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Section 1: Introduction 
 

1.1 On the Cortex in General 
 

The rise of man is indisputably linked with the tremendous increase of his cortex-to-body 
ratio. This increase did not start with man, however, but with mammals in general. Over 
195 million years ago the separation between mammals and mammal-like reptiles is 
presumed to have occurred, and since that time the cortex has grown drastically, 
indirectly implying its significance.   
 

Reptiles possess a relatively small cortex for crude sensory analysis and primarily rely on 
the sub-cortical mechanisms of the mid- and hindbrain to guide behaviour. It is believed 
that decisions made by these areas can be considered 'instinctive', as it's possible to 
describe the resulting behaviours in terms of simple stimulus-response rules. Though 
mammalian behaviour is still guided by these primitive instincts (primitive in terms of 
their age in evolution), the expansion of the cortex gradually enabled an increase in the 
complexity of the emerging behaviour.  
 

Where a reptile's decisions can often be explained in the context of the directly 
observable world around him, with mammals this approach does not suffice. From the 
expansion of the cortex emerged a new tool for decision-making that evolved on top of 
the older system and enables mammals to 'think' beyond the here and now. In everyday 
speech we often refer to this tool as the faculty of reason.  
 

Reason requires world knowledge, and it is the cortex that provides this. We need to 
extract the important facts from the information passed on by our senses, to evaluate 
these facts and decide what's important and what is superfluous. We normally tend to 
refer to reason as the manipulation of symbols in accordance with the rules of logic, but 
we often forget that reasoning need not be that abstract. While the use of symbols 
requires high-level object recognition (and is inestimably enhanced by speech), 'common 
sense' reasoning as anticipating a tennis ball�s trajectory will find this symbolic type of 
little use. Reptiles� small cortices seem to be capable only of this superficial sensory 
reasoning, providing them with enough mental power to catch and devour their prey. 
Abstract symbolic reasoning, however, is definitely beyond their capacity. 
 

Although these types of reasoning may seem very different at first glance, they can be 
summarily classified as 'predicting a certain outcome'. This warrants the hypothesis that 
the differences in mental power may not need to be explained in terms of different 
mechanisms; applying the same principles at different levels of abstraction could do the 
trick.  
 
1.2 Research Questions 
 

The aim of this thesis is to explore the principles of a patch of cortex and how it deduces 
�what is out there�, predicts �what will be there� and is capable of bringing about the 
higher levels of abstraction that endowed Man with his so-called faculty of reason. 
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1.3 Thesis Outline 
 

This thesis is based on research conducted by the author during his half-year internship at 
the Artificial Intelligence Laboratory of the University of Zurich, Switzerland. Much of 
the credit goes to Dr. H. Valpola, responsible for the initial framework and direction of 
the research. Besides providing many of the ideas put forward in this thesis, he also 
proved to be a sparring partner invaluable for keeping the author's youthful enthusiasm in 
check. The main body of this thesis is divided into three sections: 
 

1) Facts and Evidence from Biology 
2) A Computational Model 
3) Experimental Results 

 

The first part provides a description of the findings of neuro-anatomic research, such as 
cortical organisation, the connections found between neurons and neurons' firing 
properties. The second part proposes a model that tries to explain the emergence of these 
properties and to provide an understanding of why they are necessary. As its aim is to 
give insight into the functioning of the cortex, biological plausibility has been a chief 
requirement during its development. The last part shows the results of a software 
implementation of this model, programmed by the author in Matlab.  
 

The views proposed in this thesis are the result of a synergy between the behaviour of this 
computational model and the biological findings by which it was inspired. 
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Section 2: Neuro-Anatomical Organisation of The Cortex 
 

At cellular level the cortex is a very messy place, and to see structure among the 
proliferation of seemingly random connections is an arduous job reserved solely for the 
most patient of researchers. It is thus unsurprising that when looking for a specific 
connection to prove a certain theory, chances are high supporting neurobiological 
evidence will be found.  
 

For this reason, the approach used by the author when constructing a generic 
computational model of the cortex was not to take each connection ever found seriously. 
Only when a significant number of researchers consistently reported finding a connection 
in multiple places on the cortex was it integrated into the model. The findings and their 
interpretation are presented below.  
 

It must also be mentioned, however, that liberty has been taken to leave many types of 
cells and connections out of the discussion. This is not because they contradict the 
hypotheses presented below, but merely because they unnecessarily complicate matters 
and encumber understanding. 
  
2.1 The Thalamus and the Spatio-Temporal Code 
 

Except for the olfactory pathway, all sensory information is passed through the thalamus 
to the cortex, thereby providing the interface between the cortex and the rest of the body. 
Each sensory modality is allocated a separate part of the thalamus, being for instance the 
lateral geniculate nucleus (LGN) for the visual pathway and the medial geniculate 
nucleus (MGN) for the auditory pathway (figure 2.1).  

 
  Figure 2.1: sagital view of the brain (left) with enlargement of the thalamus (right) 
 
Although the origin of the information passed through this brain structure is different for 
each modality, its nature is the same, namely spike trains (sequences of action potentials) 
conveyed by individual neurons. Yet, besides merely carrying information through the 
firing patterns of single neurons, groups of thalamic neurons also supply additional 
information through their relative spatial ordering. Examples of these are the retinotopic 
organisation of the LGN and the tonotopic organisation of the MGN (retinotopic implies 
that neighbouring neurons in the LGN receive information from neighbouring patches of 
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the retina, while tonotopic means that the frequency sensitivity changes gradually across 
the MGN). This type of organisation has the desirable effect that neighbouring thalamic 
neurons are in some way related, and results in all sensory information being encoded 
both in terms of temporal and spatial activation patterns. 
 

Research has taught us that one of the cortex' prime functions is the recognition of 
relevant patterns and that the cortex is essentially a homogenous substance (M. 
Merzenich and J. Kaas, 1980). Homogeneity implies a functioning according to similar 
principles regardless of modality, and thus standardisation of the code becomes essential. 
This requirement is fulfilled by encoding sensory information from all modalities not just 
in terms of neurons� temporal firing properties, but also in their spatial organisation 
relative to each other. 
 
2.2 The Layered Structure and Intra-Cortical Communication 
 

One of the most salient characteristics of the cerebral cortex that is evident in all 
mammalian species is that most of it is made up of six layers (figure 2.2). These layers 
are organised in cortical vertical columns (CVCs), with each column forming a functional 
unit spanning all layers. The net flow of information through these CVCs starts in layer 
IV, where afferent axons from the thalamus make connections with small interneurons. 
These interneurons in turn project to layers II and III where they excite pyramidal 
neurons, the most common type of neuron found in the cortex. The pyramidal neurons in 
Layers II and III then proceed to excite other pyramidal neurons in layers V and VI, who 
send their axons outside of the cortex. It is important to note, however, that this is a 
simplified model of the flow of information, and that in practice evidence exists for 
connections linking almost every layer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: laminar organisation of a cortical 
column. Left: stain showing 2% of neurons, 
middle: stain showing only cell bodies, right: 
stain showing only axons. 
 

The cerebral cortex functions in such a way that the neurons inside a CVC have a limited 
receptive field (range of stimuli able to excite the cell) and are selectively responsive to 
specific inputs within this field. For V1, the primary visual cortex, these have been found 
to be predominantly line segments of different orientations coming from a small part of 
the retina (D. Hubel, T. Wiesel, 1968), while for A1, the primary auditory cortex, these 
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are specific frequencies. The average pyramidal neuron in the cortex does not exceed its 
base firing rate 99.8% of the time (R. Desimone, 1998), which fits nicely with the idea 
that a CVC only becomes active when its preferred input is presented.  
 
2.3 Thalamo-Cortical Connections and Layer IV 
 

The afferent axons from the LGN sprout broad axonal arbors that form excitatory 
connections with very small but densely packed stellate interneurons in layer IV (figures 
2.3 and 2.4). With an average diameter of 1.5mm in V1 (S. Hill and G. Tononi, 2001), 
these arbors are quite large, effectively spreading their information over a large area (M. 
Bickle, 1998). This extra space is essential for CVCs to develop. 

 
 
  
      
 
 
 
 
 

    Figure 2.3: spiny stellate cell       Figure 2.4: thalamo-cortical connections to layer IV 
 
Though the axonal arbors are wide and overlap each other, the arbors are still limited in 
range and are themselves topographically organised. This organisation is therefore 
maintained in the cortex. However, due to the spreading of information it is not as exact 
as its thalamic counterpart, yet enough to identify, for example, a clear retinotopical 
organisation in V1.  
 

Presumably these axonal arbors form very specific connections with particular stellate 
neurons. This specificity is not predetermined, but instead appears to be the result of a 
pruning mechanism based on Hebbian learning. Thus, though in early life layer IV 
stellate cells may be responsive to any stimulation within their receptive field, each 
neuron gradually learns to become maximally active only when a specific axonal input 
pattern is presented. As already mentioned, in the primary visual cortex this is often a line 
of a certain orientation and at a very specific place of the retina (figure 2.5).  
 

 
 
 
 
 
 
 
Figure 2.5: idealised 
effect of pruning on 
the receptive field of a 
layer IV stellate cell 
in V1. 
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Aside from their input selectivity, another important property of layer IV neurons is that 
across the cortical plane these selectivities are topographically organised. It thus happens 
to be that neighbouring layer IV neurons have related input preferences, resulting in the 
gradual change of orientation preference found in V1 (figure 2.6). The mechanism(s) 
defining this 'relatedness' is not yet fully understood, but a plausible candidate is the 
temporal separation normally occuring between patterns. From this viewpoint, lines 
whose orientations differ only a few degrees are not more related than those differing 30 
degrees because of the amount of degrees of separation, but because they are more likely 
to occur one after the other close in time (as in a line gradually changing orientation). The 
advantage of this principle is that it can be used for every modality, and not just the visual 
one. 

 
 
 
 
 
 
 
Figure 2.6: idealised topographical organisation of orientation 
sensitive neurons in layer IV of V1. 
 

Finally, within layer IV an abundance of short-range inhibitory connections between 
stellate neurons has been consistently found (S. Grossberg, 2001). It is expected that 
these strongly contribute to the sparsity of activation found in the cortex, as all active 
neurons inhibit their neighbours (figure 2.7) and hence only those with the strongest 
activations remain active. This can be viewed as a competition mechanism for activation 
with a 'local winner wins all' strategy.  
 

 
 
 
 
 
Figure 2.7: idealised lateral connections 
in layer IV 
 

To sum it all up, we can consider the thalamo-cortical connections, the layer IV stellate 
neurons and their inhibitory interconnections to implement an elementary feature 
extractor. Each stellate neuron represents a specific feature that is determined by the 
strengths of the thalamo-cortical connections, and the cells� activations are a measure of 
the degree to which these features are present in the input. Local inhibition allows only 
the most salient features to remain active. How these thalamo-cortical connections (i.e. 
features) may be learnt will be discussed in section 3.2.2. 
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2.4 Layers I, II and III: Taking Context into Account 
 

Each layer IV stellate neuron sends its axon up to layer III, where it connects with the 
basal dendritic arbors of pyramidal neurons (K. Catania, 1995). The connections between 
layer IV and layer III neurons are probably very local, resulting in an almost one-to-one 
relationship between them (figures 2.8 and 2.9). For this reason, the bottom-up inputs 
into layer III may very well copy the layer IV activations onto layer III. 
 

 
          Figure 2.8: a pyramidal neuron  Figure 2.9: bottom-up input from layer IV to III  
 
It is probable that the real added value of layer III doesn't lie in its connections with layer 
IV, but in those it maintains with layers I and II. Long-range lateral axons originating 
from layer III pyramidal neurons excite layer II stellate neurons far away (figure 2.10) 
and appear to link CVCs with input pattern preferences that are somehow related (U. 
Polat, 1996). It would thus be expected (and has also been proven) that unlike the 
connections with layer IV these long-range connections depend heavily on learning 
(Durack and Katz, 1996). This will be further discussed in section 3.3.3. The distances 
travelled by these axons may (again) be as much as 1.5mm in V1 (R. Miikulainen, J. 
Sirosh, 1996) where they predictably connect CVCs responsive to lines of similar 
orientation that lie in each other's extension.   

 
 
 
 
Figure 2.10: long-range lateral connections from 
pyramidal neurons in layer III to stellate cells in layer 
II. The latter send their axons straight up to layer I, 
where they hatch onto the apical dendrites of layer III 
neurons. 

 
The layer II stellate cells project in turn to layer I, which contains no cells; only the apical 
dendrites of layer III pyramidal neurons. These connections have been found to be both 
excitatory and inhibitory (M. Usher, 1996). Important to observe is that on average apical 
dendrites are found much further from the cell body than the basal ones. This would 
result in basal input having a much directer and stronger influence than apical input. 
Layer II activation is, however, very capable of facilitating layer III, which justifies the 
assumption that basal stimulation is driving while apical stimulation is modulatory.  
 

The main purpose of these excitatory and inhibitory lateral connections may be to 
implement a gain control mechanism (M. Usher, M. Stemmler, E. Niebur, 1996). 
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Although the exact functioning of this mechanism is still unknown, neurons connected by 
these lateral connections were found to sometimes excite, and sometimes inhibit each 
other. It is hypothesized that Layer II brings about an expectancy measure for a specific 
layer III neuron, being more expected with more lateral input. This expectancy could in 
turn be used to alter the saliency of an extracted feature: if the feature is expected but 
bottom-up evidence is weak (perhaps due to poor lighting conditions), the feature would 
be enhanced. If, on the other hand, the bottom-up evidence is strong it would be useful to 
suppress it, allowing other unexpected features to pop out. 
 
2.5 Layer V: Summarising the Result 

 
Layer III sends its axons to layer V where they hatch on to the basal dendrites of 
pyramidal cells (figure 2.11). Layer III thus seems to provide the driving impetus for 
layer V. Layer V cells also have larger cell bodies than those of any other layer (figure 
2.2), and as a result fewer can be found. Not much is known about the specificity of these 
connections, but putting the above facts together leads one to believe that layer V 
summarises the activation within a neighbourhood of layer III cells. Because of the 
topographical organisation of layer III, this summary would still contain plenty of 
information in order to be useful.  

 
 
 
 
 
 
 
 
 
Figure 2.11: driving connections from layer III to 
layer V 
 

On the purpose of such an information reduction one can only speculate. Considering 
layer V is the principle output layer to extra-cortical structures, its coarse resolution may 
be preferential to these structures than the fine-grained version of layer III. Another 
advantage would be that it reduces the amount of outgoing axons, which is crucial if we 
wish to keep the output size (number of layer V pyramidal neurons) equal to the input 
size (number of thalamo-cortical axons). Failure to do so would lead to an undesirable 
non-linear expansion in the amount of required cortex space at higher levels.  
 
Finally, by summarising layer III activation it is probable that layer V will be more 
invariant than layer III, being responsive to a whole range of patterns instead of 
individual ones. In section 5.2 hierarchies of cortical maps will be considered, and here it 
will become apparent why this invariance is necessary to attain stable object recognition.     
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2.6 Layer VI: Temporal Dynamics and Noise Reduction 
 

Layer VI contains a wide variety of cells, all of which presumably have different 
functions. Due to the inward position of this layer it has been difficult to study these cells 
in detail, but hypotheses on some of their functions exist.  
 
First of all, small pyramidal cells are found that have their basal dendrites stimulated by 
layer III neurons. They thus rely on layer III to provide the driving input, while their 
apical dendrites are usually found in layer IV (K. Catania, 1995, see figure 2.12). Though 
apical stimulation alone won�t lead to an action potential, they heavily facilitate their 
layer VI pyramidal cell�s firing probability when basal stimulation is present. Layer VI 
pyramidal cells tend to send their axons directly up to layer IV, but many also project 
back to the thalamus. 
 

 
 
 
 
 
 
 
 
 
Figure 2.12: connections to and 
from layer VI 
 

2.6.1 Temporal Dynamics 
 

One of the functions of these cells may very well be the introduction of temporal 
dynamics into the cortex. It takes time for activation to be propagated through the entire 
CVC and this delay can be exploited for learning activation sequences on layer IV. 
Temporal context would suddenly become a factor, enabling properties like the direction 
sensitivity in addition to just the orientation sensitivity of V1 cortical neurons. Hawker, 
Parker and Lund support this view, claiming they found that layer IV neurons loose their 
direction sensitivity when layer VI is knocked out (Hawker, Parker, Lund, 1988).  
 

A hypothesis explaining these findings may be as follows. An active layer IV neuron 
would trigger the layer III neuron within the same CVC. This layer III neuron would in 
turn excite a layer VI neuron outside (but close to) it�s own CVC. This layer VI neuron 
would then proceed to facilitate the layer IV neuron of its CVC, which is therefore a 
different one than the layer IV neuron that started the cascade.  
 
By the time this loop has been completed the thalamic input into layer IV will probably 
have changed (the line in the picture will have moved, or the pitch in the melody will 
have shifted etc.). However, the layer III-to-VI connection will be such that, considering 
the previous input, the CVC newly facilitated by layer VI is the one expected to be 
activated next. Given sufficient supporting thalamic evidence for this newly facilitated 
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layer IV neuron (or lack of conflicting information), the additional temporal facilitation 
would insure that that CVC indeed wins the local competition in layer IV.  
 
Because a different input history means different layer III neurons were previously 
active, this would also imply that probably different layer VI neurons were active as well. 
In V1�s case this means that although the thalamic input may be the same (a line at a 
certain place of the retina), it is the facilitation of layer VI that provides the temporal 
information as to whether this line is moving left or right. This layer VI facilitation leads 
to the activation of different layer IV neurons depending on the direction of movement. 
 
2.6.2 Topographic Organisation 
 

Another function of layer VI may be to induce the topographical organisation of 
gradually changing receptive fields of layer IV. Although no supporting biological 
evidence has yet been found, it would not be too unlikely if instead of very specific 1-to-
1 connections, layer III axons actually sprout small axonal arbors in layer VI. This would 
link each layer III neuron to a small layer VI neighbourhood, which in turn modulates a 
small neighbourhood on layer IV. How this could aid topographic organisation will be 
discussed in section 3.5.2. 
 
2.6.3 Noise Reduction 
 

But besides projecting up to layer IV, layer VI neurons also send axons back to the area 
of the thalamus from which they receive their information in the first place (S. Luck, 
1997). Here they form direct excitatory connections with neurons in the thalamus and the 
thalamic reticular nucleus (TRN). Where the direct cortico-thalamic connections are very 
specific, neurons excited in the TRN in turn have a diffuse inhibitory effect on the 
thalamus (figure 2.13).  

 
 
 
 
 
 
 
 
 
 
Figure 2.13: cortico-thalamic connections 
 

It is believed that within the thalamic cells excited directly by the layer VI neurons, the 
excitatory and inhibitory influences are roughly equal and therefore cancel each other out 
(Grossberg, 2002). On the other hand, the effect on those thalamic neurons that are not 
directly excited by layer VI but lie close to those that are, the diffuse inhibition from the 
TRN is still present and consequently suppresses their activations. This view is supported 
by the fact that stimulation of layer VI alone rarely leads to thalamic activation, but when 
bottom-up input into the thalamus is present, layer VI is quite effective at diminishing the 
activation that�s already there (S. Luck, 1997). Considering these facts, noise reduction 
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would seem a likely candidate for the function of these connections, a hypothesis that 
will be further discussed in section 3.6. 
    
2.7 Summary of Principles 
 

Considering the facts and views presented in this section, a summary of the important 
(yet hypothetical) principles applicable to the cortex in general may be as follows: 
 

- Spatial patterns are extracted using the thalamic receptive fields of layer IV. 
These receptive fields arise due to the specificity of thalamo-cortical connections. 

- Temporal patterns are also extracted by layer IV, but with the aid of layer VI. The 
delay of layer VI compared to Layer IV enables layer IV to �remember� what 
happened at an earlier time.    

- The organisation of CVCs (such as the gradual change of orientation-selectivity in 
V1) is decided by temporal properties of the input patterns only. The fact that 
CVCs with similar spatial receptive fields are located close by is only because 
these patterns often occur close in time. 

- Layers I, II and III implement a mechanism in which the local patterns extracted 
by layer IV are compared with what is known on a more global level and adapted 
accordingly. Thus, depending on what other pieces of the cortex �know�, extracted 
features may be either suppressed or made more salient. 

- Layer V summarises what the cortex has calculated, thereby reducing the amount 
of output information and introducing the invariancy (or abstraction) needed for 
higher-level cognition (see section 5.2). 

- Besides introducing temporal dynamics, another function of layer VI may noise 
reduction in the thalamus. This may be closely linked with attentional 
mechanisms. 
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Section 3: A Generic Computational Model of a Patch of Cortex  
 

Neuro-anatomic research has given us in-depth knowledge of the cellular organisation of 
the cortex and the complex connectivity within and between layers. Due to this 
complexity, however, it is very difficult to discover important underlying mechanisms 
from neurobiological data directly. For this reason, instead of observing what the cortex 
does in practice, it may be more fruitful to hypothesize about how the cortex could work 
in theory. This means abstracting from the myriad of cell types and their connections and 
proposing a biologically plausible model that gives rise to the same properties as the real 
cortex.  
 

The model presented in this chapter retains the laminar organisation present in the actual 
cortex, but to avoid confusion the following translation is used: 
 

Brain Model 
Thalamus Input Layer 
Layer IV Layer A 
Layer III Layer B 
Layer II Layer C 
Layer I NA 
Layer V Layer D 
Layer VI Layer E 

 
Layer I contains no neurons and consequently lacks interesting computational properties. 
For this reason it is not modelled.  
 
3.1 The Input Layer 
 

The cortex receives input from the senses, and the obvious counterparts for our model 
would be artificial sensors like cameras and microphones. The information sent by these 
sensors is copied onto the input layer, which has the same function as thalamic nuclei like 
the LGN or MGN. Thus, for a camera sending 32x32 greyscale pixel images the input 
layer would be a 32x32 matrix with values ranging from 1 to 256, each entry 
corresponding to the intensity of a pixel.  
 

It is important to note that whatever the source of information, for the system to function 
properly the values in the input layer have to be strictly non-negative. This is perfectly 
defendable, considering each entry value is the computational equivalent of the intensity 
of a spike train. And how could a burst of action potentials have a negative frequency?  
 

Besides being a relay site for sensor data to layer A, the prime function of the input layer 
is to form part of a greater denoising mechanism. The functioning of this mechanism, 
however, will be discussed in section 3.5.3, when we�ve also considered layer E. 
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3.2 Layer A: the Elementary Feature Layer 
 

3.2.1 Propagation of Activation 
 

Layer A also consists of a 2D matrix of artificial neurons and its values correspond to the 
stellate neuron activations of layer IV. It receives its input primarily through the 
connections it enjoys with the input layer. As with normal neural networks, these 
connections have different weights, and the layer A activations depend on the input layer 
activations multiplied by the weights between the input layer and layer A (see formula (1) 
and figure 3.1). 
 
Aa = WIa*AI          (1) 
 

where Aa   = activation of layer A neuron 'a' 
           WIa  = weights between the input layer neurons and 'a' 
           AI   = the input layer activations  
 
As mentioned in chapter 2, the direct thalamo-cortical connections to layer IV stellate 
neurons have been found to be excitatory, and for our model this translates into the 
existence of only non-negative weights. 
 

 
 
 
 
 
 
Figure 3.1: Cross-section of the propagation of information 
from the input layer to layer A. In reality all layers are 2D and 
the branches from the input layer to layer A can be considered 
as cones.  
 

3.2.2 Weight Learning 
 

We hypothesized that the connections between thalamo-cortical axons and layer IV 
stellate neurons are very specific, enabling layer IV neurons to develop highly distinctive 
receptive fields (figure 2.3). As with all neuronal learning, the mechanism leading to this 
organisation should primarily be based on Hebb's law, which states that the connection 
between two neurons is strengthened only when both neurons are active at the same time. 
Another important learning principle found throughout the nervous system is that when a 
post-synaptic neuron is active without its pre-synaptic counterpart being so, the 
connection between them is weakened. This type of learning can easily be implemented 
with the following formula:      
 
δWia = Ai*Aa � C*mean(AI*S(Ia))       (2) 
 

where δWia = the change in connection strength between a layer A neuron 'a' and an         
                       input layer neuron 'i'  
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           Aa, Ai, AI = the activities of neuron 'a', neuron 'i', and the input layer respectively 
           C      = a constant, in our implementation 0.1 
           S(Ia)     = the set of all activations of input layer neurons that form connections           

       with neuron 'a' 
           AI*S(Ia)   = the members of the set S(Ia) multiplied by their activations  
 
The term Ai*Aa in (2) simulates Hebb's law and causes the weight change to be 
proportional to the combined activity of both the layer A and the input layer neuron. 
Since all input layer activities are positive and the connections between the input layer 
and layer A are positive as well, Aa will also always be positive and so will Ai*Aa. This 
means that the term Ai*Aa can only strengthen connections. 
 

The term C*mean(AI*S(Ia)), on the other hand, is used for the second learning principle 
and represents the average Ai*Aa value for a particular layer A neuron. Input layer 
activations that haven't contributed much to the excitation of neuron 'a' have a lower than 
average Ai*Aa value and hence formula (2) may cause their weight changes to become 
negative (also depending on C). 
 

If the new weight of such a connection is negative, it is set to 0 (see formula (3)). This 
satisfies the constraint that only non-negative connections are allowed and, as we'll see 
below, has additional advantageous side-effects.    
 
Wia = rect(Wia + δWia)        (3) 
 

where Wia  = the connection weight between neurons 'i' and 'a' 
           rect  = a function that changes any negative number to 0 
 
3.2.3 The Neighbourhood function 
 

In chapter 2 we saw how thalamo-cortical axons sprout broad axonal arbors that form 
connections with many stellate neurons within a certain neighbourhood. This localised 
arborisation principle is simulated in the model by pruning the connections between the 
input layer and layer A. Towards this end, the centre of mass of weights sprouting from 
each input layer neuron with respect to layer A is calculated. Then, on layer A a pre-
specified maximum arbor radius with this centre of mass as its centre is used to define the 
axon's neighbourhood, outside which a connection is pruned.  
 

One must bear in mind, however, that despite this inability to form connections beyond a 
neighbourhood, within it the weights of the connections are allowed to change, hereby 
possibly displacing the axon's centre of mass and allowing the neighbourhood to migrate 
across layer A (figure 3.2). In section 4.1 we will see how this migration allows axons 
that convey information somehow correlated to move closer to one another and project to 
the same layer A neurons. This is essential for useful receptive fields and global 
topographic organisation (like the retinotopic organisation) to develop.  
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Figure 3.2:  
cross-section of 
input and layer A 
demonstrating the 
migration of an 
axonal arbor   
 

Thus, given an input layer neuron and its outgoing weights, we may define the 
neighbourhood as follows: 
 
NHi = (1 � Disti/ArborRadius) > 0       (4) 
 

where NHi           = the neighbourhood of an input layer neuron 'i' 
Disti           = the distance of a point on layer A to the centre of mass of  
                 weights sprouting from 'i' 

           ArborRadius  = the pre-specified radius of axonal arbors 
 
This formula describes an inverted parabola whose non-positive values are set to 0, while 
its remaining values are set to 1. This leaves a disc of ones amidst a plain of zeros. NHi is 
then multiplied with the connection weights, pruning any connections forming outside 
this neighbourhood. New connections are given the strength ε, a very small (but non-
zero) positive number. The advantage of using these neighbourhoods is two-fold: 
 

1) The computational complexity (amount of weights) scales linearly with the input size 
and the arbor radius. It is unaffected by changes in the size of Layer A.   

2) It enables parallel local processing of large amounts of data, as information of an axon 
is only distributed as far as the axon's neighbourhood. This becomes especially useful 
in combination with a hierarchy of cortical maps, which will be discussed in section 
5.2. 

 
3.2.3 Global Competition for Weights 
 

The danger of using migrating local neighbourhoods is that layer A neurons that should 
receive information from a certain group of input layer neurons (perhaps because these 
input layer neurons contain information from the same site of the retina) in fact don't, due 
to different neighbourhoods having migrated too far from each other. In other words, 
there has to be some driving force that organizes the neighbourhoods among each other, 
grouping those that are statistically related close together and separating unrelated ones.  
 

In our model, this driving force is provided by divisionally normalising the total sum of 
weights leading into a single layer A neuron to 1 (formula (5)). If you have only 1 input 
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layer neuron, this means it can establish connections of strength 1 with all layer A 
neurons within its neighbourhood. If you have many input layer neurons with their 
neighbourhood covering the same layer A area, however, that means they'll have to share 
their weights with others (since the sum of weights leading into one layer A neuron is 
maximally 1).  
 
WIa = WIa / (sum(WIa))        (5) 
 

where WIa = the connection weights from the entire input layer to a layer A neuron 'a' 
 
On the other hand, nothing bounds the sum of connection weights per input layer neuron 
(or in other words: the sum of axonal arbor weights) and each individual weight of an 
arbor can therefore still be 1, irrespective of the presence of other neighbourhoods. When 
a connection between an input layer neuron and a layer A neuron is 1, this means that the 
input layer neuron has exclusive control over the firing properties of the layer A neuron, 
as that neuron gets no input from other input layer neurons. 
 

Now, if outside this crowded neighbourhood there are few other arbors competing for 
weights to layer A neurons, this means that any axon can more easily establish large 
weights in these less competitive regions. If given this possibility, the axon will of course 
do so, shifting the centre of mass in the process and displacing the neighbourhood 
towards this less crowded area. The net effect is that arbors will migrate along a gradient 
of decreasing crowdedness which, given enough layer A space, would eventually result in 
a distribution of axonal arbors across layer A where no overlap between arbors occurs.  
 

In this case no layer A neuron would receive input from more than one input layer 
neuron, and this is of course undesirable as it is exactly our intention for a layer A neuron 
to receive information from a number of neurons. To achieve this, we simply limit the 
size of layer A and force the axonal arbors to overlap. The arbors will still try to obtain as 
many strong connections to layer A as possible, and the resulting dynamics can be 
described as the arbors following a path of least resistance until they finally reach a stable 
distribution.  
 

If the repulsive force between axons would be the same for everyone, this would just lead 
to an equal spread of the arbors over layer A without grouping statistically correlated 
arbors together. There exists, however, a crucial difference between the repulsive force of 
different axonal arbors. Namely, correlation between input layer neurons means that 
these neurons are often active at the same time. These active neurons will activate layer A 
neurons within their neighbourhood and the Hebbian learning rule will strengthen their 
connections. Hence, correlated axons with an overlapping neighbourhood will make 
strong connections with the same neurons, while on the other hand inactive axons will 
find their connection weights reduced as a result of the divisional normalisation. These 
weight changes will have effect on the centres of mass, strongly repulsing the 
neighbourhoods of inactive axons away from active layer A areas.  
 

This can be summarised by stating that all arbors repulse each other, but some repulse 
more than others (namely the uncorrelated ones), and this is what leads to the global 
organisation of axonal arbors. It could very well be possible that it is this mechanism that 
leads to the retinotopical organisation found In V1. 
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3.2.4 Local Competition for Activations  
 

Although this global competition mechanism is able to induce a topographical ordering 
between different axonal arbors, it has no control over what happens at a more local 
level, namely within these arbors. First of all, in order to obtain the invariances needed 
for stable object recognition (section 5.2) we'd like neighbouring layer A neurons to 
represent related but distinctive features, leading to topographic organisation like the 
gradual change of orientation specific CVC's in V1. Also, if we'd simply propagate the 
input layer activations to layer A, most layer A neurons would at least have some 
activation, making it indeed difficult to decide which features in the sensor data are the 
most salient. Preferably, only those layer A neurons responsive to the most salient 
features should remain active. 
 

A way to enforce this is to introduce a competition mechanism that, instead of competing 
for weights like the global competition mechanism, would compete for activations in 
layer A. It may very well be that the inhibitory lateral connections in layer IV mentioned 
in section 2.3 have exactly this purpose, decreasing activation of most neurons within a 
certain radius while leaving only the strongest excited. Since learning is activation 
dependent, if we make the competition strong enough (i.e. only one winner within a small 
area) this means that neurons close by are unable to learn the same features. In the model, 
this mechanism is simulated by the following formulas: 
 
AA = rect(AA � smooth(AA))               (6)  
AA = AA/(C + smooth(AA))        (7) 
 

where AA  = the activations of layer A 
           smooth  = a function that spreads the activation of its argument in a normally           

   distributed manner 
            C  = a constant, in our implementation 0.1  
 
Formula (6) implements a form of subtractive normalisation, filtering out lower than 
average activations. Since (6) has a strong reducing effect on most of the activations, 
some compensating factor is needed to allow the remaining activations to recover. 
Formula (7), a form of divisive normalisation, is used towards this end (Figure 3.3). The 
constant C is added to prevent small activations from being boosted to activations that are 
too high.  
 

 
 
 

      Figure 3.3: the process of local competition 
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Care is also taken that after formula (7) no activation exceeds the value of 10. There are 
many ways of enforcing this, and therefore the specific formula has not been included 
here. This procedure of consequent subtractive and divisional normalisation may be 
applied a number of times to achieve the desired sparsity of activations. 
 

Since weight learning is activity dependent and neighbouring neurons are rarely active at 
the same time, the effect of local competition is to de-correlate neighbours. Although this 
satisfies the requirement of neurons having distinctive receptive fields, organising these 
receptive fields in a topographic manner is still not achieved. As we'll see in section 
3.5.2, layer E will be responsible for this. 
 
3.3 Layers B and C: Gain Control by Expectation 
 

3.3.1 Propagation of Activations 
 

As was mentioned in section 2.3, evidence exists that the long-range excitatory lateral 
connections found in layers II and III implement a gain control mechanism. We saw that 
between CVCs with related receptive fields reciprocal connections have been found, and 
that these are presumed to create lateral circuits across the cortical surface (see figure 
3.4). 

  

 
Figure 3.4: left: propagation of layer A to B, middle: propagation of layer B to C through long-range 
lateral connections, right: propagation back from layer C to B  
 
Provided enough neurons within such a circuit are active, these could selectively suppress 
or facilitate other circuit members. The result is that, given enough lateral supporting 
evidence, a layer B neuron with weak activation may be elevated to a higher excitation 
level, while highly active neurons� activities are reduced. This mechanism may be 
implemented by the following formulas: 
 
Ab = Aa          (8) 
Ac = WBc*AB          (9) 
Ab = Ab + (Ab>0)*(0.1*Ac)*(3-Ab)       (10) 
 

Where Aa, Ab, Ac   = the activations of a layer A neuron �a�, a layer B neuron �b� and a  
 layer C neuron �c� respectively, each lying directly above the former 

WBc        = the (positive) weights from layer B into �c� 
AB        = the layer B activities 
(Ab>0)        = the boolean function giving 1 if Ab is non-zero, 0 otherwise 
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Formula (8) models the driving bottom-up input from layer A into layer B. In section 2.4 
the propagation of layer A to B was hypothesized to be very local, resulting in the 
copying of layer A onto B. Next, (9) simulates the propagation of layer B to layer C using 
the long-range lateral connections. Finally, each layer C neuron�s activation is used as an 
�expectation� measure for the layer B neuron directly below it and (10) alters it 
accordingly. Formula (10) works as follows: 
 
- (3-Ab) is the term deciding the change of Ab (whether it�s tuned up or down), where 3 

is the target value. 
- Since Ac is between 0 and 10, (0.1*Ac) is between 0 and 1 and can be seen as a 

throttle for the amount of influence of Ac on Ab. If Ac is 1 (i.e. Ab is fully expected), 
Ab is changed to the target value of 3, while if Ac is 0 Ab remains unchanged.  

- (Ab>0) enforces the fact that layer C is only allowed to have modulatory influence on 
layer B; expectation alone is not enough, at least some bottom-up evidence must be 
present to generate layer B activation. 

 
The resulting effect of layer C on B is as follows: 
    

Layer A 
Evidence 

Layer C 
Expectation 

Layer B 
Modulation 

Weak  Strong Facilitation 
Strong Strong Suppresion 
Weak Weak None 
Strong Weak None 

 
The advantage of this mechanism is that in situations where bottom-up sensory input is 
weak, expectation in the form of lateral input may enhance the perceptional process. On 
the other hand, when sensory stimulation is sufficiently strong, there�s no need for all the 
neurons that were predicted anyway to retain their high level of activation. In fact, by 
reducing the activation of expected neurons while letting the unexpected ones go 
unsuppressed, the latter will �pop out� compared to the former. This way, unexpected 
patterns become more salient than the expected ones and the system is made sensitive to 
novelty (or unexpectedness).  
 
3.3.2 Creating Lateral Connections 
 

Whether in the brain the lateral axons from layer III pyramidal neurons grow gradually 
outwards or whether they exist beforehand and are consequently pruned is still unknown. 
The answer is probably a combination of the two, but happens to be of little importance 
to us since the end result would be the same whatever strategy is used. For the model, the 
pruning approach would mean creating a great many redundant connections, slowing 
down the system needlessly. From a computational efficiency perspective, it would 
therefore be better to start with no lateral connections and only connect those neurons that 
are potentially related. This is implemented as follows: 
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1) Initially, each layer B neuron excites the layer C neuron straight above it. This          
    corresponds to strictly vertical connections of strength 1 and means layer B is merely    
    copied onto layer C. 
 
2) For consequent iterations of the algorithm:   

    2.1) First, the probability is calculated for an active layer B neuron to form a    
           connection with an active layer C neuron. These probabilities depend on the  
           activity of the layer B neuron and the activity of and the distance to the layer C  
           neuron: 
 

P(Cbc) = (Ab*Ac)/(C*Distbc)         (11) 
 

Where  P(Cbc)    = the probability of forming a connection from a layer B neuron  
     �b� to a layer C neuron �c� 

            Ab, Ac     = the activities of �b� and �c� respectively 
            C         = a constant, 10 for our implementation  

Distbc        = the distance between �b� and �c� 
  
    2.2) A random number between 0 and 1 is assigned to each probability. If the random   
           number is lower than the probability, the very small number ε is added to the   
           weight between the respective neurons. For new connections this would mean a  
           connection of strength ε is created where previously the strength was 0, while for  
           existing connections the increase is insignificant. 
 
3.3.3 Weight Changes of Lateral Connections 
 

Like all learning in the brain, the changes in connection strength should be based on 
Hebbian learning. For the model, this implies that weight learning for lateral connections 
uses the same mechanism as the thalamo-cortical connections and which is described by 
formulas (2) and (3). Thus, as a quick reminder, weight strenghtening results from the co-
activation of two neurons, while weight weakening occurs when the postsynaptic neuron 
is active without the presynaptic neuron being so. Also, weight changes between 
connections with strength 0 (i.e. no connection exists) are not allowed, similar to the way 
a weight change with a layer A neuron falling outside the neighbourhood of a thalamo-
cortical axon is treated. 
 

Just like with thalamo-cortical connections, the total strength of connections entering a 
layer C neuron is normalised to 1 (formula (5)). The result is that layer B neurons 
exciting a layer C neuron compete with each other for access to this neuron and that the 
layer B neuron originally enjoying complete control over �his� layer C neuron will 
gradually be forced to share its influence. 
 
3.4 Layer D: Coarse Grained Output 
 

Layer B�s final analysis is passed onto layer D, which is the principal output layer and 
corresponds to layer V in the cortex. As we saw in section 2.5, layer V contains bigger 
and fewer cells than any other layer and is therefore hypothesized to contain a low-
resolution representation of layer III. For our model this translates into a smaller matrix 
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than the ones used for layer A, B and C, with each entry representing a local average of 
layer B activity. The formula of this conversion is: 
 
AD = fixedSample(smooth(AB))       (12) 
 
where  AD, AB  = the activities of layers D and B respectively 

fixedSample   = a function that takes a matrix, reads out values at regular  
   intervals and returns them in a smaller matrix 

 
Because layer B is first smoothed before it is sampled, layer D indeed stores a local 
average of layer B (figure 3.5). 

 
 
 
 
 
 
 
 
 
 
Figure 3.5: the local averaging of layer D 

 
3.5 Layer E: Temporal Dynamics, Topographic Organisation and Noise Reduction 
 

Communicating information takes time, and though for neurons this may be in the order 
of milliseconds (or even smaller), the time required for information to pass through layers 
IV, III, II, V and finally VI is significant. For this reason, at any moment in time a slight 
delay exists in the information represented by layer VI compared to layer IV. As already 
alluded to in section 2.6, the cortex exploits this delay to introduce temporal dynamics, 
topographical organisation and noise reduction. 
 
3.5.1 Propagation of Activations and Weight Learning 
 

We know layer VI receives its information from layer III, but whether the connections 
between them facilitate any important processing, or whether they just relay layer III 
information, has yet to be established. The former stance would imply an actual change in 
information, while the later means layer VI activation can simply be considered a copy of 
layer III. 
 

An argument against the latter view is that other activation copying only occurs between 
cells located directly above each other, as is the case with layers IV and III. Layers III 
and VI, however, are quite distant. It therefore seems unlikely that an exact 1-to-1 
correspondence between layers III and VI can be obtained by just letting layer III neurons 
grow axons straight down. It would simply require too much accuracy.  
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The assumption made for our model (but for which no supporting biological evidence 
exists) is that layer B sends axons to layer E that, just like thalamo-cortical axons, sprout 
axonal arbors at their ends (figure 3.6).  

 
 
 
 
 
 
 
 
 
Figure 3.6: layer B propagates its information to layer E by 
sprouting small axonal arbors 
 

These Layer B-to-E arbors are smaller in size then the I-to-A ones, but the activation 
propagation formula stays the same (see formula 13). 
 
Ae = (WBe*AB)         (13) 
 
where Ae    = activation of layer E neuron 'e'  
           WBe = weights between the layer B neurons and 'e' 
           AB    = the layer B activations  
 
We also know, however, that layer VI neurons have their apical dendrites in layer IV, 
which have a modulatory influence on them. Because learning on layer VI should also be 
Hebbian-based, this extra activity could act as a supervisory signal for layer III arbors.  
For reasons explained in section 3.6, in the model it is difficult to let layer A influence 
layer E properly, and hence it is not taken into consideration.  
 

Although this does not cause real problems for the direct functioning of layer E, it is 
hazardous to weight learning, for now layer B would only learn what it produced itself in 
the first place. To remedy this, it is not its own prediction on layer E that layer B tries to 
strengthen its connections with, but the layer A activation of the next iteration. In other 
words, we temporarily forget what the actual layer E activation was and replace it (just 
during learning) by the activation of the next layer A. Formulas 14 through 17 formalise 
this idea: 
 
Ae = Aa�             (14) 
δWbe = Ab*Ae � C*mean(AB*S(Be))       (15) 
Wbe = rect(Wbe + δWbe)        (16) 
WBe = WBe / (sum(WBe))        (17) 
  
where δWbe                 = the change in connection strength between a layer B neuron 'b'   

   and a layer E neuron 'e'  
Ae, Aa�, Ab, AB = the activities of neuron 'e', neuron 'a' (at the next iteration of the  

   program), neuron 'b' and the entire layer B respectively 
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           C     = a constant, in our implementation 0.1 
           S(Be)    = the set of all activations of layer B neurons that form connections           

      with neuron 'e' 
           AB*S(Be) = the members of the set S(Be) multiplied by their activations 
           Wbe     = the connection weight between neurons 'b' and 'e' 
           rect     = a function that changes any negative number to 0 
           WBe            = the connection weights from the entire layer B into a single layer E  

      neuron 'e' 
 
3.5.2 From Layer E back to Layer A: Temporal Dynamics and Topographic 
Organisation 
 

As so often in the brain, a single mechanism may cause the emergence of a number of 
phenomena. Our model hypothesizes the connections between layers VI and IV to be one 
such instance, capturing both temporal dynamics and enforcing topographical 
organisation.  
 

From each neuron in layer E an axon is sent straight up to layer A, forming modulatory 
connections with neurons there (figure 3.7). This has consequences for layer A, and thus 
formula (1) is replaced by formula (18). 
 

 
 
  
 
 
 
 
 
 
 
Figure 3.7: connections from layer E to A and E back to the 
input layer 
 

 
Aa = (WIa*AI) * (1 + Ae)        (18) 
 

where WIa*AI  = the same as formula (1) for a layer A neuron �a� 
           Ae  = the activation of the layer E neuron �e� lying directly below �a� 
            
Because the axonal arbors from layer B are small, only the layer A neurons lying 
vertically close to the previously active layer B neurons have a chance of receiving 
additional activation. Initially, when the receptive fields of layer A still have to be 
formed, this means layer A neurons lying next to each other have a higher chance of 
forming receptive fields that normally follow each other in time. For the visual modality 
this would be lines of slightly different orientations, as will be shown in section 4.5. 
 

Also because of the smallness of layer B-to-E arbors, layer A neurons with similar 
receptive fields may receive additional layer E modulation at different times. Here one 
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should think of the effect caused by a line moving one way as opposed to moving the 
other way, resulting in the direction sensitivity of orientation specific neurons. This will 
become clearer in section 4.4 
 
3.5.3 Noise Reduction 
 

As mentioned in section 2.6, the cortico-thalamic feedback connections between layer VI 
and the thalamus are hypothesized to implement a noise reduction mechanism. For the 
model we simulate this by growing axonal arbors back to the input layer (figure 3.7). The 
learning rules are very similar to those of other arbors, as can be seen in formulas 19 
through 21. 
 
δWei = Ae*Ai� � C*mean(AE*S(Ei))       (19) 
Wei = rect(Wei + δWei)        (20) 
WEi = WEi / (sum(WEi))        (21) 
  
where δWei           = the change in connection strength between a layer E neuron 'e' and an        
                                input layer neuron 'i'  
           Ai�, Ae, AE = the activities of neuron 'i' (at the next iteration of the program),  

         neuron 'e', and the entire layer E respectively 
           C       = a constant, in our implementation 0.1 
           S(Ei)      = the set of all activations of layer E neurons that form connections           

         with neuron 'i' 
           AE*S(Ei)    = the members of the set S(Ei) multiplied by their activations 
           Wei          = the connection weight between neurons 'e' and 'i' 
           rect          = a function that changes any negative number to 0 
           WEi             = the connection weights from the entire layer E into a single input  

         layer neuron 'i' 
 
The effect of these connections on the input layer, however, is quite different: 
 
NRi = WEi*AE � smooth(WEi*AE)       (22) 
Ai = Ai + NRi          (23) 
 
Where  NRi    = the effect of noise reduction on an input layer neuron �i� 
            WEi     = the weights from layer E to �i� 
            AE, Ai = the activations of layer E and �i� respectively 
 
The effect of these formulas is similar to what happens in the brain: given layer E 
activation, generally the activations are suppressed by the smooth(WEi*AE) term. 
WEi*AE, however, cancels this inhibitory effect for expected input layer activations, 
thereby suppressing only activations that are presumed to be noise. 
 
3.6 Summarising the Algorithm 
 

After this tour-de-force of the different mechanisms, it is time to present the entire 
algorithm. It must be noted, however, that the cortex is a dynamical system that relies on 
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certain processes occurring at the same time. Because a single computer can only work 
sequentially, in some places the algorithm will not look as tidy as we�d like it to be. This 
is especially apparent in step 6, where layer A activation influences learning on E, but is 
not taken into consideration when layer E activation is propagated (which happens at 
steps 2 and 4).  
 

1) AI = sensory input           (I receives sensor data) 
2) NRI = WEI*AE � smooth(WEI*AE)       (the noise reduction is calculated�) 
3) AI = AI + NRI            (�and takes effect) 
4) (WIA*AI) .* (1 + AE)           (I is propagated to A) 
5) AA = localComp(AA)           (local competition on A) 
6) AE = AA            (A is copied onto E just for weight learning)  
7) AB = AA            (A is propagated to B) 
8) AC = WBC*AB            (B is propagated to C) 
9) AB = AB + (AB>0).*(0.1*AC).*(AB-3) (gain control on B) 
10) AD = fixedSample(smooth(AB))         (B is propagated to D) 
11) AE = WBE*AB            (B is propagated to E) 

 
The moments when weights should be learned are as follows: 
  

I-to-A weights After step 5 (see 3.2.2) 
B-to-E weights After step 6 (see 3.5.1) 
E-to-I weights After step 6 (see 3.5.3) 
B-to-C weights After step 9 (see 3.3.3) 
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Section 4: Experimental Results 
 

4.1 Inducing Plasticity of Global Organisation through Axon Migration 
 

To show how the model is able to organise itself at a global level (as with cortical 
retinotopical organisation), an experiment was conducted in which computer-generated 
data with a certain degree of spatial correlation (but no temporal correlation) was used to 
produce a regular organisation of the thalamo-cortical arbors. The data consists of a 
sequence of 1-dimensional input patterns of colored noise, which were produced by 
smoothing and rectifying Gaussian noise. A 50x1 vector represents these input patterns, 
which is copied onto the 50x1 input layer. Figure 4.1a shows a sample of the input data.  

 
 
 
 
 
 
 
 
 
 

            Figure 4.1a: input sample          Figure 4.1b: initial centers of mass 
 

 
 
 
 
 
 
 
 
 
 
 

             Figure 4.1c: after 2500 runs              Figure 4.1d: after 5000 runs 
  
Initially, the axon arbors are distributed randomly over layer A, which contains 15x15 
neurons. The initial organisation is depicted in figure 4.1b, where the 50 positions of each 
axon arbor�s center of mass on layer A are plotted. When a line connects two different 
centers of mass this means the axons they belong to come from neighbouring neurons in 
the input layer.  
 

It is evident that at the start of the experiment the positions of these arbors on layer A 
lack any meaningful organisation. Figure 4.1c and 4.1d show the organisation of the 
arbors after the presentation of respectively 2500 and 5000 input patterns. It can clearly 
be seen that the arbors disentangle themselves and distribute evenly over layer A, with 
axons from related areas of the input layer closer to one another than unrelated ones.  
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To understand why this happens, however, one must remember the dynamical 
characteristics of axon migration previously described in section 3.2. Repulsion exists 
between all arbors resulting from the competition mechanisms for weights. In the 
meantime, arbors of axons that are quite uncorrelated repel more than those that have 
more correlation (in our case correlation occurs because the axons come from input layer 
neurons that are spatially close). Consequently the migration routes of arbors resemble 
the paths of least resistance, which happens to lead them to the ordered organisation of 
4.1d.     
 

The ability of the map to organize itself is quite dependent on a number of parameters. 
For one, the standard deviations of the local and global competition loci should be related 
to the distribution of related arbors. If related arbors are far apart and the standard 
deviations are too small, these arbors will not be able to �find� one another. The 
discontinuity represented by the long diagonal line in 4.1d illustrates such an event. 
Secondly, layer A should provide enough room for arbors to actually move around. If this 
is not the case, the repulsive forces are too great, preventing the arbors from �breaking 
through� and retaining them in sub-optimal minima.  
 

It must be noted that in our complete model the arbors are already given a coarse 
organization on layer A a priori. As a result the arbors do not have to migrate very much. 
The layer A size can therefore be smaller, as well as the standard deviations of the 
competition mechanisms. Biological plausibilty is not endangered by this assumption, 
since enough evidence suggests that in the brain also a rough organisation already exists 
prior to any learning. It is assumed that this organisation is genetically coded. 
 
4.2 Formation of Receptive Fields 
 

For the remaining experiments the following parameters were used: 
 

Layer Layer Size (Incoming)Arbor Radius 
Input Layer 21x21 5 (from E)  
Layer A 15x15 4 (from Input Layer) 
Layer B 15x15 NA 
Layer C 15x15 NA 
Layer D 5x5 NA 
Layer E 15x15 1 (from B) 

 
Before birth the connections between thalamo-cortical arbors and layer IV neurons are 
not specific. In the model this is simulated by initially setting the connections from the 
input layer to layer A at random. Yet, because we predefine a coarse organisation of the 
thalamo-cortical arbors, a single layer A neuron will still receive information from a 
bounded patch of the input layer. This can be seen in figure 4.2a, where the receptive 
fields of layer A with respect to the input layer are shown before any learning has 
occurred. 
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   Figure 4.2a: segment of layer A    Figure 4.2b: segment of layer A 
    showing initial receptive fields    showing learnt receptive fields  

 
Given an input, say the one shown in figure 4.3a, without the influence of any other 
mechanism many layer A neurons would be activated by this input simultaneously. This 
can can be seen in figure 4.3b. The Hebbian learning rule causes an active layer A neuron 
to strengthen connections with input layer neurons that are active at the same time, and 
thus many layer A neurons would learn the same input pattern. The local competition 
mechanism remedies this by allowing only a limited number of neurons to remain active 
within a small area on layer A. The result is the sparse layer A activity of figure 4.3c. 
This causes only a limited number of layer A neurons to learn a specific input pattern, 
reducing redundancy and eventually creating receptive fields like those shown in 4.2b. 

 
 
Figure 4.3: a) thalamic input, 
b) layer A activation before 
local competition, c) layer A 
activation after local 
competition 

     a)       b)     c) 
 
4.3 Creating Lateral Connections  
 

As mentioned in section 3.3, the lateral connections from layer B to C are to bind layer B 
neurons that are often active together. Initially there only exist vertical connections of 
value 1 from layer B to C, and thus layer C is merely a copy of B. However, when these 
vertical connections are steadily replaced by lateral connections, each layer C neuron 
becomes less dependent on its own layer B neuron and more on others. When lines like 
the one shown in figure 4.3a were used as input data, one experiment yielded (among 
many others) the following lateral connections: 
 
    B-to-C connections before learning           B-to-C connections after learning  
 
 

 Neuron  
   C1 

Neuron 
   C2 

Neuron 
   C3 

  Neuron 
   C1 

Neuron  
   C2 

Neuron 
   C3 

Neuron B1 1 0 0  Neuron B1 0.185 0.131 0.162 
Neuron B2 0 1 0  Neuron B2 0.135 0.182 0.122 
Neuron B3 0 0 1  Neuron B3 0.096 0.071 0.197 
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These connected neurons corresponded to layer A neurons with related receptive fields 
and were situated at regular intervals, as can be seen in figures 4.3a to 4.3d. The strong 
connections between these neurons means they often fired together, suggesting they are 
also good predictors of each other�s activations. Although here only the linkage between 
three neurons is shown, after learning each layer C neuron also received input (but with 
smaller weight strengths) from other layer B neurons.  

 
 
  
 
 
      
 
 
 
 
 

          Figure 4.4a: receptive field locations       Figure 4.4b: receptive field neuron 1  
 

 
 
 
 
 
 
 
 
 
 

          Figure 4.4c: receptive field neuron 2              Figure 4.4d: receptive field neuron 3 
 
4.4 Temporal Dynamics 
 

Although the recognition of temporal patterns is more important for auditory than for 
visual processing, in the visual cortex it is nevertheless useful for creating direction 
senstivity. At any instant, a line moving one way should activate a different layer A 
neuron than the exact same line moving in the opposite direction. Thus, while these layer 
A neurons� thalamic receptive fields are the same, their activity also depends on what 
happened previously.  
 

As described in section 3.5, this responsability is given to layer E, whose neurons receive 
small axonal arbors from layer B and project straight up to layer A. Initially the 
connections of these B-to-E arbors are set at random, allowing layer B neurons to 
stimulate many layer A neurons within a small range. As the thalamic receptive fields of 
layer A are learned together with the layer B-to-E connections, specific connections are 
formed between layer B and layer E neurons, the latter corresponding to likely successors 
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on layer A. It is the additional activation supplied by layer E that allows one layer A 
neuron to beat another with the same thalamic receptive field during local competition.  
 

Figure 4.5 shows that, although the thalamic input is the same, different layer A neurons 
are active when the movement of the line is downwards, upwards or stationary. Hence, 
direction sensitivity has been created. 

 
 
 
 
Figure 4.5: effect 
on layer A of 
direction of 
thalamic input.  
 
 
 

4.5 Local Topographic Organisation and Abstraction 
 

The limited range of the layer B-to-E arbors and the consequent layer A modulation 
results in the layer A neurons lying close to a previously active layer A neuron to have 
more chance of being activated next iteration. In other words, neighbouring neurons on 
layer A are likely to have receptive fields that are separated by only one time instant, 
creating the gradually orientation changing receptive fields we also find in the cortex 
(figure 4.6b).  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6a: segment of layer A            Figure 4.6b: segment of layer A         
     showing receptive fields                           showing receptive fields 
  without layer E modulation                  with layer E modulation 
 

The added value of this organisation will become apparent in layer D. As we know, layer 
B is almost a copy of layer A and layer D samples layer B by reading out local averages 
of layer B. Because of the topographical organisation, with gradually changing input the 
consecutive winners on layer A tend to be neighbours. Also, the local average of a layer 
D neuron increases whenever layer B activation �moves� his way, and hence layer D 
changes gradually as well (see figure 4.7).  
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Figure 4.7: 
Columns: consecutive time instants 
Top row: gradual change of input 
Middle row: �moving� of layer A activation due to 
topographical organisation (notice how consecutive 
activations tend to be neighbours) 
Bottom row: gradually changing layer D (notice how 
individual neuron activations change gradually over time)   
 
 

Layer D has thus become more invariant (or more abstract) than layer D. This means that 
each layer D neuron responds to a range of stimuli, but with a gradual change in 
sensitivity as one moves along this range. This property is very important to make the 
leap to input-independent object recognition, which will be shortly discussed in section 
5.2. 
 
4.6 Noise Reduction 
 

Besides inducing temporal dynamics and enforcing topography on layer A, the third 
function of layer E is to act as a noise reduction mechanism on the thalamus. This is the 
responsibility of the cortico-thalamic arbors originating from layer E, which learn 
according to similar rules as the thalamo-cortical arbors to layer A. The difference is that 
layer E enjoys a delay and can consequently learn to predict bottom-up input based on 
previous experience. This prediction is then used to inhibit unpredicted stimuli, which are 
likely to be noise.  
 

In the experiments run, a cortical map was trained on lines like those used in previous 
experiments. A picture of a tree was then taken and pre-processed using a high-pass filter. 
The effect of such a filter is that only contrast differences remain visible. The initial input 
data was replaced by the entries of a sliding window moving across this picture, 
simulating a moving camera zooming in on only a small part of the tree. Finally, random 
noise was finally added to each input frame.  
 

Figure 4.8 shows the results of the cortical map at one time instant. From the top-down 
inhibition (4.8 middle) it can be concluded that the input prediction resulting from the 
previous layer E activation maps the actual input (4.8 left) quite well. It must be 
additionally noted that the prediction is constructed from the lines it learnt during the 
training phase. In 4.8 right it can be seen that this mechanism is capable of reducing 
noise, essentially �cleaning up� the picture by filtering out weak stimuli that are not 
expected and therefore deemed not irrelevant.   

 
Figure 4.8: left) input data 
sampled from the picture of a 
tree, middle) The top-down 
inhibition resulting from the 
prediction of the previous layer 
E activation. right) the denoised 
input layer 
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Section 5: Concluding Remarks 
 

5.1 Discussion 
 

The model proposed is a compromise between neuro-anatomic data and information 
theory. The former told us how the cortex is structured and what properties result from 
this organisation. The latter, on the other hand, allowed us to speculate on why these 
properties are needed and what a platonic (ideal) piece of cortex should look like.  
 

The model reproduced many of the important biological findings while still satisfying the 
constraints of biological plausibility. The important properties captured include:   
 

- the self-organising nature of the cortex 
- its gradually changing receptive fields 
- receptive fields able to extract both spatial and temporal patterns 
- its capacity to abstract (or become more invariant)   
 
But to forestall any (perfectly justified) criticism, some of the model�s weak points are 
mentioned below. On the connections within and between layers: 
 

- The local competition mechanism on layer IV may not have a diffuse effect after all, 
but instead be highly specific. This would enable neurons to selectively inhibit some 
neighbouring neurons, while leaving others close by unaffected. 

- The connections from layer IV to III may turn out not to be one-to-one after all, but 
one-to-many. In that case the function of the layers II and III and the long-range 
lateral connections may have been completely mis-interpreted. 

- Similarly, although allocating the role of summarising layer III activity to layer V 
neurons is useful for a number of reasons, experiments have yet to confirm this 
assumption. 

- Although layer VI almost certainly introduces temporal dynamics into the system, it 
is not known whether the connections suggested in the model are accurate. The 
hypothesis that the apical dendrites into layer IV provide a supervisory signal for 
layer III to VI connection strength learning may also lack supporting evidence. 

 
On the more fundamental assumptions: 
 

- Because the model proposed is a computational model designed for implementation 
in computer software, different layers are unable to affect each other simultaneously. 
Although it is unknown what the effects of this limitation are on the functioning of 
the model, it is certain to alter the behaviour in some way. 

- Another consequence of this limitation may be that while the temporal dynamics are 
sufficient for the detection of the direction of visual motion, auditory temporal 
features require much more precision. It may turn out that for this reason useful 
auditory analysis lies beyond the scope of the model�s capabilities.  

- While distinction has been made between driving and modulatory inputs, the neurons 
used are still numeric entries into a data matrix. For this model it is assumed that we 
need not delve deeper than the cellular level, but what if by doing so we miss some 
critical properties that can only be understood at a sub-cellular level? After all, there 
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are several scientists who believe quantum physics does significantly affect the 
workings of our brain.    

 
5.2 Future Research: Connecting Maps Hierarchically 
 

The full power of the previously described cortical maps only becomes apparent when we 
consider them in hierarchies. The cortex is designed to gradually abstract from its input 
the important patterns, making representations more input-independent as one moves 
higher up the hierarchies. It can thus be that while I consistently enjoy the abstract 
interpretation �cow in tulip field� at the highest level, the low level representations 
continuously change as result of my train moving with high speed through the Dutch 
pastural flatlands. In this section a quick overview will be given of how the cortex is 
structured hierarchically and how its inter-cortical communication dynamics could give 
rise to such abstract thoughts.   
 

Layer V turns out to be the principle output layer and is hypothesized to be a measure of 
the average activation of a certain area of layer III. Since layer III seems to be 
topgraphically structured itself, a layer V neuron can be excited by a whole range of input 
stimuli (see section 4.5). It is this generalisation that could be required for the input-
independency to emerge.  
 

But to understand how this would come about, let�s first have a look at how layer V is 
connected to the layer IV input layer of the cortical patch superior in the hierarchy. As we 
know, the thalamus is divided into nucleii like the LGN and the MGN that relay 
information from the senses to the primary sensory cortices. It turns out, however, that it 
not only adminsters this primary relay; the thalamus also contains small areas responsible 
for communication from primary to secondary sensory cortex, and from secondary to 
tertiary and so on (figure 5.1).   

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1: inter-cortical 
connections through the thalamus 

 
The higher-level thalamo-cortical axons again sprout broad axonal arbors at their ends, 
and there is no evidence to suggest that these higher level cortices function according to 
different principles than those described in the previous sections. But to grasp the 
differences in representation between different level cortical maps, perhaps it�s best to 
zoom in on V1 and V2.  
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The input from the retina into V1 (figure 5.2b) is built up of contrast differences (lines) 
that are detected by V1�s layer IV (figure 5.2a). The layer V activation resulting from this 
layer IV activation (figure 5.2c) is then transmitted to layer IV of V2. A single V2 layer 
IV receptive field therefore tends to learn V1 layer V patterns like the one in 5.2c, which 
in turn correspond to combinations of contrast differences in the retinal picture like figure 
5.2b, and not to a single line such as 5.2a. It must also be remembered, however, that in 
section 4.5 we saw that layer V changes gradually as a result of regularly changing input, 
and thus a single V2 layer IV neuron may be equally responsive to retinal input as shown 
in figure 5.2d or e.  
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2: how 
representations differ at 
different levels in the 
hierarchy  

 
It would be interesting to see whether by connecting three or four layers in this 
hierarchical manner, we can obtain stable representations at the highest level that may be 
triggered by a multitude of different input patterns. There is no reason why this high level 
representation can�t be muli-modal, resulting in the picture of your grandmother evoking 
the same response as her voice. At this level we would be speaking of true object 
recognition.  
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