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Abstrakt: Práce se zaměřuje na neř́ızenou morfologickou segmentaci,
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V této úloze je ćılem rozložit slova na morfémy. Popisuji a reim-

plementuji model navržený v Lee et al. (2011) a vyhodnocuji ho na

4 jazyćıch. Nav́ıc navrhuji generativńı model, který dokáže využ́ıt

reprezentaci slov jako př́ıdavné rysy. Slovńı reprezentace jsou rovněž

źıskávány neř́ızeným zp̊usobem pomoćı strojového učeńı a neuronového

jazykového modelu. Pokusy ukazuj́ı, že s využit́ım těchto př́ıdavných

rys̊u celková úspěšnost neř́ızeného modelu vzr̊ustá.
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Supervisor: RNDr. Daniel Zeman, Ph.D., Institute of Formal and

Applied Linguistics & Marco A. Wiering, Assistant professor, Artifi-

cial Intelligence department, University of Groningen

Abstract: This thesis focuses on unsupervised morphological seg-

mentation, the fundamental task in NLP which aims to break words

into morphemes. I describe and re-implement a model proposed in

Lee et al. (2011) and evaluate it on 4 languages. Moreover, I present

a generative model that could use word representation as extra fea-

tures. The word representations are leant in unsupervised manner

using neural language model. The experiment shows that using extra

features improves the performance of the unsupervised model.
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Chapter 1

Introduction

1.1 Unsupervised Morphological Learning

1.1.1 Morphology

“I never heard of Uglification,” Alice ventured to say. “What is it?”

The Gryphon lifted up both its paws in surprise. “Never heard of

uglifying!” it exclaimed. “You know what to beautify is, I suppose?”

“Yes,” said Alice doubtfully: “it means to make prettier.” “Well,

then,” the Gryphon went on, “if you don’t know what to uglify is,

you are a simpleton.”

LEWIS CARROLL, Alices Adventures in Wonderland, 1865.

In linguistics, morphology refers to the study of the internal structure of words,

and of the process by which words are formed. Words are made up of morphemes,

the smallest semantically meaningful units in a language. There are two types of

morphemes, free morphemes and bound morphemes. A free morpheme can stand

alone by itself as a word in the language, whereas bound morpheme can only

occur as part of a larger word.

The atomic core of a word is a morpheme root. A root may or may not occur

alone as a word, for example the root ling in “linguist”. A stem is a word

without inflectional affixes. A stem is often a result of compounding a root with

other affixes, for example the word “unbearable” is formed by putting prefix un,
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1.1 Unsupervised Morphological Learning

stem bear, and suffix able together.

Affixes are bound morphemes which always appear attached to a root or a

stem. A morpheme that occurs before a root or a stem is called prefix, a morpheme

that occurs after a root or a stem is called suffix. In some languages, morphemes

can be inserted into other morphemes, or attached to a root/stem both initially

and finally. These morphemes are called infixes, the former, and circumfixes, the

latter.

Bound morphemes can be classified into two categories: inflectional mor-

phemes and derivational morphemes. Generally, there is a distinction between

inflectional morphology and word formation. Inflectional morphology deals with

the various realizations of the same lexeme, depending on its grammatical func-

tion, such as tense, number, gender and so forth. Inflectional morphemes never

change the grammatical category of the stems to which they are attached. For

example, suffixes -s and -es can be added to singular nouns to form plural

nouns. Word formation deals with creating new lexemes from existing ones ei-

ther by derivational rules, or compounding rules. Unlike inflectional morphemes

when derivational morphemes attach to stems, new words with new meaning are

formed. The Mock Turtle added -ify to the adjective “ugly” to form a verb

“uglify” - means “to make ugly,” then he went even further by adding -cation

to form a noun - means “the process of making ugly.” Compounding, or composi-

tion, on the other hand, refers to the process of constructing new words by putting

existing lexemes (free morphemes) together. For example, words like “Batman”,

“Watchmen”, and “Sabretooth” are formed by compounding processes.

1.1.2 Unsupervised Morphological Learning

There are three common tasks for morphological learning:

1. Morphological segmentation.

2. Identification of morphologically related word forms.

3. Morphological analysis.

Under unsupervised setting, the third task is considered as the most challeng-

ing task. The output of a morphological analysis stem not only contains a list

2



1.2 Motivation

of ordered morphemes for a given word but also a label (syntactic class) for each

morpheme. The second task is especially useful for many information retrieval

systems. There are some significant results for this task, for example Dreyer

& Eisner (2011) developed a model that could organize words into structured

inflectional paradigms.

The focal point of this thesis is the first task, namely unsupervised morpholog-

ical learning. That is, given a collection of raw (unannotated) natural language

text data, I develop a statistical model, which could learn automatically the mor-

phological structure of the language of the input with minimal supervision.

The model in this work is devoted to concatenate morphology (i.e. morphemes

are put together.)

1.2 Motivation

Unsupervised morphological learning poses many interesting problems for re-

searchers across different fields, from computational linguistics, cognitive science

to machine learning.

In computational linguistics context, having morphological analysis of words

could help other downstream NLP applications to battle data sparsity problems,

especially for morphologically rich languages. Toutanova et al. (2008) improved

the quality of statistical machine translation (SMT) over both phrasal and syntax-

based SMT by applying models that predict word forms from their stems. Cowan

& Collins (2005) showed that exploiting morphology leads to the improvement of

Spanish syntactic parser.

In cognitive science context, a powerful computational model could shed light

on how the child accomplishes the immense task of language acquisition. Unsu-

pervised morphological learning, or more generally, unsupervised linguistic struc-

ture learning, can be considered as “the problem of induction,” a famous puzzle

that philosophers have inquired for over two thousand years, from Plato and Aris-

totle through Hume, Whewell, and Mill to Carnap, Quine, Goodman, and others

in the 20th century. Computational models, which take reverse-engineering hu-

man learning and cognitive development approaches, as Tenenbaum et al. (2011)

pointed out, can help to address some of the deepest questions about the nature

3



1.3 Thesis Outline

and origins of human thought.

In machine learning context, unsupervised induction is more challenging in

terms of modeling and evaluation. Many powerful machine learning techniques

have been developed to make use of unannotated data. Smith & Eisner (2005)

proposed contrastive estimation, a technique that exploits implicit negative evi-

dence to move the probability mass to the observed data. This technique, then,

has been used successfully in log-linear models proposed by Poon et al. (2009)

for the unsupervised morphological segmentation task.

Last but not least, the ultimate motivation of this thesis is to build a mor-

phological segmentation tool for poor-resource languages, for which few or no

linguistically annotated resources are available.

1.3 Thesis Outline

The thesis is organized as follows. Chapter 2, reviews some related works. Each of

them took a different approach which employed many interesting ideas from both

linguistics and machine learning point of views. Chapter 2 also provides some

background of Bayesian inference to prepare for the presentation of the models in

this work. Chapter 3, presents two common evaluation methods for unsupervised

morphological segmentation task that I use to evaluate the results along with

the paired significance tests method to show the significant improvement is not

due to luck. Chapter 4 describes the model proposed by Lee et al. (2011) and

the results of using the models for various languages. Chapter 5 applies the idea

of using word representations as extra features for existing NLP systems. This

idea has been exploited successfully for many supervised learning tasks, however

there is a limited number of works that exploits this direction for unsupervised

learning. Chapter 6 summarizes the contribution of the thesis and discusses the

limitations and directions for future work.

4



Chapter 2

Background

2.1 Previous Work

In the absence of labels, unsupervised learning must rely on a strong prior hypoth-

esis that reflects prior knowledge about the task. In unsupervised morphological

learning, a common-used hypothesis is the Minimum Description Length (MDL)

principle Rissanen (1989), which favors compact representations of lexicon and

corpus.

Creutz (2006) developed Morfessor, a language-independent, data-driven method

for the unsupervised morphological segmentation. Morfessor has been applied

successfully for various languages. Among different versions of Morfessor, Morfes-

sor Baseline Creutz (2003); Creutz & Lagus (2002) is the oldest version and Mor-

fessor Categories-MAP (Morfessor CatMAP for short) Creutz & Lagus (2005a)

is the latest version.

Morfessor Baseline is based on the idea of language models. Given a corpus,

it learns the optimal lexicon and segmentation by using MAP estimation:

arg max
L

P (L|corpus) = arg max
L

P (corpus|L)P (L) (2.1)

where L is the language model for morphemes.

The prior probability P (L) is the product of probability distributions P (f)

over morpheme frequency and probability distributions P (l) over morpheme length.

5



2.1 Previous Work

P (L) =
L∏
i=1

P (fσi)×
L∏
i=1

P (lσi) (2.2)

where {σ1, ..., σL} is the set of morphemes in L. Let fσi and lσi denote frequency

and length of morpheme σi respectively. Morfessor Baseline models frequency ex-

plicitly by choosing Zipf distribution for P (f), and it selects Gamma distribution

for morpheme length P (l).

Likelihood P (corpus|L) in Morfessor Baseline simply is the product of fre-

quencies of all morphemes in the corpus.

P (corpus|L) =
W∏
j=1

nj∏
k=1

P (σjk) (2.3)

here W is the size of the corpus (token-level), nj is the number of morphemes in

the jth word, σjk is the kth morpheme in nj morphemes, and

P (σi) =
fσi
n∑
j=1

fσi

Morfessor Baseline employs MDL by taking frequency into account. MB seeks

for the optimal set of morphemes by keeping the most frequent word types unsplit

and splitting rare word types excessively.

While Morfessor Baseline ignores context dependency between morphemes (it

treats “s wing” and “wing s” equally), Morfessor CatMAP makes use of this

dependency by using Hidden Markov Model (HMM) to model transition prob-

abilities between morpheme categories and emission probabilities of morphemes

from categories. In Morfessor CatMAP, the MAP estimate needed to be maxi-

mized is similar to the MAP equation in Morfessor Baseline:

arg max
lexicon

P (lexicon|corpus) = arg max
lexicon

P (corpus|lexicon)P (lexicon) (2.4)

Morfessor CatMAP differs from Morfessor Baseline in the way it defines prior

probability P (lexicon) and likelihood probability P (corpus|lexicon). Every mor-

6



2.1 Previous Work

pheme in lexicon is considered as a set of form and meaning. The probability of

the from of a morpheme depends on whether it is represented as a string, a letter

or a concatenation of two sub-morphemes. The probability of the meaning of a

morpheme depends on its frequency, its length and its context (defined through

left and right perplexity). The likelihood probability P (corpus|lexicon) employs

a first-order HMM to model the agreement between words and their category as

well as inter-word syntax.

P (corpus|lexicon) =
W∏
j=1

[
P (Cj1|Cj0)

nj∏
k=1

P (σjk|Cjk)P (Cj(k+1)|Cjk)

]
(2.5)

where Cjk denotes the category of kth morpheme σjk in jth word with nj segments.

Lignos (2010) presented MORSE (MORphological Sparsity Embiggens Learning)

system in Morpho Challenge 2010, which attained impressive performance. The

MORSE system is fairy simple, it learns the transformation rules from minimal

word-pairs in training data by updating repeatedly Base, Derived, and Unmod-

eled word sets. Base word set is the set that consists of stems that the system

has predicted so far. Derived word set is the set of words that can be derived

from Base by applying learned transformation rules. Unmodeled word set is the

set of words that have not been moved to Base and Derived word sets yet. Lignos

(2010) employed the compounding model of Koehn & Knight (2003) to refine the

set of learned morphemes S = {σ1, ..., σn}

arg max
S

(∏
σi∈S

count(σi)

) 1
n

(2.6)

Poon et al. (2009) proposed a log-linear model that could incorporate simple

exponential priors inspired by MDL, and overlapping features. The key compo-

nent of the model is a morpheme-context model, which can capture rich segmen-

tation regularities by looking at the context patterns. Context of a morpheme

is represented using n-grams before and after that morpheme, for some constant

n. For instance, Arabic word w-vlAv-wn (hyphens indicate morpheme bound-

aries) has three bigram context features ## vl, #w wn, and Av ## corresponding

7



2.1 Previous Work

Algorithm 1 MORSE algorithm

Add all the words to Unmodeled word set.
for t = 1→ T do

Score suffixes and transformation rules and select the best transformation
rules.

Move the words used in selected transform.
Performing Base Inference, inferring new bases and adding them to learned

transform.
Optionally perform compounding for the current iteration.

end for
Optionally perform compounding after learning is complete

to three morphemes w, vlAv, and wn respectively. Formally, the model defines

a joint probability distribution over a set of types1 W and a segmentation S as

follow:

Pθ (W,S) =
1

Z
uθ (W,S) (2.7)

where Z is the normalizing constant and

uθ (W,S) = exp

∑
σ

λσfσ (S) +
∑
c

λcfc (S) + α ·
∑

t∈{−,0,+}

∑
σ∈Lt

l (σ) + β
∑
w∈W

s (w)

l (w)


(2.8)

in which, σ is a morpheme string; c is a morpheme-context; L−, L0, and L+ are

sets of prefix, stem, and suffix lexicons induced by S; l(w) denotes length of a

string w; s(w) denotes number of morphemes in w given S.

Poon et al. (2009) used DELORTRANS1 (deleting any character or transposing

any pair of adjacent characters) to obtain a set of neighborhoods of the observed

data. These neighborhoods served as pseudo-negative examples to move prob-

ability mass to the observed data using contrastive estimation Smith & Eisner

(2005).

While log-linear model has been successfully applied for Arabic language, re-

ducing F1 error by 11% compared to Morfessor, it does not make use of the

connection between part-of-speech (POS) categories and morphological proper-

1Authors reported that in their experiment, learning and inference using word types give
better result than using tokens.
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2.1 Previous Work

ties. Lee et al. (2011) proposed a generative model which utilized this tight

connection without assuming access to full-fledged syntactic information. This

model captured two aspects of the morpho-syntactic connection:

• Morphological consistency within POS categories. Words that belong to

the same syntactic category tend to have similar affixes.

• Morphological realization of grammatical agreement. Grammatical agree-

ment can be expressed via correlated morphological markers. In Penn Ara-

bic treebank corpus, exact suffix matching of adjacent words has 94% pre-

cision at the token-level.

Since the work in this thesis is based on this model, I will spend chapter 4 to go

into technical details of the model.

The review would not be completed without mentioning the model proposed

by Goldwater et al. (2006). This model extends standard generative models with

an adaptor that captures one of the most striking properties of natural languages:

the power-law distribution in the frequencies of word tokens or Zipf’s law. The

model, which is referred as a two-stage language model, contains a generator

and an adapter. The generator generates words by first, generating inflectional

class for the words then, stems and suffixes are generated conditionally on the

class. The adapter produces the power-law distribution using Pitman-Yor process

Pitman & Yor (1997). Operating on tokens level, this model allows different

tokens of the same type to have different analyses.

A larger body of work in unsupervised learning recently devotes to unsuper-

vised multilingual learning. It has been showed that unsupervised multilingual

learning has pushed the state-of-the-art in language technology to new limits

Snyder & Barzilay (2010). The key idea of unsupervised multilingual learning

is to explore the deep links among human languages. A common approach for

multilingual learning is to use knowledge of source languages to guide learning

algorithm on target languages. The knowledge can be transferred through heuris-

tic “projection” Yarowsky & Ngai (2001) or constraints in learning Das & Petrov

(2011); McDonald et al. (2011); Naradowsky & Toutanova (2011); Täckström

et al. (2012) or inference Cohen et al. (2011). Another direction of research in

unsupervised multilingual learning is to learn a joint model exploiting hypothesis

9
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that cross-lingual variations in linguistic forms correspond to systematic varia-

tions in ambiguity Snyder & Barzilay (2008); Snyder et al. (2008, 2009).

In unsupervised morphological learning, Snyder & Barzilay (2008) modeled

both abstract morphemes (cross-lingual morpheme patterns) as well as stray mor-

phemes (morphemes that appear in one language without their counterparts in

another language) using a hierarchical Bayesian model. Given a parallel corpus, a

distribution A over bilingual morpheme pairs, a distribution E, and a distribution

F over stray morphemes in each language are drawn from Dirichlet processes. To

find the set of morphemes which yields a high joint probability, Snyder & Barzilay

(2008) performed Gibbs sampling over all possible draws of the distributions A,

E, and F. This model not only can induce morpheme segmentations for each

language but also can discover abstract bilingual morphemes like (un, ne) for

English-Czech language pair or (im, un) for English-German language pair1.

Treating morphological analysis as a structured prediction problem, Kim et al.

(2011) defined a morphological space, in which each language is resided as a

datapoint. They employed a fairy simple set of morphological features for any

labeled language:

• Number of unique stems.

• Number of unique suffixes.

• Number of unique deletion rules. There are three type of deletion rules:

deletion of final vowels (..V#→ ..#), deletion of penultimate vowels (..VC#

→ ..C#), and removals or additions of final accent marks (e.g. ..š# →
...s#).

• Entropy of stems.

• Entropy of suffixes.

• Entropy of deletion rules.

• Percentage of unsegmented word types.

1I implemented this idea in my model using Chinese Restaurant Process, however, it is only
good at finding bilingual abstract prefixes.
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• Percentage of segmented word types which employ a deletion rule.

Given annotated languages serving as training examples, Kim et al. (2011)

developed a structured nearest neighbor prediction method which searches for

the best morphological analysis for each unlabeled language by minimizing its

distance to each of the training languages. The limitation of this method is that

currently it only works for nominal inflectional suffix morphology, on which a

small set of deletion rules can apply1.

2.2 Computational Preliminaries

In this section I review some basic ideas of Bayesian inference, particularly fo-

cusing on two important prior distributions, namely, Multinomial distribution

and Dirichlet distribution. These distributions play a crucial role in simplify-

ing the inference formula, which makes it easier for sampling algorithms such as

Gibbs sampling. I will establish a short-cut for sampling equations used later on

by deriving a generic formula for a joint distribution which takes Multinomial

distribution as prior.

2.2.1 Bayesian Inference

In any generative model, Bayesian inference plays an important part for updating

beliefs about latent variables given observed data. At the heart of Bayesian

inference is Bayes rule:

P (h|d) =
P (d|h)P (h)∑

h′∈H P (d|h′)P (h′)
∝ P (d|h)P (h) (2.9)

P (h) is the prior probability which encodes the learner’s degree of belief in a

hypothesis without any knowledge of the observations. P (h|d) is the posterior

probability, which measures how expected the data are under hypothesis h , rel-

ative to all other hypotheses h′ in hypothesis space H.

1I tried to reproduce their experiment, but at the step of computing morphological features,
there is a big difference between my results and what they reported in their paper.
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The goal of learning is to select the most probable hypothesis ĥ given the

observed data. In case prior knowledge is not provided, Maximum-Likelihood

estimation (MLE) is a common method used to select such a hypothesis ĥ.

MLE assumes that all hypotheses are equally probable a priori, then the

posterior probability (probability of a hypothesis h given the observed data d)

is proportional to the likelihood P (d|h). Learning hypothesis ĥ is equivalent to

choosing the single hypothesis with the highest likelihood:

ĥ = arg max
h

P (d|h) (2.10)

In context of unsupervised learning, many successful generative models have

imposed strong constraints on the priors. Successful generalization depends on

taking the right constrains. A often-used constraint is Minimum Description

Length (MDL) principle, a mathematical formalization of Occam’s Razor which

favors simpler hypotheses over more complex ones. Under prior constraints, Max-

imum a Posteriori (MAP) is a method that provides a principled way to compare

hypotheses with different numbers of parameters, and to select the most probable

one:

ĥ = arg max
h

P (d|h)P (h) (2.11)

2.2.2 Conjugate Priors

MDL constraint has been used successfully in many unsupervised learning tasks,

especially in unsupervised morphological learning as I mentioned earlier. How-

ever, the choice of prior constraints can greatly affect the complexity of the mod-

els. Within Bayesian statistics, certain kinds of distributions have been widely

used as priors because of their convenient mathematical properties. To illustrate

some of these properties, and to prepare for the presentation of the model in this

thesis, I will take Dirichlet distribution, a prior over categorical as the example.

Consider a random variable that can take on one of K possible outcomes

{1, ..., K}, in which the probability of outcome k ∈ {1, ..., K} is θk. Let x =

{x1, ..., xn} be the set of outcomes sampled from this categorical distribution (i.e.
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xi ∈ {1, ..., K} and P (xi = k) = θk). This can be expressed as follows:

xi|θ ∼ Cat(θ) (2.12)

where θ = {θ1, .., θk}
The Dirichlet prior is a distribution over parameter space θ. Using a Dirichlet

prior over a categorical distribution thus gives a model:

xi|θ ∼ Cat(θ) (2.13)

θ|β ∼ Dir(β) (2.14)

Recall the definition of the Dirichlet distribution:

P (θ|β) =
1

B(β)

K∏
k=1

θβk−1
k

with

B(β) =

∏K
k=1 Γ(βk)

Γ
(∑K

k=1 βk

)
where βk > 0. B(β) is the normalizing constant, which is expressed in terms of

the Gamma function Γ(z) =
∫∞

0
tz−1e−tdt for z > 0.

Using Bayes’ rule to estimate the underlying parameter θ of the categorical

distribution given a collection of n samples {x1, ..., xn}:

P (θ|x,β) ∝ P (x|θ)P (θ|β)

∝
n∏
i=1

Pθ(xi)
K∏
k=1

θβk−1
k

=
K∏
k=1

θnkk

K∏
k=1

θβk−1
k

=
K∏
k=1

θnk+βk−1
k (2.15)
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Choosing Dirichlet distribution Dirichlet(β) as the prior over categorical pa-

rameters leads the posterior P (θ|x,β) to having the form of another Dirichlet

distribution, with parameters nk + βk. A prior is called conjugate prior for the

likelihood if the posterior distribution is in the same analytical form as the prior

probability distribution.

2.2.3 Point Estimation

MAP estimate, as discussed in 2.2.1, of the posterior in equation 2.15 results in

θk =
nk + βk − 1

n+
∑K

k=1 (βk − 1)
(2.16)

The form of equation 2.16 is equivalent to the maximum likelihood estimate of θ

with observed counts {n1 + β1 − 1, ..., nK + βK − 1}.
Goldwater (2007) pointed out a problem with MAP when any βk is less than

one. Follow the example in Goldwater (2007), assume that we are interested in

learning syntactic rule probabilities for parsing. Data d contains only two strings

a and b, probabilistic grammar rules are given in table 2.1.

Table 2.1: A toy probabilistic grammar

θx S → X
θy S → Y

1− θx − θy S → B
1 X → a
1 Y → a
1 B → b

We initialize all production rules with uniform probability θx = θy = 1
3

and

use symmetric Dirichlet prior for θ = (θx, θy) by setting βx = βy = β = 0.2.

Expectation-Maximization (EM) computes the expected counts nx and ny for

rules S → X and S → Y are both 0.5, and the expected count nb for rule

S → B is 1. From equation 2.15, posterior probability of θ given data d and

hyperparameter β is proportional to:
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P (θ|d, β) ∝ θnx+β−1
x θny+β−1

y (1− θx − θy)nb+β−1

= θ−0.3
x θ−0.3

y (1− θx − θy)0.2 (2.17)

This posterior probability function is maximized when θx → 0 and θy → 0.

Thus, it makes the string a unparseable.

2.2.4 Inference via Sampling

The drawback of point estimation methods is that they simply disregard the

knowledge about a whole distribution. As an example, assume that we want to

predict the outcome for a new observation xn+1 in subsection 2.2.2 using poste-

rior information in equation 2.15. The conditional distribution of xn+1 given all

previous observations is derived by integrating over all possible values of θ:

P (xn+1 = j|x,β) =

∫
∆

P (xn+1 = j|θ)P (θ|x, β)dθ

=

∫
∆

θj
Γ
(
n+

∑K
k=1 βk

)
∏K

k=1 Γ (nk + βk)

K∏
k=1

θnk+βk−1
k dθ

=
Γ
(
n+

∑K
k=1 βk

)
∏K

k=1 Γ (nk + βk)

∫
∆

θ
nj+βj
j

∏
k 6=j

θnk+βk−1
k dθ

=
Γ
(
n+

∑K
k=1 βk

)
∏K

k=1 Γ (nk + βk)
×

Γ (nj + βj + 1)
∏

k 6=j Γ (nk + βk)

Γ
(
n+ 1 +

∑K
k=1 βk

)
=

nj + βj

n+
∑K

k=1 βk

(2.18)

where ∆ denotes the probability simplex, i.e. the set of all possible θ such that

θ1 + ...+ θK = 1.

We integrate out θ, in the final formula, there is no more θ. I briefly ex-

plain how maths works cleanly in equation 2.18. From equation 2.15 we know
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P (θ|x,β) = c
K∏
k=1

θnk+βk−1
k , and because P (θ|x,β) is the form of a Dirichlet dis-

tribution, so we know the value of normalizing constant c. Applying the property

of Dirichlet distribution: ∫
∆

K∏
k=1

θβk−1
k dθ = B(β)

where
∑K

k=1 θk = 1, we have:∫
∆

θ
nj+βj
j

∏
k 6=j

θnk+βk−1
k dθ =

Γ (nj + βj + 1)
∏

k 6=j Γ (nk + βk)

Γ
(
n+ 1 +

∑K
k=1 βk

)
The last line of equation 2.18 is obtained by using the property of Gamma function

Γ(x+ 1) = xΓ(x).

Equation 2.18 with hyperparameters βk allows xn+1 can select any outcome

k ∈ {1, 2, ..., K} where the most probable outcome has highest probability and

the most improbable outcome has lowest non-zero probability.

In general, dealing with the whole distribution, we are interested in calculating

the expected value of a function f(z), where z is a random variable.

E [f (z)] =

∫
f (z) p (z) dz (2.19)

In Bayesian inference, often p(z) is the prior probability and f(x) is the likelihood

function. We can rewrite equation 2.19 as:

Ep(z) [f (z)] = lim
N→∞

1

N

N∑
t=1

f(z(t)) (2.20)

In practice, we approximate equation 2.20 by sampling only finite number of

times, T :

Ep(z) [f (z)] ≈ 1

T

T∑
t=1

f(z(t)) (2.21)

Now, the crucial point is to get sample z0, z1, ..., zT from distribution p(z). We

need a function g that walks through probabilistic space, and at state zt it walks

to the next state zt+1 := g(zt) with probability Ptrans
(
z(t+1)|z(0), z(1), ..., z(t)

)
. For
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simplicity, we use Markov property:

Ptrans
(
z(t+1)|z(0), z(1), ..., z(t)

)
= Ptrans

(
z(t+1)|z(t)

)
(2.22)

In the following, I will discuss Gibbs sampling, a technique that allows us to

design such a function g.

2.2.5 Gibbs Sampling

We want to approximate equation 2.21 by sampling z(0), z(1), z(1), ..., z(T ) accord-

ing to p(z). Let z be a point in K > 1 dimensions. The basic idea of Gibbs

sampling is walking to the next state in K dimensions by making a probabilistic

choice for each of the K dimensions, where each choice depends on the other

K − 1 dimensions.

P (Zi|z(t+1)
1 , ..., z

(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
K ) =

P (z
(t+1)
1 , ..., z

(t+1)
i−1 , z

(t)
i , z

(t)
i+1, ..., z

(t)
K )

P (z
(t+1)
1 , ..., z

(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
K )

(2.23)

The point z(t+1) = g(z(t)) is computed as
〈
z

(t+1)
1 , ..., z

(t+1)
K

〉
.

Algorithm 2 Gibbs sampling algorithm

z(0) :=
〈
z

(0)
1 , ..., z

(0)
K

〉
for t = 1→ T do

for i = 1→ K do
z

(t+1)
i ∼ P (Zi|z(t+1)

1 , ..., z
(t+1)
i−1 , z

(t)
i+1, ..., z

(t)
K )

end for
end for

2.2.6 Maximum Marginal Decoding

Typically, the output of the algorithm is the last sample in a stream of sam-

ples from the posterior distribution produced by Gibbs sampler. Because Gibbs

sampler makes a probabilistic choice for each state, it might introduce variance
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and noise in its output. Maximum marginal decoding (MM) Johnson & Goldwa-

ter (2009) is a technique which assigns to each latent variable the value with the

highest marginal probability, thus MM maximizes the expected number of correct

assignments and reduces noise. Stallard et al. (2012) applied MM for the model

of Lee et al. (2011) and obtained state-of-the-art unsupervised morphological seg-

mentation for Arabic. They found that MM not only dramatically reduces the

output variance of Gibbs sampling but also reduces noise from spurious affixes

when the model is trained on a large corpus.

MM algorithm is quite straightforward: Draw N independent Gibbs samples,

and for each word type, select the most frequent segmentation.
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Chapter 3

Evaluation Metrics

3.1 Evaluation for Unsupervised Morphological

Segmentation

One difficulty in evaluating morphological segmentation is that unsupervised sys-

tems usually decompose word into morphemes while gold standard contains full

analysis. To illustrate this point, take “knives” as an example of a word that

needs to be segmented. Since unsupervised systems do not have access to linguis-

tically motivated morpheme labels as well as language-specific knowledge, they

typically cut the word into morphemes without modifying any morpheme in the

result. Such a system often decomposes “knives” as “kniv - es” instead of the

conventional analysis “knife N + Plural”, in gold standard. Nevertheless, most

recent papers have used Precision, Recall, and F-measure to evaluate performance

of unsupervised systems. Two evaluation methods are proposed, one compares

directly the proposed segmentation, while the other compares indirectly. We

describe both methods in following subsections.

3.1.1 Morpho Challenge Evaluation

Creutz & Lagus (2005b) used precision, recall, and the harmonic mean F-measure

to evaluate on discovered morpheme boundaries. Precision is the fraction of cor-

rectly discovered morpheme boundaries in all discovered morpheme boundaries
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by the algorithm. Recall is the fraction of correctly discovered morpheme bound-

aries in all suggested morpheme boundaries. F-measure is given by:

F-measure =
2 · Precision · Recall

Precision + Recall
(3.1)

These measures are widely used to evaluate performance of unsupervised mor-

phological segmentation algorithms. They are used to compare the result of par-

ticipants in Morpho Challenge 20051, 20072, 20083, 20094, and 20105, a series

of workshops on semi-supervised and unsupervised methods for morphological

analysis.

In Morpho Challenge, the result is evaluated on a sample of a large number

of word pairs, where both words in a word pair share at least one gold standard

morpheme in common. A system which has highest F-measure is the best system.

• Precision is calculated as follows: A number of word forms will be sampled

from the result file such that for each morpheme in these words, another

word having the same morpheme will be chosen randomly if such a word

exists. Hence, we obtain a number of word-pairs, such that two words in a

word-pair share at least one morpheme in common. These word-pairs will

be compared against gold standard. We give one point for a correct word-

pair, and the final point for each sampled word form is normalized to one.

Precision is then computed by taking the total number of points divided by

the total number of sampled words. For example, assume that the proposed

analysis of the word “abyss” is “abys - s”. By sampling the result file,

assume that we find “abys - s - es” and “mountain - s” which share

morpheme “abys” and “s” with “abys - s” respectively. According to

gold standard, the correct analyses of these words are “abyss N”, “abyss N

+ PL”, and “mountain N + PL”. The pair “abys - s, abys - s - es” is

correct (common abyss N), but the pair “abys - s, mountain - s” is in-

correct (no common morpheme in gold standard). Thus precision for the

1http://www.cis.hut.fi/morphochallenge2005/
2http://www.cis.hut.fi/morphochallenge2007/
3http://www.cis.hut.fi/morphochallenge2008/
4http://www.cis.hut.fi/morphochallenge2009/
5http://research.ics.aalto.fi/events/morphochallenge2010/
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3.1 Evaluation for Unsupervised Morphological Segmentation

word “abyss” is 1/2 = 50%.

• Recall is calculated analogously to precision with word forms randomly

sampled from gold standard.

In order to compare our results, we adopt the evaluation procedure used in

Morpho Challenge.

3.1.2 EMMA

Spiegler & Monson (2010) proposed an alternative evaluation called EMMA1 (an

Evaluation Metric for Morphological Analysis), which has been used in Morpho

Challenge 2010.

The key idea of EMMA is that it does not directly compare discovered and

answer analyses, instead, it seeks a one-to-one relabeling of discovered morphemes

that renders them as similar as possible to the answer. The final measures (Pre-

cision, Recall, and F-measure) are then computed on the approximated isomor-

phism. To achieve this goal, EMMA finds the optimal maximum matching in a

bipartite graph G = {D,A;E}, where D is the set of all unique morphemes in

discovered analysis, A is the set of all unique morphemes in the answer analyses,

and the set of edges e(di, aj) ∈ E such that each edge has one vertex in D and

the other in A.

A maximum matching M ⊂ E is a matching where there is no other M′ ⊂ E

such that |M′| > |M|. Let w(di, aj) be the weight assigned to the edge e(di, aj) ∈
E. The goal of EMMA is to find such an optimal assignment M satisfying:

M = arg max
M

∑
e(di,aj)∈M

w(di, aj) (3.2)

Given a maximum matching optimal assignment M of discovered and answer

morphemes, EMMA computes Precision, Recall, and F-measure as follows:

Let wk be the kth word in vocabulary V . Let Dk,r be the rth discovered

analysis of wk with 1 ≤ r ≤ mk, and let Ak,s be the sth answer analysis of wk

1The script is availabe to download at http://www.cs.bris.ac.uk/Research/

MachineLearning/Morphology/
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with 1 ≤ s ≤ nk. Furthermore, let D∗k,r denote the set of discovered morphemes

of rth analysis for word wk, in which a morpheme di,r is replaced by a morpheme

aj,s if e(di,r, aj,s) ∈M.

Precision =
1

|V |

|V |∑
k

1

mk

nk∑
s

mk∑
r

br,s
|Ak,s ∩D∗k.r|
|D∗k.r|

(3.3)

Recall =
1

|V |

|V |∑
k

1

nk

nk∑
s

mk∑
r

br,s
|Ak,s ∩D∗k.r|
|Ak.s|

(3.4)

F-measure =
2 · Precision · Recall

Precision + Recall
(3.5)

where br,s = 1 if the assignment between Dk,r and Ak,s is found in M, otherwise,

br,s = 0.

3.2 Statistical Significance Testing

Using evaluation metric like F-measure to compare two systems is not enough.

When one system appears to outperform the other, we want to know whether the

improvement is real or it just happens by chance. Statistical significance tests

give us a systematic way of quantifying the probability that the observed increase

in the test score on a test set is due to luck. If that probability is low, we believe

that the improvement is real, if it is high, either there is no improvement, or the

data are insufficient to reflect the true improvement in system quality.

3.2.1 Hypothesis Tests

When comparing a new system A to a baseline system B, we want to know if

A outperforms B on some large population of data given that A wins B by a

metric gain δ(x) on a small sample test set x = x1, ..., xn. Hypothesis testing

guards against the case that the victory of A over B is due merely to chance.

The particular hypothesis to be tested is called the null hypothesis, denoted H0,

which assumes that A is no better than B on the population as a whole. The

ultimate goal of hypothesis testing is to accept or reject H0 by estimating this
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likelihood, written p(δ(X) > δ(x)|H0), where X is a random variable over possible

test sets of size n that we could have drawn, and δ(x) is a constant, the observed

metric gain. Small value of p(δ(X) > δ(x)|H0) suggests the null hypothesis is

false. We refer to p(δ(X) > δ(x)|H0) as p-value(x). Typically p-value(x) < 0.05

is considered “sufficiently good” to reject H0.

In most cases p-value(x) is not easy to compute and must be approximated.

Among various approximation schemes, paired-bootstrap Efron & Tibshirani

(1993) is one of the most widely used in NLP community Berg-Kirkpatrick et al.

(2012); Bisani & Ney (2004); Koehn (2004); Och (2003). Berg-Kirkpatrick et al.

(2012) demonstrated that paired-bootstrap can be applied to a range of NLP

tasks including text summarization, dependency parsing, machine translation,

word alignment, and constituency parsing. Koehn (2004) showed that bootstrap

can give us assurances that the differences between two translation systems is

real even with only 300 sentences as test data.

3.2.2 The Bootstrap

The bootstrap draws many simulated test sets x(i) from x by sampling n items

from x with replacement for each x(i), then it approximates p-value(x) by counting

how often A beats B at least by δ(x) in sample test sets x(i). Algorithm 3 describes

the bootstrap procedure used in Berg-Kirkpatrick et al. (2012).

Algorithm 3 The bootstrap procedure

Draw b bootstrap samples x(i) of size n by sampling with replacement from x.
Initialize s = 0.
for i = 1→ b do

if δ(x(i)) > 2δ(x) then s = s+ 1
end if

end for
Estimate p-value(x) ≈ s

b

There is a little bit difference in algorithm 3 compared to the algorithm used

in Koehn (2004). Koehn (2004) increased counter s under condition δ(x(i)) < 0.

As explained in Berg-Kirkpatrick et al. (2012), sample x(i) are drawn from x, so

the mean of δ(x(i)) will be around δ(x). Therefore, system A will beat system
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B on about half of x(i). The solution for this problem is re-centering of the

mean: how often A does more than δ(x) better than expected. Thus, the condition

δ(x(i)) > 2δ(x) comes from the fact that we expect A beats B by δ(x). Berg-

Kirkpatrick et al. (2012) also noted that if the mean of δx(i) is δ(x), and if the

distribution of δ(x(i)) is symmetric, then these two versions will be equivalent.
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Chapter 4

Unsupervised Morphological

Segmentation

4.1 Modeling Syntax in Unsupervised Morpho-

logical Segmentation

In this section I review the state of the art unsupervised morphological segmen-

tation model proposed by Lee et al. (2011). I also re-implement their model

and perform a set of experiments and evaluate the results of the model on four

languages: English, Turkish, Tamil, and Telugu.

Lee et al. (2011) introduced a model for unsupervised morphological segmen-

tation that captures two prominent linguistic relations between morphology and

syntax.

1. Morphological consistency within POS categories.

2. Morphological realization of grammatical agreement.

The former relation captures the intuition that words belonging to the same

syntactic category tend to choose similar affixes. The later relation holds for

certain languages, for example in Arabic, the grammatical agreement is commonly

realized using matching suffixes, for example bigrams (adjective, noun) in Arabic

often have the same ending. While this assumption may not hold for other

languages, I still describe it in this section.
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4.1.1 High-level Generative Story

Given a corpus of unannotated and unsegmented sentences as input, the model

provides a generative story explaining how the corpus was probabilistically cre-

ated. The model consists of four components:

1. Lexicon Model generates morpheme lexicon L using parameters γ. Set

of lexicon L consists of three separate subsets: prefixes, stems, and suffixes

which are generated in a hierarchical fashion.

2. Segmentation Model generates word-types W, their segmentations S,

and their syntactic categories T conditionally on L.

3. Token-POS Model generates unsegmented tokens w and their parts-of-

speech t from standard first-order HMM.

4. Token-Seg Model generates token segmentations s from a first-order

Markov chain that has dependencies between adjacent segmentations.

The complete picture of this generative story is given in the following equation:

P (w, s, t,W,S,T,L,Θ,θ|γ,α,β) = P (L|γ) (4.1)

P (W,S,T,Θ|L,γ,α) (4.2)

Ppos(w, t,θ|W,S,T,L,α) (4.3)

Pseg(s|W,S,T,L,β,α) (4.4)

where γ, Θ, θ, α, β are hyperparameters whose roles will be explained shortly.

4.1.2 Submodels and Sampling Equations

Now I will describe these four components of the model in details, and derive the

sampling equation for each of them.
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4.1 Modeling Syntax in Unsupervised Morphological Segmentation

4.1.2.1 Lexicon Model

Lexicon Model is designed to encode MDL constraint as the priors. It prefers

short morphemes and a compact set of morpheme lexicon L. First, it draws

each morpheme σ of length |σ| in the master lexicon L∗ according to geometric

distribution.

|σ| ∼ Geometric(γl)

where hyperparameter γl is specified beforehand.

The choice of the distribution depends on our knowledge of the languages. For

example, morphemes in Telugu often have 2 to 8 characters, thus, we can choose

gamma distribution i.e. |σ| ∼ Gamma(k, θ) (Figure 4.1) instead of geometric

distribution to encode this knowledge.
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Figure 4.1: Geometric distribution and gamma distribution as the choice of priors

Having master lexicon L∗, then lexicon model draws sets of morphemes for

the prefix L−, the stem L0, and the suffix L+ lexicons from morphemes in L∗. By

this hierarchical design, the morphemes can be shared among the lower-level lexi-

cons. Therefore, the model also works for compound words. Technically speaking,

assume that we allow only one stem in a word, if the morpheme “moon” is gener-
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4.1 Modeling Syntax in Unsupervised Morphological Segmentation

ated in L∗, then it can be used to generate suffixes or prefixes for “moonshine”,

“moonstruck”, “moonwalk” and so forth. So far, the model biases toward short

morphemes, to favor compact lexicons, model assigns lower probability to bigger

morpheme set. This can be done using geometric distribution again:

prefix : |L−| ∼ Geometric(γl−)

stem : |L0| ∼ Geometric(γl0)

suffix : |L+| ∼ Geometric(γl+)

Let (S, T ) denote the hypothesis that segments word-type Wi with segmenta-

tion S and tags it with POS tag T . Let L = (L∗, L−, L0, L+) be the minimal lex-

icon under this hypothesis. The probability of hypothesis (S, T, s = S, t = T,L)

is proportional to:∏
σ∈L∗

γl(1− γl)|σ| × γ−(1− γ−)|L−| × γ0(1− γ0)|L0| × γ+(1− γ+)|L+| (4.5)

Starting with every word-type as a morpheme, if a hypothesis introduces a

new morpheme σ− as a suffix it has to pay an additional cost (1−γ−)×γl(1−γl)|σ−|

compared to the hypothesis that introduces none.

In practice, we assign γ0 � min{γ−, γ+}. By doing this, we capture the fact

that the set of prefixes and suffixes are much smaller than the set of stems.

To sum up, the model penalizes hypothesis for increasing the size of lexicons

while encouraging it to make a reasonable segmentation.

4.1.2.2 Segmentation Model

Segmentation Model captures the agreement between morphology and syntac-

tic class. The model generates each word-type independently using morphemes

in stem and affix lexicons, such that each word-type has only one stem and af-

fixes attached to the stem are generated conditionally on the syntactic classes. In

their preliminary experiments, Lee et al. (2011) found that the model performed

worst when stems are generated conditioned on the tag. Lee et al. (2011) argued
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4.1 Modeling Syntax in Unsupervised Morphological Segmentation

that the connection between affixes and POS tag is stronger than the connection

between stems and POS tag. In the following, I describe the generative process

in the segmentation model.

First, the model generates categorical distribution parameters for the POS

tag from symmetric Dirichlet prior:

ΘT ∼ Dirichlet(αT , {1, ..., K})

where αT is the concentration parameter and K is the number of tags, which is

fixed and set beforehand.

For each tag T ∈ {1, ..., K}, the model generates parameters for categorial

distribution from Dirichlet prior for the prefix and suffix lexicons. Categorical

distribution parameters for stem lexicon are generated (from symmetric Dirichlet

prior) independently from tag T :

Θ−|T ∼ Dirichlet(α−, L−)

Θ0 ∼ Dirichlet(α0, L0)

Θ+|T ∼ Dirichlet(α+, L+)

For each word-type Wi, the number of morphemes in its segmentation S

is drawn from truncated geometric distribution which allows maximum m mor-

phemes per word-type:

|S| ∼ Truncated-Geometric(γ|S|) =
γ|S|(1− γ|S|)|S|
m∑
j=1

γ|S|(1− γ|S|)j

Once the number of morphemes is sampled, the model randomly picks one

morpheme as stem from uniform distribution, the prefixes and suffixes are then

determined according to the position of the stem.

Next, the model draws syntactic category T of word-type Wi from categorical

distribution:

T ∼ Cat(ΘT )
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4.1 Modeling Syntax in Unsupervised Morphological Segmentation

Afterward, the model generates stem σ0, prefixes σ−, and suffixes σ+ inde-

pendently:

σ0 ∼ Cat(Θ0)

σ−|T ∼ Cat(Θ−|T )

σ+|T ∼ Cat(Θ+|T )

Recall equation 2.18 for computing the posterior P (xn+1 = j|x,β) for a new

observation xn+1 given previous observations x = x1, ..., xn drawn from categori-

cal distribution with hyperparameters β:

P (xn+1 = j|x,β) =
nj + βj

n+
∑K

k=1 βk

Using this formula, the probability of generating tag T , stem σ0, prefix σ−,

and suffix σ+ for word-type Wi is computed as the product of the following

equations:

P (ti = T |T−i, αT ) =
n−iT + αT
N−i + αTK

(4.6)

P (σ0|L−i, α0) =
n−iσ0 + α0

N−i0 + α0|L0|
(4.7)

P (σ−|L−i, α−) =
n−iσ−|T + α−

N−i−|T + α−|L−|
(4.8)

P (σ+|L−i, α+) =
n−iσ+|T + α+

N−i+|T + α+|L+|
(4.9)

where the superscript −i indicates that the relative counts exclude the word type

Wi. n−iT is the number of word-types with tag T , N−i is the number of word-types

excluding word-type Wi, n−iσ0 is the number of stems σ0 in the stem lexicon L0,

N−i0 is the total number of stems, n−iσ−|T is the number of prefixes σ− associated

with word-types tagged with tag T , N−i−|T is the number of prefixes in all word-

types that has tag T . The notions for suffixes are analogous to the notions for

prefixes.
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4.1 Modeling Syntax in Unsupervised Morphological Segmentation

The final sampling equation is then given as:

P (Wi, S, T |L,γ,α) =
γ|S|(1− γ|S|)|S|∑m
j=0 γ|S|(1− γ|S|)j

(4.10)

× n−iT + αT
N−i + αTK

×
n−iσ0 + α0

N−i0 + α0|L0|

×
n−iσ−|T + α−

N−i−|T + α−|L−|

×
n−iσ+|T + α+

N−i+|T + α+|L+|

4.1.2.3 Token-POS Model

Token-POS model plays a role as an unsupervised POS type-based tagger. The

model generates tokens w and their POS tags t with probability:

P (w, t|W,T,θ) =
∏
wi,ti

P (ti−1|ti, θt|t)P (wi|ti, θw|t)

Transition probabilities and emission probabilities are specified by a collection

of categorical parameters θ = {θ(T,k)} ∪ {θ(E,k)}, where {θ(T,k)} is the set of K

transition distributions, each over K tags and {θ(E,k)} is the set of K emission

distributions, each over the set of word-types.

θt|t ∼ Dirichlet(αt|t, {1, ..., K})

θw|t ∼ Dirichlet(αw|t,Wt)

where Wt is the set of word-types that are generated by tag t.

Using the formula for a general type-based sampler in Liang et al. (2010), the
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4.1 Modeling Syntax in Unsupervised Morphological Segmentation

sampling equation for this model is given by

Ppos(w, t|W ,S,T ,L,α) =
α

(mi)
w|t

(M−i
t + αw|t|Wt|)(mi)

×
K∏
t=1

K∏
t′=1

(m−it′|t + αt|t)
(mi

t′|t)

(M−i
t + αt|t)

(mi
t′|t)

(4.11)

where α(m) = α(α+1)...(α+m−1) is the ascending factorial. M−i
t is the number

of tokens having tag t, mi is the number of token wi, and mi
t′|t is the number

of tokens t-to-t′ transitions. Note that all the counts for tokens that belong to

word-type Wi are excluded.

The first term is the emission probability and the second term is the transition

probability with parameters θ marginalized out.

4.1.2.4 Token-Seg Model

Although Lee et al. (2011) demonstrated that Token-Seg model improved greatly

the performance of the unsupervised morphological segmentation system for Ara-

bic, the model is only suitable for certain language family. It is designed to capture

the morphosyntactic agreement between adjacent tokens which is often realized

by matching the last suffixes. Let s denote a sequence of segmentations, and let

si be the segmentation of ith word in the data. The probability of drawing s is

given by

Pseg(s|W,S,T,L,β,α) =
∏

(si−1,si)

p(si|si−1) (4.12)

The model is designed in such a way that it encourages adjacent tokens ex-

hibiting morphosyntactic agreement by having the same final suffix while it pe-

nalizes the case when adjacent tokens have the same ending but different final

suffixes. To achieve this goal, the model first computes n, the length of the

longest final suffix in pair of segmentations (si−1, si), and sets the last n char-

acters of each word as its ending. A simple matching method then serves as a

proxy for morphosyntactic agreement between the two words. Finally, the model
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4.2 Experimental Setup

defines a probability distribution over pair (si|si−1)

p(si|si−1) =


β1, if same endings and same final suffix

β2, if same endings but different final suffixes

β3 otherwise

where β1 + β2 + β3 = 1 and β1 > β3 > β2.

The sampling equation for word-type Wi has the form:

β
miβ1
1 β

miβ2
2 β

miβ3
3 (4.13)

in which, mi
β1

is the number of transitions where word-type Wi occurs such that

Wi and its neighbor have the same final suffix. mi
β2

and mi
β3

are read analogously.

4.1.3 Training Procedure

The model is trained stage by stage, the next stage adds a new sub-model and

uses the previous stage for initialization.

4.2 Experimental Setup

4.2.1 Performance Metrics

In order to compare with other works, I evaluate the segmentation results using

the evaluation scheme in Morpho Challenge (MC for short), and the EMMA

method. The scripts for evaluating are obtained from http://research.ics.

aalto.fi/events/morphochallenge/.

4.2.2 Data

I evaluate the model on 4 languages: English, Turkish, Tamil, and Telugu. I

collect word lists1 and gold standard segmentations for English and Turkish from

1Because the model is fully unsupervised, I only take the word lists which contain words
and their frequency as my inputs.
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4.2 Experimental Setup

the series of the Morpho Challenge1. For each word list, I randomly select 70,000

word types as training data.

For Tamil and Telugu, I use the same data as Ramasamy et al. (2012).

They randomly selected articles from monolingual section of Tamil and Telugu in

EMILLE corpus Xiao et al. (2004) and transliterated them into the Latin script.

For each language, they created a word list from real sentences in EMILLE corpus

and manually annotated every word in the list to obtain gold standard segmen-

tations.

Table 4.1 shows number of word types, number of morphemes, and number

of unique morphemes in gold standard segmentations.

Table 4.1: Gold standard segmentations statistics

Language #word-types #morphemes #unique morphemes
English 2,545 5,884 2,191
Turkish 2,867 20,227 1,760
Tamil 1,080 2,641 848
Telugu 997 1,732 1,266

4.2.3 Software

I implemented the model2 described above in Julia3. Julia is a new programing

language which achieves remarkable speed for technical computing. The soft-

ware version implemented in Julia is four times faster than the Python version4

provided by Kim et al. (2011). I also obtained implementations of various sys-

tems participated in Morpho Challenge for the comparison, including Morfessor

Categories-MAP, Morfessor Baseline5 and MORSEL6. These systems were ranked

among the best systems in Morpho Challenge.

1http://research.ics.aalto.fi/events/morphochallenge/
2https://github.com/ketranm/morpho-segmentation
3http://julialang.org/
4http://groups.csail.mit.edu/rbg/code/morphsyn/
5http://www.cis.hut.fi/projects/morpho/
6https://github.com/ConstantineLignos/MORSEL
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4.2.4 Submodels and Parameters Setting

As mentioned in the previous section, Token-Seg model was designed for Arabic,

the language that morphosyntactic agreement can be realized using matching

suffixes. This observation has not been seen in four languages to be evaluated,

so I exclude Token-Seg model.

In my preliminary experiments, adding Token-POS model does not improve

F1-score. Lee et al. (2011) also reported similar result in their experiment for

Arabic using paired t-test. Thus, I only use lexicon model and segmentation

model.

In all the experiments, I set γl = 1
1.1

(for the length of morphemes), γ|S| = 1
2

(for the number of morphemes of each word), γ− = γ+ = 1
1.1

(for the size of the

prefix and the suffix lexicons) to favor small sets of affixes, and γ0 = 1
10,000

(for

the size of s the stem lexicon). To prefer sparse distributions in segmentation

model, I set concentration parameters αT = α− = α+ = α0 = 0.1. Number of

POS tags is set to 5.

4.2.5 Baselines

I run experiments with Mofessor Cat-MAP, Morfessor Baseline, and MORSEL

on the same dataset for each language and use the results as the baselines.

4.2.6 Unrealistic Setting

The “unrealistic experiments” is set up to evaluate the robustness of the model.

Under this setting, I train the model on gold standard datasets (only word types

in gold standard, the model does not access segmentation information). The

training data in this case is much smaller. Because the computation is cheaper

for small training data, I will apply maximum marginal decoding (MM) technique

by drawing 15 independent Gibbs samplers.
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4.3 Results

Table 4.2 and table 4.3 show the results of evaluation using MC method and

EMMA method respectively.

Table 4.2: Results of evaluation with MC method

Language Model Precision Recall F1

English

MORSEL 57.64% 53.43% 55.45%
Morfessor Baseline 55.10% 57.94% 56.48%
Morfessor-CatMAP 31.88% 33.26% 32.55%
Lexicon 60.36% 38.26% 46.83%
+Segmentation 59.54% 43.74% 50.43%

Turkish

MORSEL 72.95% 17.72% 28.51%
Morfessor Baseline 80.25% 16.32% 27.12%
Morfessor-CatMAP 76.31% 24.66% 37.27%
Lexicon 70.84% 18.74% 29.64%
+Segmentation 72.31% 18.40% 29.34

Tamil

MORSEL 54.14% 18.52% 27.60%
Morfessor Baseline 60.43% 31.74% 41.62%
Morfessor-CatMAP 51.15% 45.43% 48.12%
Lexicon 69.51% 22.56% 34.07%
+Segmentation 67.87% 23.68% 35.11%

Telugu

MORSEL 36.31% 2.58% 4.81%
Morfessor Baseline 24.89% 54.32% 34.14%
Morfessor-CatMAP 13.66% 53.96% 21.80%
Lexicon 28.36% 30.16% 29.23%
+Segmentation 29.49% 34.29% 31.71%

The F1 score evaluated with EMMA method for Telugu gives highest value

for MORSEL system while MC method gives lowest value. Why does the con-

tradiction appear? Table 4.4 shows that in gold standard datasets, the number

of unique morphemes is often smaller than the number of word types for all the

languages except for Telugu. It implies that not many morphemes in Telugu gold

standard dataset have been reused.
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Table 4.3: Results of evaluation with EMMA method

Language Model Precision Recall F1

English

MORSEL 84.15% 72.72% 78.02%
Morfessor Baseline 79.91% 78.56% 79.23%
Morfessor-CatMAP 85.52% 69.09% 76.27%
Lexicon 84.08% 72.11% 77.64%
+Segmentation 83.75% 73.26% 78.15%

Turkish

MORSEL 85.98% 29.60% 44.04%
Morfessor Baseline 87.30% 30.31% 45.00%
Morfessor-CatMAP 84.90% 35.67% 50.24%
Lexicon 82.26% 33.53% 47.64%
+Segmentation 82.43% 33.90% 48.04%

Tamil

MORSEL 84.95% 63.40% 72.61%
Morfessor Baseline 85.00% 67.25% 75.09%
Morfessor-CatMAP 80.17% 73.59% 76.74%
Lexicon 92.46% 63.76% 75.47%
+Segmentation 92.60% 64.35% 75.93%

Telugu

MORSEL 98.14% 80.79% 88.62%
Morfessor Baseline 70.89% 92.47% 80.25%
Morfessor-CatMAP 56.30% 93.23% 70.20%
Lexicon 78.13% 88.70% 83.08%
+Segmentation 77.87% 88.44% 82.82%
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Table 4.4: Segmentations statistics of gold standard datasets

Language Model #types #morph #unique morph

English

MORSEL 2,545 5,620 2,103
Morfessor Baseline 2,545 5,994 2,118
Morfessor-CAT 2,545 5,680 2,593
Lexicon 2,545 4,029 2,263
+Segmentation 2,545 4,153 2,256
Gold standard 2,545 5,884 2,191

Turkish

MORSEL 2,867 6,587 2,556
Morfessor Baseline 2,867 7,017 2,324
Morfessor-CAT 2,867 8,124 2,366
Lexicon 2,867 7,802 2,458
+Segmentation 2,867 7,913 2,418
Gold standard 2,867 20,227 1,760

Tamil

MORSEL 1,080 1,840 989
Morfessor Baseline 1,080 2,182 1,043
Morfessor-CAT 1,080 2,615 924
Lexicon 1,080 1,707 969
+Segmentation 1,080 1,735 971
Gold standard 1,080 2,641 848

Telugu

MORSEL 997 1,108 1,033
Morfessor Baseline 997 2,390 1,268
Morfessor-CAT 997 3,086 1,186
Lexicon 997 2,084 1,315
+Segmentation 997 2,080 1,309
Gold standard 997 1,732 1,266
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4.3.1 Unrealistic Setting

Table 4.5 shows the results of the experiments under unrealistic setting. MORSEL

performs worst1 when it is trained on small dataset since there are not many

minimal word-pairs that could be found in the training data. Lexicon model

and + Segmentation model give higher F1 scores for English and Tamil. Size of

training data could affect the performance of the system. Training on large data,

the system might induce spurious affixes.

MM technique helps improving F1 scores in general.

1This is because of MORSEL does not segment words in gold standard while every word
in standard have approximately 3 morphemes (Telugu) and each word can have more than one
analysis (Turkish). This makes the MC scheme is not usable.
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Table 4.5: Results of evaluation with MC method in unrealistic setting. Precision,
Recall and F1 are reported as the mean scores of 15 independent Gibbs samples.
The sample standard deviations are shown in brackets. Lexicon MM and +
Segmentation MM are the results after applying maximum marginal decoding
technique. ∞ means that it is not possible to evaluate using MC scripts.

Language Model Precision Recall F1

English

MORSEL 100.00% 2.25% 4.40%
Morfessor Baseline 65.81% 48.32% 55.73%
Morfessor-CatMAP 71.93% 46.58% 56.55%
Lexicon 61.46% 53.92% 57.40% (1.1)
+Segmentation 60.51% 54.73% 57.43% (1.2)
Lexicon MM 60.47% 55.40% 57.82%
+Segmentation MM 62.15% 55.98% 58.90%

Turkish

MORSEL ∞ ∞ ∞
Morfessor Baseline 77.29% 18.32% 29.61%
Morfessor-CatMAP 82.63% 18.12% 29.72%
Lexicon 80.83% 16.85% 27.88% (0.6)
+Segmentation 81.03% 17.45% 28.71% (0.9)
Lexicon MM 86.09% 16.16% 27.22%
+Segmentation MM 86.48% 17.14% 28.61%

Tamil

MORSEL 81.82% 1.17% 2.31%
Morfessor Baseline 52.54% 38.37% 44.35%
Morfessor-CatMAP 53.55% 37.65% 44.21%
Lexicon 53.43% 34.56% 41.95% (1.3)
+Segmentation 52.76% 34.33% 41.57% (0.9)
Lexicon MM 57.74% 33.63% 42.51%
+Segmentation MM 57.98% 32.67% 41.80%

Telugu

MORSEL ∞ ∞ ∞
Morfessor Baseline 38.72% 37.06% 37.87%
Morfessor-CatMAP 42.29% 37.06% 39.50%
Lexicon 17.59% 52.15% 26.23% (1.5)
+Segmentation 18.01% 55.60% 27.15% (1.8)
Lexicon MM 15.96% 57.58% 24.99%
+Segmentation MM 17.06% 56.88% 26.24%
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Table 4.6: Evaluation using EMMA method

Language Model Precision Recall F1

English

MORSEL 99.94% 46.07% 63.07%
Morfessor Baseline 81.92% 70.69% 75.89%
Morfessor-CatMAP 87.01% 71.26% 78.35%
Lexicon 82.16% 76.38% 79.16% (0.38)
+Segmentation 81.03% 76.83% 78.87% (0.28)
Lexicon MM 84.35% 77.36% 80.70%
+Segmentation MM 83.00% 78.00% 80.32%

Turkish

MORSEL 100% 16.67% 28.59%
Morfessor Baseline 82.58% 31.54% 45.65%
Morfessor-CatMAP 89.06% 32.07% 47.16%
Lexicon 88.07% 31.73% 46.53% (0.43)
+Segmentation 87.71% 32.20% 47.11% (0.43)
Lexicon MM 90.99% 31.87% 47.20%
+Segmentation MM 90.17% 32.92% 48.23%

Tamil

MORSEL 99.54% 47.27% 64.10%
Morfessor Baseline 76.79% 74.10% 75.42%
Morfessor-CatMAP 78.41% 73.84% 76.06%
Lexicon 78.31% 72.84% 75.48% (0.37)
+Segmentation 77.30% 72.86% 75.01% (0.38)
Lexicon MM 79.93% 72.95% 76.28%
+Segmentation MM 78.99% 72.73% 75.73%

Telugu

MORSEL 100% 78.86% 88.18%
Morfessor Baseline 89.79% 88.90% 89.34%
Morfessor-CatMAP 91.01% 88.76% 89.91%
Lexicon 62.55% 91.95% 74.45% (0.74)
+Segmentation 60.81% 92.28% 73.31% (0.49)
Lexicon MM 64.37% 92.56% 75.93%
+Segmentation MM 62.26% 92.87% 74.55%
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Chapter 5

Word Representation improves

Unsupervised Morphological

Segmentation

Traditional NLP approaches have relied on a set of human-designed features ex-

tracted from training data. The choice of features is often based on linguistic

intuition and empirical experiment depending on a specific task. Recently, re-

searchers have taken a new approach which attempts to automatically learn good

features from input data. This approach is referred as representation learning or

feature learning. It has been shown that these learned features greatly improve

the performance of existing NLP systems Socher et al. (2011a,b, 2012); Turian

et al. (2010) while reducing numerous effort for task-specific engineering features

Collobert & Weston (2008); Collobert et al. (2011).

Inspired by previous successful approaches which yield substantial gains in

performance across a wide range of NLP tasks by training existing supervised

Turian et al. (2010) or semi-supervised Koo et al. (2008) NLP systems using un-

supervised word representations as extra word features, I propose a simple gen-

erative model for unsupervised morphological segmentation that could make use

of word representations. The research question here is: Do word representations

help in unsupervised context?
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5.1 Distributed Representations

There are several approaches to represent words in a more useful and meaning-

ful way. Word representations induced by those approaches, however, can be

classified into three main categories: distributional representations Blei et al.

(2003); Dumais et al. (1988); Hofmann (1999); Landauer et al. (1998), cluster-

based representations, and distributed representations. Since previous research

has successfully applied distributed representations for a variety of NLP tasks, I

will focus on distributed representations.

Distributed word representations are typically induced by using neural lan-

guage models. The language models learn to map words into real-valued feature

vectors, which are dense and low dimensional. Words transformed into feature

vectors are called word embeddings. Each dimension of the embedding represents

a latent feature of the word. In the following, I briefly summarize the language

model presented in Collobert & Weston (2008) using the notations in Turian et al.

(2010).

Each word wi in a finite dictionary D is embedded into a d dimensional space

using a lookup table e:

The model reads input sentence x = (x1, ..., xn) and transforms it into a series

of vectors e(w1)⊕ ...⊕e(wn) by using the lookup table e, here ⊕ denotes concate-

nation operator. The next step is to generate a negative example by corrupting

the last word wn. This technique is similar to contrastive estimation proposed

by Smith & Eisner (2005). The language model should learn to assign high score

for true example and low score to negative example. Let x̃ = (x1, ..., w̃n) denote

the negative example, where w̃n is randomly selected from the dictionary D. For

convenience, denote e(x) = e(w1) ⊕ ... ⊕ e(wn). Passing e(x) through a single

hidden layer neural network, the model returns a score s(x). The loss function

needed to be minimized is L(x) = max(0, 1− s(x) + s(x̃)). The distributed rep-

resentation is learnt as a result of doing gradient descent simultaneously over the

neural network parameters and the embedding lookup table.
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5.2 The Model

5.2 The Model

A distributed representation could capture many features for a word such as

syntactic features (such as its distribution over POS tags), semantic features (is

it the name of a job? etc), morphological features (which affix could it have?),

and so forth Bengio (2009). For unsupervised morphological segmentation task,

I employ morphological features captured in distributed word representation.

In the embedding space, words with similar affixes are closer together (ex-

cerpted visualization of neural word embeddings in figure 5.1). Therefore, I group

words into clusters and force words in the same cluster to select similar affixes.

Figure 5.1: A visualization of word embeddings

The model contains three sub-models: Lexicon model, Segmentation model,

and Cluster-Segmentation model. The Lexicon model and the Segmentation

model are reused from chapter 4. The Cluster-Segmentation model is designed

in a similar spirit to the Token-Seg model in the previous chapter.

Let C = C1, ..., CM denote the set of word clusters. Each word type Wi either

belongs to a cluster Cj ∈ C, or it belongs to none. I will explain where the clusters
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5.2 The Model

come from shortly.

Based on the linguistic intuition that the final suffix is often the strongest

indicator for the syntactic category of the word, I place a Categorical distribution

on the final suffixes of all the words in each cluster. Let LC− denote the set of

the final suffixes for cluster C. The final suffix σi− (if a word does not have any

suffix, its final suffix is NONE) of a word type Wi ∈ C is generated from Categorical

distribution:

σi− ∼ Cat(ΘC) (5.1)

where ΘC is drawn from Dirichlet prior.

ΘC ∼ Dirichlet(αC , LC−) (5.2)

and the hyperparameter αC of the Dirichlet prior is chosen to be less than 1 to

encourage sparsity.

Table 5.1 gives an example of words and clusters. Words in the same cluster

not only tend to have similar syntactic categories but also share similar semantic

categories.

Where do the word clusters come from? Having word embeddings in N dimen-

sional space of real numbers, one can use a clustering algorithm such as K-means

to obtain word clusters.

Because NONE is counted as the final suffix, it might be the case that there

are many NONEs in a cluster (for example, cluster 1018 shown in Table 5.1.) In

this case, the word “sounds” in cluster 1018 might not be segmented because the

probability to generate NONE is much higher than the probability to generate s

as the final suffix within cluster 1018.

As a treatment for this problem, I define a probability distribution p(si|C)

over the segmentation si given its cluster C as follows:

p(si|C) =


β1, if the final suffix is NONE

β2, if the final suffix is unique in C

β3 otherwise

45



5.2 The Model

Table 5.1: Sample words and clusters extracted from data

Cluster sample
654 716 984 273 1018

impressionistic portraitist interfering slovak melody
minimalistic parliamentarian questioning slovakian playback
improvised polemicist reconciling slovenian sounds

idiosyncratic propagandist sympathizing slovene stereo
innovative revivalist tinkering valencian sync
inventive satanist collaborating macedonian tempo

multifaceted supporter brainwashing luxembourgish voice
naturalistic thinker clashing pomeranian tone
ephemeral woodcarver adventuring portuguese reverb
distinctive chronicler deliberating serbian swing

anachronistic centenarian interfering czechoslovak drum
colourful grammarian conspiring croatian crescendo
idealised theologian assisting corsican instrumentation
idealized bostonian allying bulgarian acoustic

illustrative landowner eavesdropping bosnian distortion
imaginative nobleman enlisting belarusian ambient

incisive frenchman pleading kyrgyz arrangement
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5.3 Experimental Setup

where β1 + β2 + β3 = 1 and β1 ≤ β2 < β3.

By setting the highest value to β3, I encourage the words within the same

cluster to exhibit the syntactic and semantic agreements.

5.2.1 Sampling Equation

The sampling equation for Cluster-Segmentation model is

P (σ−|C, αC ,β) =
n−iσ−|C + αC

N−iC + αC |L−iC−|
× β1

I1(C)β2
I2(C)β3

I1(C) (5.3)

here N−iC is the size of cluster C, n−iα−|C is the number of the final suffix σ− found

in C, L−iC− is the set of final suffixes (excluding the counts contributed by word

type Wi.). Ij(C), j ∈ {1, 2, 3} is the indicator functions (i.e if the final suffix =

NONE) whose values ∈ {0, 1}.

5.3 Experimental Setup

5.3.1 Data

I use the same English word list as in chapter 4, I obtain word embeddings from

Socher et al. (2011b). They pre-trained word embeddings using Collobert-Weston

neural language model Collobert & Weston (2008).

To obtain word clusters, I use K-means clustering algorithm with number of

clusters K = 1500.

5.3.2 Parameters Setting

I set hyperparameter αC = 0.1 for all clusters, β1 = 0.2, β2 = 0.2 and β3 = 0.6.

Rest of the parameters are set the same values as in chapter 4.

5.4 Result

Table 5.2 shows that adding Cluster model improved F1 score by 4.56%. Running

the bootstrap for 105 iterations, the confidence (1-p-value) is equal to 1 in both
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5.5 Discussion

paired tests for (Lexicon, +Segmentation) and (+Segmentation, +Cluster).

Table 5.2: Evaluation using MC method

Model Precision Recall F1
Lexicon 60.36% 38.26% 46.83%
+Segmentation 59.54% 43.74% 50.43%
+Cluster 61.94% 49.44% 54.99%

Table 5.3: Evaluation using EMMA method

Model Precision Recall F1
Lexicon 84.08% 72.11% 77.64%
+Segmentation 83.75% 73.26% 78.15%
+Cluster 84.18% 75.13% 79.40%

5.5 Discussion

I have shown that using word representations as extra features could improve the

unsupervised system. However, there are some limitations in this work. Firstly,

the experiment is only for English, we need to evaluate the model on more lan-

guages to see if the model behaves the same. Secondly, the quality of the clusters

might affect the performance of the model. One drawback of K-means is that

number of clusters is required to specify beforehand. It would be better if we let

the data decide the number of clusters by itself. For example, we can use Dis-

tance Dependent Chinese Restaurant Process Blei & Frazier (2009) for clustering

instead of K-means.
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Chapter 6

Conclusions

In this thesis, I have evaluated various unsupervised morphological segmentation

systems for 4 languages: English, Turkish, Tamil, and Telugu. I also have shown

that maximum marginal decoding could help reducing variance and noise in the

output of Gibbs samples.

In chapter 5, I have presented the generative model that uses word represen-

tation as extra features. The model improved dramatically F1 score for English.

6.1 Limitations

In chapter 5, I have not used maximum marginal decoding technique1. It would

be interesting to see by how large the MM technique could improve F1 score.

Also, the generative model in chapter 5 needs to be tested on other languages.

6.2 Future Work

The relationship between size of training data and the performance of unsuper-

vised systems is interesting as well. In which case the performance of the system

is better: training on a small selective dataset or training on a massive dataset?

If it is the former case, how to select such a dataset?

1Due to the lack of computational resources.
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Training data examples

English Turkish Tamil Telugu
inital elimizi mwepiyaj dhOraNilO
panics trm awTarangkaTTil prOgraaMnibaTTi
namesakes ulu munmozivOm bhootaM
familia fermuarlI kAraNaTTaikkURi moduLLaku
unnaturally filozof wTETiyum maarataaDaemOyidi
downfall edilmelerini variyai naakishTaMlaeka
newsgroup baktI alangkarikkappattu akkaraku
co-ordinated klasOre viLakkukaL aadaarina
christabel yapIlmamalIdIr layancu aeraati
goodwin SUkran ezuwTaTum nirasanapatraM
paducah pars cattamanRaTTai vidyudutpatti
upstream gOrUSmelerinin katciTTalaivarkaL shel
castrated CIkacaGInI TIvira aalOchiMchukOTaanikee
nisar Cikmak pArAkotu aedaitae
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Gold standard and output

examples

Table 1: English

Word type Gold standard segmentations Proposed segmentations
stabilized stable A ize s +PAST stabiliz + ed
drumheads drum N head N +PL drumheads
resonant resonate V ant s resonant
punishment punish V ment s punish + ment
dragged drag V +PAST dragg + ed
abounded abound V +PAST abound + ed
commissioning commit V ion s +PCP1 commission + ing
trying try V +PCP1, trying V trying
cabal cabal N cabal
pensionable pension N off B able s pension + able
the the B, the D the
corroborated corroborate V +PAST corroborat + ed
suffuse suffuse V suffuse
pottages pot N age s +PL pottages
townsman town N s s man N townsm + an
sip sip V sip
ford ford N ford
golf-club golf N club N golf-club
ancestors ancestor N +PL ancestor + s
tripartite tri p part N ite s tripartite
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Table 3: Tamil

Word type Gold standard segmentations Proposed segmentations
ewTa ewTa ewTa
ikkuzu ik + kuzu ikkuzu
mAwila mAwila mAwila
mUlam mUlam mUlam
iru iru iru
anniya anniya anniya
vazakkamAka vazakkam + Aka vazakkam + Aka
uriTTAkka uriTTAkk + a uriTTAkka
ceyalpatAmal ceyalpat + Amal ceyalpat + Amal
muzuvaTilum muzuvaT + il + um muzuva + Til + um
pOnapiRaku pOna + piRaku pOnapiRaku
puriwTukoLLa puri + wT + u + koLL + a puriwTu + koLLa
paTivu paTivu paTivu
kanavai kanav + ai kanav + ai
aRiyamutiyum aRi + y + a + muti + y + um aRiyamutiyum
irukka iru + kk + a irukka
pOStarkaL pOStar + kaL pOStar + kaL
kAlaTTin kAla + TT + in kAlaTT + in
waTikaLil waTi + kaL + il waTikaL + il
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Table 4: Telugu

Word type Gold standard segmentations Proposed segmentations
cheema cheema cheema
yika yika yika
chaetinuMDi chaeti + nuMDi chaeti + nuMDi
udyOgi udyOgi udyOg + i
tiyyani tiyyani tiyya + ni
railumeeda railu + meeda railu + meed + a
maaTlaaDadalistae maaTlaaDa + dalistae maaTlaaD + adali + stae
vechchagaa vechcha + gaa vechcha + gaa
graama graama graama
nuMchee nuMchee nuMchee
paTTamu paTTamu paTT + amu
koorchuni koorchuni koorchu + ni
yennaaLlani yennaaLl + ani yennaaL + lani
koddinimushaallO koddi + nimushaal + lO koddini + mushaa + llO
saMghamunaku saMghamu + na + ku saMgha + mu + naku
bayaTivaaLlatO bayaTi + vaaLla + tO bayaTi + vaaL + latO
taedeela taedee + la taedeel + a
choosi choosi choosi
kOrika kOrika kOrika
dooramunuMchi dooramu + nuMchi dooramu + nuMchi
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