
Data Set Extension with
Generative Adversarial Nets

Master’s Thesis

Luuk Boulogne
S2366681

Department of Artificial Intelligence
University of Groningen, The Netherlands

Primary supervisor: Dr. M.A. Wiering
Secondary supervisor: K. Dijkstra, MSc.

Groningen, Friday 20th July, 2018

Abstract

This thesis focuses on supplementing data sets with data of absent classes by using other, similar
data sets in which these classes are represented. The data is generated using Generative Ad-
versarial Nets (GANs) trained on the CelebA and MNIST data sets. In particular, this thesis
involves Coupled GANs (CoGANs), Auxiliary Classifier GANs (AC-GANs) and a novel combina-
tion of the two, Coupled Auxiliary Classifier GANs (CoAC-GANs). The abilities of these GANs
to generate image data of domain-class combinations that were removed from the training data
are compared. Classifiers are trained on the generated data to investigate the usefulness of the
generated data for data set extension. The results show that AC-GANs and CoAC-GANs can be
used successfully to generate labeled data from domain-class combinations that are absent from
the training data. Furthermore, they suggest that the preference for one of the two types of gen-
erative models depends on training set characteristics. Classifiers trained on the generated data
can accurately classify unseen data from the missing domain-class combinations.

ii Data Set Extension with Generative Adversarial Nets

Contents

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Background . 1

1.1.1 Generative models . 1

1.1.2 GAN research . 2

1.2 Research questions . 4

1.3 Outline . 4

2 Neural Networks 6

2.1 Gradient descent . 6

2.1.1 Momentum . 7

2.1.2 Root mean squared backpropagation . 7

2.1.3 Adaptive moment estimation . 8

2.2 Activation functions . 8

2.2.1 ReLU family . 8

2.3 Convolutional neural networks . 9

2.3.1 Transposed convolution layers . 9

2.4 Layer input normalization . 10

2.4.1 Batch normalization . 10

2.4.2 Instance normalization . 11

3 Generative Adversarial Nets 12

3.1 Formal objective . 12

3.1.1 Information theory . 13

3.1.2 Theoretical training objective of the generator 14

3.2 Training procedure . 15

3.2.1 Instability . 15

3.3 Deep convolutional generative adversarial nets . 16

3.4 Wasserstein generative adversarial nets . 17

3.4.1 Lipschitz continuity . 17

3.4.2 Earth mover distance . 17

3.4.3 Optimization . 18

3.5 Auxiliary classifier generative adversarial nets . 19

3.6 Coupled generative adversarial nets . 20

3.7 Performance measures . 21

Data Set Extension with Generative Adversarial Nets iii

CONTENTS

4 Extra Domain Data Generation 23
4.1 Unsuitability of CoGAN . 23
4.2 Suitability of AC-GAN . 23
4.3 Coupled auxiliary classifier generative adversarial nets 24

4.3.1 Formal definition . 25
4.3.2 Comparison with AC-GAN . 26

5 Experiments 27
5.1 Data sets . 27

5.1.1 Digits . 27
5.1.2 Faces . 28

5.2 Extra-domain data generation . 28
5.3 Extra-domain classification . 29
5.4 Model details . 29

5.4.1 GANs . 29
5.4.2 Classifiers . 32

5.5 Fréchet inception distance . 32

6 Results 33
6.1 Extra-domain data generation . 33

6.1.1 CoGAN . 33
6.1.2 AC-GAN and CoAC-GAN . 33

6.2 Extra-domain classification . 41
6.3 Fréchet inception distance . 42
6.4 Discussion . 43

6.4.1 Domain similarity . 43
6.4.2 Color artifacts . 43

7 Conclusion 44
7.1 Extra domain data generation . 44
7.2 Qualitative evaluation . 44
7.3 Future work . 44

7.3.1 Data sets . 45
7.3.2 GAN architectures . 45
7.3.3 Image-to-image translation . 45

Bibliography 47

iv Data Set Extension with Generative Adversarial Nets

List of Figures

3.1 A simple graphical representation of the GAN setting. The generator has the task
of generating convincing fake data from random noise. The discriminator gets as
input either fake or real data and has to determine whether its input is real or fake. 12

3.2 Graphical representation of an AC-GAN [48]. 19

3.3 Graphical representation of a CoGAN [37] consisting of two GANs. 21

4.1 Graphical representation of an AC-GAN trained with both a domain label and a
class label. 24

4.2 The CoACGAN architecture. Dashed connections indicate that data flows through
only one of the arrows. For solid connections, data flows through all arrows. . . . 25

5.1 Corresponding images from the MNIST and MNIST-edge data sets. 27

5.2 Images from the SVHN data set. 28

5.3 Sample of the CelebA data set . 28

6.1 Images generated by CoGANs and WCoGANs trained on MNIST1. For each figure,
the top images show digits produced by the GAN trained on MNIST data. The
images below them show the corresponding digits produced by the GAN trained on
MNIST-edge data. These digits were produced from the same input noise vectors.
The noise vectors used to produce the digits in figures 6.1a and 6.1b are also identical. 34

6.2 Images generated by CoGANs and WCoGANs trained on CelebA1. 35

6.3 Images generated by AC-GANs and WAC-GANs trained on MNIST1 and MNIST2. 36

6.4 Images generated by CoAC-GANs and WCoAC-GANs trained on MNIST1 and
MNIST2. 37

6.5 Images generated by AC-GANs, WAC-GANs CoAC-GANs and WCoAC-GANs
trained on the SVHN1 are shown here. In order to generate these results, at test
time, the GANs were only primed with class labels that were represented in both
the MNIST and SVHN domain. No images of missing domain-class combinations
are shown here. From top to bottom, the images in the rows in each subfigure are
produced by generators trained on data where the digit ‘5’, ‘6’, ‘7’, ‘8’, or ‘9’ was
missing. For the generation of images that share a row, the respective generator
was primed with the same noise vector. The generation process of images in vertic-
ally adjacent subfigures differs only in the target domain. From top to bottom, the
images in the rows of each subfigure show digits generated by the same generator
as the top rows of the images in the subfigures of figure 6.6 from left to right. For
the generation of these corresponding digits, the respective generator was primed
with the same noise input. 38

Data Set Extension with Generative Adversarial Nets v

LIST OF FIGURES

6.6 Images generated by AC-GANs, WAC-GANs CoAC-GANs and WCoAC-GANs
trained on the SVHN1 data sets are shown here. In order to generate them, the
GANs were primed with the class labels that were not represented in the SVHN
domain. Images in the same column of a subfigure were generated by the same
generator. The generation process of images in vertically adjacent subfigures differs
only in the target domain. 39

6.7 Images generated by CoAC-GANs, WCoAC-GANs, AC-GANs, and WAC-GANs
trained on CelebA1. 40

vi Data Set Extension with Generative Adversarial Nets

List of Tables

5.1 Generator for GANs trained with CelebA images. 30
5.2 Discriminator for GANs trained with CelebA images. For the LeakyReLUs, α = 5. 30
5.3 Generator for GANs trained with digit images. 31
5.4 Discriminator for GANs trained with digit images. 31
5.5 Classifier trained with generated images to classify domain-class combinations that

are missing during training. 32

6.1 Classifier accuracy on the missing data from MNIST1 (‘5’s from MNIST-edge). The
real training data on which the classifiers are trained originates from MNIST1. The
fake training data is produced by GANs trained with MNIST1. The best performing
classifier is printed in bold. 41

6.2 Classifier accuracy on the missing data from MNIST2 (digits 5-9 from MNIST-
edge). The real training data on which the classifiers are trained originates from
MNIST2. The fake training data is produced by GANs trained with MNIST2. The
best performing classifier is printed in bold. 42

6.3 FIDs between generated data of missing domain-class combinations and real data
with corresponding domain and class labels. 42

6.4 FIDs between real data of missing domain-class combinations in the specified data
sets and real MNIST data with corresponding class labels. The results shown here
are analogous to those in the top two rows of tables 6.1 and 6.1. For the comparison
between the missing data from MNIST1 and the corresponding data from MNIST,
only one FID can be computed. The same holds for MNIST2. Therefore no standard
deviation is given for the MNIST1 and MNIST2 datasets. A mean and standard
deviation are given for the distances computed between MNIST and the variants of
SVHN1 in which different digits are missing. 43

Data Set Extension with Generative Adversarial Nets vii

List of Algorithms

1 Training of GANs with stochastic gradient descent [17]. k is the number of times
the discriminator is updated for each generator update, m is the mini-batch size
used in SGD, w and θ are the parameters of the discriminator D and generator G
respectively. 15

2 The WGAN-GP training algorithm [19]. For this algorithm, the default hyperpara-
meters for Adam (see section 2.1.3) are the learning rate η = 0.0001 and first- and
second-order moment estimates β1 = 0 and β2 = 0.9. Like in the original GAN
algorithm (algorithm 1), k is the number of times the critic is updated for each
generator update, m is the mini-batch size, and w and θ are the parameters of the
critic D and generator G respectively. For the WGAN-GP training algorithm, k
has a default value of 5. 19

viii Data Set Extension with Generative Adversarial Nets

Chapter 1

Introduction

1.1 Background

Machine learning (ML) is the science in which computers, data, and statistical methods are used
to optimize certain criteria. It is a vividly alive research field that has had many break-throughs
in recent years. The performance measures ML algorithms optimize are diverse, which allows
them to be used to tackle different types of problems. In reinforcement learning, algorithms learn
to complete tasks by optimizing some reward function. In supervised learning, they learn to
label examples as accurately as possible and in unsupervised learning, they learn to find hidden
structures in data.

Whichever criterion is optimized, ML algorithms need data with some structure to be trained.
For unsupervised learning, any data with an underlying structure can be used. For reinforcement
learning, the data consists of experiences that take the shape of past examples and the rewards
they resulted in. For supervised learning the data consists of labeled examples.

The solutions ML algorithms find are often regarded as black boxes, since they are incompre-
hensible to humans. Generally, problems should therefore only be solved with ML when other
solutions are too challenging or more expensive to develop. Because of this, ML is often used to
tackle highly complex problems using sophisticated models. Large amounts of high quality training
data are vital for these models to perform well. Many of the great successes in machine learning
were only possible because of the large amount of structured data that has become available over
the past decades. Using more training data does not only result in a better classification accuracy,
but also helps to reduce overfitting on specifics of the training data in complex ML models [31].
However, collecting data is often expensive and/or labour intensive.

1.1.1 Generative models

A currently popular area of research within machine learning is data generation. This area concerns
itself with generating new data for a distribution of interest. Different methods for data generation
exist to date.

Variational Auto-Encoder

One of these data generation methods is the Variational Auto-Encoder (VAE) [29]. Like regular
auto-encoders, VAEs are trained to first encode data to points in a lower dimensional latent space
and then decode this point back to the original data. This restricts them in such a way that most
of the information from the original data is retained in the latent code. Different from regular
auto-encoders, the encoder part of a VAE is not directly trained to generate latent codes. Instead,
it is trained to generate the means and standard deviations of a multivariate Gaussian model
from which the latent code is sampled. After the VAE is trained, new data can be generated by

Data Set Extension with Generative Adversarial Nets 1

CHAPTER 1. INTRODUCTION

inputting samples of that Gaussian model to the decoder. Improvements on VAEs have also been
made (e.g. [57]).

Generative adversarial net

Another relatively recently developed type of generative model is the Generative Adversarial Net
[17] (GAN). A GAN consists of a generator and a discriminator that are trained in a competitive
setting. For a data generation task, the generator is trained to produce realistic fake data from
some distribution of interest in order to confuse the discriminator. The discriminator is trained to
discriminate between real data and data produced by the generator. By iteratively updating both
the generator and the discriminator, an equilibrium should be reached in which the discriminator
is no longer able to learn the differences between real data and the data produced by the generator.
Although, at this point, the discriminator is no longer necessary for data generation, during the
training process it has learned characteristics of the real data.

1.1.2 GAN research

Improved training

A difficulty for early GANs was producing high resolution, high quality images. One approach
partially overcame this problem by generating images in a course-to-fine fashion [10]. In this
work, a sequential approach based on the Laplacian pyramid is used. A first generator builds a
low resolution image from noise and subsequent generators each improve on the previous stage by
outputting a higher resolution difference image. For this, they use the upsampled image outputted
at the previous stage as input. A large improvement has also been made by using a two-stage
approach where the noise distribution from which the input for the generator is sampled is learned
from an embedding of a textual description that the generated image should match [65].

An observed downside of GANs in their original form is that they exhibit massive training
instabilities [2, 51, 55]. Therefore, the training dynamics of GANs have been theoretically invest-
igated [2]. Architectural constraints have been proposed that are aimed at stabilizing training for
deep convolutional GANs [51].

A well known failure mode for GANs is when they learn to only produce part of the desired
distribution. The problem of having a generator map all its inputs to (a) single (mode of) output
is called mode-collapsing. Both the training instability and the mode-collapsing problems have
been partially solved by keeping to specific architectural features and training procedures [55].
Wasserstein GANs (WGAN) [3], that minimize the Earth Mover (EM) distance between the
generated and real distributions instead of the Kullback-Leiber divergence as the original GANs
do, have also shown to counter training instability and mode-collapsing. Next to this, the loss in
the form of the EM distance of WGANs correlates well with the observed quality of generated
images, which is useful for debugging and hyperparameter searches. The original WGAN suffers
from optimization difficulties, but an improved version of the WGAN exhibits state-of-the-art
performance by generating realistic looking images [18].

Class conditional information

Multiple ways have been proposed to turn the GAN architecture into a conditional model [41, 7, 48,
43] in order to allow the generator to generate specifically labeled data. The first GAN extension
of this type is the conditional GAN [41] (cGAN). With this extension, conditional variables are
used as input to both the generator and the discriminator besides their standard input. Because
of this, the generator needs to produce class conditional images to fool the discriminator.

Instead of presenting the conditional variable to the discriminator by concatenating it directly
to its input, the variable has also been presented at a later stage in the discriminator’s processing
by concatenating it to features that the discriminator extracts from its input [43].

Conditional information can also be incorporated into the discriminator by taking the inner
product between an embedding of the variable and high level features extracted from the input

2 Data Set Extension with Generative Adversarial Nets

CHAPTER 1. INTRODUCTION

[43]. This method is referred to here as projection GAN (pGAN). The method has a strong
theoretical foundation and its assumptions hold for real-world class-conditional image generation
and super-resolution image generation tasks.

The conditional variable can also be incorporated into the training process by adding it into
the performance criterion in other ways. This is done in Triple GANs [7] by adding a classifier
as a third player to the cGAN optimization game. As with the regular cGAN, the generator and
discriminator receive the conditional variable as input and are trained in an adversarial setting.
The classifier is tasked to predict the conditional variable for real data and is, like the generator,
trained together with the discriminator in an adversarial setting as well. The framework was
shown to achieve great performance in semi-supervised learning.

With Auxiliary Classifier GANs [48] (AC-GANs) the conditional variable is incorporated into
the loss function in another way. Like cGANs, the generator is presented with a conditional label
during training, but with AC-GANs the discriminator is not. Instead, it is tasked to predict the
label for both real and fake data. The generator and discriminator are both optimized to maximize
the classification accuracy of the discriminator.

It was shown that the data produced with pGANs is more similar to real data than the data
produced by cGANs and AC-GANs [43].

InfoGAN [5] took using conditional variables in GANs a step further by making the GAN itself
discover what continuous and discrete input variables should represent by maximizing the mutual
information between observations and these latent variables.

Architectural changes

GANs have also been used for image-to-image translation in e.g. [24, 26, 6]. Instead of generating
new images from only noise and optionally a class label, such models alter existing images from
one domain so that they seem to originate from another domain or they alter existing images of
some class to appear as if they have another class label.

E.g. DiscoGAN [26] bijectively maps some domain of images to another domain. It was found
that by doing so, DiscoGAN can find cross-domain relations and can be used to transfer styles
from one domain to another. Also, forcing the GAN to represent a one-to-one mapping helps to
prevent mode-collapsing.

Furthermore, StarGAN [6] is able to translate images in some domain to appear to have a class
label for which no data in that domain is available by using additional data from another domain
in which the particular class label is represented.

CoGAN [37] consists of multiple GANs that all share the weights in the first layers of the
generators and last layers of the discriminators. These layers are the ones that learn the high-
level semantics of images. By presenting a single input to coupled generators, CoGAN is able
to generate corresponding images laying in multiple domains. Furthermore, CoGAN achieved
excellent results in unsupervised domain adaptation, which concerns adapting a classifier from
one domain to another, where there are no labels available in the new domain.

Other uses

GANs have been used for image inpainting of faces and cars [64]. Here, part of an image is missing
and the task is to realistically reconstruct the original image. Similar work has been done without
GANs by sequentially predicting pixels of images of more complex scenes [49]. Also, video with
static background has been produced using spatio-temporal convolutional GANs [62]. Although
promising results have been obtained, the current results are not yet life-like.

The concept of imposing a prior distribution in an auto-encoder (like with VAEs) has also been
implemented by partially training the encoder as the generator part of a GAN [40]. Resulting
architectures show competitive performance in semi-supervised learning.

Data Set Extension with Generative Adversarial Nets 3

CHAPTER 1. INTRODUCTION

1.2 Research questions

Any image data set only covers a fixed domain. This severely limits the abilities of classifiers
trained on them. E.g. classifiers are unable to classify classes that do not exist in their training
sets. They also often lack in accuracy when tested on data sets different from its training set with
an overlapping set of classes, since the data set specifics such as image style are rarely identical to
the specifics of the training set.

Domain adaptation is the research area devoted to solve the problem of classifying data from
some domain C where no class labels are available by using data from a different domain D in which
labeled data are available. Similar to domain adaptation this work involves using data from some
domain to expand classifier capabilities in another. We consider the setting with two domains of
labeled data, where in one of the domains, for one or more classes, no data are available.

More specifically, consider image domains A and B that produce the samples in data sets A
and B respectively. Furthermore samples in A have classes from set CA and samples in B have
classes from set CB . Let there be a class c such that c ∈ CB , but c 6∈ CA, and furthermore
CA ⊂ CB . From here on, the set of samples in domain A of class c are denoted by Ac. For this
work, Extra Domain Data Generation (EDDG) is defined as the problem of generating samples
from Ac. An example of this is generating fives in the style of A if A and B contain images of
digits, with B containing images of fives and A not containing images of fives.

The goal of this thesis is to tackle EDDG with the use of generative models. It is aimed to
answer the following research questions.

1. Can original data be generated that appears to originate from some domain, but is of a class
of which there is no real data available for that domain?

2. Is it possible to use this data to train machine learning models which classify data from some
domain where for some class(es) all data is missing in the training data?

To answer these questions, GANs are trained on the CelebA [66] data set and a combination of the
MNIST [33] and MNIST-edge [37] data sets to generate original images. CoGANs, AC-GANs and
a novel combination of CoGANs and AC-GANs are trained to generate data from domain-class
combinations that are not present in their training sets. This work also shows that using the
data generated by these models, classifiers can be trained that are able to accurately classify this
missing data.

1.3 Outline

All generators and discriminators that make up the GANs trained for this thesis are implemented
as Neural Networks (NNs). Therefore, chapter 2 describes this type of model. After a short in-
troduction to NNs, it constructively explains Adaptive moment estimation (Adam), which is the
gradient descent method this work uses to optimize NNs. The chapter then describes the pro-
cessing components of which the NNs used in this work consist. These components are activation
functions of which different variants of the Rectified Linear Unit (ReLU) are highlighted, regular
and transposed convolution layers, and two layer input normalization techniques.

Chapter 3 describes GANs. It explains formally how they minimize the distance between a
data distribution generated by a generator and a target data distribution. In order to do so, it
introduces the Jensen-Shannon divergence, which is the distribution similarity measure that GANs
optimize. The chapter then proceeds to describe the training instabilities regularly observed in
GANs and the different variants of GANs that this work builds upon, which include DCGANs,
AC-GANs, CoGANs and WGANs. In order to obtain a thorough understanding of the latter type
of GAN, Lipschitz continuity and the EM distance, which is the distribution similarity measure
WGANs optimize, are also explained. Lastly, the chapter describes different methods that can be
used to measure GAN performance qualitatively.

Consecutively, chapter 4 discusses the suitability of CoGANs and AC-GANs for EDDG. It
continues by introducing Coupled Auxiliary Classifier GANs (CoAC-GANs), which is a novel

4 Data Set Extension with Generative Adversarial Nets

CHAPTER 1. INTRODUCTION

combination of these two GAN variants. The usefulness of CoAC-GANs for EDDG is also discussed
here.

In chapter 5, experiments designed to test how these methods perform at EDDG are described.
It starts of by describing the MNIST [34], MNIST-edge [37] and CelebA [66] data sets that represent
the data distributions of interest for this work. The chapter describes experiments for EDDG, as
well as Extra Domain Classification (EDC). It also states the implementation details of the trained
models.

The results of the experiments on EDDG and EDC are reported and discussed in chapter 6.
In chapter 7 conclusions are drawn and some possibilities for future work are suggested.

Data Set Extension with Generative Adversarial Nets 5

Chapter 2

Neural Networks

Consider some data in which an underlying relation is present that can be described as y = g(x).
Here, x and y are some variables that the particular data contains and the function g describes
the relation between these variables.

For e.g. classification and regression problems, it is useful to have access to g or to a func-
tion that approximates g so that y can be inferred or approximated when a new value for x is
encountered. However, many collections of data contain variables that depend on each other in
complex ways, while the functions that describe such relations are unknown and cannot be ob-
tained using insightful modeling. In these cases, it is favourable to use types of models that lack
introspection, but can be tuned to represent arbitrary functions, i.e. that are suitable for universal
approximation [1].

A popular type of universal function approximator is the artificial Neural Network (NN) [1, 16].
Its structure holds a weak resemblance to that of the brain. NNs consist of individual processing
units called neurons, each of which holds an activation value. The activation values of neurons
influence each other through directed weighted connections between neurons.

A simple form of an NN is the perceptron [1]. A perceptron produces an output y ∈ R from
an input vector x ∈ Rn. Its parameters are a weight vector w ∈ Rn and a bias b. The output of
the perceptron is calculated as y = w>x + b.

When a perceptron instead produces an output vector h ∈ Rm, it can be described by the
matrix multiplication h = Wx where the columns of the m×n matrix W are the different weight
vectors for each element in h. A perceptron can be regarded as a single-layer NN. Multi-layer NN
architectures can be created by using the output of one layer as the input for another. Such multi-
layer NNs are called feed-forward NNs, because of their uni-directional processing flow. While
perceptrons with dense connectivity are commonly used as NN layers, different types of layers
exist.

NNs are not restricted to having a feed-forward architecture, but since such different architec-
tures are not used in this work, they are not described here.

2.1 Gradient descent

Training a model usually involves minimizing the expected value of a loss function f(θ) where θ is
the vector containing all learnable parameters of the model that is being trained [16]. When f(θ)
is differentiable with respect to all parameters θ, this model can be trained with gradient descent
based training algorithms.

Gradient descent algorithms use the gradient of f(θ) with respect to θ, ∇f(θ), to gradually
increase a models performance. They do so by sequentially updating θ. Although θ and with
that f(θ) constantly change during training, for regular gradient descent, f(θ) remains static
when evaluated for the same value for θ. This form of gradient descent corresponds to full batch
learning. With full batch learning, f is not only a function of θ, but also of a set of training data

6 Data Set Extension with Generative Adversarial Nets

CHAPTER 2. NEURAL NETWORKS

for which f is optimized.
It is also possible for f(θ) to change at each update, even for the same value of θ. In this case,

one speaks of stochastic gradient descent (SGD). For SGD, f at update step t is denoted as ft.
SGD corresponds to mini-batch learning, where at each time step a different batch of samples of
the training data is presented to the model that is being trained. Consequently, for minibatch
learning, each individual update is less time-consuming. Even though a mini-batch is an imperfect
representation of the complete data set, mini-batch learning still converges, because most of the
time it provides sufficient information to move θ in an admissible direction. f is minimized,
because with a small learning rate, gradients average out over successive mini-batches [59].

Typically the SGD update is realized by nudging θ in the direction opposite to ∇ft(θ), which
corresponds to directly changing the position of θ in parameter space [53]:

∆θt = −η∇ft(θt) (2.1)

and
θt+1 = θt + ∆θt.

Here θt denotes θ at time step t and η denotes the learning rate.
A useful aid in performing SGD when θ comprises of the learnable parameters of an NN is

the backpropagation algorithm [53]. In this algorithm, the chain rule is performed sequentially in
order to compute ∇ft(θ).

2.1.1 Momentum

With regular SGD, it is possible that ∇ft(θ) changes dramatically for subsequent times t. This
can result in large oscillations of the values in θ over time, which in turn slows down convergence
[1]. To counter this, a momentum term can be added to equation 2.1. SGD with momentum
corresponds more to nudging the velocity of θ in the direction opposite to ∇ft(θ), than to directly
changing its position [53]:

∆θt = α∆θt−1 − η∇ft(θt).

Here, α is generally taken between 0.5 and 1.0 [1].

2.1.2 Root mean squared backpropagation

When performing full batch gradient descent, learning can become more robust by ignoring the
magnitude of the partial derivative to f with respect to each learnable parameter and by only
regarding their sign instead. With Resilient backpropagation [52] (Rprop), the size of a parameter
update depends on the agreement of the signs of the correponding partial derivatives over multiple
time steps. At any time step, this size becomes larger when the current and previous gradient signs
agree for the regarded parameter and smaller if they do not. Although this is a robust algorithm
for full-batch learning, it does not work when training with mini-batches [59]. This is attributed
to the stochastic nature of ft that results from using mini-batches.

Root Mean Squared backropagation (RMSprop) [59] is the mini-batch version of Rprop. It
solves the problem stated above by normalizing the gradient for each of the learnable parameters at
each update, while also keeping the normalization term similar in subsequent updates. It accom-
plishes this by dividing the gradient for each learnable parameter by the accumulated magnitude
of the gradient, which improves learning [59]:

∆θt = −η∇ft(θt)
vt

,

where
vt = β2vt−1 + (1− β2)(∇ft(θt))2. (2.2)

Here β2 is a hyperparameter and the division and squaring operations denote their elementwise
versions.

Data Set Extension with Generative Adversarial Nets 7

CHAPTER 2. NEURAL NETWORKS

2.1.3 Adaptive moment estimation

Adaptive moment estimation (Adam) [28] is an SGD technique that keeps track of and uses bias-
corrected lower-order moments. These lower-order moments are similar to the estimates used in
SGD with momentum and RMSprop. Adam has three hyperparameters. These are the learning
rate η and the decay rates for the first- and second-order moment estimates, which are denoted
respectively by β1, β2 ∈ [0, 1). The corresponding moments are given in equations 2.3 and 2.2.

mt = β1mt−1 + (1− β1)∇ft(θt) (2.3)

Since mt and vt are initialized as vectors of zeros, they are biased towards zero. This is especially
the case when t or their respective decay rates are small. The algorithm therefore uses bias-
corrected variants of these moments:

m̂t =
mt

1− βt1
and

v̂t =
vt

1− βt2
.

The update rule for Adam becomes:

∆θt = −η m̂t

v̂t + ε
.

Here, ε is a small constant that avoids division by zero.

2.2 Activation functions

Activation functions are non-linear functions that are applied element-wise to the activation values
of neurons in hidden layers. For multi-layer NN architectures, especially straightforward feed-
forward ones, activation functions are often the NN’s only source of non-linearity. Because of this,
they are indispensable for NNs to have sufficient expressive power to tackle challenging problems.
Since the optimization of an NN often involves computing its derivative with respect to every
learnable parameter, many activation functions have the property that the derivative with respect
to their input is easy to compute. Some popular activation functions also used in this work are the
sigmoid function f(x) = 1

1+e−x and hyperbolic tangent (tanh). A disadvantage of these functions
is that they saturate for large absolute values of x. When x lies in a saturated regime the gradient
vanishes, which slows down learning.

2.2.1 ReLU family

Another popular but also more modern activation function is the Rectified Linear Unit [44] (ReLU).
It is defined as f(x) = max(0, x). Different from the sigmoid and tanh functions, it does not
saturate for large values of x. Because of this, using it results in faster learning of deep NNs that
are trained with gradient descent [31].

A disadvantage of the ReLU is that it does not provide any gradient when x < 0. A version of
the ReLU that does not have this problem is the LeakyReLU [39], which is defined as

f(x) =

{
x, if x > 0
1
αx, otherwise,

where α is a positive constant that can differ for different layers in an NN. In [39], α was set to
the relatively large default value of 100 which caused the LeakyReLU to be very similar to the
original ReLU. It was found that training NNs with smaller values for α such as 5.5 can increase
classification accuracy [63].

8 Data Set Extension with Generative Adversarial Nets

CHAPTER 2. NEURAL NETWORKS

Another version of the ReLU is the Parametrized ReLU [21] (PReLU). The PReLU has the
same definition as the LeakyReLU. However, when using PReLU, α is no longer set to a fixed
value, but treated as a learnable parameter instead. By letting the NNs learn the shape of their
activation functions in this way, NNs surpassed human level performance on image classification
[21].

2.3 Convolutional neural networks

For some processing tasks, the input to an NN consists of multiple values that represent the same
feature or variable, but in a different position or at a different time. Such values can be the
intensities of the color red of the pixels in an image or the air pressure deviations that make up
an audio fragment. The spatial (or temporal) relations between these values are not intrinsically
captured by the fully connected layers in an NN.

These relations are intrinsically captured by convolution (conv) layers [34]. Conv layers are
therefore commonly used in NNs for a wide range of image processing tasks [16]. The convolution
in conv layers is often implemented as a cross-correlation [16], which is the same as a convolution
with a transposed kernel. The output of the conv layer is a series of feature maps in which
the spatial relations between the different values are maintained. A feature map is computed as
Bq = A ∗ Hq, where ∗ denotes cross-correlation and q denotes the feature map index, A is the
matrix that represents the input for the conv layer and Hi is a learnable kernel. Conv layers thus
efficiently make use of the spatial relations in their input, by extracting the same features from
different input areas.

Rather than as a cross-correlation, a conv layer can also be viewed as a sparse fully connected
layer in which some weights are shared [12]. Instead of directly computing the layer output
B as described above, A and H can be rolled out or flattened to become the vectors a and h
respectively. Taking b to be the flattened version of B, the cross-correlation of A and H can
then be implemented by computing b = Wa. The sparse matrix W is thus defined in such a
way that multiplying with it mimics cross-correlation. More specifically, if the entries in H and A
that correspond to hk and aj respectively would be multiplied with each other in the process of
computing the entry of B that corresponds to bi, then Wij = hk. Otherwise, Wij = 0.

Conv layers are often followed by pooling layers [34] in which the feature maps produced by the
preceding layer are down-sampled. Convolution can also be implemented in such a way that the
kernel shifts a fixed number of pixels s ≥ 1 when it is convolved with the layer input. This is called
strided convolution or convolution with a stride of s [16]. When taking s > 1, the convolution
produces a smaller feature map than regular convolution. Therefore, strided convolution can also
be used as a form of down-sampling in CNNs. When the conv layer input is multidimensional,
e.g. a 2D image, different strides can be taken for the different directions (horizontal and vertical)
of the convolution. Consequently the down-sampling for these directions is then different as well.

2.3.1 Transposed convolution layers

Performing backpropagation through a conv layer involves multiplying with W>, which is the
transpose of the matrix W that describes the convolution that this layer implements in the forward
pass [16]. The transposed convolution (TC) layer [38, 12] is defined as a regular conv layer in which
W is swapped with W> in the forward pass. Therefore, backpropagation through a TC layer now
involves multiplying with (W>)> = W .

The forward pass of a TC layer can thus be implemented by computing its output a = W>b,
where b is the input of the TC layer and W is defined as in section 2.3. TC layers were originally
dubbed deconvolution layers [38]. Since, with respect to a regular conv layer, in a TC layer W is
swapped with W> in the forward pass, the dimensions of the input and output of a TC layer are
also swapped. However, W> is not necessarily equal to the inverse of W . In other words, a = W>b
does not imply that b = Wa, which means that TC layers do not implement deconvolution. The
name deconvolution layer is therefore depreciated [12].

Data Set Extension with Generative Adversarial Nets 9

CHAPTER 2. NEURAL NETWORKS

TC layers should thus not be regarded as the inverse of regular conv layers. Instead, they could
be viewed as a special case of regular conv layers. This is because every transposed convolution can
also be implemented as a regular convolution [12]. Implementing TC layers in this way however
needs zero padding around the input of the convolution, which is unnecessary when implementing
the TC layer with a transposed convolution.

Fractionally strided convolution

The similarity between regular conv layers and TC layers does not stop at the vanilla conv layer
variant. When W is defined for a strided convolution, again its transpose W> can be used to
define a corresponding TC. Such a TC can also be viewed as a special case of a regular strided
convolution [12]: A convolution with a stride s corresponds to a TC that can be implemented as
a convolution with a fractional stride of 1

s . With such a fractional stride, before the convolution
is performed, rows and columns of zeros are added in-between each adjacent pair of rows and
columns of the input s. Although this is a useful way to gain insight in the way strided TC layers
operate, such an implementation of TC layers would add many unnecessary multiplications with
zero.

Because strided TC layers can be implemented in the way described above, TC layers have also
been referred to as fractionally strided conv layers [12]. Similar to the way strided conv layers can
be used to let NNs learn their own downsampling, TC layers can be used to let NNs learn their
own upsampling. This makes them useful for e.g. image generators in Generative Adversarial
Nets [51].

2.4 Layer input normalization

2.4.1 Batch normalization

Formally, an update of a weight of an NN trained with a gradient descent optimization technique
assumes the NN to be partially static. More specifically, when updating some specific weight of the
NN, it assumes that all other weights that had an influence on the activation value of the neuron
with which the regarding weight was multiplied during the forward pass and all weights that the
regarding weight has an influence on remain unchanged. Since all weights are updated simul-
taneously in gradient descent algorithms used for training NNs, this assumption does not hold.
However, gradient descent can still be used for training NNs when the assumption is approximated
by taking a sufficiently small learning rate.

The quality of the computed gradients is still impaired by the fact that a small change in one
of the first layers can have a large impact on layers further up in the forward pass, especially
when the NN is deep. Batch normalization [23] (BN) alleviates this problem by controlling the
mean and standard deviation of the distribution of inputs for the layer before which it is applied.
When applying it before saturating nonlinearities, it can help by transforming their input to avoid
saturated modes and the vanishing gradient problem.

Normalizing layer input

BN firstly controls the distribution of inputs to a layer by making it invariant to any shifting or
scaling caused by preceding layers. Let x(k) be the data in the kth dimension of the batch of inputs
x. At each batch update each dimension, or analogously kth activation value of the input to the
regarded layer, is normalized to have a mean of zero and a standard deviation of one:

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)] + ε
. (2.4)

Here ε is a small constant that avoids division by zero. Note that for hidden and output layers
in an NN, the input distribution of a layer, and with that its mean and variance, changes at each
update, since the weights of preceding layers alter at each update as well.

10 Data Set Extension with Generative Adversarial Nets

CHAPTER 2. NEURAL NETWORKS

BN heavily relies on the assumption that all input batches are sampled uniformly from the
layer input distribution. If they are not sampled in this way, E[x(k)] and Var[x(k)] will be poor
estimates of the mean and variance of the actual distribution of data in the kth dimension of the
input to the regarded layer. Although this assumption can be easily met when sampling from
the input distribution during training, it does not hold when purposefully crafted batches are
presented to the NN during testing. To circumvent this problem, the running averages of E[x(k)]
and Var[x(k)] that are accumulated during training are used when testing the NN.

Transforming the normalized input

In order to always allow the BN transform to represent the identity transform, for each dimension k
the normalized values in x̂ are scaled and shifted by learned parameters γ(k) and β(k) respectively:

y(k) = γ(k)x̂(k) + β(k). (2.5)

At first glance, it might seem useless to first normalize the activation values and then introduce
parameters that allow these normalized values to be scaled and shifted. The effectiveness of BN
lies in the way it reparameterizes NNs [16]. Instead of letting the mean and variance of the input
to a layer depend on the transformations that any preceding layers implement, they solely depend
on two learned parameters.

When applying BN after a conv layer, the input is not normalized, scaled and shifted per
activation value, but per feature map instead. This is done to obey the spatial relations present
in the feature maps produced by the conv layer.

2.4.2 Instance normalization

Instance normalization is a weight normalization method that has been shown to improve the
results in image style transfer [11]. The method is similar to BN. In fact, it only differs from
BN in that it normalizes over single input instances instead of complete batches of input. The
normalization process is thus described by equations 2.4 and 2.5, where x(k), x̂(k) and y(k) denote
the data in the kth dimension of respectively the original input, normalized input and transformed
input per input instance instead of the data in the kth dimension per batch of inputs.

Data Set Extension with Generative Adversarial Nets 11

Chapter 3

Generative Adversarial Nets

Generative Adversarial Nets (GANs) [17] have been proposed as a method for data generation. The
method uses a competitive setting that is depicted in figure 3.1. The generator and discriminator
in GANs are often implemented as NNs. More specifically, for image generation tasks, CNNs are
a popular choice (e.g. [37, 41, 43, 6, 48, 3, 19]), although with capsule networks [54] promising
results have also been obtained [50, 60].

The generator obtains the ability to generate data by learning a mapping from some distribution
pz to the distribution of interest pdata. This mapping is learned by the generator that gets as input
a sample z ∼ pz and outputs some fake data point G(z). We denote the distribution of G(z) as
pG.

To learn this mapping, a discriminator is trained together with the generator. The discrim-
inator learns to predict the probability that its input x is sampled from the real data instead of
it being produced by the generator. It learns this by maximizing its output when x ∼ pdata and
minimizing its output when x ∼ pG. In contrast, the generator learns to produce samples x ∼ pG
that maximize the output of the discriminator.

Figure 3.1: A simple graphical representation of the GAN setting. The generator has the task of
generating convincing fake data from random noise. The discriminator gets as input either fake
or real data and has to determine whether its input is real or fake.

3.1 Formal objective

The GAN objectives are captured in the value function:

V (D,G) = Ex∼pdata
[logD(x)] + Ez∼pz [log(1−D(G(z)))]. (3.1)

The discriminator needs to maximize this function, while the generator needs to minimize its right
term. The complete training process is described by playing the following min-max game:

min
G

max
D

V (D,G) (3.2)

12 Data Set Extension with Generative Adversarial Nets

CHAPTER 3. GENERATIVE ADVERSARIAL NETS

3.1.1 Information theory

In order to understand why the min-max game defined in section 3.1 is played to optimize GANs,
some knowledge about information theory is required. This section constructively introduces
Jensen-Shannon (JS) divergence [36], which plays a large role in the optimization of the generator.

Self-information

Self-information denotes how much information is conveyed by finding out that an event occurs
[16]. Self-information follows two intuitive notions. The first one is that finding out that likely
events occur conveys little information, while finding out that unlikely events occur conveys much
information. Secondly, self-information is also in accordance with the fact that finding out that
two independent events occur together conveys as much information as the sum of finding out
that those events occur separately. Following these notions, given some variable X and a value x
for that variable, the amount of self-information present in the event that X = x is:

I(x) = − logP (x),

where P (x) = Pr(X = x).

Entropy

The entropy of a random variable measures the uncertainty of that variable [8]. For the variable X,
it does so by adding up the self-information for all values X can take, weighted by the probability
that X takes those values. The entropy of a discrete random variable X is:

H(X) = −
∑
x∈X

P (x) logP (x). (3.3)

Here X denotes the distribution from which the value x for X is sampled. H(X) is often denoted
as H(P) [8, 16].

Entropy can be better understood by considering trying to construct messages that are on
average as short as possible, but could still be used to convey the value of a variable [8, 1]. The
solution of this problem consists of finding the optimal way to encode the variable. In order to
make the encoding as optimal as possible, the message length is allowed to vary for different values
of X, which makes it possible to use shorter codes for more frequent values and longer codes for
infrequent ones. The variable could e.g. be encoded using bits. In this case, the entropy denotes
the minimum average message length in bits that that can be used so that X is encoded. Using
bits as a unit of information for entropy corresponds to setting the logarithm in equation 3.3 to
base 2.

Note that the definition in equation 3.3 can be easily adjusted to work with logarithms of other
bases [8]. The base can be changed from a to b by multiplying the entropy with logb a. Changing
the base then corresponds to scaling the unit of information in which the entropy is measured.
Some common units of information [16] are bits, which have also been denoted as shannons, and
nats, which correspond to the definition of entropy using the natural logarithm.

Equation 3.3 can be rewritten as

H(P) = EX∼P logP (x), (3.4)

which generalizes to continuous variables as well [16].

Cross entropy

The cross entropy of P with respect to another probability distribution Q is defined as [16]:

H(P,Q) = −EX∼P logQ(x).

This is the average length (e.g. in bits for a logarithm with base 2) of messages that convey the
value of a variable that has the distribution P , when the encoding of that variable is done using
the code that would be optimal to convey the value of a variable that has the distribution Q.

Data Set Extension with Generative Adversarial Nets 13

CHAPTER 3. GENERATIVE ADVERSARIAL NETS

Kullback-Leibler divergence

Intuitively, when P is similar to Q, H(P,Q) is close to H(P, P) and vice versa when P and Q
are dissimilar. Because of this, a similarity measure for P and Q can be defined as the average
inefficiency of encoding the value of a variable that has the distribution P with the optimal code for
a variable that has the distribution Q [8, 16]. This average inefficiency is called the KL divergence
[32]. It can be stated formally as:

KL(P‖Q) = EX∼P [logP (x)− logQ(x)] = EX∼P log
P (x)

Q(x)
. (3.5)

The KL divergence has some properties that make it useful as a similarity measure [8, 16].
Because KL divergence measures the encoding inefficiency of some code with respect to the optimal
code, it can never be negative [8, 16]. Also, it is always nonzero except when P = Q in the discrete
case [8, 16] and it is zero when P and Q are equal almost everywhere in the continuous case [16].
However, it is not necessarily true that KL(P‖Q) = KL(Q‖P) [8, 16]. Because of this, even
though the KL divergence is an intuitive measure for the similarity of probability distributions, it
is not a proper distance measure. Also, with using the KL divergence as a distance measure, there
is no upper bound to the dissimilarity between distributions [36], which can also be undesirable.

It should be noted that optimizing Q so that it minimizes H(P,Q), is the same as optimizing it
so that it minimizes KL(P‖Q) [16]. This is true because the only difference between cross-entropy
and KL divergence is the term logP (x) in equation 3.5, which is independent of Q.

Jensen-Shannon divergence

A variant on the KL divergence that is more suitable as a distance metric than the KL divergence
is Jeffreys divergence [46], which is defined as

J(P,Q) = KL(P‖Q) +KL(Q‖P).

Although Jeffreys divergence is clearly symmetric, it still has no upper bound [46]. There exists
a variant of the KL divergence that does have an upper bound. This version is called the K-
divergence [36]. It is defined as

K(P‖Q) = KL

(
P

∥∥∥∥P +Q

2

)
.

Intuitively, the K divergence is thus the average inefficiency of encoding the value of a variable
that has the distribution P with the optimal code for a variable that has the distribution that is
the average of P and Q.

The Jensen-Shannon (JS) divergence [36] is the symmetric variant of the K divergence similar
to how Jeffreys divergence is the symmetric variant of the KL-divergence [46]:

JS(P,Q) =
1

2
(K(P‖Q) +K(Q‖P)) .

The JS divergence thus keeps the useful properties for a distance measure of KL divergence, but
it furthermore also has an upper bound and is symmetric [46].

3.1.2 Theoretical training objective of the generator

In [17] it is shown that when regarding a GAN with an unlimited capacity, for a fixed generator,
the optimal discriminator is:

D∗G(x) =
pdata(x)

pdata(x) + pG(x)
. (3.6)

14 Data Set Extension with Generative Adversarial Nets

CHAPTER 3. GENERATIVE ADVERSARIAL NETS

As also shown in [17], imposing this on equation 3.1, one obtains a theoretical training criterion
for the generator:

C(G) = Ex∼pdata
[logD∗G(x)] + Ez∼pz [log(1−D∗G(G(z)))]. (3.7)

It is shown in [17] that with some intermediate steps and by using equation 3.6 equation 3.7 can
be rewritten as:

C(G) = − log(4) + 2JS(pG, pdata).

Therefore, with an optimal discriminator throughout the training process, the generator would be
minimizing the JS divergence between pG and pdata.

3.2 Training procedure

Algorithm 1 describes the regular training procedure for GANs [17] that can be used to play the
min-max game described in section 3.1. Note that variants of SGD, such as Adam (see section
2.1.3), can also be used in this algorithm.

Algorithm 1 Training of GANs with stochastic gradient descent [17]. k is the number of times
the discriminator is updated for each generator update, m is the mini-batch size used in SGD, w
and θ are the parameters of the discriminator D and generator G respectively.

procedure TrainGAN
for number of training iterations do

initialize w and θ
for k steps do

for i = 1, ...,m do
Sample a noise vector z ∼ pz
Sample real data point x ∼ pdata
L
(i)
D ← − logD(x)− log(1−D(G(z))

w ← SGD

(
∇w

1

m

∑m
i=1 L

(i)
D

)
Sample a mini-batch of m samples {z(1), ..., z(m)} ∼ pz
θ ← SGD

(
∇θ

1

m

∑m
i=1 log

(
1−D

(
G
(
z(i)
))))

3.2.1 Instability

The training of regular GANs is found to be unstable [51, 55, 2]. An important source of this
instability is the fact that the GAN min-max game involves a simultaneous optimization of two
players with different objectives. This can cause the generator and discriminator to undo each
other’s progress during training, which can prevent an equilibrium from being reached [15, 55].
Here, the manner in which this type of instability most frequently occurs is discussed.

Mode collapse

The quality of samples generated by the generator depends on how well the min-max game de-
scribed by equation 3.2 plays out. A well-known failure mode for this game is when the generator
starts to produce samples that are similar to only a part of the real data distribution. This fail-
ure mode is called mode collapse [15]. Mode collapse can be investigated by regarding equation
3.2. This equation corresponds to GAN training where the generator tries to fool an optimal
discriminator. This is also the assumption that underlies the theoretical training objective of the
generator (see section 3.1.2). However, when using algorithm 1, this assumption does not ne-
cessarily hold, since the generator and discriminator perform gradient descent on their objective

Data Set Extension with Generative Adversarial Nets 15

CHAPTER 3. GENERATIVE ADVERSARIAL NETS

functions simultaneously. Instead, in some settings, the training process might be better described
by the max-min game:

G∗ = max
D

min
G

V (D,G),

where G∗ is the optimal generator acquired by the training procedure [15]. In this game, G∗ is
trained to map its entire input domain to a single fake data sample [15].

Mode collapse can occur in varying degrees of severeness. When it only occurs to a mild extent,
the training process is not severely hindered and thus still converges. However, the distribution
that can be sampled from using the generator after training does not cover the entire real data
distribution.

When severe cases of mode collapse occur, the generator starts to produce only few samples
or even only a single sample [55, 51]. When this happens, the training process does not continue
normally. Instead, the discriminator learns to only label the small diversity of samples generated
by the generator as fake [55]. When the generator is updated, it then learns to map its input
domain to a single or only a few points in its output space, since doing so has become an easy way
to fool the now mode-collapsed discriminator. This repeating process in which the discriminator
pushes the output of the generator around then prevents the min-max game from converging.

The mode-collapse scenario in which the generator learns to limit itself to generating only a
few samples is common, but a complete collapse resulting in a generator that maps its entire input
domain to only a single sample is rare [15]. In [15] it is also argued that GANs are prone to cover
less modes than they are limited to.

Variational Auto-Encoders [29] (VAEs), which minimize the KL divergence between a real and
fake data distribution, produce more blurry samples than GANs, but produce a better coverage
of the target domain. It therefore used to be popular belief that training to minimize the JS
divergence between the real data and the generated data results in sharp samples, but that this
comes at the cost of mode collapse. In contrast, minimizing the KL divergence would cause
the entire domain to be represented by the output samples, at the cost of these samples being
blurry. This has been shown to be false through the introduction of f-GANs [47], which have been
developed to allow GANs to minimize other f-divergences than the JS divergence. f-GANs that
minimize the KL divergence between the real and generated data produce sharp samples, but such
models still suffer from mode collapse [15].

3.3 Deep convolutional generative adversarial nets

Originally, GANs were trained to generate images and were implemented using multi-layer per-
ceptrons [17]. In [51], some architectural constraints were found that result in stable GAN training.
This family of architectures was developed for the generation of images. The generator and dis-
criminator are both implemented as deep CNNs and architectures following the constraints are
named Deep Convolutional GANs (DCGANs). The architectural constraints that define a DCGAN
are the following:

• No pooling layers are used in the GAN. Instead, strided conv layers are used in the discrim-
inator and fractionally strided conv layers are used in the generator (see section 2.3).

• Batch normalization is used in the generator and in the discriminator (see section 2.4.1).

• Fully connected hidden layers are removed for deeper architectures.

• Except for after the last layer, all activation functions in the generator are ReLUs. The last
layer is followed by a tanh activation function.

• All activation functions in the discriminator are LeakyReLUs.

16 Data Set Extension with Generative Adversarial Nets

CHAPTER 3. GENERATIVE ADVERSARIAL NETS

3.4 Wasserstein generative adversarial nets

As described in section 3.1.2, the original GAN min-max game is played to minimize the JS
divergence. However, in some cases, the JS is non-continuous and fails to provide useful gradients,
which causes it to fail to converge [3]. Because of this, Wasserstein GANs [3] (WGANs) were
introduced. Instead of minimizing the JS divergence, this type of GAN minimizes the Earth
Mover (EM) distance between two probability distributions. WGAN and its improved variant [19]
improve upon the original GAN in multiple ways [3, 19] and are robust to mode collapse [3, 19].
This section first offers some theory on Lipschitz continuity and then formally introduces the EM
distance. Using this theoretical basis, the section ends by explaining how WGANs can be trained.

3.4.1 Lipschitz continuity

One could rate some function f on its degree of continuity i.e. how sudden its output changes
based on small changes in its input. This degree of continuity relates to the Lipschitz continuity
[13]. A function f is said to be Lipschitz continuous on domain I with Lipschitz constant Lf if
Lf ≥ 0 exists s.t. for all x1, x2 ∈ I

‖f(x1)− f(x2)‖ ≤ Lf‖x1 − x2‖. (3.8)

Lf thus denotes how much f(x) can change under a small change of x. When a function is
Lipschitz continuous with Lipschitz constant Lf it is said to be Lf -Lipschitz.

When a function satisfies equation 3.8 it is said to be Lipschitz or globally Lipschitz. A
weaker variant of Lipschitz continuity is local Lipschitz continuity [56]. To define local Lipschitz
continuity, first the neighborhood U of some point x0 on I needs to be defined. If I lies in some
space with dimensionality n, this neighborhood U is the n dimensional ball with center x0. f
is locally Lipschitz on I if for all x0 ∈ I, there exists a neighborhood U of x0 s.t. f is globally
Lipschitz on U .

3.4.2 Earth mover distance

The EM distance has also been called the Wasserstein-1 distance or Kantorovich-Rubinstein dis-
tance [61]. It denotes the minimal cost of transforming one probability distribution p1 into another
p2 and it can be explained intuitively when these probability distributions are regarded as heaps
of earth with specific shapes. E.g. p1(x) then denotes the amount of earth in location x according
to p1. In order to transform the shape of one heap into the shape of the other, a transference plan
γ is needed. γ(x, y) then denotes the amount of earth that has to be moved from location x to
y in order to transform the shape of p1 to that of p2. The cost of transporting one unit of earth
from x to y equals the distance between x and y. The cost of transforming p1 into p2 thus depends
on the optimality of γ. The EM distance is defined as the transport cost that corresponds to the
optimal γ.

Formally, for probability distributions p1 and p2, the EM distance is [3, 61]

EM(p1, p2) = inf
γ∈

∏
(p1,p2)

E(x,y)∼γ [‖x− y‖] . (3.9)

Here inf stands for the infimum or greatest lower bound.
∏

(p1, p2) denotes the set of all valid
transference plans, which is the set of joint distributions with marginals p1 and p2.

While equation 3.9 offers an intuitive physical description of the EM distance, it cannot easily
be minimized in a useful way for GANs. Through the Kantorovich-Rubinstein duality [3, 61]
a definition of the EM distance that is useful for the problem at hand is obtained [3]. The
Kantorovich-Rubinstein duality which is as follows:

EM(p1, p2) = sup
‖f‖L≤1

Ex∼p1 [f(x)]− Ex∼p2 [f(x)]. (3.10)

sup here stands for the supremum or least upper bound. It is taken over all 1-Lipschitz functions
f .

Data Set Extension with Generative Adversarial Nets 17

CHAPTER 3. GENERATIVE ADVERSARIAL NETS

3.4.3 Optimization

EM distance versus JS divergence

Let G(θ, z) be a generator in the GAN setting implemented as an NN with parameters θ that gets
as input the uniformly sampled noise variable z. It is shown in [3] that since G(θ, z) is locally
Lipschitz, EM(pdata, pG) is continuous everywhere and differentiable almost everywhere. This lets
the EM distance provide useful gradients during learning. It is also shown in [3] that this does
not hold for the JS divergence by providing a counterexample for a simple learning problem. In a
GAN setting where the generator is implemented as an NN, it may thus be favorable to use the
EM distance instead of the JS divergence.

Formal definition of the original WGAN

Since pG is defined as the distribution of G(z) with z ∼ pz, Ez∼pz [D(G(z))] = Ex∼pG [D(x)]. Thus,
by equation 3.10, the EM distance between pdata and pG is:

EM(pdata, pG) = sup
‖f‖L≤1

Ex∼pdata [f(x)]− Ez∼pz [f(G(z))]. (3.11)

In [3] the WGAN version of the original GAN min-max game (equation 3.2) is defined as:

min
G

max
D∈D

Ex∼pdata [D(x)]− Ez∼pz [D(G(z))]. (3.12)

Here, D is referred to as the critic instead of the discriminator since it is not trained to classify
[3, 19]. D is the set of all functions that are 1-Lipschitz. Similar to how the original min-max
game minimizes the JS divergence when the discriminator is optimal (see section 3.1.2), for an
optimal critic, the WGAN min-max game minimizes the EM distance [19]. Note that this becomes
apparent by regarding equation 3.12. It shows that for an optimal critic, the generator minimizes
equation 3.11.

In order to minimize the EM distance, in the WGAN min-max game, the critic thus has to
be constrained to be 1-Lipschitz. In the original WGAN paper [3] the critic was implemented as
an NN and constrained to be K-Lipschitz by clipping its weights to the interval [−c, c], where the
value of K depends on c. They note that constraining D to be K-Lipschitz instead of 1-Lipschitz
remains a valid way of optimizing the EM distance, since this only changes the EM distance by a
factor K.

Gradient penalty

Clipping the critic weights has multiple downsides [3, 19]. It would therefore be better to restrict
the critic to be Lipschitz continuous without clipping its weights. WGAN with gradient penalty
[19] (WGAN-GP) achieves this by adding a gradient penalty to the value function of the critic.
The WGAN critic value function is:

VW = Ex∼pdata
[D(x)]− Ez∼pz [D(G(z))]− λEx̂∼px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
. (3.13)

The generator is trained to maximize Ez∼pz [D(G(z))]. Here, the coefficient of the gradient penalty
λ has a standard value of 10. px̂ contains samples taken uniformly from lines between points from
pdata and points from pG, which is the distribution of fake data generated by the generator. The
critic is thus not enforced to be Lipschitz continuous everywhere, but only for points from px̂.
However, the gradient of an optimal critic has a gradient with norm 1 on all straight lines between
coupled points from pdata and pG [19]. This motivates only enforcing the constraint on samples
from px̂ [19]. The WGAN-GP training algorithm is presented in algorithm 2. Unlike the weight
clipping constraint in the original WGAN, the gradient penalty is only a soft constraint, since
the critic is not fully restricted to be Lipschitz continuous anywhere. Also, for a function to be
1-Lipschitz, it is sufficient for the norm of its gradient to never be larger than 1. However, the
gradient penalty also penalizes critics with gradient norms smaller than 1. Still, it was found that

18 Data Set Extension with Generative Adversarial Nets

CHAPTER 3. GENERATIVE ADVERSARIAL NETS

Algorithm 2 The WGAN-GP training algorithm [19]. For this algorithm, the default hyperpara-
meters for Adam (see section 2.1.3) are the learning rate η = 0.0001 and first- and second-order
moment estimates β1 = 0 and β2 = 0.9. Like in the original GAN algorithm (algorithm 1), k
is the number of times the critic is updated for each generator update, m is the mini-batch size,
and w and θ are the parameters of the critic D and generator G respectively. For the WGAN-GP
training algorithm, k has a default value of 5.

procedure TrainWGAN-GP
for number of training iterations do

initialize w and θ
for k steps do

for i = 1, ...,m do
Sample a noise vector z ∼ pz
Sample real data point x ∼ pdata
Sample a random number ε ∼ U [0, 1]
x̃← G(z)
x̂← εx+ (1− ε)x̃
L
(i)
D ← −

(
D(x)−D(x̃)− λ(‖∇x̂D(x̂)‖2 − 1)2

)
w ← Adam

(
∇w

1

m

∑m
i=1 L

(i)
D

)
Sample a mini-batch of m samples {z(1), ..., z(m)} ∼ pz
θ ← Adam

(
∇θ

1

m

∑m
i=1−D

(
G
(
z(i)
)))

WGAN-GP achieves a better performance than the regular WGAN for different generator and
critic architectures [19].

Since the WGAN-GP algorithm is used to train all WGANs in this work, from here on, the
abbreviation ’WGAN’ is used instead of ’WGAN-GP’ for brevity.

3.5 Auxiliary classifier generative adversarial nets

With Auxillary Classifier GANs (AC-GANs) [48], in addition to the noise vector z, the generator
receives a class label c as input. The discriminator does not receive c as input. Instead, an
auxiliary classifier is implemented in the discriminator, tasking the discriminator with predicting
this c, in addition to its task of predicting whether its input comes from the real data set. Figure
3.2 shows a graphical representation of an AC-GAN.

Figure 3.2: Graphical representation of an AC-GAN [48].

The discriminator thus has two outputs. The first one is P (S = real | x), which is the
probability that the source, S, from which the discriminator input, x, is sampled is the real data

Data Set Extension with Generative Adversarial Nets 19

CHAPTER 3. GENERATIVE ADVERSARIAL NETS

set and not the distribution generated by the generator. Note that:

P (S = fake | x) = 1− P (S = real | x).

The second output of the discriminator contains P (C | x) for all classes C, which is a vector that
contains the probability distribution over the class labels.

With this notation, the log-likelihood for predicting S, described in equation 3.1, becomes:

VS = Ex,c∼pdata
[logP (S = real | x)] + Ez∼pz,c∼pc [logP (S = fake | G(z, c))]. (3.14)

The log-likelihood for predicting the correct class is formulated as:

VC = Ex,c∼pdata
[logP (C = c | x)] + Ez∼pz,c∼pc , [logP (C = c | G(z, c))]. (3.15)

Both the generator and the discriminator are trained to maximize VC . AC-GANs are thus trained
by letting the discriminator maximize VC + VS and letting the generator maximize VC − VS . AC-
GANs are easily extended to work with multiple class labels by adding additional VC terms to
these value functions.

3.6 Coupled generative adversarial nets

Coupled GANs (CoGANs) [37] are able to learn to sample from a joint distribution, while being
trained only using multiple marginal distributions, where each marginal distribution describes a
different domain.

CoGANs are implemented as multiple GANs, each of which learns to generate samples from a
different marginal distribution. The GANs are interdependent by sharing the weights in the first
layer(s) of their generators and in the last layer(s) of their discriminators. When CoGANs are
implemented as deep feed-forward NNs, high level image semantics are expected to be encoded
in these shared weights and low level details are expected to be encoded in the weights that are
not shared. This is the case because of the hierarchical way features are represented in the layers
of this type of model. When a single noise vector is presented to all the GANs that make up a
CoGAN, the high level semantics of the generated images will be the same, while the low level
details will be different. Since each of these GANs produces images from a different domain, the
tuple of images generated by presenting a single noise vector to CoGANs is the approximation of
a sample of a joint distribution of these different domains.

Consider N marginal distributions pdatai where i ∈ [1..N]. A CoGAN consisting of N GANs,
GANi, is trained to generate samples from the joint distribution that contains N -tuples of samples
of pdatai. For each i ∈ [1..N], GANi, with discriminator Di and generator Gi, is trained to produce
samples from pdatai. The value function for CoGANs is:

VCo =

N∑
i=1

VCoi, (3.16)

where:
VCoi = Ex∼pdatai

[logDi(x)] + Ez∼pz [log(1−Di(Gi(z)))].

CoGANs can be trained with the WGAN-GP objective by replacing VCoi in equation 3.16
with:

VWCoi = Ex∼pdatai
[Di(x)]− Ez∼pz [Di(Gi(z))]− λEx̂∼px̂i

[
(‖∇x̂Di(x̂)‖2 − 1)2

]
.

20 Data Set Extension with Generative Adversarial Nets

CHAPTER 3. GENERATIVE ADVERSARIAL NETS

Figure 3.3: Graphical representation of a CoGAN [37] consisting of two GANs.

3.7 Performance measures

It is difficult to assess the quality of data generated by GANs [55, 15, 4, 25]. This also causes it to
be challenging to accurately compare the quality of data produced by different GAN architectures,
algorithms and hyper-parameter settings.

One way to measure the performance of generative models is an evaluation by humans. How-
ever, next to being time-consuming and expensive, this method also varies under evaluation con-
ditions [55]. Specifically, the evaluation setup and motivation of the annotators affect the scoring.
Furthermore, when annotators are given feedback, they learn from their mistakes and make fewer
errors.

The (part of) the output of the discriminator that indicates whether the generated data is
regarded as real could be used to monitor the convergence of GANs. However, for any specific
discriminator, this output heavily depends on the generator that it is trained with. Therefore,
the discriminator output cannot be used in a trivial way to quantitatively evaluate the quality of
generated data.

A way to evaluate generated images based on the output of an NN has been proposed in the
form of the Inception score [55]. This method uses a fixed NN (the Inception-v3 model [58],
which was trained on ImageNet [9]) to obtain a conditional label distribution p(y|x). This is the
probability distribution of the labels y that the Inception model outputs when it is presented with
the generated data x ∼ pG. The Inception score is defined as

Score(G) = exp (Ex∼pGKL(p(y|x)‖p(y)) .

Intuitively, this method thus measures the quality of generated data by evaluating the similarity
between p(y|x) and p(y), which is the actual distribution of these labels. The authors reported
that the metric correlates very well with human judgment.

Originally, the Inception score was used to compare models trained on CIFAR-10 [30], which
has a label distribution similar to that of ImageNet. Since then, the Inception score has been used
to evaluate models trained on other data sets than Imagenet and CIFAR-10 as well [4], including
CelebA [66]. However, argued from the theory underlying the score, it has been recommended

Data Set Extension with Generative Adversarial Nets 21

CHAPTER 3. GENERATIVE ADVERSARIAL NETS

to not use the Inception score to evaluate models trained to generate images from different data
sets than ImageNet [4]. For any other data set a different Inception-v3 model, trained on that
data set, should be used to obtain the Inception score. Furthermore, it was noted that the score
overlooks overfitting and is not robust to different initial weights of the Inception-v3 model, unlike
its classification accuracy [4].

The Fréchet Inception Distance [22] (FID) is proposed as an improvement upon the Inception
score. To compute the FID between a real and fake data distribution, first the feature embeddings
at the last pooling layer of the Inception-v3 model are computed for all images in these distribu-
tions. By assuming that the resulting distributions of embeddings each follow a multidimensional
Gaussian, one can compute the distance between them by computing the Fréchet distance between
these Gaussians. The Fréchet distance is computed as:

FID(pdata, pG) = ‖mdata −mG‖22 + Tr(Cdata − CG − 2(CdataCG)1/2),

where Tr denotes the trace of a matrix and (mdata, Cdata) and (mG, CG) denote the means and
covariances of the embeddings of pdata and pG. It was found that the FID improves upon the
Inception score by capturing the similarity between image data distributions for other data sets
than ImageNet and CIFAR-10.

The Geometry score (GS) [25] has been proposed as another metric to evaluate generative
models. The method compares topological properties of the manifolds underlying the real and
generated data. A downside of the GS is that, because it only regards topological properties, it is
likely not suitable to be used by itself to assess the quality of generated image data. Future work
will have to point out whether the GS correlates well with human judgment of image quality.

It was also shown that the discriminator value function without gradient penalty (see equation
3.13), which is an approximation of the EM distance, correlates well to sample quality [3, 19]. It
can therefore be used to monitor the learning process.

22 Data Set Extension with Generative Adversarial Nets

Chapter 4

Extra Domain Data Generation

So far, GAN training algorithms and architectures have been covered that were designed to gen-
erate new samples from one or more domains that are defined by real data distributions. Some
of these architectures are able to exploit additional information in the form of class labels. This
section is devoted to tackling the problem of Extra Domain Data Generation (EDDG) as defined
in section 1.2 using generative models.

4.1 Unsuitability of CoGAN

As has already been explained in section 3.6, the weights of the first layers of CoGAN generators
are shared and weights of higher layers are not. These first layers encode the high level features
of the generated data. When certain classes occur in both domains, the representation of these
classes are expected to be encoded in the earlier layers.

Using the definitions of domain A, B and class c as defined in section 1.2, consider some
CoGAN that is trained to generate data from a joint distribution that consists of the domains A
and B. We denote its GAN that is trained to generate data from A as GANA and its other GAN
as GANB. It would be interesting to make it possible for this CoGAN to generate samples from
Ac.

One could test the ability of a CoGAN that has been trained in the regular fashion, as explained
in section 3.6, for its ability to perform this task. This approach has the following downsides:

1. As described in section 3.6, discriminators in a CoGAN are trained to only classify samples
from their input distribution of real data as real and to classify all input produced by the
generator as fake. Furthermore, the discriminator of GANA never gets a real sample from Ac
as input during training. Therefore, for the discriminator of GANA, fake samples generated
by the generator that are similar to samples from Ac should be easier to reject than fake
samples generated by the generator that are similar to other samples from A. This makes
it harder for the generator to fool the discriminator by producing samples from Ac, which
in turn makes it more likely for the generator to find some optimum where it is unable to
generate samples from Ac.

2. When training is done, even if GANA is able to generate samples from Ac, there is no simple
way to obtain them. In order to generate the desired samples from Ac one has to use this
generator to generate samples randomly, until a sample from Ac is found.

4.2 Suitability of AC-GAN

Instead of using different generators for different domains, one could use an AC-GAN and present
a label that specifies from which domain to sample as input to its single generator. In this case,

Data Set Extension with Generative Adversarial Nets 23

CHAPTER 4. EXTRA DOMAIN DATA GENERATION

Figure 4.1: Graphical representation of an AC-GAN trained with both a domain label and a class
label.

its discriminator would learn to recognize whether data it receives as input is real or fake and from
which domain this input data is sampled. However, using this approach would not relieve either
of the downsides stated in section 4.1; The generator would still learn that producing data from
Ac is unfruitful and sampling from Ac would remain tedious.

However, both issues can be eliminated when both a class label and a domain label are presented
as conditional input to the generator and used as variables that the discriminator has to predict
(see figure 4.1). Evidently, this resolves the second issue, since after training, the generator can
be primed to generate data from a specific class in a specific domain. This makes sampling from
Ac more straightforward.

When training such an AC-GAN, the first issue is also taken care of when during training,
the generator is presented with class labels from CA as input when it is primed to generate data
from A and with labels from CB when generating data from B. This way, the generator is never
tasked to generate samples from Ac during training. It thus never gets to see that fooling the
discriminator with data from Ac is difficult.

Although in this way the AC-GAN is never trained to specifically generate data from Ac, it
is trained to generate domain specific data depending on its input domain label and class specific
data depending on its input class label. As long as the complexity of the function that it learns to
do so is sufficiently restricted, there should be a large overlap in the features that the AC-GAN
uses to generate data from different classes from the same domain. Similarly, there should be a
large overlap in the features that the AC-GAN uses to generate data from the same class, but
from different domains. Therefore, even though the generator never generates samples from Ac
during training, it would still likely have the ability to generate samples of Ac after training.

One can condition a generator of such an AC-GAN twice with the same noise and class label,
but with two different domain labels. As long as the complexity of the learned function is again
sufficiently restricted, it can be expected that the generated data would be a sample from a joint
distribution of the two different domains.

4.3 Coupled auxiliary classifier generative adversarial nets

Another GAN architecture that might be able to generate samples from Ac is the combination
of the CoGAN and AC-GAN architectures. This combination (CoAC-GAN) can be used for the
generation of labeled instances that look similar, but lie in different domains. Figure 4.2 shows
its architecture. CoAC-GANs consist of a CoGAN where the generators are conditioned with a
class label and the discriminators predict this class label. This introduces some new weights in
the generator that connect the new input to its first hidden layer and some new weights in the
discriminator that connect its last layer to its new output. The GANs that make up the CoGAN
share these newly introduced weights. This is consistent with the regular CoGAN architecture,
where the weights of the first layers in the generators and in the latter layers of the discriminators
are shared.

24 Data Set Extension with Generative Adversarial Nets

CHAPTER 4. EXTRA DOMAIN DATA GENERATION

Figure 4.2: The CoACGAN architecture. Dashed connections indicate that data flows through
only one of the arrows. For solid connections, data flows through all arrows.

As with a regular AC-GAN, because the generators of a CoAC-GAN have a conditional input
variable that determines the class of the generated samples, it is possible to constrain the generator
from generating samples from Ac during training in the same way as described in section 4.2, which
avoids the first downside stated in section 4.1. Similarly, the second downside is also avoided,
because when training is done, the class variable can be used to specify that a sample from Ac
has to be generated using the generator of GANA.

4.3.1 Formal definition

By combining the value functions of CoGANs and AC-GANs, we propose Coupled Auxiliary
Classifier GANs (CoAC-GANs). For the ith GAN in a CoAC-GAN with a discriminator that
outputs the tuple Di(x), Pi(C | x) the log-likelihoods from (3.14) and (3.15) respectively become:

VSi = Ex,c∼pdatai
[logDi(x)] + Ez∼pz,c∼pci [log(1−Di(Gi(z, c)))]

and

VCi = Ex,c∼pdatai
[logPi(C = c | x)] + Ez∼pz,c∼pci [logPi(C = c | Gi(z, c))].

A CoAC-GAN consisting of N GANs is trained by letting the discriminators maximize:

N∑
i=1

VCi + VSi (4.1)

and letting the generators maximize:
N∑
i=1

VCi − VSi. (4.2)

CoAC-GANs can be trained with the WGAN-GP objective by replacing the VSi terms in equations
4.1 and 4.2 with:

VWSi = Ex,c∼pdatai
[Di(x)]− Ez∼pz,c∼pci [Di(Gi(z, c))]− λEx̂∼px̂i

[
(‖∇x̂Di(x̂)‖2 − 1)2

]
.

Data Set Extension with Generative Adversarial Nets 25

CHAPTER 4. EXTRA DOMAIN DATA GENERATION

4.3.2 Comparison with AC-GAN

CoAC-GANs and AC-GANs as described in section 4.2 have similar architectures. Their main
difference lies in the way they handle domain specific information.

As with regular CoGANs, the generators of a single CoAC-GAN produce data from different
domains and these generators only differ from each other in their last non-shared layer(s). When
a CoAC-GAN is used to generate data from these domains, the domain specific information is
thus forced to be encoded in the last generator layer(s). Because of the hierachical way features
in feed-forward NNs are encoded, the last layer(s) of the generator are likely to encode low level
details.

When the domains from which one wishes to generate data only differ in low level details,
it might thus be beneficial to use CoAC-GANs. This is because in this case, there is a match
between the parts of the generators where the domain specific information is forced to be encoded
and the parts of the generators where domain specific information is likely to be encoded given
the nature of feed-forward NNs. On the other hand, it is also possible that the domains from
which one wishes to generate data differ not solely in their low level details. In this case, using
the CoAC-GAN architecture might be harmful for the quality of the generated data.

On the contrary, in AC-GANs, the domain specific information is presented to the generator
as a part of its input. This means that, differently from CoAC-GANs, the encoding of the domain
specific information is likely to occur in the first layers and might occur in all layers of the AC-GAN.
Since AC-GAN allows for the domain specific information to occur in any layer, its architecture
should not hinder the generation of data from multiple domains that differ in high level details.

There is no difference between the way an AC-GAN processes domain labels and the way it pro-
cesses class labels. Also, class labels are decoded by AC-GANs and CoAC-GANs in the same way.
CoAC-GANs can thus encode class-specific information in the shared weights of their generators.
It should be noted that the generators are not restricted to encode class label information in the
non-shared weights. Especially when class labels describe low-level details, the decoding of these
labels could be done in the last layer(s) of the generators in both AC-GANs and CoAC-GANs.

26 Data Set Extension with Generative Adversarial Nets

Chapter 5

Experiments

5.1 Data sets

This section describes the data sets used for the experiments performed for this work. All data
sets are normalized so that their pixel values lay in the domain [-1,1].

5.1.1 Digits

MNIST The first data set used for the experiments in this work is the MNIST data set [33].
This data set consists of black and white images of handwritten instances of the digits 0-9. The
data set comprises of a training set of 60,000 images and a test set of 10,000 images. The digits in
the training and test sets were written by disjoint sets of writers. The size of the MNIST images
is 28× 28 pixels. Figure 5.1a shows a sample of the MNIST data set.

Following [37], this work also uses a version of the MNIST data set where all images have been
modified so that they depict the edges of the digits. For each image, the modification consists
of first dilating the image and then substracting the original image from this dilated image. The
resulting data set is denoted as MNIST-edge in this work. Figure 5.1b shows a sample of it.

(a) MNIST

’
(b) MNIST-edge

Figure 5.1: Corresponding images from the MNIST and MNIST-edge data sets.

Street View House Numbers The Street View House Numbers (SVHN) data set [45] consists
of images of labeled house-number digits. Many of these images contain distracting digits to the
sides of the digit of interest. The resolution of the images is 32× 32 pixels. The data set contains
73,257 digits for training and 26,032 digits for testing. Figure 5.2 shows a sample of this data set.

Data Set Extension with Generative Adversarial Nets 27

CHAPTER 5. EXPERIMENTS

Figure 5.2: Images from the SVHN data set.

5.1.2 Faces

Another data set that is used to train the models in this work is CelebA [66]. Figure 5.3 shows
a sample. CelebA contains more than 200,000 celebrity face images of more than 10,000 different
identities. The images are annotated with 40 binary attributes such as gender and whether the
depicted face is smiling. CelebA has been extensively used in research on GANs (e.g. [37, 6, 50,
26]).

In this work the aligned version of the data set is used. Furthermore, the images were cropped
to a size of 160 × 160 pixels and consecutively re-sized to 64 × 64 pixels.

Figure 5.3: Sample of the CelebA data set

5.2 Extra-domain data generation

Here, the data generation experiments are described that are done to determine whether it is
possible for a GAN to generate data from domain-class combinations that are not present in the
data on which it is trained. The image generation is done with CoGANs, which do not use class
labels and are therefore generate unlabeled data, and with CoAC-GANs and AC-GANs, which do
use class labels. The GANs are trained on a combination of the MNIST and MNIST-edge data
sets, combinations of the MNIST and SVHN data sets, and on the CelebA data set. For the digit
data set, the MNIST, MNIST-edge and SVHN data sets each represent a different domain. For
the CelebA data set, the image domain is determined by gender and the classes are ‘smiling’ and
‘not smiling’.

Data sets with missing classes are emulated. For the face image generation task, no smiling
males are presented to the discriminator during training. This data set will be denoted with
Celeba1.

Similarly, for the data generation task with the MNIST and MNIST-edge domains, some digits
from the MNIST-edge are not presented during training. Experiments are performed where the

28 Data Set Extension with Generative Adversarial Nets

CHAPTER 5. EXPERIMENTS

digit ‘5’ is missing and where the digits ‘5’-‘9’ are missing. These data sets are denoted MNIST1

and MNIST2 respectively.
For the data generation tasks with the MNIST and SVHN domain, the digits ‘0’-‘4’ are present

in both the MNIST and SVHN domain. The only other data available during training is all data
of one single digit from MNIST. The resulting data sets are denoted as SVHN1

n where n is the
digit that is only available in the MNIST domain. When these data sets are referred to in general
without specifying which digit is missing from the SVHN domain, the data sets are denoted as
SVHN1.

GANs are trained with the data sets described above to either minimize the regular GAN
objective described in section 3 or to minimize the EM distance with gradient penalty described
in section 3.4, which will be referred to as the WGAN objective.

5.3 Extra-domain classification

The experiments described here are performed to learn whether data of missing classes of domain
A can nevertheless be classified accurately when encountered during testing. In order to do so,
firstly, CoAC-GANs and AC-GANs trained as described in section 5.2 are used to generate data
from all possible domain-class combinations, including the ones missing from the training set.
This fake data is used to construct two types of training sets. One consists only of fake data
and one consists of both fake and real data. For both of these types of data sets, for both the
GAN and WGAN objective, five CoAC-GANs and five AC-GANs are trained with and tested on
their ability to generate the missing data from MNIST1 and MNIST2. This results in a total of
2 × 2 × 2 × 2 × 5 = 80 generative models. For each of these generative models, an individual
classifier is trained.

Class label distributions

The class label distribution of a data set consisting of only fake data used for classifier training
is taken from the matching real data set. It is assumed that the frequency in which the missing
domain-class instances occur is either known or can be estimated well. Missing domain-label
frequencies thus follow the corresponding real data sets as well.

For a data set that contains both real and fake data the distribution of class labels for the real
data is simply that of domain A. The distribution of class labels for the fake data only differs from
that of the data set containing only fake data in that the amount of data with labels that only
occur in B is doubled. This is done to mimic the expected class label distribution during testing,
assuming that the missing classes in domain A will occur proportionally to those of domain B.

Baselines

The accuracy of naively trained classifiers on class-domain combinations that were not presented
during training is also examined. These classifiers are trained on only data from domain B and
on the junction of A and B, where again labels of classes that are represented in both A and B
are sampled with equal probability during training. Five classifiers were trained for each of these
types of training sets for both MNIST1 and MNIST2. The performance of the CoAC-GANs and
AC-GANs are compared with these baselines.

5.4 Model details

5.4.1 GANs

Architectures

The architectures of the GANs trained with CelebA images in this work follow the architectural
constraints of DCGAN [51], which are repeated in section 3.3. Tables 5.1 and 5.2 show the

Data Set Extension with Generative Adversarial Nets 29

CHAPTER 5. EXPERIMENTS

Table 5.1: Generator for GANs trained with CelebA images.

Layer Preceding layer Type Output dimensions Description

0 - Input 100 + d
Concatenation of noise
and class label

1 0
Fully
connected

512× 4× 4 batchnorm, ReLU

2 1
Transposed
convolution

256× 8× 8
kernel size 5, stride 2, pad 2,
batchnorm, ReLU

3 2
Transposed
convolution

128× 16× 16
kernel size 5, stride 2, pad 2,
batchnorm, ReLU

4 3
Transposed
convolution

64× 32× 32
kernel size 5, stride 2, pad 2,
batchnorm, ReLU

5 4
Transposed
convolution

3× 64× 64
kernel size 5, stride 2, pad 2,
tanh

Table 5.2: Discriminator for GANs trained with CelebA images. For the LeakyReLUs, α = 5.

Layer Preceding layer Type Output dimensions Description

0 - Input 3× 64× 64 Real or fake data

1 0 Convolution 64× 32× 32
kernel size 5, stride 2, pad 2,
LeakyReLU

2 1 Convolution 128× 16× 16
kernel size 5, stride 2, pad 2,
batchnorm, LeakyReLU

3 2 Convolution 256× 8× 8
kernel size 5, stride 2, pad 2,
batchnorm, LeakyReLU

4 3 Convolution 512× 4× 4
kernel size 5, stride 2, pad 2,
batchnorm, LeakyReLU

5 4 Convolution 1× 1× 1 1 kernel of size 4, sigmoid
6 4 Convolution c× 1× 1 c kernels of size 4, softmax

architecture details. Unless otherwise specified, in all experiments, instance normalization [11]
(section 2.4.2) replaces batch normalization in the WGAN discriminators. Tables 5.3 and 5.4
show the architectures of GANs trained with digit images. These architectures were also used in
[37]. Although these architectures do not follow all DCGAN constraints, they have been shown
to perform well in digit image generation tasks [37]. Following the original WGAN paper [3], the
sigmoid activation in the last layer of all WGAN discriminators is omitted.

Class labels are represented as one-hot vectors. For Tables 5.2 and 5.4 layer 6 and 7 respectively
is only added for AC-GANs or CoAC-GANs. When predicting multiple class labels, multiple
instances of these layers are present in the architectures. For each of these labels, c denotes the
length of the corresponding one-hot vector. d in Tables 5.1 and 5.3 denotes the length of the
concatenation of all one-hot vectors that are presented to a generator. i denotes the number of
image channels of the in- or output images. When training AC-GANs to generate images from
the MNIST and SVHN domains, the gray-scale MNIST images are converted to color images by
simply repeating the intensity value thrice for each pixel.

Training

The GANs are trained with the Adam optimization algorithm [28] with η = 0.0002, β1 = 0.5, and
β2 = 0.999. The batch size is set to 64 samples. For a CoGAN or CoAC-GAN, a single update
consists of a forward pass and backward pass through each individual GAN that the model is
composed of, which results in an effective batch size of 128 samples for their shared layers. All
AC-GANs are trained for 100 epochs. CoGANs and CoAC-GANs are trained for 125,000 batches

30 Data Set Extension with Generative Adversarial Nets

CHAPTER 5. EXPERIMENTS

Table 5.3: Generator for GANs trained with digit images.

Layer Preceding layer Type Output dimensions Description

0 - Input (100 + d)× 1× 1
Concatenation of noise
and class label

1 0
Transposed
convolution

512× 4× 4 kernel size 4, batchnorm, PReLU

2 1
Transposed
convolution

256× 7× 7
kernel size 3, stride 2, pad 1,
batchnorm, PReLU

3 2
Transposed
convolution

128× 13× 13
kernel size 3, stride 2, pad 1,
batchnorm, ReLU

4 3
Transposed
convolution

64× 25× 25
kernel size 3, stride 2, pad 1,
batchnorm, ReLU

5 4
Transposed
convolution

i× 28× 28 kernel size 6, pad 1, tanh

Table 5.4: Discriminator for GANs trained with digit images.

Layer Preceding layer Type Output dimensions Description

0 - Input i× 28× 28 Real or fake data
1 0 Convolution 20× 24× 24 kernel size 5
2 1 Max pooling 20× 12× 12 kernel size 2
3 2 Convolution 50× 8× 8 kernel size 5
4 3 Max pooling 50× 4× 4 kernel size 2
5 4 Convolution 100× 1× 1 kernel size 4, PReLU
6 5 Fully connected 1 kernel size 1, sigmoid
7 5 Fully connected c kernel size 1, softmax

Data Set Extension with Generative Adversarial Nets 31

CHAPTER 5. EXPERIMENTS

Table 5.5: Classifier trained with generated images to classify domain-class combinations that are
missing during training.

Layer Preceding layer Type Output dimensions Description

0 - Input i× 28× 28 Real or fake data
1 0 Convolution 20× 24× 24 kernel size 5
2 1 Max pooling 20× 12× 12 kernel size 2, ReLU
3 2 Convolution 50× 8× 8 kernel size 5
4 3 Max pooling 50× 4× 4 kernel size 2, ReLU
5 4 Fully connected 500 ReLU
6 5 Fully connected c softmax

on digit data sets and for 150,000 batches on CelebA. For each five batches with a discriminator
update, one generator update is done.

5.4.2 Classifiers

The architecture of the models trained for extra-domain classification is a variant of the LeNet
[35] architecture. It is shown in table 5.5. The classifiers were trained with SGD with a learning
rate of 0.01 with 64 samples per batch. To keep the classifiers from overfitting, 10,000 samples
are removed from the training set and used as a validation set. During training, the error on the
validation set is monitored at each epoch. When the validation error is not improved upon for 10
epochs, training is terminated and the model at the epoch with the lowest validation error is used
for testing.

5.5 Fréchet inception distance

For the MNIST1, MNIST2 and SVHN1 data sets, experiments were performed to investigate the
relation between the extra domain data generation and classification performance and the Fréchet
Inception Distance (FID) between real and generated data. For each model trained on MNIST1,
MNIST2 or SVHN1 data sets, the FID was computed between a generated data set of 50,000 images
of digits of missing domain-class combinations and all digits in the test set with corresponding
class labels.

32 Data Set Extension with Generative Adversarial Nets

Chapter 6

Results

6.1 Extra-domain data generation

6.1.1 CoGAN

Digits

Figure 6.1 shows images produced by CoGANs and WCoGANs trained on MNIST1. The digit
‘1’ is depicted in a disproportionally large share of the images shown in figure 6.1a. Training a
CoGAN with the regular GAN objective can thus eventually result in a mode collapse. At the
optimal point during the training of this model, the CoGAN produces images that cover a larger
variety of digits. Interestingly, for some input noise vectors the CoGAN is also able to produce
the digit ‘5’, even though this was missing in the training data of the MNIST-edge domain.

Training the WCoGAN did not result in a mode collapse. After training is completed, the
model is able to produce the digit ‘5’ in the MNIST domain. However, the corresponding images
in the MINST-edge domain do not resemble ‘5’s. Instead, the model produces loosely coupled
images that resemble other digits.

Faces

Figure 6.2 shows images produced by CoGANs and WCoGANs trained on CelebA1. The GANs
trained to produce females in these models are able to produce smiling and non-smiling faces.
However, when the same noise vectors are presented to the corresponding GANs trained to generate
male face images, none of the resulting images depicts a smiling face.

6.1.2 AC-GAN and CoAC-GAN

Digits

Figures 6.3 and 6.4 show the images produced by AC-GANs, WAC-GANs, CoAC-GANs and
WCoAC-GANs trained on MNIST1 and MNIST2. All models are able to generate convincing
samples of class-domain combinations that were present in the training data, although generally
the output domains of models trained with the WGAN objective cover a larger variation of styles.

The models were also conditioned to generate images of the missing classes of the MNIST-edge
domain. All models trained on MNIST1 produce images of the missing class that are recognizable
as the digit ‘5’. Of the models trained on MNIST2, the images of missing classes produced by
CoAC-GANs and WCoAC-GANs also clearly express their input class label. However, missing
images produced by AC-GANs and WAC-GANs trained on MNIST2 are often unrecognizable.
For both MNIST1 and MNIST2, the missing class-domain samples produced by CoAC-GAN and
WCoAC-GANs are of higher quality than those produced by AC-GANs and WAC-GANs.

Data Set Extension with Generative Adversarial Nets 33

CHAPTER 6. RESULTS

(a) CoGAN results after
125,000 batches of training.

(b) CoGAN results after
25,000 batches of training.

(c) WCoGAN results after
125,000 batches of training.

Figure 6.1: Images generated by CoGANs and WCoGANs trained on MNIST1. For each figure,
the top images show digits produced by the GAN trained on MNIST data. The images below
them show the corresponding digits produced by the GAN trained on MNIST-edge data. These
digits were produced from the same input noise vectors. The noise vectors used to produce the
digits in figures 6.1a and 6.1b are also identical.

Figures 6.5 and 6.6 show images produced by models trained on the SVHN1 data sets. The
generative models are able to produce recognizable digits in the SVHN domain of classes that are
also available in the MNIST domain. However, the models rarely produce recognizable digits from
SVHN. In one case, an AC-GAN converged such that it produces digits from the MNIST domain
regardless of the domain label it is primed with.

Faces

Figure 6.7 shows the images generated by GANss trained with CelebA1. CoAC-GANs trained
with the regular GAN objective were unable to generate images of the missing domain-class
combination, which is males that are smiling. The quality of the generated images is inferior
to those generated by a CoGAN in the same setting (see figure 6.2). The CoAC-GAN is also
prone to mode collapse, which clearly shows in all smiling mouths generated by CoAC-GANs.
The images of smiling males generated early in the training process in figures 6.7a and 6.7b show
color artifacts in the mouth area that are not represented in the training data. Furthermore, the
difference between non-smiling males and females that is present in early stages of training has
almost completely disappeared at the end of the training process.

WCoAC-GANs are able to produce images of smiling males, especially in the early stages of
training, as can be seen in figure 6.7f. In figure 6.7h color artifacts can again be seen around the
mouths of the images of smiling males produced at the end of training. As with CoAC-GANs
trained with the regular GAN objective, these images also show more female characteristics than
those obtained earlier in the training process.

These images produced by AC-GANs and WAC-GANs show none of the issues of CoAC-GANs

34 Data Set Extension with Generative Adversarial Nets

CHAPTER 6. RESULTS

(a) Females, CoGAN (b) Males, CoGAN

(c) Females, WCoGAN (d) Males, WCoGAN

Figure 6.2: Images generated by CoGANs and WCoGANs trained on CelebA1.

and WCoAC-GANs described above. The AC-GANs and WAC-GANs are able to produce images
of smiling males even though they have not been presented with this domain-class combination
during training.

Data Set Extension with Generative Adversarial Nets 35

CHAPTER 6. RESULTS

(a) MNIST1, MNIST, AC-GAN (b) MNIST1, MNIST-edge, AC-GAN

(c) MNIST1, MNIST, WAC-GAN (d) MNIST1, MNIST-edge, WAC-GAN

(e) MNIST2, MNIST, AC-GAN (f) MNIST2, MNIST-edge, AC-GAN

(g) MNIST2, MNIST, WAC-GAN (h) MNIST2, MNIST-edge, WAC-GAN

Figure 6.3: Images generated by AC-GANs and WAC-GANs trained on MNIST1 and MNIST2.

36 Data Set Extension with Generative Adversarial Nets

CHAPTER 6. RESULTS

(a) MNIST2, MNIST, CoAC-GAN (b) MNIST2, MNIST-edge, CoAC-GAN

(c) MNIST2, MNIST, WCoAC-GAN (d) MNIST2, MNIST-edge, WCoAC-GAN

(e) MNIST2, MNIST, CoAC-GAN (f) MNIST2, MNIST-edge, CoAC-GAN

(g) MNIST2, MNIST, WCoAC-GAN (h) MNIST2, MNIST-edge, WCoAC-GAN

Figure 6.4: Images generated by CoAC-GANs and WCoAC-GANs trained on MNIST1 and
MNIST2.

Data Set Extension with Generative Adversarial Nets 37

CHAPTER 6. RESULTS

(a) MNIST, AC-GAN (b) MNIST, WAC-GAN (c) MNIST, CoAC-GAN (d) MNIST, WCoAC-
GAN

(e) SVHN, AC-GAN (f) SVHN, WAC-GAN (g) SVHN, CoAC-GAN (h) SVHN, WCoAC-
GAN

Figure 6.5: Images generated by AC-GANs, WAC-GANs CoAC-GANs and WCoAC-GANs trained
on the SVHN1 are shown here. In order to generate these results, at test time, the GANs were
only primed with class labels that were represented in both the MNIST and SVHN domain. No
images of missing domain-class combinations are shown here. From top to bottom, the images in
the rows in each subfigure are produced by generators trained on data where the digit ‘5’, ‘6’, ‘7’,
‘8’, or ‘9’ was missing. For the generation of images that share a row, the respective generator
was primed with the same noise vector. The generation process of images in vertically adjacent
subfigures differs only in the target domain. From top to bottom, the images in the rows of
each subfigure show digits generated by the same generator as the top rows of the images in the
subfigures of figure 6.6 from left to right. For the generation of these corresponding digits, the
respective generator was primed with the same noise input.

38 Data Set Extension with Generative Adversarial Nets

CHAPTER 6. RESULTS

(a) MNIST, AC-GAN (b) MNIST, WAC-GAN (c) MNIST, CoAC-GAN (d) MNIST, WCoAC-
GAN

(e) SVHN, AC-GAN (f) SVHN, WAC-GAN (g) SVHN, CoAC-GAN (h) SVHN, WCoAC-
GAN

Figure 6.6: Images generated by AC-GANs, WAC-GANs CoAC-GANs and WCoAC-GANs trained
on the SVHN1 data sets are shown here. In order to generate them, the GANs were primed with
the class labels that were not represented in the SVHN domain. Images in the same column of a
subfigure were generated by the same generator. The generation process of images in vertically
adjacent subfigures differs only in the target domain.

Data Set Extension with Generative Adversarial Nets 39

CHAPTER 6. RESULTS

(a) Females, CoAC-GAN, 25,000 batches. (b) Males, CoAC-GAN, 25,000 batches.

(c) Females, CoAC-GAN, 150,000 batches. (d) Males, CoAC-GAN, 150,000 batches.

(e) Females, WCoAC-GAN, 25,000 batches. (f) Males, WCoAC-GAN, 25,000 batches.

(g) Females, WCoAC-GAN, 150,000 batches. (h) Males, WCoAC-GAN, 150,000 batches.

(i) Females, AC-GAN, 150,000 batches (j) Males, AC-GAN, 150,000 batches

(k) Females, WAC-GAN, 150,000 batches (l) Males, WAC-GAN, 150,000 batches

Figure 6.7: Images generated by CoAC-GANs, WCoAC-GANs, AC-GANs, and WAC-GANs
trained on CelebA1.

40 Data Set Extension with Generative Adversarial Nets

CHAPTER 6. RESULTS

6.2 Extra-domain classification

Tables 6.1 and 6.2 show the accuracy of classifiers tested on real data of missing domain-class
combinations. These classifiers were trained on only real data, on only fake data, and on hybrid
data sets. In both tables, the baseline classifiers trained on only real data are clearly more accurate
than randomly assigning labels based on prior class probabilities. This indicates that features these
classifiers learned from the MNIST data set generalize to the MNIST-edge data set.

Training on data produced by CoAC-GANs rather than on data produced by AC-GANs results
in a better classifier performance in all experiments. In general, training only on fake data also
results in a better accuracy than training on hybrid data with both real and fake samples.

For the classifiers tasked to classify missing images from MNIST1, the performance of the
baseline is surpassed by all classifiers trained on fake or hybrid data sets. For classifiers tasked
to classify missing digits from MNIST2, this only holds when the fake training data originates
from CoAC-GANs. In this case, classifiers trained on fake data generated by AC-GANs have poor
accuracy.

The fact that a better accuracy is obtained by classifiers trained on data generated by CoAC-
GAN with respect to those trained on data generated by AC-GANs coincides with the quality of
the visual results shown in section 6.1.2.

Table 6.1: Classifier accuracy on the missing data from MNIST1 (‘5’s from MNIST-edge). The
real training data on which the classifiers are trained originates from MNIST1. The fake training
data is produced by GANs trained with MNIST1. The best performing classifier is printed in
bold.

Train data source Training objective Architecture Accuracy (%): mean ± std

real MNIST - - 40.45± 7.42
real MNIST +
real MNISTEDGE

- - 53.34± 6.82

fake MNISTEDGE
WGAN

AC-GAN 94.69± 4.22
COAC-GAN 97.00± 1.05

GAN
AC-GAN 97.71± 0.40
COAC-GAN 98.03± 0.70

real MNISTEDGE +
fake MNISTEDGE

WGAN
AC-GAN 89.75± 6.44
COAC-GAN 96.82± 0.82

GAN
AC-GAN 94.13± 1.58
COAC-GAN 97.13± 0.92

Data Set Extension with Generative Adversarial Nets 41

CHAPTER 6. RESULTS

Table 6.2: Classifier accuracy on the missing data from MNIST2 (digits 5-9 from MNIST-edge).
The real training data on which the classifiers are trained originates from MNIST2. The fake
training data is produced by GANs trained with MNIST2. The best performing classifier is
printed in bold.

Train data source Training objective Architecture Accuracy (%): mean ± std

real MNIST - - 67.74± 24.69
real MNIST +
real MNISTEDGE

- - 45.14± 14.11

fake MNISTEDGE
WGAN

AC-GAN 68.04± 14.50
COAC-GAN 95.82± 1.60

GAN
AC-GAN 56.26± 29.80
COAC-GAN 93.27± 3.80

real MNISTEDGE +
fake MNISTEDGE

WGAN
AC-GAN 57.14± 18.47
COAC-GAN 94.33± 1.77

GAN
AC-GAN 39.16± 27.16
COAC-GAN 92.45± 4.12

6.3 Fréchet inception distance

Table 6.3 shows the Fréchet inception distances (FIDs) between real data of the missing domain-
class combinations from emulated data sets and corresponding generated data. Table 6.4 shows
FIDs between real data of the missing domain-class combinations from emulated data sets and
the data of corresponding classes from the MNIST domain.

When comparing the results in the top two rows of tables 6.1 and 6.2 with the results in
table 6.4 and the results in the rest of tables 6.1 and 6.2 with the results in table 6.3, a negative
correlation can be observed between the FID and classifier accuracy for the MNIST1 and MNIST2

datasets. This relation can also be observed between the FID and the quality of data generated
from missing domain-class combinations.

For the SVHN1 data sets, this latter relation also holds, considering the black spots in images
produced by WAC-GANs and the fact that the AC-GAN trained on SVHN1

9 failed to generate
images from the SVHN domain entirely (see figure 6.6).

Table 6.3: FIDs between generated data of missing domain-class combinations and real data with
corresponding domain and class labels.

Data set Training objective Architecture FID: mean ± std

MNIST1
WGAN

AC-GAN 62.49± 18.51
CoAC-GAN 12.24± 1.70

GAN
AC-GAN 35.71± 4.77
CoAC-GAN 10.35± 1.42

MNIST2
WGAN

AC-GAN 78.64± 2.09
CoAC-GAN 14.23± 1.42

GAN
AC-GAN 65.77± 5.48
CoAC-GAN 10.31± 1.55

SVHN1
WGAN

AC-GAN 134.45± 8.24
CoAC-GAN 57.16± 20.37

GAN
AC-GAN 160.17± 28.16
CoAC-GAN 67.24± 13.07

42 Data Set Extension with Generative Adversarial Nets

CHAPTER 6. RESULTS

Table 6.4: FIDs between real data of missing domain-class combinations in the specified data sets
and real MNIST data with corresponding class labels. The results shown here are analogous to
those in the top two rows of tables 6.1 and 6.1. For the comparison between the missing data
from MNIST1 and the corresponding data from MNIST, only one FID can be computed. The
same holds for MNIST2. Therefore no standard deviation is given for the MNIST1 and MNIST2

datasets. A mean and standard deviation are given for the distances computed between MNIST
and the variants of SVHN1 in which different digits are missing.

Data set FID

MNIST1 108.57
MNIST2 81.67
SVHN1 214.65 ± 9.94

6.4 Discussion

6.4.1 Domain similarity

The models with the CoAC-GAN architecture and the AC-GAN architecture were both able to
generate meaningful images of missing domain-class combinations when trained on MNIST1 and
MNIST2. Only models with the AC-GAN architecture were able to generate meaningful images
of the missing domain-class combination of the CelebA1 data set. Furthermore, in images of the
missing domain-class combination produced with models trained on the SVHN1 data sets the class
labels were rarely properly encoded. For both the CelebA1 and the SVHN1 data sets, some models
failed to incorporate the correct domain characteristics into the generated images. These results
suggest a positive correlation between the performance of the generative models on extra domain
data generation and the resemblance between the domains on which they are trained.

6.4.2 Color artifacts

Images generated by CoAC-GANs of the domain-class combination that are missing in CelebA1

show undesirable artifacts in the area that characterize the regarding class. This might be at-
tributed to the CoGAN architecture. The domain specific information in the generators is forced
to reside in the non-shared weights of the CoGAN, but this is not the case for class specific in-
formation. One explanation could therefore be that the decoding of information specific to the
class label that is missing in domain A happens partly in the shared and partly in the non-shared
generator weights. This is especially likely when the class label is not solely characterized by
low level image details. However, the non-shared part of the generator that is tasked to generate
images from domain A is never trained to further encode output of the shared layers when these
are presented with the class label that is missing in domain A. It would in this case be unable to
transform this shared layer output into meaningful images.

Data Set Extension with Generative Adversarial Nets 43

Chapter 7

Conclusion

7.1 Extra domain data generation

In this thesis, it is researched whether it is possible to use Generative Adversarial Nets [17] (GANs)
to generate new data that seems to originate from some domain, but characterizes classes of which
no data is available for that domain. In order to do so, Coupled Auxiliary Classifier GANs (CoAC-
GANs), a novel combination of Coupled GANs [37] (CoGANs) and Auxiliary Classifier GANs
[48], are proposed as a method for data generation. The performance of CoGANs, AC-GANs and
CoAC-GANs on EDDG is compared.

Results show that it is possible to generate labeled images of extra-domain classes using AC-
GANs and CoAC-GANs trained with the regular GAN objective or with the Wasserstein GAN
objective. In order to do so, data characterizing these classes must be available in some other
similar domain.

Despite the theoretical downsides of using CoGANs for this task (see section 4.1), in some cases,
CoGANs are able to generate data from the missing classes. However, since CoGANs cannot be
presented with conditional class variables, they cannot generate labeled output.

The preference for AC-GANs or CoAC-GANs depends on the training data. CoAC-GANs
seem to have a superior performance when the domains only differ in low level detail and for such
domains seem to be able to cope better with multiple missing classes than AC-GANs. This is in
line with theoretical expectations due to the difference in shared weights of the GANs that make
up the architectures of CoAC-GANs or AC-GANs.

7.2 Qualitative evaluation

It has also been researched whether it is possible to use the generated data to train machine
learning models which classify data from some domain where for some class(es) all data is missing
in the training data.

The results show that data generated with AC-GANs and CoAC-GANs can be used to train
classifiers that accurately classify the missing classes when they are encountered after training.
The performance of these classifiers correlates with the quality of the generated images. The
classification accuracy of such classifiers can thus be used as an indicator for qualitative evaluation
of the EDDG performance of generative models. The results show that the Fréchet inception
distance can be used as indicator for the EDDG performance of generative models as well.

7.3 Future work

This work can be extended upon in multiple ways. This section provides a non-extensive list of
recommendations for future work.

44 Data Set Extension with Generative Adversarial Nets

CHAPTER 7. CONCLUSION

7.3.1 Data sets

First of all, in this thesis all experiments were done with emulated data sets. This made it
possible to asses qualitative performance measures for EDDG. Experiments could also be done
with different data sets. Future work could be aimed at using EDDG to e.g. generalize data sets
of some medical conditions to ethnic groups or age groups for which no data is available. Similar
experiments to the ones performed here could also be done with other data than images.

7.3.2 GAN architectures

The usefulness for EDDG of different GAN architectures than those compared in this thesis could
be researched. Firstly, other neural network architectures could be used for the generators and
discriminators. Experiments could e.g. be performed with neural networks with residual blocks
[20], which have shown to work well in GANs [19, 42]. Experiments could also be performed
with spectral normalization [42], which is a recently developed input normalization technique that
produces state-of-the-art results.

AC-GAN performance for domains that only differ in low level details might be increased if the
domain specific information is presented at the last layer(s) of the generator. As with CoAC-GANs,
this would force the class-specific features to be encoded in these latter layers.

Experiments could be performed in which the CoGAN architecture is combined with other
GANs that can generate labeled data than AC-GANs, such as conditional GANs with a projection
discriminator [43].

Experiments done with CoGANs suggest that optimal performance of CoGANs for regular
data generation can be reached when only a single layer of the generator and a single layer of the
discriminator is shared [37]. However, the influence of the number of shared layers in a CoAC-GAN
trained for EDDG remains unknown and could be investigated.

Furthermore, it would be interesting to see what effect it would have to prime a CoGAN
generator with both a domain and class label and let its discriminator predict both of these labels,
similar to the way AC-GANs are trained for EDDG in this work. It would be useful to develop
architectures for EDDG that do not depend on data set characteristics.

7.3.3 Image-to-image translation

It might also be possible to extend this work in such a way that the CoAC-GAN architecture
can be used to perform image-to-image translation. Here, the target image could then be of a
domain-class combination that is not present in the training data. One way to do this could be
by implementing an operation that is the inverse of the non-shared layer(s) of the generator that
generates images from the domain in which data of all classes is available. When this operation
is applied to some real image of that same domain, the resulting output matches a latent code
of features in the last shared layer of the generator. One could use this output as input for the
non-shared layer(s) of the generator that generates images from the domain in which data of some
class is missing. Performing both of these steps consecutively should result in image-to-image
translation. This method could be used to generate images of a missing domain-class combination
by using as input a real image that is of the missing class, but of the domain for which all classes
are available.

The inverse operation described above has not been implemented in this thesis. It should be
noted that for the generator architectures used in this work, the non-shared last layer(s) and this
inverse operation cannot be bijective inverses of each other. This is because latent codes in the last
shared layer of the generator have a larger dimensionality than the generated images. To implement
the inverse operation in an exact way, an invertible convolution layer would have to be developed.
Promising results in inverting convolutional neural networks have already been obtained [14]. Fully
invertible 1 × 1 convolution layers have already been used successfully in generative models [27].
Future developments in this research area might be useful for the implementation of the inverse
operation. It might also be useful to alter the generator architecture used in this work so that

Data Set Extension with Generative Adversarial Nets 45

CHAPTER 7. CONCLUSION

the dimensionality of the codes in the last shared layer of the generator is the same as that of the
generated images. This would allow the non-shared generator layer(s) and the inverse operation
to be bijective inverses of each other. Lastly, the reverse operation could also be learned by a
separate machine learning model.

46 Data Set Extension with Generative Adversarial Nets

Bibliography

[1] Alpaydin, Ethem. Introduction to Machine Learning. MIT press, 2014. 6, 7, 13

[2] Arjovsky, Martin and Bottou, Léon. Towards Principled Methods for Training Generative
Adversarial Networks. arXiv preprint arXiv:1701.04862, 2017. 2, 15

[3] Arjovsky, Martin and Chintala, Soumith and Bottou, Léon. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017. 2, 12, 17, 18, 22, 30

[4] Barratt, Shane and Sharma, Rishi. A Note on the Inception Score. arXiv preprint
arXiv:1801.01973, 2018. 21, 22

[5] Chen, Xi and Duan, Yan and Houthooft, Rein and Schulman, John and Sutskever, Ilya and
Abbeel, Pieter. InfoGAN: Interpretable Representation Learning by Information Maximizing
Generative Adversarial Nets. In Advances in Neural Information Processing Systems, pages
2172–2180, 2016. 3

[6] Choi, Yunjey and Choi, Minje and Kim, Munyoung and Ha, Jung-Woo and Kim, Sunghun
and Choo, Jaegul. StarGAN: Unified Generative Adversarial Networks for Multi-Domain
Image-to-Image Translation. arXiv preprint arXiv:1711.09020, 2017. 3, 12, 28

[7] Chongxuan, LI and Xu, Taufik and Zhu, Jun and Zhang, Bo. Triple Generative Adversarial
Nets. In Advances in Neural Information Processing Systems, pages 4091–4101, 2017. 2, 3

[8] Cover, Thomas M and Thomas, Joy A. Elements of Information Theory. John Wiley & Sons,
2012. 13, 14

[9] Deng, Jia and Dong, Wei and Socher, Richard and Li, Li-Jia and Li, Kai and Fei-Fei, Li.
ImageNet: A Large-Scale Hierarchical Image Database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009. 21

[10] Denton, Emily L and Chintala, Soumith and Fergus, Rob and others. Deep Generative
Image Models using a Laplacian Pyramid of Adversarial Networks. In Advances in neural
information processing systems, pages 1486–1494, 2015. 2

[11] Dmitry Ulyanov and Andrea Vedaldi and Victor S. Lempitsky. Instance Normalization: The
Missing Ingredient for Fast Stylization. CoRR, abs/1607.08022, 2016. 11, 30

[12] Dumoulin, Vincent and Visin, Francesco. A Guide to Convolution Arithmetic for Deep
Learning. arXiv preprint arXiv:1603.07285, 2016. 9, 10

[13] Eriksson, Kenneth and Estep, Donald and Johnson, Claes. Applied mathematics: Body and
soul: Volume 1: Derivatives and geometry in IR3. Springer Science & Business Media, 2013.
17

[14] Anna C Gilbert, Yi Zhang, Kibok Lee, Yuting Zhang, and Honglak Lee. Towards Under-
standing the Invertibility of Convolutional Neural Networks. arXiv preprint arXiv:1705.08664,
2017. 45

Data Set Extension with Generative Adversarial Nets 47

BIBLIOGRAPHY

[15] Goodfellow, Ian. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv preprint
arXiv:1701.00160, 2016. 15, 16, 21

[16] Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron. Deep learning, volume 1. MIT
press Cambridge, 2016. 6, 9, 11, 13, 14

[17] Goodfellow, Ian and Pouget-Abadie, Jean and Mirza, Mehdi and Xu, Bing and Warde-Farley,
David and Ozair, Sherjil and Courville, Aaron and Bengio, Yoshua. Generative Adversarial
Nets. In Advances in neural information processing systems, pages 2672–2680, 2014. viii, 2,
12, 14, 15, 16, 44

[18] Gulrajani, Ishaan and Ahmed, Faruk and Arjovsky, Martin and Dumoulin, Vincent and
Courville, Aaron. Improved Training of Wasserstein GANs. arXiv preprint arXiv:1704.00028,
2017. 2

[19] Gulrajani, Ishaan and Ahmed, Faruk and Arjovsky, Martin and Dumoulin, Vincent and Cour-
ville, Aaron C. Improved Training of Wasserstein GANs. In Advances in Neural Information
Processing Systems, pages 5769–5779, 2017. viii, 12, 17, 18, 19, 22, 45

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 45

[21] He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian. Delving deep into
rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034, 2015. 9

[22] Heusel, Martin and Ramsauer, Hubert and Unterthiner, Thomas and Nessler, Bernhard and
Klambauer, Günter and Hochreiter, Sepp. GANs Trained by a Two Time-Scale Update Rule
Converge to a Nash Equilibrium. arXiv preprint arXiv:1706.08500, 2017. 22

[23] Ioffe, Sergey and Szegedy, Christian. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167, 2015. 10

[24] Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A. Image-to-Image
Translation With Conditional Adversarial Networks. arXiv preprint, 2017. 3

[25] Khrulkov, Valentin and Oseledets, Ivan. Geometry Score: A Method For Comparing Gener-
ative Adversarial Networks. arXiv preprint arXiv:1802.02664, 2018. 21, 22

[26] Kim, Taeksoo and Cha, Moonsu and Kim, Hyunsoo and Lee, Jungkwon and Kim, Jiwon.
Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. arXiv
preprint arXiv:1703.05192, 2017. 3, 28

[27] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1
Convolutions. arXiv preprint arXiv:1807.03039, 2018. 45

[28] Kingma, Diederik P and Ba, Jimmy. Adam: A Method for Stochastic Optimization. arXiv
preprint arXiv:1412.6980, 2014. 8, 30

[29] Kingma, Diederik P and Welling, Max. Auto-Encoding Variational Bayes. arXiv preprint
arXiv:1312.6114, 2013. 1, 16

[30] Alex Krizhevsky and Geoffrey Hinton. Learning Multiple Layers of Features from Tiny Im-
ages. Technical report, Citeseer, 2009. 21

[31] Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E. ImageNet Classification with
Deep Convolutional Neural Networks. In Advances in neural information processing systems,
pages 1097–1105, 2012. 1, 8

48 Data Set Extension with Generative Adversarial Nets

BIBLIOGRAPHY

[32] Kullback, Solomon and Leibler, Richard A. On Information and Sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951. 14

[33] LeCun, Yann. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998. 4, 27

[34] LeCun, Yann and Boser, Bernhard E and Denker, John S and Henderson, Donnie and Howard,
Richard E and Hubbard, Wayne E and Jackel, Lawrence D. Handwritten Digit Recognition
with a Back-Propagation Network. In Advances in neural information processing systems,
pages 396–404, 1990. 5, 9

[35] LeCun, Yann and Bottou, Léon and Bengio, Yoshua and Haffner, Patrick. Gradient-Based
Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998. 32

[36] Lin, Jianhua. Divergence Measures Based on the Shannon Entropy. IEEE Transactions on
Information theory, 37(1):145–151, 1991. 13, 14

[37] Liu, Ming-Yu and Tuzel, Oncel. Coupled Generative Adversarial Networks. In Advances in
neural information processing systems, pages 469–477, 2016. v, 3, 4, 5, 12, 20, 21, 27, 28, 30,
44, 45

[38] Long, Jonathan and Shelhamer, Evan and Darrell, Trevor. Fully Convolutional Networks
For Semantic Segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440, 2015. 9

[39] Maas, Andrew L and Hannun, Awni Y and Ng, Andrew Y. Rectifier Nonlinearities Improve
Neural Network Acoustic Models. In Proc. icml, volume 30, page 3, 2013. 8

[40] Makhzani, Alireza and Shlens, Jonathon and Jaitly, Navdeep and Goodfellow, Ian and Frey,
Brendan. Adversarial Autoencoders. arXiv preprint arXiv:1511.05644, 2015. 3

[41] Mirza, Mehdi and Osindero, Simon. Conditional Generative Adversarial Nets. arXiv preprint
arXiv:1411.1784, 2014. 2, 12

[42] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normal-
ization for Generative Adversarial Networks. arXiv preprint arXiv:1802.05957, 2018. 45

[43] Miyato, Takeru and Koyama, Masanori. cGANs with Projection Discriminator. arXiv preprint
arXiv:1802.05637, 2018. 2, 3, 12, 45

[44] Nair, Vinod and Hinton, Geoffrey E. Rectified Linear Units Improve Restricted Boltzmann
machines. In Proceedings of the 27th international conference on machine learning (ICML-
10), pages 807–814, 2010. 8

[45] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading Digits in Natural Images with Unsupervised Feature Learning. In NIPS Workshop
on Deep Learning and Unsupervised Feature Learning, volume 2011, page 5, 2011. 27

[46] Nielsen, Frank. A Family of Statistical Symmetric Divergences Based on Jensen’s Inequality.
arXiv preprint arXiv:1009.4004, 2010. 14

[47] Nowozin, Sebastian and Cseke, Botond and Tomioka, Ryota. f-GAN: Training Generative
Neural Samplers using Variational Divergence Minimization. In Advances in Neural Inform-
ation Processing Systems, pages 271–279, 2016. 16

[48] Odena, Augustus and Olah, Christopher and Shlens, Jonathon. Conditional Image Synthesis
With Auxiliary Classifier GANs. arXiv preprint arXiv:1610.09585, 2016. v, 2, 3, 12, 19, 44

Data Set Extension with Generative Adversarial Nets 49

BIBLIOGRAPHY

[49] Oord, Aaron van den and Kalchbrenner, Nal and Kavukcuoglu, Koray. Pixel Recurrent Neural
Networks. arXiv preprint arXiv:1601.06759, 2016. 3

[50] Pieters, Mathijs and Wiering, Marco. Comparing Generative Adversarial Network Techniques
for Image Creation and Modification. arXiv preprint arXiv:1803.09093, 2018. 12, 28

[51] Radford, Alec and Metz, Luke and Chintala, Soumith. Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. arXiv preprint arXiv:1511.06434,
2015. 2, 10, 15, 16, 29

[52] Riedmiller, Martin and Rprop, I. Rprop-Description and Implementation Details, 1994. 7

[53] Rumelhart, David E and Hinton, Geoffrey E and Williams, Ronald J. Learning Representa-
tions by Back-Propagating Errors. nature, 323(6088):533, 1986. 7

[54] Sabour, Sara and Frosst, Nicholas and Hinton, Geoffrey E. Dynamic Routing Between Cap-
sules. In Advances in Neural Information Processing Systems, pages 3859–3869, 2017. 12

[55] Salimans, Tim and Goodfellow, Ian and Zaremba, Wojciech and Cheung, Vicki and Rad-
ford, Alec and Chen, Xi. Improved Techniques for Training GANs. In Advances in Neural
Information Processing Systems, pages 2234–2242, 2016. 2, 15, 16, 21

[56] Schaeffer, David G and Cain, John W. Ordinary Differential Equations: Basics and Beyond,
volume 65. Springer, 2016. 17

[57] Sønderby, Casper Kaae and Raiko, Tapani and Maaløe, Lars and Sønderby, Søren Kaae
and Winther, Ole. Ladder Variational Autoencoders. In Advances in Neural Information
Processing Systems, pages 3738–3746, 2016. 2

[58] Szegedy, Christian and Vanhoucke, Vincent and Ioffe, Sergey and Shlens, Jon and Wojna,
Zbigniew. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–2826, 2016. 21

[59] Tieleman, Tijmen and Hinton, Geoffrey. Lecture 6.5-rmsprop: Divide the Gradient by a Run-
ning Average of its Recent Magnitude. COURSERA: Neural networks for machine learning,
4(2):26–31, 2012. 7

[60] Upadhyay, Yash and Schrater, Paul. Generative Adversarial Network Architectures For Image
Synthesis Using Capsule Networks. arXiv preprint arXiv:1806.03796, 2018. 12

[61] Villani, Cédric. Optimal transport: old and new, volume 338. Springer Science & Business
Media, 2008. 17

[62] Vondrick, Carl and Pirsiavash, Hamed and Torralba, Antonio. Generating Videos with Scene
Dynamics. In Advances In Neural Information Processing Systems, pages 613–621, 2016. 3

[63] Xu, Bing and Wang, Naiyan and Chen, Tianqi and Li, Mu. Empirical Evaluation of Rectified
Activations in Convolutional Network. arXiv preprint arXiv:1505.00853, 2015. 8

[64] Yeh, Raymond and Chen, Chen and Lim, Teck Yian and Hasegawa-Johnson, Mark and Do,
Minh N. Semantic Image Inpainting with Perceptual and Contextual Losses. arXiv preprint
arXiv:1607.07539, 2016. 3

[65] Zhang, Han and Xu, Tao and Li, Hongsheng and Zhang, Shaoting and Huang, Xiaolei and
Wang, Xiaogang and Metaxas, Dimitris. StackGAN: Text to Photo-realistic Image Synthesis
with Stacked Generative Adversarial Networks. arXiv preprint arXiv:1612.03242, 2016. 2

[66] Ziwei Liu and Ping Luo and Xiaogang Wang and Xiaoou Tang. Deep Learning Face Attrib-
utes in the Wild. In Proceedings of International Conference on Computer Vision (ICCV),
December 2015. 4, 5, 21, 28

50 Data Set Extension with Generative Adversarial Nets

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Generative models
	GAN research

	Research questions
	Outline

	Neural Networks
	Gradient descent
	Momentum
	Root mean squared backpropagation
	Adaptive moment estimation

	Activation functions
	ReLU family

	Convolutional neural networks
	Transposed convolution layers

	Layer input normalization
	Batch normalization
	Instance normalization

	Generative Adversarial Nets
	Formal objective
	Information theory
	Theoretical training objective of the generator

	Training procedure
	Instability

	Deep convolutional generative adversarial nets
	Wasserstein generative adversarial nets
	Lipschitz continuity
	Earth mover distance
	Optimization

	Auxiliary classifier generative adversarial nets
	Coupled generative adversarial nets
	Performance measures

	Extra Domain Data Generation
	Unsuitability of CoGAN
	Suitability of AC-GAN
	Coupled auxiliary classifier generative adversarial nets
	Formal definition
	Comparison with AC-GAN

	Experiments
	Data sets
	Digits
	Faces

	Extra-domain data generation
	Extra-domain classification
	Model details
	GANs
	Classifiers

	Fréchet inception distance

	Results
	Extra-domain data generation
	CoGAN
	AC-GAN and CoAC-GAN

	Extra-domain classification
	Fréchet inception distance
	Discussion
	Domain similarity
	Color artifacts

	Conclusion
	Extra domain data generation
	Qualitative evaluation
	Future work
	Data sets
	GAN architectures
	Image-to-image translation

	Bibliography

