabulary. The numbers in this table are
important to keep in mind when looking at the classification scores later, as they in-
fluence the classification scores. In particular the number of test albums remaining,
as it reduces the number of albums in the test set.

One observation is that runs with completed metapaths visit significantly less
nodes, which is to be expected as metapaths are essentially a filter. On top of that
unsuccessful walks are discarded with these settings, which reduces the number of
visited vertices remaining even further. Unsuprisingly It becomes even less when
running with repeated paths, since the longer a path is the more chances for a walk
to visit a vertex that is a dead end. The number of vertices left unvisited is incredibly
large however for repeated, completed paths only, with only 31625 of over 1 million
remaining. Of these 31625 vertices 12063 are albums from the test set, which is
quite interesting. Investigating this a bit more shows that all but 15 of the walks
remaining in this group are created by following the APA metapath, the shortest
path used. This indicates that many relations do not appear frequently enough in
the Imagehost dataset to support long walks following repeated metapaths.

Another interesting result is that also for unrepeated completed paths over a
quarter of albums in the test set is no longer present. As that means there were also
no viable APA paths for the removed albums, over a quarter of the albums do not
have a createdby link to a profile, or are created by a profile that uploaded only a
single album. The simplest explanation for this is the fact that it was necessary to use
a subset of the entire Imagehost graph, and thus the profiles of the album creators
could be created before the selected time frame.

A final observation is that runs including unfinished metapaths actually visit
more nodes compared to runs that do not use metapaths, both with repeated and
unrepeated paths.

The next step is to look at classification results of each case. These are shown in
table 8.2, where LR is the multinomial logistic regression, MLP is the MLP, mic. is
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the micro-f1 score (in this research equivalent to accuracy), and wgt/unw. represent
the weighted and unweighted macro-f1 score respectively. The micro-f1 globally
counts all true positive, true negatives and false positives, unweighted macro-f1
counts these metrics for each class label and returns their unweighted mean, and
weighted macro-f1 counts metrics per label but weighs the means according to class
distribution.

Random LR. wgt. LR. mic. LR. unw. MLP wgt. MLP mic. MLP unw.
No MP 0.2643 0.3128 0.4160 0.0200 0.3735 0.4376 0.0340
Comp. 0.3049 0.5029 0.5640 0.0325 0.5800 0.6067 0.0676

Unf. 0.2678 0.4476 0.5057 0.0387 0.5250 0.5574 0.0725
Rep, Comp 0.2756 0.4402 0.4658 0.073 0.6078 0.6189 0.1312

Rep, Unf 0.2682 0.4552 0.5067 0.0496 0.5294 0.5504 0.0960

Table 8.2: Micro-, weighted macro- and unweighted macro-F1 scores for MLP and LR clas-
sification on the base cases compared to a random guess. The random guess is acquired by
randomly picking a class according to the distribution of the test set.

The first observation is that in every case the walks outperform a (weighted)
random guess, immediately followed by the fact that all settings where metapaths
are used outperform the base node2vec case without metapaths (not using metap-
aths means that the entity types are disregarded, and walks are instead guided by
node2vec’s hyperparamters p and q). The best performance scores were achieved
by the runs using only completed walks, but with the aforementioned caveat that
this performance was achieved on a smaller validation set. The single largest gain
over the random score was achieved by repeated completed paths, but as discussed
earlier this setting essentially only contains walks acquired by the APA path. That
shows that longer walks generated by following a repeated metapath could be stronger
than multiple shorter walks generated by not repeating the metapath, but only if a
dataset is structured such that these longer walks are feasible without hitting dead
ends. For the Imagehost dataset, that seems to not be the case, and walks generated
by using repeated metapaths will not be further considered.

Because there are arguments to be made both for including and excluding unfin-
ished metapaths, the experiments that delve into the effects of each metapath will
be performed once with unfinished metapaths excluded, and once with unfinished
metapaths included. But because we believe using only complete metapaths is the
purest solution, any further experiments will be performed on completed walks.
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8.3 Effect of each metapath

8.3.1 Excluding unfinished walks

Similar as with the base cases, it serves to see the reach of a metapath in terms of
number of vertices visited on the graph and the number of albums in the validation
set visited. These numbers are shown in table 8.3.

Nr. vtx Nr. test
APA 22,825 9,941

APPA 15,513 6,764
AICPCIA 130,769 7,617

AICPA 92,145 8,866
AICPPA 88,685 8,158
AICCPA 33,947 3,127
APCCPA 29,822 4,779
APCIA 85,788 10,109

APCCIA 44,943 4,727
APPCIA 72,141 9,289

Table 8.3: Number of total vertices and albums in the testset visited in completed walks
generated by following each metapath

These numbers are not too surprising, observations that can be made are that
walks following longer paths visit more vertices, and that the least common relation
CC retains the least number of albums. What is interesting is the difference between
the paths that are each other mirror, such as APCIA and AICPA. The walks start-
ing on the AP side visit less vertices, but retain more albums. The best explanation
is that there are a lot of albums that don’t have any comments, invalidating paths
starting with AIC from the second step for these albus, while there might be oppor-
tunities for the reversed paths still. Of course, the same argument can be made for
paths starting with AP for the albums that don’t have a created relation to a profile,
which was shown to be quite a frequent occurrence earlier. But it appears there are
more albums that have no comments than there are albums that have a creator who
signed up outside the selected timeframe.

The corresponding classification scores are shown in table 8.4. The first observa-
tion to be made here is that for AICPCIA, AICCPA and AICPA there is essentially no
difference between the results of multinomial logistic regression and MLP, as well
as both multinomial logistic regression and MLP having a weighted macro-f1 score
that is lower than the accuracy of random guess. This is explained by the fact that for
these paths the classifier was unable to differentiate between different classes with
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the different embeddings, and simply guessed the most frequently occurring class
for every sample. This indicates that these metapaths by themselves are insufficient
for successful classification. AICPPA is a similar path to those, and also performs
under random, although there is a slight improvement when switching to a MLP
classifier. A very interesting result is that of APA, where the multinomial logistic
regression performed significantly worse than the MLP. APA also scored the lowest
accuracy of all paths, perhaps indicating that different albums uploaded by the same
users might not be a good indicator for album category after all. On the contrary,
APPA performed the best of all paths, indicating that albums uploaded by related
authors could be a good indicator of album category. That last point is reinforced
by the fact that both APPCIA and AICPPA outperform their closest counterparts
APCIA and APCIA respectively.

Random LR. wgt. LR. mic. LR. unw. MLP wgt. MLP mic. MLP unw.
APA 0.2997 0.2288 0.3860 0.0113 0.4088 0.4504 0.0255

APPA 0.3264 0.5267 0.5890 0.0343 0.6095 0.6454 0.0661
AICPCIA 0.3738 0.3723 0.5344 0.0150 0.3723 0.5344 0.0150

AICPA 0.3329 0.3014 0.4706 0.0131 0.3023 0.4709 0.0132
AICPPA 0.3457 0.3280 0.4952 0.0144 0.3357 0.4962 0.0149
AICCPA 0.3377 0.3058 0.4748 0.0207 0.3058 0.4748 0.0207
APCCPA 0.3204 0.3307 0.4623 0.0221 0.3957 0.4859 0.0351
APCIA 0.3175 0.3239 0.4691 0.0150 0.3619 0.4778 0.0375

APCCIA 0.3311 0.3636 0.4955 0.0130 0.4083 0.5106 0.0341
APPCIA 0.3386 0.4091 0.5104 0.0223 0.4875 0.5462 0.0305

Table 8.4: Micro-, weighted macro- and unweighted macro-F1 scores for MLP and LR classi-
fication for completed walks generated by each metapath

8.3.2 Including unfinished walks

Let’s compare the results of walks given by single, complete metapaths with those of
walks generated by single, unfinished metapaths. The number of vertices traveled
can be seen in table 8.5. All validation albums remain with unfinished paths because
in the worst case, an unfinished walk will contain only the starting album. There are
not many surprises in this table either, similar to with completed walks longer paths
visit more vertices, and paths starting with AP visit less vertices than paths starting
with AIC. This happens because every album has at least one image, but not always
a profile so AP paths can get stuck earlier than AIC paths. Similar reasoning can be
used to explain why APCCPA visits relatively few vertices, as CC is a rare relation
and all other relations depend on profiles.
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Nr. vtx Nr. test
APA 48,603 20,644

APPA 49,659 20,644
AICPCIA 631,534 20,644

AICPA 535,176 20,644
AICPPA 535,996 20,644
AICCPA 556,500 20,644
APCCPA 156,302 20,644
APCIA 346,337 20,644

APCCIA 378,023 20,644
APPCIA 327,501 20,644

Table 8.5: Number of total vertices and albums in the testset visited in completed and unfin-
ished walks generated by following each metapath

Then in table 8.6 the classification scores for embeddings generated by both com-
pleted and unfinished walks following each metapath are given. The results are
very similar to the embeddings generated by not including unfinished walks: paths
including the PP relation again show strong results, and paths starting with AIC per-
form worse than their mirrored counterparts. Interesting in these results however
is that there are many paths for which the embeddings are insufficient for classifier
using multinomial logistic regression, but not for the MLP classifier. This can be
seen by comparing their performance to the lower bound given by the randomly
guessing classifier, as well as the fact that the unweighted macro-f1’s are lower for
logistic regression compared to MLP. These numbers are very low however, a re-
sult of the large imbalance between classes. So it is questionable how much merit
is in this observation, but the fact that MLP outperforms LR on both weighted and
unweighted macro-f1 deserves to be noted.
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Random LR. wgt. LR. mic. LR. unw. MLP wgt. MLP mic. MLP unw.
APA 0.2668 0.2125 0.3794 0.0091 0.3544 0.4179 0.0201

APPA 0.2664 0.3691 0.4489 0.0182 0.3983 0.4694 0.0258
AICPCIA 0.2707 0.2169 0.3815 0.0094 0.3197 0.3981 0.0163

AICPA 0.2649 0.2060 0.3764 0.0088 0.3080 0.3696 0.0152
AICPPA 0.2663 0.2705 0.4026 0.0124 0.3427 0.4257 0.0173
AICCPA 0.2685 0.2059 0.3763 0.0088 0.2964 0.3765 0.0143
APCCPA 0.2649 0.3381 0.4196 0.0197 0.3995 0.4585 0.0404
APCIA 0.2650 0.2800 0.3927 0.0131 0.3507 0.4230 0.0281

APCCIA 0.2686 0.2932 0.4002 0.0138 0.3609 0.4277 0.0284
APPCIA 0.2658 0.3710 0.4472 0.0185 0.3961 0.4591 0.0282

Table 8.6: Micro-, weighted macro- and unweighted macro-F1 scores for MLP and LR classi-
fication for completed and unfinished walks generated by each metapath

The last curious observation here is the performance of APCCPA, especially con-
sidering its poor performance when unfinished paths are excluded. This is easily
explained however when the first profile encountered in the APCCPA has left no
comments, in which case the unfinished APCCPA path reduced to either an APPA
path or a APA path. The former has a strong performance, which could also explain
the performance of APCCPA. That is backed up by the fact that the other paths in-
cluding the CC relation, APCCIA and AICCPA perform relatively similar to the case
when unfished paths are excluded.

8.3.3 Leaving out a single metapath

Instead of creating embeddings based on walks following a single metapath, a dif-
ferent approach to take is to leave out single metapaths instead and see how that
affects the performance of the system. Because LR has never outperformed MLP in
any case so far, we’ve ran these tests only with the MLP classifier. The results of
these runs are seen in table 8.7.
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Nr. vtx Nr. test Random MLP wgt. MLP mic. MLP unw.
APA 240,932 12,850 0.3233 0.5766 0.6170 0.0632

APPA 245,500 14,630 0.3074 0.5393 0.5816 0.0555
AICPCIA 221,689 14,480 0.3042 0.5611 0.5981 0.0654

AICPA 239,629 14,592 0.3053 0.5493 0.5975 0.0650
AICPPA 239,312 14,593 0.3056 0.5601 0.6004 0.0668
AICCPA 238,200 14,619 0.3030 0.5730 0.6105 0.0735
APCCPA 236,379 14,629 0.3017 0.5585 0.5963 0.0638
APCIA 234,553 14,487 0.3030 0.5595 0.5996 0.0622

APPCIA 238,607 14,592 0.3057 0.5507 0.5918 0.0595
APCCIA 233,813 14,628 0.3042 0.5676 0.6051 0.0725

Table 8.7: Number of vertices traveled, number of remaining albums in the validation set
and micro-, weighted macro- and unweighted macro-F1 scores for MLP classification for em-
beddings generated by completed walks following all but one of each metapath

As can be expected the results here are much closer to each other, and outperform
all runs of a singular path. The outlier here is APA, which reduced the remaining
test albums by a much larger amount than leaving out any of the other paths. This
shows that many albums are only connected to other albums by sharing a creator,
indicating these albums have no comments and their creator has no is related re-
lation with any other profiles. Unfortunately the reduced size of the validation set
influences the classification scores, making the APA results hard to compare with
the others. At first glance APA even seems to be the least indicative considering the
classification scores dropped the least by excluding the APA path, but taking into
account how many albums appear to be only related by APA shows that APA is
too influential to be ignored. Aside from the anomaly that is APA, the results cor-
respond quite well to observations made in the previous experiments. APPA again
comes out as the strongest metapath for class prediction, as leaving out drops the
scores by the highest amount. In contrast leaving out a path containing the CC show
smaller drops in performance than their closest counterparts, indicating again that
the CC relation is perhaps not the strongest - which could be expected considering
it is the least frequently occurring relation. All of the other paths perform similarly,
but they also share so many steps that it could be expected that leaving one of these
paths out would not significantly affect performance.
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8.4 Changing class distribution

As mentioned the Imagehost dataset suffers from a severe imbalance in class dis-
tribution, of the 64 classes present the top 3 make up nearly 85% of the data. That
explains the generally extremely poor unweighted macro-f1 scores, but it also war-
rants a look into different groupings of classes. I’ve compared the default results ran
on 64 different classes with two different groupings. The first one groups the 61 less
frequent classes into thee new groups based tagged as people, travel and activities.
The second one is a safe/unsafe grouping, containing the top 3 classes in the unsafe
categories and the other 61 classes as safe. The classification results of these class
splits are shown in figure 8.8. The embeddings used are those created by complete
walks following all metapaths.

Random LR. wgt. LR. mic. LR. unw. MLP wgt. MLP mic. MLP unw.
64 classes 0.3049 0.5017 0.5655 0.0388 0.5800 0.6067 0.0676

safe/unsafe 0.8213 0.8660 0.9037 0.5305 0.8896 0.9119 0.634
6 classes 0.3103 0.4520 0.3780 0.2884 0.5825 0.6169 0.3752

Table 8.8: Random guess, micro-, weighted macro- and unweighted macro-F1 scores for LR
& MLP classification on the Imagehostc dataset using different class groupings

The results are perhaps a little disappointing. Using the MLP classifier there
is negligible difference between using 64 classes individually or the regroup into
6 classes. The multinomial logistic regression classifier even performed better on
the case with 64 classes compared to the case with 6, best explained by insufficient
training data on the 61 infrequent classes. There is an improvement when the top
3 classes are considered as one, which hints towards the fact that the classifiers are
primarily trying to differentiate between the top 3 classes.

Unfortunately those 3 classes show quite a bit of overlap in the Imagehost dataset.
The fact those classes are the least innocent of all 64 means the truthfulness of users
posting albums and comments in those categories has to be taken with a grain of
salt. In fact the category labels in Imagehost overall show a large amount of over-
lap. For example, one of the largest categories is ’kids’, and a recurring trend in
smaller categories such as ’biking’ is that the pictures are often ’kids on a bike’.

8.5 Conclusion

Overall the experiments show that metapaths cause a significant improvement when
they are used to guide random walks, as long as they are chosen carefully. A few
cases using embeddings generated by walks following a single metapath proved to
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be insufficient to differentiate between classes, but most paths improved the clas-
sification performance. This different performance in paths is even beneficial, as it
gives insight into what relations are important for a classification task like this, and
which relations are less so. We have also seen that combining multiple metapaths
can lead to an even further increase in performance. These insights are in this case
only relevant for predicting the category of an Imagehost album, but the general
idea of using metapaths to guide random walks can be applied to any heteroge-
neous graph.

Although the usage of metapaths improved the classification micro-f1 from 43.2%
to up to 61.7% and the (weighted) macro-f1 score from 37.8% to up to 61.0% us-
ing a MLP classifier on this Imagehost dataset, the improvements pale in compar-
ison to the improvement acquired by Dong et al. by using metapath2vec on the
AMiner dataset [20]. In their experiments the applications of metapaths improved
the top micro-f1 from 40.9% to a staggering 95.2%, and the top macro-f1 from 39.1%
to 95.3%. Two factors contribute to the difference: the structure of the dataset and
raw volume of training data.

In contrast to Imagehost, the AMiner dataset [59] is a dataset of authors that
posted papers to venues (conference or journal), using only three different node
types and a much simpler structure than the Imagehost dataset. They mention just
two possible relations in their graph of the AMiner dataset, APA representing co-
authorship and APVPA representing two author’s contributing to the same venue.
Of these they only used the latter metapath to generate walks. It should be noted
that this one metapath can cover all relations in the AMiner network, in contrast
to metapaths used in this Imagehost dataset where no metapath explores every re-
lation. Finally their labeling is much more reliable as they not only classify over 8
classes instead of 64, but their classes show less overlap and are much more reliable
given the nature of the Imagehost dataset.

Secondary in contrast to the 25 walks of length 80 (if repeated) per vertex per
path used here, Dong et al. used 1000 walks of length 100 per vertex. That is a
significant difference in the amount of training data available, but it does show that
guiding random walks with metapaths can be scaled up tremendously.



Chapter 9

Conclusion

In this thesis we’ve tried to answer the question: How can machine learning contribute
to digital forensic research concerning network structure?. This was done by taking a
real world graph dataset, analyzing it and then came up with a method that extracts
information from the relations between entities in the dataset. To solve the main
research question we came up with multiple subquestions that we will now answer
one by one.

What challenges for machine learning are brought forth by Web-IQ’s real world data
of forensic interest? Using a real world dataset of forensic interest proposed several
challenges. The largest one stems from the fact that criminal activity is not easy to
find, as perpetrators actively try to hide their activities. Machine learning requires
redundant, clear examples to be effective. This challenge was overcome by using
representational learning, allowing the system to learn it’s own features per dataset.
The second challenge was that real-world data is magnitudes larger than the data
used in academic settings to develop new methodologies, which meant that many
existing approach to apply machine learning to graphs simply showed inadequate
scalability. This problem was solved by going for an approach using node embed-
dings based on random walks.

Which features perform sufficiently well on the graph model? One of the main attrac-
tions of using a graph to express data is that graphs visualize the relations between
different entities well, which becomes more and more important when the network
represented grows larger. Especially when different types of entities and relations
are added, which can make a graph even more expressive as relations specialize.
Unfortunately many graph learning approaches do not take different types of enti-
ties and relations into account. It is understandable many approaches don’t, because
the types of entities and relations present in a graph are specific to that graph, and in
academics generic solutions are preferred. To make sure our system does exploit the
information given by taking into account entity- and relation types, we expanded
the system to guide the walk generation using metapaths. Metapaths are a sequence
of entity types that often represent a relation complex enough to require a combina-
tion of the elementary relations indicated by edges. The random walks choose the
next vertex in the walk by choosing a vertex from all adjacent vertices of the next
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type in the metapath. So even though we decided to not perform any explicit fea-
ture engineering and instead opt for an approach using representational learning,
random walks following metapaths are a suitable candidate for our graph model as
they have both strong scalability and are able to capture the higher level relations in
the graph.

How can these features be used for machine learning? We ran some experiments,
consisting of a classification ask on album categories using different combinations
of metapaths. Overall the experiments showed that using metapaths improve clas-
sification score, as every run using at least one metapath outperformed the run that
did not. We then looked at exactly which metapath performed the strongest, but
although interesting those results are specific to this Imagehost dataset. Another
takeaway was that even though a softmax was used to create the embeddings, even
a simple MLP classifier showed better performance than a multinomial logistic re-
gression classifier.

9.1 Future work

What do these results mean for the future? The significant improvement metapaths
caused lead to believe that when trying to achieve results on a particular dataset, the
higher level relations expressed by different entity types and edge relations cannot
be ignored. Whether this is done by metapaths specifically or in a different way,
too much information is thrown away when all vertices and edges are assumed to
be the same. Especially with entity graphs becoming more popular in business,
developing stronger methodology to involve heterogeneity in graphs should be a
priority in graph learning for the coming years. For similar reasons it is important
for new methodologies to remember scalability, as data is becoming so abundant
that many approaches to graph learning do not really keep up anymore. But when
these practical issues are accounted for, structural graph learning shows potential
for many possible future applications.

These improvements can be made on several levels. Some research calls for
methodology to learn the best metapaths without requiring human input, but the
”best metapath” is so case specific that removing human input is not practical yet.
In order to get there, research should be performed into what exactly differentiates
’good’ and ’bad’ metapaths, in order to find characteristics that transcend semantic
meaning of metapaths. Then graphs can be designed such that their structures are
suitable for graph learning. Recently there has been some research into how to de-
sign heterogeneous graphs suitable for graph learning, for example MetaGraph2Vec
by Zhang et al. [65] or GPSP by Du et al. [21].
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Another place where heterogeneity could be exploited more is in the creation
of node embeddings. Although Dong et al.’s metapath2vec++ architecture did not
show any improvements over their metapath2vec architecture [20], it seems logi-
cal that in order to create strong word embeddings for heterogeneous graphs, we
should try to exploit said heterogeneity during the creation of embeddings. One
idea is to add context to skip-gram [64], or to view the metapath guided walk as
translation from start node to end node as done by TransPath [23].

And finally the significant improvement shown by an MLP classifier over multi-
nomial logistic regression suggests that there is a lot of performance to be gained
by using more powerful neural networks. An MLP is one of the simplest forms of
neural networks available, and neural networks have been a popular research area
the last decades. The field has come up with all kinds of network configurations for
different tasks, so on this front the possibilities are endless.
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