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Abstract

In preparation of the Frisian Solar Challenge 2010 (the world cup for
solar powered boats), the Hanzehogeschool and RuG are designing a hy-
drofoiling solarboat. Hydrofoils are under water wings, providing lift,
capable of raising a boat out of the water. This reduces drag significantly,
enabling higher speeds with a decrease of power consumption. However
a lot of energy has to be spent in order to get the boat out of the water.
These large amounts of energy were previously not available through so-
lar power, making hydrofoils state of the art in solar powered boats. The
hydrofoils of the solarboat are retractable, meaning that during the race
the solarboat has the ability to switch between states (sailing hullborne
or foilborne). Deciding when to switch is a difficult task which has to
take into account many different variables. We show how Reinforcement
learning can be used to learn an optimal policy in a simulative environ-
ment which aims at finishing the race as fast as possible with a limited
amount of energy. We use Artificial Neural Networks as function approxi-
mators for estimating the value for each action in an arbitrary state. The
learned policy will have an advisory role to the pilot of the boat during the
race. We set up several experiments, iteratively increasing the complexity
of the model. First the partially observable Mountain car problem was
modeled, our results show that through the use of artificial neural net-
works the value can be predicted more accurately than with a traditional
tabular approach. This resulted in a significantly better performance than
with the standard method. Next we modeled the solar boat in a simple
race situation, competing on a linear track without an environment. We
show how our algorithm is able to optimize the time required for the solar
boat to reach the finish line. Finally we modeled the solar boat within his
environment, taking into account position on the track, cornering, sun en-
ergy, changing weather and shadows. Two different policies were trained,
the first was trained on one single track (Specific Policy Algorithm, SPA),
the other was trained on all tracks (Generalizing Policy Algorithm, GPA).
There was no significant difference between the performance of the SPA
and the GPA. Both algorithms show a gradual decrease in time required
to reach the goal, optimizing energy in a situation where energy is limited
and unpredictable.
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1 Introduction

Throughout many aspects of Artificial Intelligence, there is a recurring need
to automate sequences of decisions. Whether the goal is to construct agents,
control systems, machine vision or solve planning problems, many core issues
remain the same. When making a decision, different alternatives (actions) have
to be evaluated. This evaluation has to take into account the current world
situation, and what the world will look like when a chosen action is performed.
This requires more than just evaluating the immediate effects of actions, but also
the long term effects have to be taken into account. These long term effects are
not always as easy to define, especially when the outcome of actions are subject
to uncertainty. Sometimes there are actions that can be performed, resulting
in poor immediate results, but score much better over the long term. Choosing
the optimal action has to make a trade-off between these two situations (the
immediate reward and future gains).

The motivation for this research comes from the Frisian Solar Challenge,
the world cup for solar powered boats. The race follows the ’Elfstedentocht’
which can be translated as the ’Journey of Eleven Cities’, an ice speed skating
competition held in the province of Friesland (the Netherlands). The tour has
a length of 220km and is conducted on canals, rivers and lakes between eleven
Frisian cities. The race is divided into six stages. The goal of this race is to
complete the race as fast as possible given a limited amount of energy (only a
1Kh battery and 1750W of solar panels are allowed). The Hanze Solar Team won
the Frisian Solar Challenge in 2008 in the A-class with a mono hull configuration
in a record time of 17 hours 39 minutes and 37 seconds.

In preparation of the Frisian Solar Challenge 2010, the Hanzehogeschool and
RuG are designing a hydrofoiling solar boat. Hydrofoils are under water wings,
similar to airplane wings. These wings provide lift, capable of raising a boat
out of the water. This reduces drag significantly (see figure 1), enabling higher
speeds with a decrease in power consumption. However before reducing drag a
lot of energy has to be spent in order to get the boat out of the water, these
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Figure 1: Drag comparison between a normal boat (solid line) and a hydrofoiling
boat (dashed line) with 300N Thrust. The hydrofoil will reach a four fold top
speed with this thrust level.
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amounts of energy were previously not available through solar power. For this
reason hydrofoils can be considered as state of the art in solar powered boats.

The new boat is going to be equipped with one set of retractable hydrofoils,
giving it the ability to reduce drag by lifting the boat out of the water when
possible. When there is no sufficient energy available, maintaining a high veloc-
ity on hydrofoils is impossible. Sailing with the hydrofoils extended beneath the
boat at low speeds requires considerably more energy than without hydrofoils
(figure 1, the drag of the foilborne boat is higher than the hullborne boat until
t = 0.5s. The difference is the greatest at t = 0.4s where the drag of the hydro-
foil is 200N, against 100N for the hullborne boat). For this reason the choice
has been made to make the hydrofoils retractable. This means we can choose
during the race to sail at a low speed (saving energy) without the drag of the
hydrofoils and at a high speed (spending a lot of energy) with the hydrofoils
extended.

The transition from hullborne to hydrofoil requires a lot of energy. Figure
1 shows the total drag of both a hullborne and a foilborne boat, at low speeds
the drag of the hydrofoiling boat is higher than the hullborne boat due to
the resistance of the foils in the water. When the boat takes off the drag
reduces, facilitating a higher overall speed. Other variables also have to be
taken into account when making the decision whether or not the hydrofoil is
to be deployed. One important variable is water depth, this influences the
performance of both the hydrofoil and the mono-hull in a different way [25].
But also the expected amount of energy to be received during the remainder of
the race and the current state of charge of the battery are important variables.
It might even be advantageous to store energy in the battery when there is the
possibility that in the future there is a higher energy demand. These are just a
few variables, the number of variables to be taken into account depends on how
detailed we want our model to be.

Because we have to deal with a dynamic model, making decisions is hard.
One does not know beforehand how to act in the world (when to deploy the hy-
drofoils, or how fast to go), there is no straightforward solution for this. Being
researchers in the field of Artificial Intelligence we saw an opportunity for Ma-
chine Learning [26] to solve this difficult problem. Machine learning is a research
field that is concerned with the design and development of algorithms that give
computers the ability to evolve behaviors based on empirical data (e.g. sensor
readings or data from databases). In our case we apply Reinforcement Learning
[26]. Reinforcement Learning techniques aim at learning a policy (guidelines of
how to act in the environment) that maximizes some notion of a cumulative
reward. This reward can be given directly, or with a certain time delay. The
design of the reward function is very important because it steers the behavior
of the agent towards a certain goal.

Reinforcement learning algorithms [26] attempt to find a policy that maps
states of the world to actions which the agent should take in those states. Re-
inforcement learning problems are typically formulated as finite state Markov
Decision Processes (MDPs) [4]. MDPs provide us with a mathematical frame-
work for modeling decision-making in situations where outcomes can be influ-
enced by a decision maker (e.g. an agent/policy), but still suffer from a certain
amount of randomness. This means that when an action is taken, given a start-
ing world state, it is not always certain that the next world state will always
be reached given the same starting conditions. MDPs assume that the system
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(a) Perceptual field of the robot (b) Rectangular world, ambiguous
localization

Figure 2: Ambiguous localization for an MDP problem

can always fully observe its environment, in other words: The system always
knows where it is and all that it needs to know about itself and its environment
at each moment in time. This however is not always the case. One might think
that a way of solving this is providing more sensory input, ambiguity in the
sensory information however will still produce situations in which the system
cannot know in what state it is. This is shown in figure 2, the robot perceives
the hallway through his sensors (figure 2a), however when looking at the world
in which the robot acts (figure 2b), it cannot discriminate between being in
situation 1, 2, 3 or 4 (and even if it could it would not know in which direction
it was traveling). The problem of ambiguity is also called partial observability.
This cannot be dealt with within the traditional MDP framework. Extending
the MDP framework in such a way that it can deal with these kinds of prob-
lems results in modeling the problem as a Partially Observable Markov Decision
Process (POMDP) [26, 13]. In a POMDP it is assumed that the current state
is hidden, instead of mapping states to actions in an MDP, a POMDP maps
observations to actions.

An impressive application of using (PO)MDPs is the research done in the
Stanford University Autonomous Helicopter Project [1] in which they use PE-
GASUS (Policy Evaluation of Goodness and Search Using Scenarios) to reduce
the computational complexity of their (PO)MDP [18]. PEGASUS uses scenar-
ios (predefined sequences of actions in a simulated world) to estimate the value
of a policy. This reduces the computational complexity significantly [18]. It can
be described as a policy search algorithm. PEGASUS reduces the problem of
policy search in an arbitrary POMDP to one in which all the transitions are de-
terministic. In [19] the authors show convincingly how PEGASUS can be used
to learn the difficult task of autonomous helicopter flight, and even extreme
aerobatics.

The decision making process of when to switch from mono-hull to hydrofoil,
when to store energy and how fast to go in a solar boat race can be modeled
as a POMDP. This problem is not a toy-problem, meaning that solving the
POMDP will take a considerable amount of computation time. Building a
numerical model of the boat will also give us the ability to improve our design
because different types of boat-configurations can be tested.
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Our project focuses on exploring reinforcement learning methods that make
optimal use of available power and optimizing the overall speed in applications
with limited energy.

1.1 Research Question

The global research question could be defined as follows: Can we use reinforce-
ment learning to make optimal use of available power, optimizing the overall
speed of a solar powered boat?. This research question however is too broad, our
research aims at exploring reinforcement learning methods that can be used for
these kinds of applications (not just for solar boats). This resulted in a more
specific research question: Which reinforcement learning methods can be used
for making optimal use of available power, optimizing the overall speed in ap-
plication with limited energy?. This research will explore a new application for
machine learning techniques in the field of sustainable energy. A solar powered
boat in this case will act as an application with limited energy. It will not be
possible to explore all possible reinforcement learning algorithms, therefore we
focus on the ones which we think are most likely to be successful.

1.2 Outline

This paper begins with explaining the theoretical background of reinforcement
learning [26], different aspects of this research field will be discussed, relevant
to our project. We will also explain the (Partially Observable) Markov Decision
Processes in greater detail. Next we discuss how we modeled the solar boat,
explaining all equations relevant to the physical dynamics of the boat (with and
without hydrofoils). Also the modeling of the race itself (weather and track) are
discussed in this section. We also discuss how we match our model with data
gathered from the boat in the real world. After these sections we move on to
the experiments, first the Mountain Car problem [14] is explained. The results
from these experiments are used to guide our research, iteratively increasing its
complexity. The next step after this subproblem is the problem of the power
consumption optimization of a solar powered boat for a small race (for a linear
track without taking into account several environmental parameters like weather
and events along the way). After this section we reached the final experiment,
the power consumption optimization of a solar powered boat (for the final race),
followed by an overall discussion and conclusion.
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2 Reinforcement Learning Theory

Reinforcement Learning [26] is a field of machine learning [26] in which an agent
learns to take actions in an environment in such a way that it maximizes its
performance. The performance is measured in terms of rewards that the agent
gathers while acting in the world. The aim of a reinforcement learning algorithm
is to find a policy that maps states of the world to actions that the agent should
take when being in these states.

2.1 Reinforcement Learning

In Reinforcement learning no ’tutor’, explaining the agent what it does good
or bad, is present. This means that the agent has to interact with his envi-
ronment through actions. At each point in time, the agent performs an action
and observes how this changes his environment. This observation yields costs
and/or rewards, the underlying dynamics for this cost function is not known to
the agent. The aim of the agent is to discover a policy that provides a map-
ping from observations to actions that minimizes the long-term cost function.
Reinforcement learning problems are often formulated as (Partially Observable)
Markov Decision Processes ((PO)MDPs).

2.1.1 Reinforcement Learning vs. Supervised Learning

Supervised learning is a machine learning technique that tries to fit a function
to training data. The training data is built up by pairs of input (usually vectors)
and desired outputs. The job of the supervised learning algorithm is to learn
a mapping from the input to the desired outputs. The ideal mapping has to
generalize the training data so that it can correctly classify new data that has
not been seen before (and has no label assigned to it). In reinforcement learning
no input-output pairs are present, the algorithm only receives feedback from the
world about how good the result of an action was but not if it made an error
in taking that action. It is also not always the case that the agent receives a
reward immediately after taking the action, but there can be a delay (e.g. one
particular sequence of actions with a lower reward might lead to a much higher
reward in the future).

Looking at the problem of optimizing the energy consumption of the solar
boat we cannot define beforehand when we would like the hydrofoils to be
deployed or at what speed we want to travel. If we knew this beforehand, this
project would not be of any use. Several actions can be taken during the race, the
boat will be able to speed up or slow down; but also lower or raise its hydrofoil.
These four actions all have different impact on the energy consumption. Slowing
down means less energy is wasted, however the finish line will not be reached.
One solution might be to increase speed, spending a lot of energy. This sounds
like a good action, however the amount of energy is limited. Depleting the
battery when there is not enough sun-energy will also hinder the boat from
reaching the finish line. Then there are the hydrofoils, making the transition
from hullborne to foilborne means spending a lot of energy, before lifting the
boat out of the water it has to overcome the added resistance of the foils in the
water. This means that when making the transition from hullborne to foilborne
the boat has to be able to keep maintaining foilborne for a reasonable amount
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of time before it actually saves energy. Taking into account external factors
(changing weather, shadow areas with low sun radiance, bridges which cannot
be taken foilborne and reducing speed in sharp corner) make the system highly
dynamic, there is no simple solution to this problem.

The nice thing about reinforcement learning with respect to supervised learn-
ing is that no knowledge about what kind of behavior is required is needed, the
environment shapes the learned behavior through the gathered rewards (defined
by the reward function, discussed in section 2.1.2). Reinforcement learning can
be used to estimate the outcome of any arbitrary action. The outcome in this
case is a reward, provided to the agent through the environment. If this reward
is different from the prediction, the model adjusts itself towards the perceived
reward. Learning therefore means that the agent acts in its environment, learn-
ing about the feedback that it gets through the reward function and updates
itself accordingly.

In the case of the solarboat we could define a reward function that aims at
reaching the finish line as fast as possible. We can use this function to learn a
policy that maximizes its reward; and therefore minimizes the time required to
reach the finish line.

Because we do not know beforehand what sequences of actions we want the
system to take, we are unable to define the input-output pairs which make up
the training-set for a supervised learning algorithm. This forces us to solve the
problem through reinforcement learning.

2.1.2 Designing a Reward Function

The beauty of reinforcement learning is that the agent has to gather rewards
through interactions with the world, the downside of this is that how these
rewards are defined influences the performance of the system dramatically. Take
for example a simple mobile robot with an onboard processor in a small and
empty world, which contains only one recharging station. One way to define
the reward is the amount of energy that this agent has in his internal battery.
Driving around will provide the robot with a negative reward, it costs energy to
drive the motors. One solution would be to stay put, not moving at all. However
the onboard processor will still use up a small amount of energy, resulting in a
small negative reward. The only way for the agent to decide to move towards
the recharging station is by designing the reward function in such a way that
the tradeoff between not moving at all and moving towards a socket (gathering
a lot of negative rewards, but at the socket receiving a large positive reward)
will result in the behavior that we desire (note that in this case we have a bias
towards what the desired behavior should be, namely reaching the socket and
not dying a slow death). One way of implementing this is by assigning a second
reward function to the agent that delivers a substantially low reward to dying.
This way the agent will learn that after performing no action at all, this will
result in a very low total reward. The downside of this approach is that the
way in which the negative dying-reward is defined will influence the resulting
behavior.

The design of a reward function is challenging, as researchers we do not want
to bias our system to what we think the correct behavior should be. However
the reward function should not be to ’loose’ so that the system might optimize
its reward function, but displays behavior that is not desirable. This means

10



that there is a trade off in the design of the reward function. Looking at the
solarboat at a glance we would say that the boat has to be as conservative with
energy as possible. However minimizing power consumption leads to not taking
any actions (like described above). Thinking about this notion showed us that
the action power optimization of the boat is not to save energy, but use it in such
a way that it is entirely depleted at the end of the race. This way no energy is
wasted by not using any. A reward function that encodes this will however also
not behave as we would like. It could spend all of its energy at the beginning
of the race, reaching the finish line on only the power coming from the solar
panels and still receive a high reward even though it might finishes last with this
policy. The reward function has to encode both energy and speed. The simplest
way of implementing this is by giving a negative reward for each timestep that
the agents needs to finish the race. This way if it depletes its energy too soon
it will not reach the finish line, resulting in a large negative reward. If it uses
its energy wisely it should optimize its speed, which is the goal of our race,
reaching the finish line as fast as possible with limited energy. Note that the
reward function is programmed (hard coded) by the researcher, the reward
function is not learned by any of the Reinforcement Learning algorithms. The
question we as researchers ask ourselves (not to be mistaken with the research
question) is: How can we initialize/update the reward function so as to induce
best possible world utility? This, and the reward function for the solarboat, will
more elaborately be discussed in section 5.2.2.

2.1.3 Markov Decision Processes

Markov Decision Processes (MDPs) [4] provide a mathematical framework for
modeling decision-making under uncertainty. The MDP model assumes that the
next state is solely determined by the current state (the Markov assumption).
It also assumes that the state that the model is in is completely observable.
This means that the current state has to be completely known at all times.

A Markov Decision Process can be described as a tuple 〈S,A,T,R, γ〉, where:

• S is a finite set of world states.

• A is a finite set of available actions.

• T : S × A 7→ Π(S) is the state transition function, a probability distri-
bution over world states for a given world state and agent action defined
by the policy Π. T (s, a, s′) denotes the probability of ending up in state
s’, given the current state s and action a. T also represents the Markov
assumption, the next state depends solely on the current observed state
and action.

• R : S × A 7→ < is the reward function. This function gives the expected
reward gained by taking each action in each state. R(s, a) can be written
for the expected reward for taking action a in state s.

• γ ε [0, 1] is the discount factor, used in the case of an infinite horizon,
weighing the reward function in such a way that rewards in the near
future are of a greater influence than rewards later in time.

In many cases not all necessary state information is directly available. Con-
sider a game of cards (e.g. Poker) where some of the cards are known, but other
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cards are hidden, even as the strategies (policies) of the opponents. The player
must develop a so called Belief Function about the state of the world. For this
tasks Partially Observable Markov Decision Processes [26] were developed.

2.1.4 Partially Observable Markov Decision Processes

In most real world situations, observing the environment (and taking readings
from sensors) includes noise. This makes this kind of environment partially
observable, the real world state cannot be perceived with absolute certainty. An
MDP cannot deal with these kinds of problems. Partially Observable Markov
Decision Processes (POMDPs) extend the MDP framework, giving it the ability
to deal with partial observability. With this extension, modeling larger and more
interesting classes of problems is possible.

POMDP algorithms are much more computationally intensive than MDP
solvers, this is a result of the uncertainty about the true state of the model.
This induces a probability distribution over the model states, whereas MDPs
only have to deal with a finite set of states. The problem of finding optimal
policies for finite-horizon POMDPs has been proven to be PSPACE-complete
[20]. It however must be said that running a solved POMDP requires far less
computational resources than at the learning stage, and is therefore very quick
at run-time.

A finite Partially Observable Markov Decision Process can be described as
a tuple 〈S,A, T,R,Ω, O, γ〉, in which:

• S is a finite set of world states with an initial state distribution b0.

• A is a finite set of available actions.

• T : S × A 7→ Π(S) is the state transition function, a probability distri-
bution over world states for a given world state and agent action defined
by the policy Π. T (s, a, s′) denotes the probability of ending up in state
s’, given the current state s and action a. T also represents the Markov
assumption, the next state depends solely on the current unobservable
state and action.

• R : S × A 7→ < is the reward function. This function gives the expected
reward gained by taking each action in each state. R(s, a) can be written
for the expected reward for taking action a in state s.

• Ω is a finite set of observations that can be received from the world.

• O : S × A→ Π(Ω) is the observation function, a probability distribution
over possible observations for a given action and resulting state. O(s′, a, o)
can be given for the probability of making observation o, given action a
and resulting state s’.

• γ ε [0, 1] is the discount factor, used in the case of an infinite horizon,
weighing the reward function in such a way that rewards in the near
future are of a greater influence than rewards later in time.

It is important to point out that a Markov Decision Process can be described
as a tuple 〈S,A,T,R, γ〉, this means that algorithms used to solve POMDPs can
also be used to solve MDPs (but not the other way around).
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A policy is a mapping π : S 7→ A. The value function of a policy π is also a
mapping V π : S 7→ <. V π(s) gives the expected (discounted) sum of rewards
for executing π from state s. An optimal policy is known to always exist in the
discounted (γ < 1) case with bounded immediate reward [10]. POMDP policies
are often computed using a value function over the belief space. This means
that for different belief vectors, different policies can be chosen. Computing
policies for every belief vector requires considerably more calculations.

2.1.5 PEGASUS Transformation from Stochastic to Deterministic

Consider a POMDP M = 〈S,A,T,R,Ω, O, γ〉 with initial state s0 and a class
Π of policies π : S 7→ A. The goal is to find a policy in Π with a high
utility. This stochastic model M can be transformed to a deterministic POMDP
M ′ = 〈S ′,A,T ′, R′,Ω, O′, γ〉 using a deterministic simulative model g for M [18].

The transformation is done as follows. The action space and discount
factor remain the same. The state space for M ′ is represented as a vector
(s, p1, p2, . . .) in which s ε S, followed by an infinite sequence of real numbers in
[0,1]. Now given (s, p1, p2, . . .) we can use the simulative model g to calculate
s′ = g(s, a, p1). The new state becomes (s′, p2, p3, . . .), so p1is used to generate s′

from the correct distribution. For each policy π εΠ, there will be an equivalent
π′ εΠ′, in which π′(s, p1, p2, . . .) = π(s). Similar goes for the reward function
R′(s, p1, p2, . . .) = R(s). Only observing s instead of (s, p1, p2, . . .) results in the
original POMDP M . This means that the search for an optimal policy π′ εΠ
will produce a state sequence that will do equally well in the original POMDP
M . This means that searching for an optimal policy in a stochastic POMDP
can be reduced to searching for an optimal policy for an equivalent deterministic
POMDP, which is much simpler.

The PEGASUS algorithm uses the fact that for computers to simulate
stochasticity they have to generate a random number p and then use this value
to calculate s′ as a deterministic function of the input s, a. PEGASUS exploits
this by pre-sampling a limited set of random numbers p in advance and fixing
them for each π. The algorithm starts by drawing a sample

{
s10, s

2
0, · · · , sm0

}
of

m initial states according to an initial state distribution. Fixing the stochastic
variables means that V̂ (π) becomes a deterministic function.

The original idea of PEGASUS is that transforming a stochastic POMDP to-
wards a deterministic equivalent enables the use of scenarios (fixed sequences/feeds
of random numbers for the simulation) to compare policies to one another. This
is needed when for example evolutionary algorithms are used in which a large
number of policies have to be compared to one another. Because of the scenarios,
and comparing policies on the same scenarios, less samples from the dynamic
(simulated) environment have to be taken, increasing the speed in which the
model learns. In our research we do not deal with a large number of policies,
therefore the original idea of PEGASUS is abandoned. However we adopt the
use of scenarios in our model. Weather scenarios are created, simulating the en-
vironmental parameters (e.g. solar radiation). Weather data is dynamic, there
is some form of structure present within the recordings. However the underlying
mechanisms are not always clear. Creating weather scenarios from recorded data
allows us to simulate a lot of different weather types (bypassing the underlying
mechanisms) and giving us the ability to estimate a more accurate performance
of the policies.
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2.2 Temporal Difference Learning

One way of solving reinforcement learning problems is through the use of Tem-
poral Difference (TD) learning [26]. TD learning is a machine learning approach
that learns how to predict a certain quantity that depends on future values of
a given signal. The name originates from the use of changes/differences in the
signal that can be used to predict values in a future time-step. It is a combina-
tion of Monte Carlo and dynamic programming (DP) ideas [26]. TD learning
samples its environment according to some policy, hence the Monte Carlo resem-
blance. Dynamic programming is relevant because TD learning approximates
its current estimation based on previous estimates, similar to dynamic program-
ming. TD algorithms are often used in reinforcement learning for predicting the
value function or total amount of reward expected in the future.

2.2.1 On-Policy versus Off-Policy Methods

In on-policy methods exploration is performed by following a policy that pro-
vides a mapping between state-action pairs. This means that the policy that is
being optimized is also used as means of exploring the world. One example of
this is the ε-greedy algorithm [26], this method will choose the action that has
the highest estimated reward value, but does this with a certain probability. So
in most of the cases ε-greedy will take the optimal action, but in some cases it
will explore its neighboring states by performing a non-maximal action. Obser-
vations that are made after performing an action are used to improve its policy.
In off-policy methods the policy that is learned is not the same as the policy
that is being followed when exploring the world. For example Exploration-data
can be gathered by Monte Carlo [26], this data will be used to learn the final
policy. This policy can then be used by selecting the actions completely greedy
(ε-greedy algorithm with ε = 0 ).

2.2.2 Q-Learning ( Off-Policy )

Q-learning was introduced by Watkins [28, 29], being independent of the policy
being followed this learning algorithm directly approximates the optimal action
value function. Consider a world in which an agent can perform an action a
(a ∈ A), which allows the agent to move from state s (s ∈ S) to a new state s′.
Q-learning is a reinforcement learning technique that maps a state and action
value (s, a) to an estimated Quality (Q) of taking action a in state s following
a greedy policy thereafter.

Q : S × A→ < (1)

This table will be updated each time s changes and a reward r is provided.
This is done by value iteration, it updates the old value according to the new
information:

Q(st, at)← Q(st, at) + α(rt + γmaxaQ(st+1, a)−Q(st, at)) (2)

α Is the learning rate (0 < α ≤ 1) and determines the rate at which new
information will override the old Q-value. γ Is the discount factor 0 < γ ≤ 1
which decreases the estimated Q value for states in the future.
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Algorithm 2.1 Q-learning ( Off-Policy )

Initialize Q(s, a) = 0 for all a
Repeat forever:
s← InitialState
for each episode step do

Select a, based on s
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α(r + γmaxa′Q(s′, a′)−Q(s, a))
s← s′

if s == terminal then
Break

end if
end for

Q-learning will keep on converging to a better solution as long as all state-
action pairs continue to be updated. The Q-learning algorithm is shown in
algorithm 2.1.

2.2.3 SARSA ( On-Policy )

Another way of learning the Quality of an action is by the means of SARSA. The
acronym SARSA stands for State-Action-Reward-State-Action and was first
introduced by Rummery and Niranjan [23] as a modified Q-learning algorithm.
The underlying principles are similar, SARSA however updates Qπ(s, a) for
the policy (π) that it’s actually executing. This makes SARSA an on-policy
algorithm. The Q-value update depends on the state of the agent s, the chosen
action in that state a, the reward r received when taking action a in state s,
the state that the agent will be in (s′) after performing action a, and the action
a′ that the agent will take in state s′. Summarizing this results in a tuple
(s, a, r, s′, a′). The Q-value will be updated using formula 3.

Algorithm 2.2 SARSA-learning ( On-Policy )

Initialize Q(s, a) = 0 for all a
Repeat forever:
s← InitialState
Select a, based on s
for each episode step do

Take action a, observe r, s′

Select a′ for state s′

Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a))
s← s′

a← a′

if s == terminal then
Break

end if
end for
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Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a)) (3)

The Q value is updated through interactions with the environment, updating
the policy depends on the taken actions. The Q-value for a state-action pair
is not directly updated, but gradually adjusted with learning rate α. As with
Q-learning SARSA will also keep on improving its policy to a better solution
as long as all state-action pairs continue to be updated. The SARSA-learning
algorithm is shown in algorithm 2.2.

2.3 Exploration

Exploring a new environment means that actions have to be taken. Always
performing actions with a fixed policy will lead to a solution, however this
solution will most likely not be the optimal solution. This means that instead
of always taking the optimal action (one type of action selection that is favored
in the final model), sometimes choosing a non-optimal action will sample the
utility landscape of the environment. Learning from this sampling will guide the
algorithm to a better solution, and eventually even to the best solution (given
the amount of exploration). Too much exploration does have a downside, it
will lengthen the time needed to learn the utility values. It might also lead
to the algorithm being ’stuck’ in the environment, not reaching the goal (if
this is required). There is a tradeoff between selecting the optimal action and
performing exploratory actions. There are numerous ways of selecting non-
optimal actions. We will discuss two popular selection methods in the following
sections.

2.3.1 ε -greedy Selection

One of the most simple ways of introducing exploration is by letting the agent
explore its environment in a greedy manner, but instead of always taking the
optimal action it selects a non-optimal action with probability ε. This selection
rule is called ε -greedy Selection [26]. By selecting a non-optimal action the
agent explores different state-action pairs and reaches states that have not been
seen before, providing the agent with more knowledge about the world. Fixing
ε means that throughout the interaction with the world the exploration rate
remains the same, when starting however it is essential that the exploration
rate is high. However when a model of the environment takes form taking
exploratory actions would decrease the total reward of the agent. Decreasing ε
after each time the agent interacts with the environment with a certain decrease-
rate (drε) will counteract this. This is called an ε - decreasing strategy and can
be formulated as follows:

εt =
ε0

1 + t ∗ drε
(4)

2.3.2 Boltzmann Exploration

ε - Greedy strategies select other actions with equal probability. This means
that taking the worst possible action (according to the agent’s knowledge of the
world) will have the same probability of being chosen as the second best action.
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It might be beneficial to more often choose the action that is second best. By
increasing the probability of being chosen for actions with a higher quality we
arrive at Boltzmann exploration [26]. Boltzmann exploration is not a two-fold
process like in ε - greedy where the agent flips a coin and decides whether
or not it should perform a random or optimal action, but uses a Boltzmann
distribution:

P (ai) =
e(Q(st,ai)/τ)∑n

j=1 e
(Q(st,aj(t))/τ)

(5)

n = number of actions

τ = temperature with (τ ∈ <, τ >= 0)

The temperature τ controls the amount of exploration. With a higher tem-
perature the amount of exploration is larger than with a lower temperature.
The term temperature is still being used because the Boltzmann distribution
was originally formulated to explain the crystallization of cooling materials. As
with ε - greedy in a new world the agent would like to explore more than when
it has gathered some experience. This is realized by decreasing the temperature
as the experiment goes on. This can be done in a similar way as with the ε -
greedy algorithm (formula 4), with ε replaced by τ .

2.4 Function Approximation (Artificial Neural Networks)

In the real world we, as humans, approximate many functions. One good exam-
ple is when you get up in the morning you estimate how long it would take you
to get to work. This estimation takes into account several factors (eg. weather,
traffic, means of transportation).

Function approximation problems can be split into two classes:

• Classification: Discrete output, a given input is classified as belonging to
a discrete group. An example of this is for example face identification,
object recognition and the classification of handwritten text.

• Regression: Continuous output, the required output is a real value. An
example of this is the problem described at the beginning of this para-
graph, the estimation of our travel time in which some input parameters
have to be mapped towards a real value, namely time.

In theory the differences between regression and classification problems are
not large. However a classification problem often has a one binary output pa-
rameter for each possible class the input can belong to. The mapping from an
input vector towards the binary encoded classification is the task for the func-
tion approximator. In regression problems however the output of the function
approximator is no binary encoding but a real value, the function approximator
will mimic a complex algorithmic function that depends on parameters, defined
by the input vector. The strength of a suitable function approximator is that it
should be able to approximate the output for any given input-output pairs, after
having seen only a limited set of examples. In other words, the function approx-
imator should be able to generalize to an extent that it predicts the outcome of
unseen input data correctly.
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Q-learning and SARSA are both tabular reinforcement learning algorithms.
This means that they map a state, action pair towards the Quality value. This
mapping is stored in a table, containing a Q-value for each possible state action
pair. The consequence of this is that we have to determine in which state we are.
Discretizing the world around us is a way of solving this problem but induces
several problems:

• The world is not a discrete place, we can use the tabular algorithms but are
then forced to quantize the state-action space of the system. Discretizing
the world means downscaling its complexity to a level that our algorithms
can manage. Instead of adjusting our algorithms to deal with an infinite
number of states we adjust the perceptional detail of the world in such
a way that we do not have this problem anymore. The algorithms will
search for optimal actions in this discrete system, while these might not
be optimal actions for the continuous system.

• We introduce a strong bias towards what we as researchers think are good
states. This means that we design the state-space of our agent in such a
way that we introduce states that, we think, are important and necessary
for the system to act optimally. This eliminates possible other states that
might also be beneficial for the agent, but simply did not come up in the
researcher’s mind.

• The number of states that can be defined is finite, but for large numbers of
states the complexity of updating the Q-table becomes increasingly more
computationally intensive.

One popular way of solving this problem is by replacing the Q-table with
a function approximator, in our case an Artificial Neural Network (ANN) [7,
8]. ANNs are networks of interconnected artificial neurons. These artificial
neurons mimic the behavior of biological neurons and can be used to model
complex relationships between in- and output pairs, finding patterns in data
and function approximation. By using a function approximator instead of a
table we bypass the problem of defining states, directly providing our sensory
data (which encodes the world, and therefore also the state we are in) towards
the network.

2.4.1 Multilayer Feed-Forward Neural Networks

The Artificial Neural Network is an interconnected assembly of simple pro-
cessing elements, neurons, whose functionality is loosely based on the animal
neuron. It was first introduced by McCulloch and Pitts [15] in 1943. Each
neuron has an internal activation function, which is based on the input that
the neuron receives. The processing ability of the network is stored in the inter
unit connection strengths, or weights, obtained by a process of adaptation to,
or learning from, a set of training patterns [6]. One of the most commonly used
network architectures is the Multilayer Feed Forward Neural Network which
consists of multiple layers of neurons with one input and one output layer. The
layers are connected to each other, allowing the neurons to propagate their ac-
tivation towards the following layer. There are no recurrent connections in feed
forward networks, networks that do have these kind of connections are called
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Figure 3: Example of a three layer neural network

Recurrent Neural Networks. Each connection in the network has a weight wi,
these weights are randomly initialized between 1 and -1, and are used to weigh
all the incoming signals xi (equation 6). Next the activation of the output of
the neuron is calculated using the weighted input y, this can be done with for
example a sigmoidal function (equation 7), a hyperbolic tangent (equation 8) or
a simple linear activation function (equation 9), this result is forwarded to all
neurons connected to that specific node. Note that a multilayer network with
only linear activation functions has an equivalent single layer network that will
have the same performance. An example of a simple multilayer feed forward
neural network is shown in figure 3.

y =

n∑
i=0

wixi (6)

σ(y) =
1

1 + e−y
(7)

σ(y) = tan−1(y) (8)

σ(y) = y (9)

2.4.2 Training Algorithms

The most popular way of training a feed forward neural network is by the means
of backpropagation. The heart of backpropagation is the backwards propagation
of errors, hence its name. Backpropagation was introduced by Bryson and Ho
in 1969 [5, 24] but at first did not gain much popularity. Only until the mid
1980s the real power of the backpropagation algorithm was discovered [22].
Backpropagation is a gradient descent supervised learning method, for learning
the weights of both the hidden and output units of a neural network. Based
on the delta rule (equation 10), it requires an input pattern together with the
desired outcome of the network. The algorithm propagates the error that the
network produces at its output backwards from the output neurons to the hidden
neurons. This gradient will be used to modify the weights in such a way that
this error is minimized. In order for the weights of the neurons in the hidden
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layer to be modified correctly it is necessary to calculate how much the hidden
neuron contributes to the error in the next layer. Equation 11 describes the
backpropagation algorithm.

∆wji = α(tj − σ(yj))σ
′(yj)xi (10)

α is the learning rate

tj is the target output

y is weighted input of the neuron

xi is the ithinput

Learning rule: ∆wji = ηδjxi (11)

Output units: δj = (tj − σ(yj))σ
′(yj)

Hidden units: δj = [Σkδkwkj ]σ
′(yj)

(k=index unit next layer)

With the standard backpropagation algorithm, for each element in the train-
ing set the weights are updated towards each single element. This means that
the weights can oscillate between training-iterations. By adding a small amount
of the previous weight change we can counteract this oscillation, the magnitude
of this amount is controlled with the momentum coefficient [27]. Introducing
momentum also has the advantage that when the network weights are adjusted
in the right direction, this direction is sustained. This smooths out irregularities
in the training data, increasing the speed of convergence and providing a way
for the network to escape local minima.

There a two ways of training the network, online and offline. In online
training each time a new observation is made the networks weights are updated
towards this single observation (sample by sample). In offline training the ob-
servations are stored, and training is done on a large batch of observations (also
called batch training). The advantage of online training is that training is done
while the agent is interacting with its environment, in offline training this is
done afterwards. Using offline training however has the advantage that more
sophisticated training algorithms can be used that converge faster and are more
reliable than online gradient descent methods [21].

2.5 SARSA with Neural network

Using SARSA with a neural network has the big advantage that it is capable
of learning the Q-function, while not keeping track of the Q-table. This ap-
proach has the advantage that it is able to deal with large state-spaces, but
suffers from a longer learning stage. When using SARSA the network is used
to act in the world. Actions are selected using e.g. the ε-greedy algorithm or
Boltzmann-exploration, after each step the agent gets a reward, the SARSA
value is calculated. This value can be compared to the value that the network
outputs, this error can be backpropagated and the network will learn from this
experience (providing an output that resembles the SARSA value more the next
time it is in that state). In this case there is no test set, the performance of
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the network can not be monitored in terms of correctly classified/calculated
outputs. The performance will reveal itself through the reward gathered by the
agent, acting in the world. The hyperbolic tangent (equation 8) is nonlinear,
but (contrary to the sigmoidal activation function, equation 7) equals zero in the
origin, and its derivative equals one. This means that for small weight values
the unit will resemble the behavior of a linear unit [8]. Linear function approx-
imators have shown to converge to a good solution [26]. Using the hyperbolic
tangent now introduces us with a unit that starts out analogue to a linear unit
(when initialized with small weights), changing into a non-linear unit when this
is necessary.

2.5.1 Network Topology

In general when combining a function approximator with Q-learning or SARSA
it is common to construct one network for each possible action [7, 8]. In the
case of n possible actions, n different neural networks are used. This has the
advantage that learning the weights for a network associated with one specific
action will not interfere with the learned weights of the remaining (n−1) actions.
It however introduces a little bit more complexity into the model, requiring more
computations.

One single network to calculate the Q or SARSA value can be used. An
example with three sensors and two action nodes is provided in figure 4. The
network has action inputs, ’telling’ the network for which action the Q or SARSA
value has to be calculated. In the case of one single input node only a maximum
of three actions can be encoded (−1, 0, 1). In cases with more than three actions
we have chosen to add one input node for each action, the action that is chosen
gets the value 1 while all others get the value 0. This binarized action vector
A also allows multiple actions to be chosen at one time step, extending the
standard Q-learning and SARSA algorithms (we will not go into details as this

S
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Layer

Ouput

Layer

A

Input

Layer

i

Q
i i

Figure 4: Topology of a neural network as a function approximator for the
SARSA value (for an application with three sensors and two action nodes). S is
the sensory input vector, encoding the system state. Ai is a list of all possible
permutations of the binarized action vector. The network outputs the Q (or
SARSA) value for permutation i.
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is not within the scope of this thesis). All possible permutations Ai of the action
vector are presented to the neural network, resulting in a list of quality values
Qi. The action vector with the highest Q value ( argmaxi(Qi) ) is chosen (also
taking into account ε− greedy action selection).

A pilot experiment has shown that for the mountain car using the binarized
action input network compared to multiple networks had the advantage that it
converged faster to a good solution. Because of this we have chosen to go for
binarized action inputs for all of our experiments.

2.5.2 Training Algorithms

As a training algorithm we use a modified version of the backpropagation algo-
rithm. In our case we calculate the output of the network (let’s call this O), act
in the world according to the outcome of O, gather our reward and calculate
the SARSA value (Q). The standard backpropagation algorithm requires us
to deliver the input and preferred outcome of the network. It then calculates
the output of the network, the error and all ∆s, in the case with SARSA we
already have the output O, we can therefore skip the first part of the Backprop-
agation algorithm, and directly backpropagate the error without unnecessary
calculations.

2.5.3 Implementation

We implemented the neural network with SARSA in Matlab. Matlab offers fast
matrix calculations. This can be efficiently exploited for the calculation of neu-
ral networks [17]. Matlab however has as a downside that if and for-loops are
slow. We tried to avoid these in our implementation. However this disadvan-
tage is outweighed by the fast programming time. This project required some
exploratory research, having a high level language (like e.g. Matlab) increased
our realization speed, but is in the end slower at run-time.

The input values of the network are scaled in such a way that they all fall
in the same range, this is needed because else the network will focus, in the
learning stage, on the inputs that have the largest value. This is simply because
even though the weights might be small, these larger values will influence the
outcome of the network in a larger extent than smaller input values.

2.6 Neural Fitted Q Iteration (NFQ)

The Neural SARSA algorithms is an online approach. Another approach is of-
fline, batch-training. Riedmiller [21] introduced the Neural Fitted Q Iteration
(NFQ) as a model-free RL algorithm, which models the Q -function by a Mul-
tilayer Feed Forward Network (similar to Neural SARSA). However, instead of
updating the network’s weights after each timestep, a large number of samples
(experiences) is recorded at runtime and the network is trained afterwards (of-
fline). The used network topology is similar to the Neural SARSA algorithm,
described in section 2.5.1.

The original NFQ algorithm described in [21] is a little bit too simple for
our application, it starts out by calculating the Q values for all states. This
table is used to act in the world, gathering more experiences (the rewards for all
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encountered state-action pairs). The list of experiences grows after each time-
step. After a fixed amount of iterations all the Q-values are calculated according
to the experiences, and the neural network is trained on this data. The trained
network is used to calculate the new Q-values for all states and the loop starts
over again. This approach has two downsides, the first is that we do not have
the possibility to calculate the Q-values for all states (we avoid defining states
in our model). Furthermore the increasing size of the experience-record can
pose a problem on the computational demands of the model (e.g. in the case
of a maximum of m = 5000 steps per episode, training for N = 10000 episodes
results in an experience record of length m ∗ N = 50000000. Computers can
deal with these large tables, however storing the data has to be done on the
hard-drive: resulting in a very slow running model). Considering these two

Algorithm 2.3 Neural Fitted Q Iteration

Initialize Neural Network (NN)
Initialize Pattern Set P
Repeat N times:
s← InitialStateV ector
for each episode step i do

select a according to ε− greedy(ForwardPropagate(NN, s), ε))
Take action a, observe r, s′

s← s′

Store Experience:
P.si ← s
P.s′i ← s′

P.ri ← r
P.ai ← a
if s == terminal then

Break
end if

end for
Train the batch after every kth epoch:
if mod(N, 5) == 0 then

Initialize Goal G
Initialize Input Patterns I
for number of experiences j do
Gj ← ForwardPropagate(NN,P.sj , P.aj) +
α(P.rj + γmaxbForwardPropagate(NN,P.s

′j , b) −
ForwardPropagate(NN,P.sj , P.aj))
Ij ← P.sj , P.aj

end for
while error < threshold do

for number of experiences j do
NN, error ← Backpropagate(NN, Ij , Gj)

end for
end while
Reset Pattern Set P

end if
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points we decided to modify the existing NDQ algorithm in such a way that we
avoid these problem. This is done by calculating the Q-values for a state only
when needed (and the input vector that encodes the state is known), and the
batch-size is limited. This limited size means that after each training run the
batch is emptied (no history is kept, requiring considerably less data storage).
The final algorithm is described in algorithm 2.3. Training is performed via the
Backpropagation algorithm, described in section 2.4.2.

In the next section details of the Solar Boat will be explained, required
for modeling the dynamic behavior and control (section 3 ). In section 4, we
will return to the Reinforcement Learning algorithms with a pilot study (the
mountain car problem) as a precursory to the problem of the Solar Boat Race.
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3 Modeling the Solar Boat

For our computer simulation a descriptive model of the solar boat is constructed.
This is done because the actual boat was not ready yet at the beginning of the
project. Designing the computer simulation also aided in the mechanical design
process, revealing some important aspects of the behavior of the hydrofoil in
conjunction with the catamaran. After the modeling was completed and the
boat was taking shape, several towing-tests were performed so we could confirm
and refine our theoretical model to better match the real behavior of the solar
boat.

3.1 Equations

Our mathematical model is mainly based on the findings of [25], along with
some basic physics we came to the following set of equations, describing the
behavior of our boat. For the simulations we used a time-step. A large time-
step is desired to reduce the computation-time of our model, a small time-step
is desired for a higher accuracy of our model. The value of the time-step was
determined using a pilot experiment in which we started with a time-step of
0.01s, increasing it until the system was not able to simulate the boat correctly
anymore. This resulted in a dt which was set at a value of 0.1s.

3.1.1 Foil Drag

The drag of the hydrofoil is calculated using the following set of formulas:
Density of the water:

ρw = 1000 [kg/m2] (12)

Constants for the spray and interference drag (empirically defined, dimension-
less):

Cspr = 0.24 (13)

Cint = 0.1 (14)

Dynamic viscosity of water:

µ = 1.14 · 10−3 [Pa · s] (15)

Number of struts piercing the water:

Ns = 1 (16)

Number of corners:
Nj = 1 (17)
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Figure 5: Dimensions of a hydrofoil

Influence of foil depth:
h = depth in chords
l = aspect ratio

E = 0.85 +
0.16√
h/l

= 0.98 (18)

Angle of attack of the foil (see figure 5):

α (rad) = αfront = αback (19)

Width of the foils (see figure 5):

bfront = 0.498 [m] (20)

brear = 0.498 [m] (21)

Chord length (see figure 5):
c = 0.12 [m] (22)

Foil thikness (see figure 5):
t = 0.0125 [m] (23)

Lift, alpha cannot exceed 7◦or else the flow will separate from the wing, resulting
in stall (see also figure 6):

L(α, b, vf ) = α · ρw · vf 2 · b · c · 2 · π N with α ∈ [0◦, 7◦] (24)
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(a) Viscous Flow (α = 0◦) (b) Viscous Flow (α = 22◦)

Figure 6: Experimental flow around a hydrofoil

Dynamic Pressure:

qw(vf ) =
1

2
· ρw · vf 2 [N/m2] (25)

Friction Drag, this is the drag produced by the viscosity of the water meaning
the pressure of the water against the submersed part of the foil, traveling at a
certain speed:

Dfri(α, b, vf ) = qw(vf ) · 2 · b · c · ( 0.075

(10log(
ρw·vf ·c

µ )− 2)2
) [N ] (26)

Interference Drag, when two submerged bodies are close to each other the
amount of drag that arises is higher than the sum of the drag of both bod-
ies, this drag is produced by the pressure/wave interference between submersed
bodies and can be defined as follows:

Dint(α, b, vf ) = qw(vf ) · Cint ·Nj · t2 [N ] (27)

Spray Drag, the amount of drag produced when an object pierces the water.
This creates a spray that in its turn produces drag:

Dspr(α, b, vf ) = qw(vf ) · Cspr ·Ns · t2 [N ] (28)

Induced Drag, the amount of drag as a result of the lifting force. A foil creates
lift by bending flow. Because a pressure difference arises due to the difference
in flow velocity at the top and the bottom of the wing, water (or air) will
flow sideways, towards the tips (where the pressure difference is low). This
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Figure 7: Wake vortex on an airplane, source: NASA Langley Research Center
(NASA-LaRC)

creates turbulent flow, also called the wake vortex (see for an example figure
7). Creating this turbulent flow requires energy, but the swirling motion also
causes air to move down behind the wing (called downwash), resulting in drag:

Dind(α, b, vf ) = (
2

π · E · ρw · b2
) · (L(b)2

v2f
) [N ] (29)

The total drag of the hydrofoil can now be defined as:

Dtotal(α, b, vf ) = Dfri(α, b, vf )+Dint(α, b, vf )+Dspr(α, b, vf )+Dind(α, b, vf ) [N ]
(30)

Figure 8 shows Dtotal(α, bfront, vf )+Dtotal(α, bback, vf ) for α = 2◦, a reasonable
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Figure 8: Foil drag characteristics for α = 2◦
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angle of attack also used in moth sailboats [16], and vf ranging up from 0 till
15m/s.

3.1.2 Boat Elevation

Lifting the boat out of the water means that we have to simulate the elevation
of the boat. This also means that, as the boat gets higher out of the water the
drag of the hull decreases.
Mass:

m = 180 [kg] (31)

Gravitation Force:

Fz = m ∗ g (32)

g = 9.81 [m/s2]

Fn = Fz(in rest) (33)

We now introduce a lifting force Ffoil, this force is in the same direction as
the Fn (the normal force), we can rewrite equation 33 to 34:

0 = Fn + Ffoil − Fz (34)

As the foil is producing lift and Fz is a fixed value the increase of Ffoil will
decrease Fn. The depth of the hull when stationary (so the foil is not providing
any lift) is −0.09m, at this point Fn = Fz. At depth 0cm, Fn = 0N (the water
does not provide any buoyancy anymore), meaning that the entire weight of the
boat has to be carried by the foils (Ffoil = m ∗ g). The transition from −0.09m
to 0m introduces a decrease in Fn, this relation is dependent on the shape of
the hull (its volumetric size). We assumed that this relation, and its effect on
Fn, and therefore its effect on the resulting force Fup can be described with
equations 35 and 36 in which factor is a non-linear value between 0 and 1, with
1 = fully buoyant and 0 = on surface.

The height of the boat is now calculated using algorithm 3.1, which combines
all previous formulas.

factor = (
depth

−0.09
)
0.4

(35)

Fup = Ffoil + (Fn · factor)− Fz [N ] (36)

Algorithm 3.1 elevation(Ffoil, height, vup)

height ∈ <
Fup = Ffoil + (Fn · ( depth−0.09 )

0.4
− Fz

a =
Fup

m
vup ⇐ vup + a · dt
height⇐ height+ vup · dt
if height > strut length then
height⇐ strut length

end if
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Figure 9: Hull characteristics for a fixed water depth of -9cm

3.1.3 Hull Drag (Water)

Figure 9(a) shows the water drag of the hull for a fixed water depth (-9 cm).
The power that is needed for the boat to remain at the same velocity, given the
drag of the hull is shown in Figure 9(b).

We estimated the frontal area of the submersed part of the boat (37) and
the form factor (38) by fitting the performance of our previous boat, the sun-
limited, to our equation. The sunlimited was able to travel at a speed of 7m/s
with 2500W of power. This resulted in the factors for our new boat:

Wetted surface area of the boat:

Sw = 0.3 [m2] (37)

Form factor (based on the drag coefficient, dimensionless):

Cw = 0.04859 (38)

Water Drag:

Dwater =
1

2
· Sw · ρw · Cw · vf 2 [N ] (39)

The previous formulas are for a normal boat, when the depth is varied the
resistance will be different. As the boat gets lifted out of the water the drag will
decrease. We estimate that this will happen similar to the change in buoyancy
(formula 35):

Dwater(depth) =
1

2
· Cw · Sw · ρw · vf 2 · (

depth

−0.09
)
0.4

[N ] (40)

Figure 10 shows the result of equation 35 for a water depth of -9cm up till
0cm (where the boat is completely lifted out of the water). Lifting the boat out
of the water will decrease the drag significantly, this means that even when not
completely hydrofoiling a hydrofoil can support the boat by decreasing its drag
as long as the drag of the submersed foil does not exceed the amount of reduced
drag of the hull.
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Figure 10: Drag as a function of the Hull’s depth

3.1.4 Hull Drag (Air)

Air Density:
ρa = 1.25 [kg/m2] (41)

Frontal area of the boat:
Sa = 0.35 [m2] (42)

Form factor (based on the drag coefficient, dimensionless):

Ca = 0.4 (43)

Dynamic Pressure:

qa(vf ) =
1

2
· ρl · vf 2 [N/m2] (44)

Air Friction:
Dfri air(vf ) = qa(vf ) · Sa · Ca [N ] (45)

Figure 11 shows the result Dfri air(vf ) for vf = 1 up til 15m/s
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Figure 11: Air drag as a function of the velocity
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3.1.5 Thrust

We have described numerous drag-coefficients, these are all forces that slow the
boat down. Now lets look at propulsion. This can simply be described as a
force Fthrust, in opposite direction of all drag coefficients. The acceleration of
an object with mass m is defined as:

a =
F

m
(46)

The velocity of the object depends on the velocity that it already has, and
the timestep ( dt ) at which we sample our simulation:

v ⇐ v + a · dt (47)

Our absolute traveled distance depends on the velocity, and again the timestep
( dt ):

x⇐ x+ v · dt (48)

Substituting F with Fres, the total of all horizontal forces ( Fres = Fthrust−
(Dfri air(vf ) +Dwater(depth+Dtotal(α, b, vf ))) ) acting on the boat now gives
us a way of simulating our boat.

For our simulation we want our amount of Thrust to be dependent on the
Power input, delivered to the motor. The amount of thrust is determined using
Javaprop [12]. Our used propeller is imported in Javaprop’s simulation, de-
livering us with a lookup table containing the amount of power going into the
Propeller and the resulting amount of thrust that can be delivered for one single
speed. This simulation is done for range of speeds (from v = 0 up till v = 23 in
twenty steps (defined by Javaprop)) and Power (P = 0 up til P = 3000 in steps
of 100W). The resulting lookup table can be used to determine the amount of
thrust in Newtons given the current speed and Power input. A discount factor
is used to include the efficiency of the motor with controller and all involved
mechanics, this is a simplification and the size of this discount factor is roughly
estimated at an 0.6% efficiency. Future work should investigate the efficiency of
all the electronic and mechanical systems on the boat, this however is beyond
the scope of this research project and should be performed externally.

3.1.6 Cornering

Traveling at a high velocity means that care has to be taken when taking corners.
The speed at which a corner can be taken on hydrofoils is dependent on the
sailing height (the clearance between the hull and the water), the width of the
boat and the mass. Given a total mass m of 180kg of weight gives Fz = 1765.8N ,
x1 = 1.1m and x2 = 0.3m respectively being the distance from the center of
the boat to the outside of the hull and the height of the hull above the water
(see figure 12.a). The maximum angle (between the horizontal plane and the
deck) that the boat can tilt before one of the hulls hits the water is defined as

β = tan−1(
x1
x2

).

The maximal centrifugal force Ax can be defined as being Ax =
x2
x1
· Fz =

481.6N . This maximum velocity for a given radius can now be calculated using

32



x

x

1

2

(a) Dimensions

β

z

xA
F

(b) Resulting forces when cornering

Figure 12: Cornering with a hydrofoiling catamaran

formula 49. The result of this equation is shown in figure 13. The inverse of
equation 49 is given by 50, with this equation we can calculate for a given speed
what the maximum corner radius is that the boat can handle.

vcorner(rcorner) =

√
Ax · rcorner

m
(49)

rcorner(v) =
m · v2

Ax
(50)

It is hard to measure beforehand the radius of every corner for the solar
race track, it is also not possible to deduce this from the GPS data (which are
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Figure 13: Maximum velocity given a corner radius
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Relative Angle (◦) Corner Radius Max Velocity Occurrences
0 - 40 > 40m none 571
40 - 80 > 40m none 190
80 - 120 ≈ 20m 7m/s 44
120 - 180 > 40m none 1

Table 1: Correlation between Corner Radius and Relative Angle

merely way-points). They can be used to determine the relative angle between
two track-segments. We calculated the angles for every turn in the entire race,
random measurements show that there is a correlation between the corner radius
and the relative angle of the corner. These measurements have provided us
with the information shown in table 1 (with the angle meaning the change in
bearing, 0◦ means no change in bearing while 180◦ means going in the opposite
direction). The maximum angle that is encountered during the race is 174.4◦.

We use this information to gradually reduce the speed of the solar boat in
the simulation towards 7m/s when facing corners which fall in the 80-120◦bin
if the speed of the boat exceeds the safe limit. Appendix A.2 (figure 29) shows
all the corners that fall into this bin on the entire track.

3.1.7 Weather

Weather data is taken from the KNMI-dataset [11], this dataset contains weather
information from 1987 until now with a resolution of 1 hour. The weather sta-
tion of choice is located in the city Leeuwarden (lon: 5.755 lat: 53.225), this city
acts as both the starting and finishing point for the Frisian Solar Challenge. All
the elements that are recorded are summarized in Appendix 6.

The global radiation, Q (in J/cm2h−1), during one hour can be converted
to Watt using the following equation:

nJ/cm2h−1 =
n

3600
· 10000 [W/m2] (51)

As our initial global radiation model we averaged the global radiation data
from the KNMI over the last ten years. This resulted in the mean radiation-
estimation shown in figure 14. By introducing a factor we can scale this figure
so that it matches the amount of power that the boat actually receives. This
factor can change over time, which can be interpreted as changing weather (e.g.
for the simulation of clouds).

We extended this simple model with a scenario based approach. We set up
several scenarios for the weather (as discussed in section 2.1.5), all taken from
the KNMI-dataset. The KNMI-dataset contained the global radiation data of
279 days (in Juli) with a one hour interval. For each simulation iteration we
randomly choose a day as our scenario and run our experiment. This way the
boat will learn to cope with all possible weather situations that were perceived
in Leeuwarden over the last 9 years.
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Figure 14: Global radiation, averaged over the last ten years

3.1.8 Solar Panels

In our model we incorporate the expected amount of energy coming from the
solar panels. For this we are interested in the average sunshine duration, the
percentage of maximum potential sunshine duration and the global radiation
(respectively SQ, SP and Q in table 6). Given the starting time of each track
and the GPS information, we can calculate the zenith and azimuth angle of the
sun (see also figure 15). The projected area of any surface is given by equation
52, in which β is the angle between the surface and the line of sight, and A is
the true area of the surface (with β = 0). For a Rectangle this can be simplified
to equation 53 with L being the length of the rectangle and W the width.

Aprojected =

∫
A

cosβ dA (52)

Aprojected−rectangle = L ·W cosβ (53)

Calculating the projected area of our solar panels and taking into account
the efficiency of the solar panels at different angles (to be added later), when

Figure 15: Azimuth (A) and Zenith (z) angle
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given the solar radiance we can determine the total amount of energy that we
receive from the sun.

3.1.9 Shadow

Shadow influences the amount of sun-power reaching the solar panels. For an
accurate simulation all obstacles around the race-track and their heights have
to be recorded. Given the height of the objects and the distance to the boat it
is possible to calculate if the object is dropping a shadow on the boat, reducing
its energy input. This however requires a lot of annotations (the locations and
heights of the objects), but also calculations. Therefore we have chosen to
simplify this issue. The simplification comes down to only taking into account
very large objects, from which we know for sure that they will cast a shadow
on the track. The GPS locations of all these objects should be recorded. Take
for example a tree, it can be defined as one GPS coordinate (its root), however
it casts a large shadow. We have defined that when the boat is within 5m from
a shadow-location, it affects the solar input with a factor Zshadow. This means
that the tree will cast a shadow of 10m long. This is a simplification, not all
trees will have a shadow that is 10m long, and also not all objects which cast
shadows on the track are trees (there are are also buildings that influence the
input from the sun). When there are objects which cast bigger shadows, more
GPS coordinates have to be added (e.g. with lines of trees). Only recording the
GPS coordinates however is not enough, one also needs to calculate the angle
between the objects and the boat. If this angle is in the same quadrant as the
azimuth angle, the object can cast a shadow on the boat. Only if this is true
(and the boat is within 10m of the object) the sun intensity is decreased by a
factor Zshadow = 0.6 (also an estimation).

3.1.10 The Race

The Frisian Solar Challenge follows an ice speed skating competition with a
length of 220km. The race is conducted on canals, rivers and lakes and divided
into six stages. The GPS coordinates of the track are built in Google Maps, from
which they were exported to a .kml file. We have build a Matlab function that is
able to import this kml file into our simulative environment. The imported data

Day Stage Km Start Time
(estimated)

Monday 5 July Leeuwarden - Sneek 26.0 11:00
Sneek - Sloten 20.0 14:00

Tuesday 6 July Sloten - Bolsward 58.0 10:00

Thursday 8 July Bolsward - Harlingen 18.8 11:30
Harlingen - Franeker 11.8 15:00

Friday 9 July Franker - Bartlehiem 30.3 9:00
Bartlehiem - Dokkum 13.0 14:00

Saturday 10 July Dokkum - Grote Wielen 25.0 11:00
Grote Wielen - Leeuwarden 5.4 15:00

Table 2: Race schedule Frisian Solarchallenge 2010
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Figure 16: Two samples of the GPS information of the track used in our simu-
lation

contained way-points, between these way-points lines can be drawn; enabling us
to calculate the length of the track and the angle of all corners (see also section
3.1.6). A summary of the race is provided in table 2. Two samples of the tracks
being used are shown in figure 16. All tracks can be found in Appendix A.2.

3.2 Data Gathering and Model Confirmation

As the boat is beginning to take shape it is important to validate our model.
In our model we made several (large) assumptions, these represent themselves
in three ways. First we assumed that we could describe the hydrofoil behavior
according to the formulas given by [25]. Secondly we describe the behavior
of the air and water resistance in a similar way. Thirdly some parameters
for the formulas had to be estimated. Validating our model means that we
first have to look at the most important factor, formulated as a hypothesis the
research question becomes: ”Can we describe the behavior of our hydrofoils and
catamaran using our simple formulas?”.

If this is the case the next hurdle becomes refining our parameters, tweaking
the values until our recorded data resembles the curves provided by the computer
model. More about this will be discussed in section 3.2.1.

If this is not the case our entire set of formulas can be set aside. In this case
we have to find a way of recording the drag for the different input parameters
that are important. More about this will be discussed in section 3.2.2.

3.2.1 Refining our Model

If we are allowed to refine our model we have to find the values for all our
parameters, the parameters that have to be refined are:

• Cspr (equation 13)

• Cint (equation 14)

• E, h, l (equation 18)
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• αfront and αback (equation 19) At what angle is the foil set up, and what
is the influence of steering the tip? Can this be translated in terms of
changing the value of α.

• Sa (equation 42)

• Sw (equation 37)

• Ca (equation 43)

• Cw (equation 38)

Variables that have to be previously defined/measured, not following from the
experiment (Difficulty: The dimensions of the bladerider are not uniform):

• bfront (equation 20)

• brear (equation 21)

• c (equation 22)

• t (equation 23)

During the experiments measurements that have to be taken are:

• Velocity. We have to measure the velocity of the boat, GPS is not ac-
curate enough. For this we suggest logging the speed with a standard
boat-speedometer. When this is difficult, measurements can also be taken
from the winch. This however assumes that we do not have any slack
in the pulling-cable. The RPM of the winch can be recorded, using the
diameter of the winch we can calculate the speed at which the boat is
traveling.

• Drag. Drag should be recorded by a digital force gauge between the
pulling-rope of the boat and the boat itself. Using the velocity and the
drag we can calculate how much energy is needed for the boat to travel
at this speed.

• Angle of Attack. α should be recorded throughout the experiment, this
value influences the drag significantly. Since the main foil is stationary we
suggest measuring the angle of the sensor.

• Height. Height measurements should be taken, when the boat is foil
borne the drag of the water on the hull is zero. When performing our
data analysis it is important to know when the boat is hull borne or foil
borne.

• Water Depth. The water depth influences the performance of both the
hydrofoil and the hull, this means that recording the water depth gives us
the ability to analyze these effects. After the first experiments we have
to find another spot, where the water depth is sufficiently/significantly
different. This will also be discussed in section 3.2.3.
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For this refinement we have to do a series of towing-tests, from 0m/s we pull
the boat through the water, in several configurations (hullborne and foilborne).
The model has to be fitted to the drag curves that are recorded. As there are
a lot of parameters, knowing which parameters have to be tweaked is difficult.
In order for our job to be simpler we suggest simplifying our model (several
factors are multiplied with each other), resulting in less variables (but also the
variables have less ’meaning’). This will be done beforehand, hopefully resulting
in less factors to be tuned, giving us the ability to quickly check if we can use
our model or not.

The drag during the extending and retracting moves are difficult to capture
in our model, we suggest recording the drag (as discussed in section 3.2.2) in
this situation and skipping capturing this situation in the model.

The parameters of our model are fitted by hand, fine tuning the parameters
of our simulation until they match the recorded data. This might seam tedious,
but a lot of equations can be simplified in such a way that very few parameters
have to be tuned.

When we are unable to fit our model to the measured data we must con-
clude that it is not possible to model the solarboat with our equations, we can
overcome this by replacing all the equations with recorded values. This will be
discussed in the following section.

3.2.2 Discarding our Model

If we are not allowed to refine our model we have more work to do. Instead
of using formulas to define our model we now have to measure the drag of the
boat/foils in all possible cases. We have chosen for a rotary suspension of our
foil, extending and retracting the foil means that the speed of the boat decreases
to a speed between 0 and 2m/s, this depends on the thrust being applied during
the transition. This is convenient for the data analysis, we now only have to
measure the drag of the boat from 0m/s up till its top speed, including the phase
transition. This test should also be performed for the boat without extending
or retracting the foil (only the drag of the hull has to be determined).

We also have to determine how much drag is being produced when the boat
is moving at velocity v and the foil is being extended or retracted. The velocity
at which this should be performed for the extension move is the maximum hull
borne velocity of the boat. The velocity at which the drag should be measured
for the retracting move should be the speed at which the boat is no longer able
to hydrofoil. This means that we first have to determine when hydro foiling, at
which speed the boat cannot keep itself out of the water (transitioning between
the foil borne to the hull borne state).

3.2.3 Future Work

In theory the model confirmation sounds straightforward, however in practice
it is difficult to get good measurements. Difficulties with the boat and with the
recording equipment cost a lot of time, resulting in the absence of reliable data;
even two weeks before the race. Given that our final model has to train for quite
some time (days, or even weeks), adjusting our model to fit the real data was
not feasible given the limited amount of time before the race. This however is
very important, without validation our model is of no use in the real world. If
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this project is to be continued in the future it is important that data gathering
takes place at least a few months in advance of the race. In this particular case
this was not possible due to a lot of setbacks, however after the race a lot of
readings can still be done; improving our model for next years.

When all the drag curves, mentioned in the previous sections, are measured
it is possible to focus on the influence of water-depth on our boat. Recording
the water depth at our first test-site will give us one sample, next we have to
find a spot where the water depth is sufficiently different (depending on the
first test-site), but uniform (the depth should not change much throughout
the experiment). Taking the same measurements, as described in the previous
sections, we can investigate how much the influence of water depth is to the
total drag of a bullhorn and foil borne boat and use this to come to a better
simulation of the solar boat.

3.3 MATLAB

For our implementation we chose for MATLAB (MATrix LABoratory), a nu-
merical computing environment developed by MathWorks. MATLAB is specif-
ically optimized for matrix manipulations, but also for the plotting of functions
and data and implementation of algorithms. User Interfaces can be created
and it can be interfaced with other programs. Being a high level programming
language, the resulting code is slower than for example C, C++ or Java, but
because it is a high level language programs can be quickly developed. This
is an advantage in our experiment, a lot of modeling has to be done, the easy
plotting tools allow quick debugging and gives us the ability to come up with a
functioning and flexible program quickly.
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4 A Pilot Experiment In Reinforcement

Learning: The Mountain Car

The Mountain Car problem is a reinforcement learning problem which acts as
a step up towards the more complex problem of the solar boat. It is used in
several articles discussing (PO)MDPs [3, 26, 9]. The mountain car task falls
within the same range as another popular reinforcement learning problem, the
inverted pendulum [2, 30]. Starting with a well-understood toy-problem gives
us the ability to benchmark our algorithms, iteratively increasing its complexity
until we end up at the simulation of the solar boat for the entire race.

4.1 Problem Description

Consider an underpowered car that has to be driven up a steep mountain road
(figure 17). The gravity in this model is stronger than the car’s engine, this
means that the only solution for reaching the goal is first moving away from the
goal up the opposite slope on the left. Then, by applying full throttle the car is
able to build up enough kinetic energy to make it higher up the slope, this may
be repeated several times. The beauty of this problem is that before reaching
the goal, things have to get much worse (the distance between the car and the
goal has to increase). In an MDP situation the car can perceive its position and
velocity. When the current position of the car is unknown to the system the
problem becomes a POMDP. The mountain slope can be discretized into states,
including the goal states. This means that a tabular algorithm can be applied
to this problem.

4.2 Implementation

There are several implementations of the mountain car problem available, we
used Matlab for the implementation of our reinforcement learning framework.
A Matlab implementation of the mountain car problem is given by José Anto-
nio Martin [14]. This implementation is modified so it can be used with our
reinforcement learning framework.

The mountain of the problem is defined as a cosine function, the car moves
by subjecting it to a force (force direction). This force can be to the left,
right or zero (when no force is being applied). These three actions are the only
actions that the agent has access to. For every time-step that the car does not
reach the goal it gets a penalty (a negative reward), when the goal is reached

Figure 17: The Mountain Car Problem, the star denotes the goal [14].
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the simulation is ended. A complete description of the simulation is given in
algorithm 4.1.

Algorithm 4.1 Simulate MountainCar(force direction, position, velocity)

force direction ∈ {−1, 0, 1}
if position < terminal position then
loss = 0.999 (friction coefficient)
velocity ⇐ loss ∗ (velocity+ (0.0005 · force) + (−0.0025 · cos(3 · position)))
position⇐ position+ ∆t · velocity
Reward⇐ −1

else
Terminate Simulation

end if

Three types of algorithms were implemented:

• Random action selection: At each time-step the action that the policy
chooses is completely random, this acts as a baseline for comparing the
performances of our policy learning algorithms.

• Tabular SARSA (POMDP): A tabular implementation of the SARSA pol-
icy learning algorithm.

• NN-SARSA (POMDP): The neural network implementation of the SARSA
policy learning algorithm.

4.3 Results

We modeled the problem as a POMDP, meaning the mountain car can only
perceive his own velocity, it does not know where it is on the slope. As a
performance measurement we took the number of required iterations for the
algorithm to reach the goal, with ε = 0. This means that no random effects
influence the performance of the agent.

We performed three experiments in which the same settings for the algo-
rithm were used, for each experiment 100 trials were performed. The maximum
number of steps for each episode/trial was set at 1000 steps.

The following SARSA settings were used for the tabular algorithm:

learning rate = 0.5 (54)

γ = 1

ε (i) = 0.02 · 0.995i

with i being the number of successfully finished episodes
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For the NN-SARSA algorithm we coarsely searched the parameter-space and
came up with the following parameters (The action input node varies between
-1 and 1, where -1 stands for steering to the left, 0 for performing no action and
1 steering to the right. See also section 2.5.1):

nsensor−inputs = 1(velocity) (55)

naction−inputs = 1

nhidden = 20

noutput = 1

learningrate η = 0.03

momentum = 0.1

γ = 1

ε (i) = 0.02 · 0.995i

with i being the number of successfully finished episodes

For the tabular SARSA implementation we tested four different situations
with 20, 50, 100 and 200 velocity states, together with 3 actions this resulted in
a Q-table of size 20*3 up till 200*3.

The results of the experiments are shown in figure 18. The Random action
selection algorithm required an average of 903.5 steps to reach the goal with
a standard deviation of 180.7. The Tabular SARSA algorithm with 20 states
resulted in a mean performance of 897.4 steps with a standard deviation of
180.4. The best performance came of the Neural Network SARSA algorithm,
requiring an average of 275.8 steps with a standard deviation of 20.2 to reach
the goal. The minimum number of steps required was 211 steps.
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Figure 18: Results of the (POMDP) SARSA mountain car experiments. Lower
equals a better performance (less steps required to reach the goal). Errorbars
denote the standard deviations. The Neural Network SARSA algorithm out-
performs the Tabular SARSA implementations and Random Action Selection
significantly.
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A one-way ANOVA was used to test for performance differences between the
algorithms. Performance has been found significantly different across these six
algorithms, F (2, 594) = 193.19, p < 0.01.

Post hoc comparison using the Tukey HSD test indicated that the perfor-
mance of both the Random (M = 925.4, SD = 155.1) and the Tabular 20 (M
= 897.4, SD = 180.4) algorithm were not significantly different. They however
showed a significant difference towards the Tabular 50 (M = 638.3, SD = 222.7),
Tabular 100 (M = 616.9, SD = 192.9) and the Tabular 200 (M = 671.0, SD =
166.5) algorithm (which show no significant difference between one another).
The Neural Network algorithm (M = 275.8, SD = 20.2) proved to be the best
algorithm, and showed a significant difference towards all other algorithms (all
with a 95% confidence interval).

The NN-SARSA implementation outperformed both the Random Action Se-
lection and Tabular SARSA algorithms significantly in the case of the POMDP
mountain car problem.

4.4 Discussion

The mountain car is an easy problem in the sense it only has to figure out that
when the car is moving to the left, it should apply force to the left and vice
versa. This means that the simplest (and optimal) policy is always to apply
force in the direction that the car is moving, this is very easy to learn for any
function approximator. When the problem is modeled as an MDP, the mountain
car can perceive its speed and position on the slope. Upgrading the problem
towards a POMDP leaves out the perception of the position, this actually filters
out trivial information (location). The remaining information (velocity) is the
only variable that is required for reaching an optimal policy. The experiments
however showed that the Tabular SARSA algorithm did not perform as well
as the NN-SARSA algorithm. Our first assumption was that this was due to
the number of states in the system, increasing the number of states should
induce better performance. This was the case when comparing the Tabular
SARSA with 20 states with the setup with 50 states, however increasing the
number of states even further did not yield any improvement. Multilayer Feed
Forward Neural networks can take a continuous variable as input, and provide
a non-linear mapping from input to output states. This has several advantages,
mainly the advantage is that no discrete number of states have to be defined
(creating a continuous state-space). One might say that this could explain why
the NN-SARSA implementation outperformed the tabular approaches, however
this is not backed up by the results of increasing the number of states in the
Tabular SARSA algorithm (no significant difference was observed when the
state space becomes greater than 50 states). The good performance of the NN-
SARSA algorithm is probably due to the nonlinearity and symmetry of the tanh
activation functions of the neurons. The tanh function is negative for activations
below the bias (and vice versa positive for activations above the bias). When
randomly initializing the network with small weights between +0.15 and -0.15,
there is a 50% chance that the input variable (the velocity in this case) will
produce an activation with equal sign. Combining this with the input action
node means that only a relation between the action node has the same sign
as the velocity node, or vice versa. This can quickly be learned by a neural
network. We conclude that the initial architecture of a non-linear Multilayer
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Feed Forward Network is in favor of solving the mountain car problem. This
however might not hold for other reinforcement learning problems (e.g. the
solarboat). Using a Feed Forward Artificial Neural Network to estimate the Q-
value of the SARSA algorithm still appears to be promising for POMDPs. The
subproblem of the mountain car laid down the foundation for the much more
difficult problem of making optimal use of available power in a solar powered
boat which we will discuss in the next section.
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5 Making Optimal Use of Available Power

And Optimizing Overall Speed in a

Small Solar Boat Race

After tackling the mountain car problem, we iteratively increased the complexity
of our model. We first designed an algorithmic model of the solar boat, described
in section 3 [25]. This model is at the heart of our following experiment, the
simulation of a solar powered boat in a small race (without obstacles and events
along the way).

5.1 General Problem Description

Consider a straight,linear track on which a speed race is held. The given amount
of energy is not enough for the boat to reach the finish-line, giving full throttle
the entire time. This means that for optimizing the overall-time in this race-
situation, a policy has to be found which utilizes its energy in a smart way.
Changing from hullborne to foilborne will also aid in the overall speed of the
boat. Deploying the hydrofoil lowers the drag and increases the overall speed
of the boat, giving it the ability to finish the race within time.

5.2 Implementation

The length of the race was set to 500m, the maximum number of steps was set
to 5000 (with dt set at 0.1 the boat has a total of 500 seconds to complete the
track). A Graphic User Interface was constructed so we could view the different
variables change over time and analyze the boat’s behavior. The interface is
displayed in figure 19.

5.2.1 Modelling the Solar Boat

Our model is constructed around the physical formulas [25] provided in section
3. These formulas give us the ability to calculate the drag of the boat when
sailing normally.

We did not implement the entire model, making only use of the following
sub-models and leaving out environmental variables (weather, bridges, etc):

• Foil Drag, the drag caused by the submersed hydrofoil (section 3.1.1)

• Boat elevation, the influence of transitioning from hullborne to foilborne
on the final drag (section 3.1.2)

• Hull Drag (Water), the drag of the submersed part of the hull (section
3.1.3)

• Hull Drag (Air), the drag of the remaining part of the hull through the
air (section 3.1.4)

• Thrust, the influence of thrust on the velocity of the boat (section 3.1.5)
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Figure 19: Simulation information displayed in a graphical interface, designed
for the small race problem. The square denotes the starting point and the star
the goal. The underlying graphs show several parameters, the dashed line in
the Foil Position graph shows the position of the hydrofoil, the solid line shows
the actual height of the boat with a level of 0 representing the water’s surface.

The battery size was set at 3600000 dJ (100 Wh) for each episode. dJ is used,
making it easy to calculate the energy consumption (the 0.1 factor originates
from the time-step dt). The amount of thrust is given in Watt, when the battery
is depleted the thrust becomes zero.

Epsilon (ε) is set to 0.02, meaning there is a 2% change for the algorithm
to choose a random action via ε− greedy action selection. The value of epsilon
is annealed at every successful run with a factor of 0.9999. This resulted in
ε (i) = 0.02 · 0.9999i (with i being the number of successful finished runs),
providing us with a very small value for ε at the end of the simulation (if all
runs are successful) ε (10000) = 0.0074.

Our policy has been allowed to perform the following actions:

• Increase Throttle: increase the throttle with 100W

• Decrease Throttle: decrease the throttle with 100W

• Deploy Foil: lowers the foil into the water

• Retract Foil: retracts the foil out of the water
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• Nothing: taking no action

5.2.2 Reward Function

The focus at the beginning of this project was on the optimization of the energy
consumption of the boat. Focusing mainly on using energy economically will
result in unwanted behavior, as discussed in section 2.1.2. The competition that
we are participating in is a competition of speed, the competitors will try to
complete the race in the shortest amount of time. The amount of energy used
is not a criterion in this competition. However the amount of energy that is
available to the competitors is limited. Using energy wisely, not wasting it on
trivial actions, will result in a better result in the race.

Designing the reward function becomes a simple matter of assigning a neg-
ative reward to the distance that the agent has to travel towards the end of the
race. Given limited amounts of resources the agent will not be able to complete
the race if going full throttle for the entire time, a policy has to be found that
varies the amount of throttle and makes the decision to deploy (or retract) the
hydrofoil in such a way that it optimizes its overall speed.

The resolution/time-step of our simulation was set at 0.1s, at each time-step
the Q-values for all actions are calculated, an action is taken and the Q-values
are updated towards the received reward. We are not able/allowed to directly
control our boat, meaning that the driver has to interpret the outcome of our
system and act accordingly. Providing the driver with an update every 0.1s
puts a large mental strain on the driver, therefore we would like to penalize
performing a lot of different actions within a short time interval. This is done
by adding a negative reward for performing different actions shortly after one
another.

A formal definition of the final reward function is given in equation 56.
When only taking Ds into account the reward function provides a mapping
from Ds → Q, in other words, Q describes the integral of the percentile distance
towards the goal with respect to time. However by adding a negative reward for
an action taken shortly after one another (Dc), this description is not accurate
anymore. Dc encodes the elapsed time between actions, as time between actions
increases this value will tend towards zero. Dc is scaled so that it falls withing
the range of [0 < Dc < 0.1], since Ds falls in the range [0 < Ds < 1 Dc] adds
a small negative reward in the case of an action being taken within φ seconds.
Taking the sum ofDs andDc gives us a new reward function, taking into account
both the distance that is has to travel, and the time elapsed between now and
the last action. Dc provides a negative reward when a decision is taken within
φ
dt seconds after the last decision proportional to the elapsed time. Making the
decision to take no action is not counted as a decision.

The reward has to be normalized in such a way that it is within the scope of
the output of the neural network. For example when the reward function can
range from −1 up till 1 at each time-step, after n iterations the total reward rtot
that can be received will be [(−1 ·n) ≤ rtot ≤ (1 ·n)], given a hyperbolic tangent
(equation 8) with a range between −1 and 1 the reward has to be divided by n
for it not too exceed these limits (given discount factor γ = 1).
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Ds = −smax − scurrent
smax

(56)

(with smax being the track distance,

and scurrent the current position)

Dc = −100 + (tdecision − tcurrent)
(φ/dt) · 10

(57)

Dc = Min(Dc, 0)

(after φ seconds reward is limited to 0

tcurrent is the current timestep

and tdecision being the timestep of the last decision)

Dtotal = Ds +Dc

5.2.3 Neural Network

The neural network acts as a function approximator, estimating the SARSA
value for any given state, action pairs. Since we have not defined states, the
network takes input variables from which the state can be deduced. The weights
of the network are randomly initialized between -0.15 and 0.15. Small weight-
values simulate the behavior of a neural network at the beginning of the ex-
periment, giving it the ability to transcend the linear behavior of the network
towards non-linear when this is required. The network takes six inputs:

• Velocity (m/s)

• Position (m)

• Throttle (W)

• Drag (N)

• Battery Energy (dJ)

• Time elapsed after last action (0.1s)

The Inputs of the neural network are normalized. This ensures that they
have about the same numerical range, bypassing the problem that the weights
of the network will focus on the large input values at the beginning of the exper-
iment, ignoring the smaller values which might also contain vital information.
The maximum velocity that can be achieved by the boat is estimated, we de-
fined the range a little bit larger and set the maximum velocity to 20m/s. The
track distance varies per track for the final model, but in our sub-experiment we
only simulate a fixed linear track with a distance of 500m. MaxThrust is set
at 3000W. The maximum drag that can be perceived is set at 5000, this value
is empirically defined, mainly based on the drag that is created while deploying
the hydrofoil into the water. The battery capacity is set at 3600000 deci Joules,
this is the same as 100Wh. 100Wh is not enough for the boat to reach the
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Table 3: Neural Network Inputs

Input: Normalization factor

Velocity (m/s) MaxV elocity−1

Position (m) TrackDistance−1

Throttle (W) MaxThrust−1

Drag (N) MacDrag−1

Battery Energy (deci Joules) 3600000−1

Time elapsed after the last action (0.1s) 100−1

finish line within 5000 steps (500 seconds) with the throttle set at maximum.
The time between the last action and the current time-step is also taken as an
input, enabling the network to deal with the action frequency. After ten seconds
there is no negative reward anymore, meaning that normalization can be done
by performing a division by 10 ∗ dt = 100 steps. All normalization factors are
shown in table 3.

No energy from the sun is modeled, the only source of energy is the battery
in this experiment.

Given the six inputs for simulated sensors, an additional five different input
nodes are required for the binary encoding of the actions. This results in a total
of eleven input nodes.

For the output layer we have chosen one single (tangent hyperbolic) output,
which provides us with the estimated Q-value for each encoded action. Because
the output is non-linear the actual size of the Q-value is not estimated, only
its size with respect to all other state, action pairs is estimated. Estimating
the actual Q-value (with a linear output node) is useful when the Q-value says
something about the environment. For example if the reward value only gives
a negative reward for each timestep, the Q-value will encode the time required
for the agent to reach the finish line. In our case the reward function is more
complex, no such translation can be made; so the actual size of the Q-value
does not matter for us. A pilot experiment also showed that a network with
a non-linear output converges faster to a good solution than a network with a
linear output node, for this reason we have chosen to use the tangent hyperbolic
activation function for our output node. More information about the network
topology can be found in section 2.5.1.

For the neural network settings we coarsely searched the parameter-space,
this resulted in the following parameters:
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nsensor−inputs = 6 (58)

naction−inputs = 5

nhidden = 20

noutput = 1

learningrate η = 0.03

momentum = 0.1

5.2.4 SARSA

The discount factor γ is set at 1, meaning that no discounting is taking place.
This value is chosen because we are situated in a world with a finite horizon,
the number of steps for the simulation is limited and therefore the reward is
bounded.

γ = 1 (59)

ε (i) = 0.02 · 0.9999i

5.2.5 NFQ

For the Neural Fitted Q Iteration algorithm we used the same neural network
as for the NN SARSA algorithm, however in batch mode, as is typical for NFQ
(see also section 2.6). We experimented with the setting for k (the number of
epochs that is used to gather data). The bigger the size of batch, the slower
the system becomes. This tradeoff resulted in a value of k = 5, still allowing
fast computations and a batch size that is reasonably large for the network to
train on (multiplying with the maximum number of steps (5000), results in a
maximum of 25000 observations in our batch). We train the network after each
kth epoch until the training error is less than 0.001.

5.3 Results

For the final experiment we made a comparison between the Random selection,
NN SARSA and NFQ algorithm.

Environmental Settings:

E battery = 36000000 deci Joules (60)

MaxThrust = 3000Watt

MaxDistance = 500m

dt = 0.1 s

MaxSteps = 5000

epochstraining = 10000
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Experiment 1: Random action selection: We took a large amount of 10000
samples for the random action selection algorithm, this amount of samples is
large with respect to the NN SARSA algorithm (which has twenty samples),
however this provides us with a better estimation of the performance of a random
agent (because of the difficulty of this task it is hard for random action selection
to finish). The amount of steps required for the random action selection was
4819.1 with a standard deviation of 743.8 steps. The fastest instance of the
Random action selection algorithm finished the race in 631 steps (63.1 seconds).

Experiment 2: SARSA with neural network (NN SARSA): This experiment
requires quite some computation time, each training epoch (of 10000 episodes)
took between 8 and 20 hours to complete (the better the performance, the
quicker the finish is reached, this therefore increases the speed in which all train-
ing epochs are completed). Twenty samples were taken, resulting in a mean per-
formance of 929.1 with a standard deviation of 273.7 steps. The fastest instance
of the NN SARSA algorithm finished the race in 521 steps (52.1 seconds).

Experiment 3: Neural Fitted Q Interation (NFQ): This experiment is slightly
quicker than the NN SARSA algorithm because batch-training is used (offline).
Twenty samples were taken, resulting in a mean performance of 665.2 with a
standard deviation of 152.3 steps. The fastest instance of the NFQ algorithm
finished the race in 517 steps (51.7 seconds).

The results are shown in figure 20, the best algorithm finished the race in
51.7 seconds (an instance of the NFQ algorithm).

Because of the different sample sizes an F-test for testing the equality of
variance was used, this proved that the variances are significantly different,
F(999,19) = 7.38, p < 0.01. Because of this difference Welch’s t test was used
to test the difference between the two algorithms. This test showed a significant
difference in performance between the Random and the NN SARSA algorithm,
t(10018)=23.36, p < 0.01.
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Figure 20: Small race results (500m), errorbars denote the standard deviations.
Lower equals a better performance (less steps required to reach the goal). NN
SARSA outperforms the Random algorithm. The NFQ algorithm outperformed
both the NN SARSA and the Random algorithm ( p < 0.01 ).
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Figure 21: Convergence of both the NN SARSA and the NFQ algorithm, NFQ
displays better (more stable) convergence.

Finally we compared the NN SARSA algorithm with the NFQ algorithm
using the student t-test. This test showed a significant difference in performance
between the NN SARSA and the NFQ algorithm, t(38)=3.86, p < 0.01.

5.4 Discussion

Figure 21.a shows the convergence for the NN SARSA algorithm, on most cases
the algorithm converges nicely. However as seen in the graph sometimes a dis-
continuity in the decreasing performance is observed. In this specific case this
periodic decrease in performance is caused by two runs (figure 22.a shows a
decrease in performance after some time. Figure 22.a displays how after about
6000 training epochs the algorithm ’loses focus’. This decrease in performance
is caused by randomly selecting an action that forces the algorithm towards a
less optimal decision sequence, resulting in a decrease in performance. The net-
work regains performance after about 1000 epochs but still performs worse than
before. It however does not recover from this (within the limit of 10000 train-
ing epochs), a long period of bad performance also trains the network weights
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Figure 22: Two cases in which the NN SARSA algorithm loses focus on the
simple race task.
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towards this bad performance. This might overwrite knowledge gathered in
previous epochs with a good performance, meaning that the longer the period
of decreased performance, the longer the network takes before it recovers (gen-
erally spoken). Figure 22.b shows a training run that loses focus after 7000
training epochs, but quickly recovers. This short decrease in performance did
not overwrite the network weights to forget the SARSA values that result in bet-
ter performance. Both cases show how exploration in the system’s environment
is taking place, in most cases this exploration leads to a better performance.

Figure 21.b shows the convergence for the NFQ algorithm, the algorithm
converges smoothly. It also shows that after 5000 epochs the algorithm shows
no further improvement (on average). Therefore we can reduce the number of
epochs used to learn a policy, a reduction in epochs means a significant reduction
in time for the entire model. The NFQ algorithm showed the best converging
behavior and is also faster than NN SARSA algorithm. NFQ is therefore to be
preferred over NN SARSA.

All optimized policies displayed the use of hydrofoils to increase overall
speed, the onset time at which the hydrofoils are deployed varied between poli-
cies; however the faster the hydrofoil was deployed, the faster the overall time.
Figure 23 shows a test run of one of the learned NFQ policies without random
action selection, it can clearly be seen that it reduces speed (the boat in the
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Figure 23: Simulation run of an instance of the NFQ algorithm (with ε = 0).
The top plot shows the position of the hydrofoil (dashed line), and the position
of the boat (solid line) with respect to the water level. The policy learns do
decelerate in the beginning (t = 10), deploy the hydrofoil (t = 110) and race to
the finish line efficiently (t = 630).
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simulation has an initial throttle setting), deploys the hydrofoil and during the
deployment accelerates to full throttle, lifting the boat out of the water. It
then reaches the finish line in 630 steps (63 seconds). In situations where the
hydrofoil is not used the boat is not able to finish, stalling (because the battery
is depleted) before the finish line.

The small race experiment is still a simplification of the power consump-
tion optimization of a solar powered boat, the real problem. The small race
experiment shows us that both the Artificial Neural Network SARSA and the
Neural Fitted Q Iteration algorithm can be used to optimize the speed in a
race situation, learning to make use of the hydrofoils and increase overall speed.
The good results encourages us to move on to the next section where we look
at optimizing the power and overall speed for the entire race (not just a small
straight track).
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6 Making Optimal Use of Available Power

And Optimizing Overall Speed in a

Solar Boat Race

In the previous experiment we considered a linear track on which a race was held.
The amount of energy was not enough for the boat to reach the finish-line full
throttle. Methods were found that learn a policy which optimizes the overall-
time of a small race, changing from hullborne to foilborne when this is necessary.
We now upgrade our problem, increasing the complexity by introducing a non-
linear track and an expanded environment (with sun and events along the way
(e.g. bridges which cannot be passed while hydrofoiling). For this experiment
we will not consider the NFQ algorithm, this algorithm was added later on in
the project. We unfortunately did not have enough time to incorporate (and
train) it in our final model.

6.1 General Problem Description

The Frisian Solar Challenge 2010 follows the ’Elfstedentocht’, the famous ice
speed skating tour. This tour has a total length of 220 km, divided into six
stages (going through canals, rivers and lakes). The goal is to complete the race
as fast as possible with a limited amount of power (1kH fully charged battery
and maximally 1750W coming from the solar panels).

How can we apply what is learned in the previous experiments to optimize
the difficult task of the solar-race?

6.2 Implementation

For the solar-race we implemented a Graphic User Interface, so we could view
the different variables change over time and analyze the boat’s behavior. The
interface is displayed in figure 24.

6.2.1 Modeling the Solar Race

The model of the solar boat is similar to section 5.2.1, this model describes the
foil drag, elevation of the boat when hydrofoiling, drag of both air and water
and the boat’s propulsion (with a timestep dt = 0.1s). We extended our model
by implementing the following items:

• Stages, GPS way-points for all six stages are used to simulate the track,
including the starting times (section 3.1.10).

• Cornering, the behavior of the boat in corners is taken into account, re-
ducing the speed of the boat in corners that are too sharp (section 3.1.6

• Bridges, all the bridges of the track are recorded, included in their infor-
mation is the width and height of each individual bridge.

• Sun, given the time of day and position on the earth we can calculate how
much power is to be received from the sun (section 3.1.8)
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Figure 24: A schematical description of the solar race, displayed in a graphical
interface developed for this problem. The circle shows the location of the boat,
the in the actual simulation the color of the circle can be changed to show if the
boat is foiling or not. Crosses show all events along the way and the diamond
shows the nearest event.

• Weather, the KNMI dataset provided us scenarios of how the weather
from the last ten years. Scenarios are selected from the KNMI dataset for
each simulation epoch according to PEGASUS [18].

• Shadows, although not recorded due to restricted time, it is possible to
import locations where objects next to the track could cast a shadow
on the boat, resulting in better energy prediction (section 3.1.9). Due
to limited time the GPS coordinates of large objects casting shadows on
the track could not be added. For computational purposes we therefore
skipped all relating calculations.

The maximum capacity of the battery was set at 36000000 dJ (1kwh). The
amount of power going to the motor can maximally be 3000W.

Instead of learning an action sequence that leads to a certain throttle-
position, we have simplified our model so that the policy is able to directly
choose out of three throttle positions. This is a rather large simplification,
however it gave our policy the opportunity to quickly sail with the boat (not
spending expensive computation time on learning how to control the throttle).
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Our policy has been allowed to perform the following actions:

• Low Throttle: setting the throttle at 1000W

• Medium Throttle: setting the throttle at 2000W

• High Throttle: setting the throttle at 3000W

• Deploy Foil: lowers the foil into the water

• Retract Foil: retracts the foil out of the water

• Nothing: taking no action

Epsilon (ε) is set to 0.02, meaning there is a 2% probability for the algorithm
to choose a random action via ε−greedy action selection. The value of epsilon is
annealed at every successful run with a factor of 0.999. This resulted in ε (i) =
0.02 · 0.999i (with i being the number of successful finished runs), providing us
with a very small value for ε at the end of the simulation

6.2.2 Reward Function

For the reward function we choose the reward function described in section
5.2.2. This function resulted in a policy displaying the behavior that we desired,
optimizing speed and reducing the number of actions that the pilot has to take.
Therefore no changes to the reward function had to be made.

6.2.3 Neural Network

For the neural network the same network as in section 5.2.3 is used, acting as
the function approximator which estimates the SARSA value. The weights of
the network are randomly initialized between -0.15 and 0.15.
The Network takes as inputs:

• Velocity (m/s)

• Position (m)

• Throttle (W)

• Drag (N)

• Battery Energy (dJ)

• Solar Energy (W)

• Amount of times switched between foilborne and hullborne (Nswitches)

• Solar Radiance at this timestep (J/cm2)

• Solar Radiance after one hour (J/cm2)
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Table 4: Neural Network Inputs

Input: Normalization factor

Velocity (m/s) MaxV elocity−1

Position (m) TrackDistance−1

Throttle (W) MaxThrust−1

Drag (N) MacDrag−1

Battery Energy (dJ) 36000000−1

Solar Energy (W) 2000−1

Nswitches 1000−1

Solar Radiance at this timestep (J/cm2) max radiance for scenario−1

Solar Radiance after one hour (J/cm2) max radiance for scenario−1

The Inputs of the neural network are normalized. This ensures that they
have about the same numerical range. Table 4 shows the normalization factors
for our inputs (most normalization factors are inherited from section 5.2.3 (table
3)). More information about the network topology can be found in section 2.5.1

Given the nine inputs for simulated sensors, an additional six different input
nodes are required for the binary encoding of the actions. This results in a
total of fifteen input nodes. For the output layer we have chosen one single
(tangent hyperbolic) output. For the neural network we coarsely searched the
parameter-space, this resulted in the following parameters:

nsensor−inputs = 9 (61)

naction−inputs = 6

nhidden = 24

noutput = 1

learningrate η = 0.03

momentum = 0.1

6.2.4 SARSA

The discount factor γ is set at 1, meaning that no discounting is taking place.
This value is chosen because we are situated in a world with a finite horizon,
the number of steps for the simulation is limited and therefore the reward is
bounded.

γ = 1 (62)

ε (i) = 0.02 · 0.9999i
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6.3 Experimental Setup

Instead of running a large number of experiments (which would take a lot of
time with the improved model) we have chosen to focus on learning one good
policy. Since our policy will be used in a race situation we are not interested
in developing a n algorithm that averagely finds a good policy. We are more
interested in finding one single good policy that can be used in our race. We are
posed with a design choice when learning our policy, we can either optimize one
policy for each stage in the race or optimize one policy for all stages. The goal
of our experiments is to find out whether there is a difference in performance
between optimizing a policy for each singe stage (a specific policy), or optimizing
it for the entire race (a generalizing policy). To figure this out we performed
the following two experiments:

• Specific Policy Algorithm (SPA)

– Optimized for one single track

– Weather scenario chosen according to PEGASUS [18].

– Starts with six different experiments

– After 1500 training epochs the best performing experiment/policy is
chosen and optimized until 5000 epochs

• Generalizing Policy Algorithm (GPA)

– Optimized for all tracks

– Weather scenario and track number chosen according to PEGASUS
[18].

– Starts with six different experiments

– After 1500 training epochs the best performing experiment/policy is
chosen and optimized until 5000 epochs

After the experiments we will analyze the difference in performance between
the two policies on one particular track. We hypothesized that the SPA would
outperform the GPA.

6.4 Results

One episode for our model took an average of 177.5 seconds for the first 1500
episodes on six 2.52Ghz dual core PCs with each core dedicated to one MATLAB
session. This means that running the initial experiment of 1500 episodes takes
about 74 hours.

We start out by looking at the results for the Specific Policy Algorithm
(SPA). Figure 25 shows the average convergence of all six experiments for the
first 1500 episodes, the best of these six experiments was used for our analysis
(and is allowed to keep on training for another 3500 epochs).

The convergence of the General Policy Algorithm (GPA) does not tell us
much, because each episode a different scenario/track is chosen with different
length and other parameters, performance will vary significantly between tracks.
Instead of looking at the convergence we look at the mean performance of all
six experiments. The experiment with the best mean performance after 1500
episodes was chosen to keep on training for another 3500 epochs (5000 in total).
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(a) Average convergence of the six
initial experiments for the first 1500
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(b) Convergence of the best experi-
ment for 5000 episodes

Figure 25: Convergence of the SPA algorithm. Smoothed with a moving average
filter for clarity. Lower number of steps equals better performance.

After the policies were trained we took 100 samples for both the GPA and
SPA on one single track (track 1 between Leeuwarden and Sneek). The results
are shown in figure 26. A student t-test was conducted. We set up the null
hypothesis to state that the samples come from populations with equal means.
The t-test showed no significant difference in performance between the SPA and
the GPA ( t(198) = 3.8171, p < 0.01 ). All policies finished the race with an
average speed of about 14.5km/h, the fastest policy had an average speed of
15.5km/h.

We also tested the SPA and GPA on all other tracks, these results are shown
in table 5. Ten samples for each tracks were taken, the performance shown in
the table is the mean performance over these ten instances. On all tracks the
SPA finishes faster than the GPA (except on track # 3 where neither algorithm
was able to reach the finish line successfully).
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Figure 26: Results for the GPA and SPA, errorbars denote the standard devia-
tions. Lower equals a better performance (less steps/time required to reach the
finish).
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Track# SPA Performance (steps) GPA Performance (steps)
1 61574.7 63817.8
2 44939.6 52211.5
3 108000.0 108000.0
4 43789.0 47510.9
5 27713.0 32878.3
6 72817.9 84213.7
7 30188.0 39287.4
8 53779.2 58821.0
9 12538.0 12659.0

Table 5: Average performance of the SPA and GPA algorithms on all tracks

6.5 Discussion

The SPA performed equally well as the GPA, this goes against our hypothesis
that the SPA would outperform the GPA. The number of training epochs (5000)
however is still low, we did not have time to run the model any longer and there-
fore made our comparison at 5000 epochs. Nevertheless the similar performance
tells us a few things. The main thing is that it is apparently not necessary to
train nine different SPA’s (given that there are nine different stages divided
over five days), but one could suffice with only one policy (SPA or GPA). The
GPA takes considerable more time to train than the SPA because every epoch
a different track has to be loaded into the memory. In practice the difference
was about one day of training time for the SPA against a total of five days of
training for the GPA. The longer training time is a downside and given that
the SPA always finishes faster we can state that training on one single stage is
preferred. The finding that the SPA always finished faster is interesting, this
means that we do not have to spend a lot of time switching between tracks
in the simulation. But more importantly this shows that training for a longer
time on one single environment still enables the policy to generalize sufficiently
to deal with unseen environments (unlike the GPA). This generalization is an
important finding, showing the relevance of using neural networks in stead of
tabular approaches.

Given that there was no significant difference between the GPA and the
SPA on track 1 indicates that the policies do not get the right input variables.
Training on one specific track should increase the performance of a SPA on
that particular track with respect to the GPA. Further research should be done,
investigating which sensory information is of use an which are not. The average
speed of 14.5km/h might not seem large, however the computer simulation of the
race was demanding. For example all 157 bridges were kept in the simulation,
while actually not all are too low (these are only a handfull). Furthermore the
simulations were performed with an estimated model of the solarboat, one could
not say that this would be the actual speed of the solarboat since there was no
time to validate our algorithmic model. The convergence of the performance of
the policies however do show that our policies optimize the overall speed. Given
enough training time the speed of the boat could increase even further.

62



7 Discussion

In this paper we asked ourselves the question: ”Can we use reinforcement learn-
ing to make optimal use of available power, optimizing the overall speed of a
solar powered boat?” and in more detail: ”Which reinforcement learning meth-
ods can be used for this?”. We have started out with the mountain car example
problem (section 4), showing a significant performance improvement by using
neural networks for estimating the SARSA value over the standard tabular ap-
proach. The mountain car problem is too simple, it can easily be solved by
neural networks.

Comparing our algorithms on a more complex problem gave us a better
understanding about the strength of using function approximators instead of
tabular approaches. For this reason we moved on to the problem of making
optimal use of available power in a small solar powered boat race (section 5).
In this race (of 500 meters) a limited amount of energy is available, this amount
is not sufficient to reach the finish line without using hydrofoils. The Neural
Fitted Q Iteration (NFQ) algorithm performed best at this problem, followed
by Neural Network SARSA (NN SARSA). NFQ also displayed better converg-
ing behavior (faster and more reliable) than NN SARSA. The learned policies
maximized their reward functions, resulting in controllers that optimized the
overall speed of the solar boat. Even though the NFQ algorithm is better than
NN SARSA, we were not able to use this in the final problem (making optimal
use of available power in a solar boat race, see also section 6). The addition of
the NFQ algorithm was done at the end of this project, we unfortunately did
not have any more time to implement it for the final model.

The final problem consisted of a model of the entire race, taking into account
environmental parameters (like weather and corners). This problem is more
difficult than the previous, requiring considerably more computation time. We
tested two different approaches. A Generalizing Policy Algorithm (GPA) was
trained on all tracks, while a Specific Policy Algorithm (SPA) was trained on
one single track. The results showed no significant difference between the two.
However the SPA always finished faster than the GPA, indicating that the SPA
is able to generalize successfully. This showed the neural network’s ability for
dealing with unseen world and system states. It also tells us that we do not
need to train a different policy for each track, one single (generalizing) policy
is sufficient. This saves a lot of training-time. More research however has to
be done to investigate which input variables are relevant for the network to act
optimally. The results of the NFQ algorithm on the small race are promising.
The results suggest that an implementation of the NFQ algorithm for the final
race will increase the performance of the boat even further.

The NFQ algorithm trains offline using batches, in contrast to the NN
SARSA algorithm with learns to predict the SARSA-value online. This can
be a downside when a controller is needed on demand (instead of waiting for
the NFQ algorithm to finish its current batch, the NN SARSA algorithm can
be used directly). If time is limited the NN SARSA is the best option. When
having sufficient training time, NFQ will increase the speed of the boat even
further.

MATLAB has provided us with a nice environment in which we could quickly
change/adapt our model and visually see our result. During the design process
MATLAB has decreased the time needed to set up our framework. Computation
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time is quite a big issue in these experiments. This has several downsides, on
the one hand there is feedback. If it takes a few days before the results of an
experiment are known an iterative design process takes a lot of time. In the case
of a bug this also sets us as researchers back a few days each time this occurs. On
the other hand it is preferred that computing a new policy can be done quickly,
if changes to the model are made during the race (e.g. mechanical changes which
influence the performance, or additional environmental information is added) a
new policy has to be computed as fast as possible. This is not possible with the
current implementation. Speed can be increased by translating our project from
MATLAB to a C++ implementation which can be done now that our model
has proven to be successful.

In future work the mathematical model has to be matched/confirmed with
the real boat. A series of towing test should be performed, providing infor-
mation about the drag of both the hull and the foil at different speeds. Also
the electrical and mechanical losses should be mapped so we could make a bet-
ter estimation of the energy management of the boat. Another point is that
additional environmental factors should be incorporated in our model, such as
wind, opponents, water depth. Increasing the detail of our simulation results
in a better energy prediction. The better the energy prediction, the better the
learned policy will perform in the simulation; but also in the real world. Ma-
chine learning techniques can be used for learning a model of the solar boat if
the mathematical approach does not succeed.

Besides the research which is described in this paper, this project shows
how research, design, development and implementation can go hand in hand.
One example of this is that the findings of our algorithmic model were used
during the design process, providing the developers information about drag and
stability. This information was used in this case to determine the size, location
and design of both the hydrofoils and propeller.

Machine learning can also be used on several other interesting projects for the
solar boat. One example is dynamic steering, with increasing speeds and com-
plexity of the controls steering becomes increasingly difficult. Machine learning
can be used to learn controllers that steer the hydrofoils more efficiently, possi-
bly even allowing faster cornering under the influence of wind and other factors.
Another example is path planning, determining not only how fast to go, but
also giving the pilot advise where to go, taking into account environmental
parameters and possibly even opponents.

This project has shown that we are able to make optimal use of available
power while optimizing the overall speed by using reinforcement learning. This
could not only be useful in solar-race applications but also in other fields like
robotics (acting optimally with limited energy) and durable energy (e.g. using
energy buffers to overcome periods with low amounts of energy). More research
in this field could provide us with even more ways of dealing with decision
making in situations were the amount of energy is limited and unpredictable,
as it is with most sustainable energy sources.

64



References

[1] Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. An
application of reinforcement learning to aerobatic helicopter flight. In In
Advances in Neural Information Processing Systems 19, page 2007. MIT
Press, 2007.

[2] C.W. Anderson. Learning to control an inverted pendulum using neural
networks. IEEE Control Systems Magazine, 9(3):31–37, 1989.

[3] J. Andrew (Drew) Bagnell. Learning decisions: Robustness, uncertainty,
and approximation. Master’s thesis, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, August 2004.

[4] R. Bellman. A markovian decision process. Journal of Mathematics and
Mechanics, 6:679–684, 1957.

[5] Arthur E. Bryson and Yu-Chi Ho. Applied optimal control : optimization,
estimation, and control. Hemisphere Pub. Corp. ; distributed by Halsted
Press, Washington : New York :, rev. printing. edition, 1975.

[6] Rozaida Ghazali, Abir Jaafar Hussain, Nazri Mohd Nawi, and Baharuddin
Mohamad. Non-stationary and stationary prediction of financial time se-
ries using dynamic ridge polynomial neural network. Neurocomput., 72(10-
12):2359–2367, 2009.

[7] Chun gui Li, Meng Wang, Shu-Hong Yang, and Zeng fang Zhang. Urban
traffic signal learning control using sarsa algorithm based on adaptive rbf
network. Measuring Technology and Mechatronics Automation, Interna-
tional Conference on, 3:658–661, 2009.
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A Appendix

A.1 KNMI Weather Data

Table 6: KNMI Weather Data from 1987 up til now
DDVEC Vector mean wind direction in degrees

(360=north, 90=east, 180=south, 270=west, 0=calm/variable)
FHVEC Vector mean windspeed (in 0.1 m/s)
FG Daily mean windspeed (in 0.1 m/s)
FHX Maximum hourly mean windspeed (in 0.1 m/s)
FHXH Hourly division in which FHX was measured
FHN Minimum hourly mean windspeed (in 0.1 m/s)
FHNH Hourly division in which FHN was measured
FXX Maximum wind gust (in 0.1 m/s)
FXXH Hourly division in which FXX was measured
TG Daily mean temperature in (0.1 degrees Celsius)
TN Minimum temperature (in 0.1 degrees Celsius)
TNH Hourly division in which TN was measured
TX Maximum temperature (in 0.1 degrees Celsius)
TXH Hourly division in which TX was measured
T10N Minimum temperature at 10 cm above surface (in 0.1 degrees Celsius)
T10NH 6-hourly division in which T10N was measured
SQ Sunshine duration (in 0.1 hour) calculated from global radiation (-1 for ¡0.05 hour)
SP Percentage of maximum potential sunshine duration
Q Global radiation (in J/cm2)
DR Precipitation duration (in 0.1 hour)
RH Daily precipitation amount (in 0.1 mm) (-1 voor/for ¡0.05 mm)
RHX Maximum hourly precipitation amount (in 0.1 mm) (-1 for ¡0.05 mm)
RHXH Hourly division in which RHX was measured
PG Daily mean sea level pressure (in 0.1 hPa) calculated from 24 hourly values
PX Maximum hourly sea level pressure (in 0.1 hPa)
PXH Hourly division in which PX was measured
PN Minimum hourly sea level pressure (in 0.1 hPa)
PNH Hourly division in which PN was measured
VVN Minimum visibility
VVNH Hourly division in which VVN was measured
VVX Maximum visibility
VVXH Hourly division in which VVX was measured
NG Mean daily cloud cover (in octants, 9=sky invisible)
UG Daily mean relative atmospheric humidity (in percents)
UX Maximum relative atmospheric humidity (in percents)
UXH Hourly division in which UX was measured
UN Minimum relative atmospheric humidity (in percents)
UNH Hourly division in which UN was measured
EV24 Potential evapotranspiration (Makkink) (in 0.1 mm)
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A.2 GPS Track information
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Figure 27: Entire track of the Frisian solar challenge 2010
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Figure 28: Entire track of the Frisian solar challenge 2010, stars denote all the
bridges
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Figure 29: Entire track of the Frisian solar challenge 2010, stars denote corners
with an angle between 80 and 120 degrees
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A.3 The Solar Boat

Figure 30: Test run of the solar boat without the solar panels.
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Figure 31: The finished solar boat at the starting line in Franeker of the Frisian
Solar Challenge 2010.
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