
Many Layered Support Vector Machines
(Bachelorproject)

Jeroen van Asselt, s1810723, j.v.asselt@student.rug.nl,
M.A. Wiering∗

August 14, 2013

Abstract

This thesis describes the expansion of the machine
learning algorithm known as the two-layered Sup-
port Vector Machine (SVM) (Wiering, Schutten,
Millea, Meijster, and Schomaker, 2013) in order to
improve the performance of this system. First, a de-
scription of the standard SVM is given, followed by
an overview of the two-layered SVM. Then another
layer of SVMs is added to the two-layered SVM.
The mathematical implications of this expansion
will be described in detail. The metaparameters of
the three-layered SVM are then found by using a
combination of particle swarm optimisation and the
UCB bandit algorithm. Experimental results show
that the three-layered SVM outperforms a single-
layered SVM. However, these results do not show
an increase in performance compared to the two-
layered SVM.

1 Introduction

In machine learning, there are many tools which
can be called upon, all having their own set of pros
and cons. If the analysis to be made is a regression
analysis, a good choice of tool is using SVMs
(Vapnik, 1995) (Cristianini and Shawe-Taylor,
2000).
Although SVMs are superior in regression tasks
(Schölkopf and Smola, 2001), they have a limited
flexibility when used as a single unit. A similar
realisation came in 1969 with respect to the
perceptron, when Minsky and Papert (1969)
concluded that perceptrons were not able to learn

∗University of Groningen, Department of Artificial Intel-
ligence

certain functions such as the exclusive-or (XOR)
function. The multi-layer perceptron proposed
by Rumelhart, Hinton, and Williams (1986)
demonstrated that more complex functions, like
the XOR function, can be learned by placing
multiple artificial neurons in a network. These
neural networks have proven to be very useful in
a variety of tasks such as classification and time
series prediction (Altunkaynak, 2013).

In order to explore the power of network-like
architectures, Wiering et al. (2013) introduced the
Deep Support Vector Machine. In this thesis the
Deep Support Vector Machine will be refered to as
the two-layered SVM. The two-layered SVM has a
similar architecture as the multi-layer perceptron,
but instead of using artificial neurons, the units
which compose this system are made of SVMs.
This two-layered SVM was then compared to a
single SVM in a regression task, which showed
a better performance. Related research toward
the usage of multiple kernel learning (MKL)
instead of using a single kernel has shown that
performances increase when using MKL (Gönen
and Alpaydin, 2011). Also, MKL has proven to
be a good choice when performing object recogni-
tion, which is concluded by Varma and Ray (2007).

This paper gives a description about an ex-
pansion of the two-layered SVM which in this
paper will be referred to as the Many-Layered
Support Vector Machine (three-layered SVM).
Section 2 will first give a description of the
single layered SVM. Then, the architecture and
mechanics of the two-layered SVM are introduced.
The three-layered SVM is constructed by taking
the original two-layered SVM architecture and

1



then adding another layer of SVMs to it. Section
3 will describe the expansion of the mathematical
formulation used in the two-layered SVM to fit
the three-layered SVM. Section 4 describes the
conditions in which the three-layered SVM was
tested and the outcome of these tests. Finally,
section 5 will discuss the outcome.

2 Previous work

2.1 Support Vector Machines

For understanding the two-layered and the three-
layered SVM, one must first understand the basic
element: the SVM itself. The SVM is a tool
which can be used for classification and regression
analysis. When performing a regression analysis,
the SVM tries to learn a function to generate
an output to fit the training data properly. This
description of the SVM below is based on a tutorial
written by Smola and Schölkopf (2004).

The SVM itself is a supervised learning algo-
rithm, and therefore the data which is presented
to the SVM comes in the form of

(xi, yi) where xi ∈ Rs, i = 1 . . . l

pairs. Here, xi is some vector of dimensionality
s, where yi is the desired output which comes in
the form of a numerical value. The output func-
tion which has to be learned is of the form f(x) =
w · xi + b, where w · xi is the dot product between
vectors w and xi, and b is the bias. The goodness of
the function which has to be learned by the SVM
must be represented in a variable. To make a dis-
tinction between wrong outputs and outputs with
a certain error which are accepted as a good out-
come, ε is introduced. This variable represents the
maximal error which may be produced by the out-
put function.
Previous research has shown that the regression
fits the data better when w is minimised (Vapnik,
1995). The constraints which define a maximal er-
ror ε do not allow errors bigger than ε. Therefore,
a non-negative slack variable known as ξ(∗) is in-
troduced, which tolerates errors larger then ε. The
optimisation problem can now be defined as (2.1)

and (2.2) as originally proposed by Vapnik (1995)

minimise
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i ) (2.1)

subject to

yi − w · xi − b ≤ ε+ ξi
w · xi + b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

 (2.2)

where C > 0.

For this optimisation problem to be written
as a single mathematic equation, Lagrangian mul-
tipliers η(∗) and α(∗) are introduced, both being
larger or equal to zero. Equation Lp describes the
Lagrangian primal objective function.

Lp =
1

2
‖w‖2 + C

l∑
i

(ξi + ξ∗i )−
l∑
i=1

(ηiξi + η∗i ξ
∗
i )

−
l∑
i=1

αi(ε+ ξi − yi + w · xi + b)

−
l∑
i=1

α∗
i (ε+ ξ∗i + yi − w · xi − b)(2.3)

In general, if one tries to find the global minimum
of a function, the derivatives of this function with
respect to all variables must be taken and set to
0. Then, these derivatives can be substituted back
into the original function. Using this technique, the
global minimum can be obtained.
The solution of Lp is found where the parameters

b, w, and ξ
(∗)
i are minimised. To find a solution for

Lp, one must take partial derivatives of Lp with

respect to b, w, and ξ
(∗)
i .

∂bLp =
∑l
i=1(α∗

i − αi) = 0

∂wLp = w −
∑l
i=1(αi − α∗

i )xi = 0

∂
ξ
(∗)
i
Lp = C − α(∗)

i − η
(∗)
i = 0

which then have to be substituted back into Lp,
forming the dual objective function Ld:

Ld = −1

2

∑
i,j=1

(α∗
i − αi)(α∗

j − αj)(xi · xj)

−ε
l∑
i=1

(α∗
i + αi) +

l∑
i=1

(α∗
i − αi)yi (2.4)

where C ≥ α(∗) ≥ 0

2



This dual objective function Ld provides a good
solution of the problem when the model to be
learned is linear. This is due to the dot product
in Ld. For the SVM to be able to learn non-linear
models, the data must be mapped to a higher
dimension. To map this data to a higher dimension,
the kernel function is introduced. This function
can be defined in a variety of ways, and is therefore
denoted in general as K(xi, xj), which replaces
the dot product in the dual objective function (2.4).

2.2 Two-layered SVM

The two-layered SVM, as proposed by Wiering
et al. (2013), is a structure consisting of two lay-
ers of SVMs. It very much resembles the architec-
ture and mechanics of a feedforward neural net-
work. The data flows through the system like in
any feedforward neural network. First, the data is
presented to the lowest layer. This layer then ex-
tracts hidden variables from this data. These hid-
den variables are then used by the highest layer,
to give the final output in the form of a regres-
sion function. Once the output is given by the sys-
tem, it can use a backpropagation-like method to
propagate the objective function back into the sys-
tem, so it can adjust the parameters for making a
better hidden variable extraction, making the next
datapropagation come to a better result. The algo-
rithm is displayed in algorithm 2.1

Algorithm 2.1 Two-layered SVM algorithm

Initialise all SVMs within appropriate layers
Train all hidden SVMs on perturbed dataset
for all training epochs do

Recompute main SVM kernel matrix
Train main SVM
for all Hidden SVMs do

Perform backpropagation
Train SVM to obtain α(∗)

end for
end for

Certain parts of this algorithm need more expla-
nation, which will be described next.
Throughout this thesis the SVMs which extract
hidden variables will be refered to as hidden SVMs,
and the layers in which they are located will be ref-
ered to as hidden layers. Note that the usage of the

word ’backpropagation’ in this thesis does not refer
to the traditional backpropagation techniques. In-
stead it refers to the process which the two-layered
SVM and the three-layered SVM uses for construct-
ing new target pairs, which will be described in sec-
tion 3.2.

3 Expansion of the two-
layered SVM

In order to expand the two-layered SVM, an-
other hidden layer is added to this system. All
neighboring layers are fully connected, to keep
the architecture of the three-layered SVM math-
ematically as simple as possible. Figure 1 shows
schematically the architecture of the three-layered
SVM used in this paper. Before the mathematical
implications of this expansion can be described,
a new parameter d is introduced, which will
be used as an index for specifying layer index,
where capital D is used for describing the top layer.

3.1 Propagation of data

For the hidden variables to be extracted from the
original inputs, the output function as is used in
the two-layered SVM is modified to match the
three-layered SVM specifications, which results in
equation (3.1).

f(x)1a =

l∑
i=1

(α∗
i (a)1 − αi(a)1)

·K(xi,x) + b1a (3.1)

In this equation, both α∗ and α are the coefficients
for the support vectors and b is the bias. All these
parameters are bound to a single SVM a at layer
depth 1.
The hidden variables extracted by (3.1) are used by
higher layers as input vector. Superscript 1 as de-
picted in equation (3.1) determines the layer depth.
This superscript is denoted by d, where d = 1 is set
as the lowest hidden layer.
To take input from hidden variables extracted by a
lower layer, minor modifications need to be made

3



Figure 1: three-layered SVM architecture consisting of two hidden layers and one output layer,
where hidden layer one contains b SVMs S, and hidden layer two contains three SVMs, and the
main layer contains only a single SVM. Spheres represent extracted hidden variables.

to (3.1) which result in the following equation:

f(f(xj)
d)d+1
b =

l∑
i=1

(α∗
i (b)

d+1 − αi(b)d+1)

·K(f(xi)
d, f(xj)

d) + bd+1
b (3.2)

As the layer parameter indicates, equation (3.2)
is on top of (3.1) which is indicated by d + 1.
Therefore, the arguments of the kernel function
refer to the hidden variables extracted by lower
layers. Equation (3.2) can be applied on any layer
where D > d > 1 to calculate the output of all
SVMs, including the main SVM.

In the two-layered SVM, Wiering et al. (2013)
used the radial base function (RBF) kernel, be-
cause this kernel type produced the best results.
Therefore, the kernel function that is used by the
three-layered SVM is also a RBF kernel which is
defined by

K(xi,x) = exp(−
∑
a

(xi − x)2

σd
)

for the layer which takes the input from the original
data. The non-lowest layers are using

K(f(xi)
d, f(x)d) = exp(−

∑
a

(f(xi)
d
a − f(x)da)2

σd
)

where the kernel applies to lower level extracted
hidden variables.

3.2 Learning algorithm

Because of the SVM units which make up the sys-
tem, a supervised way of learning is used in the
three-layered SVM to construct new target pairs
per SVM. This objective function is constructed
by maintaining the following constraints, which are
quite similar to the constraints in (2.2)

yi −w · f(xi)− b ≤ ε+ ξi

w · f(xi) + b− yi ≤ ε+ ξ∗i

ξ∗i , ξi ≥ 0

where ε is the error tolerance, ξ∗ and ξ are slack
variables. For the system to find the right coeffi-
cients for all SVMs, the following dual objective
function is formulated (in roughly the same way
as the dual objective was formulated in section 2)
which applies to the main SVM located at layer D.

min
f(x)D−1

max
αD,α∗D

WD(f(x)D−1,α(∗)D) =

−ε
∑̀
i=1

(α∗D
i + αDi ) +

∑̀
t=1

(α∗D
i − αDi )yi

−1

2

∑̀
i,j=1

(α∗D
i − αDi )(α∗D

j − αDj ) ·

K(f(xi)
D−1, f(xj)

D−1) (3.3)

In this formulation, α(∗) maximizes WD. This is
done by using the following gradient ascent learning

4



rule to get α(∗) to a (local) maximum.

αDi = αDi + λ(−ε− yi +
∑
j

(α∗D
j − αDj )

·K(f(xi)
D−1, f(xj)

D−1)) (3.4)

This system learns by constructing new target
pairs (fdi , y

d
i ), by adjusting ydi for each vector

extracting SVM input vector fdi . The magnitude
of this adjustment is determined by a learning
parameter µ, multiplied by the error of the SVM
which is backpropagated through the network.
For the topmost hidden layer, the mathematical
formulation of this backpropagation is as follows:

∂WD

∂f(xi)
D−1
a

= −(α∗D
i − αDi )

l∑
j=1

(α∗D
j − αDj ) ·

K(f(xi)
D−1, f(xj)

D−1)(3.5)

The construction of a new example in the
topmost hidden layer is therefore defined as
(xi, f(x)D−1

a − µ · ∂WD/∂f(x)D−1
a ).

The backpropagation method as described
above applies only to the layers which are located
in layer D − 1, because the objective function
WD applies to the main SVM. SVMs which aren’t
using ∂WD/∂f(xi)

D−1
a (such as D-2 and below)

for constructing new datasets are never reached
by this system. Therefore, partial derivatives must
be included into equation ∂WD/∂f(xi)

D−1
a . This

can be done by taking the output equation (3.1)
or (3.2) (depending on layer depth) of the SVM at
layer d, and the partial derivative to the output
function of the SVM at layer d−1, which is defined
by the following equation.

∂f(xi)
d+1
a

∂f(xj)db
= −(α∗

i (a)d+1 − αi(a)d+1)

· f(xi)
d
b − f(xj)

d
b

σd

·K(f(xi)
d − f(xj)

d) (3.6)

When i=j, the partial derivative of
∂f(xi)

d+1
a /∂f(xi)

d
b needs to be adjusted. In

this case, the following derivative is used for

backpropagation instead of (3.6).

∂f(xi)
d+1
a

∂f(xi)db
= −

∑
k

(α∗
k(a)d+1 − αk(a)d+1)

f(xi)
d
b − f(xk)db
σd

·K(f(xi)
d − f(xk)d)(3.7)

To plug derivations 3.6 and 3.7 back into the ex-
isting equation, ∂f(xi)

d
a/∂f(xj)

d−1
b just needs to be

multiplied by ∂W/∂f(xj)
D−1
b , which yields the fol-

lowing equation:

∂WD

∂f(xj)
D−2
b

=
∑
a

∂WD

∂f(xi)
D−1
a

· ∂f(xi)
D−1
a

∂f(xj)
D−2
b

(3.8)

Because the system has all neighboring SVMs fully
connected per layer, the error of an SVM located
in layer D−x is backpropagated through all SVMs
on layer D − x + 1. Hence, the summation sign
must be added to include all top influences.

Equation (3.8) describes the backpropagation of
objective WD from the top layer D. It is also
possible for layers D − x to propagate their ob-
jective function WD−x. In this three-layered sys-
tem, ∂WD−1

a /∂f(xj)
D−2 describes the backpropa-

gation of the objective at SVM a from layer D − 1
to the lowest layer in this system D − 2. The
three-layered SVM uses both equation (3.8) and
∂WD−1

a /∂f(xj)
D−2, and tries to find an optimum

by multiplying these equations with certain param-
eters β1 and β2. The application of these two meth-
ods both yield a max-min-max formulation.

3.3 Algorithm description

The addition of more layers requires the addition of
an additional for-loop in algorithm 2.1. The algo-
rithm which then makes up the three-layered SVM
is displayed in algorithm 3.1.

The number of training cycles which can be seen
in algorithm 3.1 is based on an estimated optimal
metaparameter. Note that the cross validation runs
are not displayed in this overview of the algorithm.

5



Algorithm 3.1 Three-layered SVM algorithm

Initialise all SVMs within appropriate layers
Train all hidden SVMs on perturbed dataset
for all training epochs do

Recompute main SVM kernel matrix
Train main SVM
for all hidden Layers do
for all hidden SVMs do

Recompute SVM kernel matrix
Perform backpropagation
Recalculate α(∗)

end for
end for

end for

4 Results

To decide if the three-layered version outperforms
the two-layered SVM, the testing is done in three
stages. First, the metaparameters have to be found
in order for the three-layered SVM to perform to
its upmost. Using these metaparameters, the sys-
tem has to train on a dataset for then it has to
be tested to get the error of this system. These er-
rors then have to be compared to the error made by
the two-layered SVM using statistical analysis. The
datasets used in this thesis are the same datasets
which Wiering et al. (2013) used, which are de-
scribed in Graczyk, Lasota, Telec, and Trawiski
(2010). They are shown in table 1.

4.1 Finding the correct metaparam-
eters for the three-layered SVM

The search for the metaparameters of the three-
layered SVM is compared to the two-layered SVM
more complex. This is because the three-layered
SVM has more metaparameters to be determined.
These metaparameters determine the form of the
system by varying the number of SVMs per layer.
Also, the internal behavior of the SVMs are deter-
mined during this process. Consider the initialisa-
tion of σ . If this parameter is set to a high number,
the kernel function would overreach itself, for every
kernel distance will be a relevant one. The opposite
is also true: if σ is set to low, none of the distances
matter. One can do this parameter optimisation by
hand, but this task would be tedious: the three-
layered SVM relies on 36 adjustable metaparame-

ters.
For the configuration of metaparameters to be
judged, the three-layered SVM has to be executed
with them and judge the configuration using the
output. This iterative process can be done auto-
matically by Particle Swarm Optimisation (PSO)
(Kennedy and Eberhart, 1995). In this research,
PSO ran 100.000 parameter configurations on the
three-layered SVM, and using a UCB bandit (Auer,
Cesa-Bianchi, and Fischer, 2002) algorithm to elim-
inate unpromising parameter configurations.
The differences between the datasets do not allow
a general good parameter configuration, so the pa-
rameter optimisation as described above was done
for every dataset.

4.2 Training the three-layered SVM

Once good metaparameters per dataset are found,
they can be used to train the three-layered SVM.
First, it divides the data into partitions consisting
of 90% and 10% of all entries in the dataset, which
are used for training and testing respectively. The
results are then crossvalidated 1000 or 4000 times,
which is determined by the times a dataset was
crossvalidated by the two-layered SVM, to preserve
the comparative nature of this research. For each

Dataset Entries Features crossval
repetitions

Diabetes 43 2 4000
Machine-CPU 188 6 1000
Baseball 337 6 4000
Ele1-2 495 2 1000

Table 1: Dataset properties and number of
crossvalidation repetitions

run, the three-layered SVM calculates an error. Af-
ter the crossvalidation is done, the three-layered
SVM gives the Mean Squared Error (MSE) as out-
put, which will be used to compare the performance
to the performance of the two-layered SVM.

4.3 Results with the three-layered
SVM

The outcome of the regression analysis made by
the three-layered SVM are shown in table 2, to-
gether with the associated score of single SVM and

6



Mean Squared Error + Standard Error
Dataset single SVM two-layered SVM three-layered SVM
Diabetes 0.02719±0.00021 0.02327±0.00022 0.02694±0.00025
Machine-CPU 0.00805±0.00018 0.00638±0.00012 0.00743±0.00020
Baseball 0.02413±0.00011 0.02294±0.00010 0.02314±0.00016
Ele1-2-Electrical-
Length

0.006382±0.000066 0.00641±0.00007 0.00653±0.00007

Table 2: Results per dataset. Bold results are results which indicate significant better performance
with respect to the other two systems.

the two-layered SVM. The scores are denoted as
MSE ± SE, where the standard error SE is cal-
culated by dividing the standard deviation by the
number of crossvalidation repetitions, which can
be found in table 1. The table is filled with four
columns, where three are dedicated to the out-
come of the single SVM, the two-layered SVM and
the three-layered SVM. These outcomes represent
a population of error values consisting of 1000 or
4000 members. For the difference between the per-
formance of the two-layered SVM and the perfor-
mance of the three-layered SVM to be viewed as
significant, a students t-test was performed on both
scores. In order to mark the difference in perfor-
mance as significant, a p-value < 0.05 is chosen.

5 Discussion

As can be seen in table 2, the two-layered SVM con-
vincingly outperforms the three-layered SVM (all
resulting in a p-value < 0.0001). This could be the
result of unforseen properties of the dataset. For ex-
ample: it is highly possible that the three-layered
SVM needs more data simply because the system
is bigger in size than the two-layered SVM. There-
fore, the full potential of the three-layered SVM has
not been fully uncovered, so future work should be
focussing on bigger datasets.
Although the three-layered SVM performs better
on some datasets with respect to the use of a single
SVM, one should think twice before chosing be-
tween the three-layered SVM or single layer SVM
based on performance alone. During the training
phase, the three-layered SVM performed the train-
ing cycles very slowly, as a result of the quantity of
kernel matrices which had to be recalculated each
time. One could therefore conclude that instead of
the number of training cycles, a certain amount of

training time should determine the choice between
a single layer or three-layered SVM.
To improve the idea of building a layered support
vector machine, future research should investigate
the possibility of creating a system which dynam-
ically adds more layers where needed. This way, a
system can be found dynamically which suits the
properties of the datasets best in order to prevent
unnecessary usage of both high performance ma-
chines and time to train the three-layered SVM.

References

A. Altunkaynak. Prediction of significant wave
height using geno-multilayer perceptron. Ocean
Engineering, 58(0):144 – 153, 2013.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-
time analysis of the multiarmed bandit problem.
Mach. Learn., 47(2-3):235–256, May 2002.

N. Cristianini and J. Shawe-Taylor. An Intro-
duction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge Uni-
versity Press, 1 edition, 2000.

M. Gönen and E. Alpaydin. Multiple kernel learn-
ing algorithms. Journal of Machine Learning Re-
search, pages 2211–2268, July 2011.

M. Graczyk, T. Lasota, Z. Telec, and B. Trawiski.
Nonparametric statistical analysis of ma-
chine learning algorithms for regression prob-
lems. In Rossitza Setchi, Ivan Jordanov,
Robert J. Howlett, and Lakhmi C. Jain, editors,
Knowledge-Based and Intelligent Information
and Engineering Systems, volume 6276 of Lec-
ture Notes in Computer Science, pages 111–120.
Springer Berlin Heidelberg, 2010.

7



J. Kennedy and R. Eberhart. Particle swarm op-
timization. In Neural Networks, 1995. Proceed-
ings., IEEE International Conference on, vol-
ume 4, pages 1942–1948 vol.4, 1995.

M. Minsky and S. Papert. Perceptrons. Cambridge,
MA: MIT Press, 1969.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error prop-
agation. In Parallel Distributed Processing, vol-
ume 1, pages 318–362. MIT Press, 1986.

B. Schölkopf and A.J. Smola. Learning with Ker-
nels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, Cam-
bridge, MA, USA, 2001.

A.J. Smola and B. Schölkopf. A tutorial on support
vector regression. Statistics and Computing, 14
(3):199–222, August 2004.

V. Vapnik. The Nature of Statistical Learning The-
ory. Springer-Verslag, 1995.

M. Varma and D. Ray. Learning the discriminative
power-invariance trade-off. In Computer Vision,
2007. ICCV 2007. IEEE 11th International Con-
ference on, pages 1–8, 2007.

M.A. Wiering, M. Schutten, A. Millea, A. Meijster,
and L. Schomaker. Deep support vector machines
for regression problems. In International Work-
shop on Advances in Regularization, Optimiza-
tion, Kernel Methods, and Support Vector Ma-
chines: theory and applications, Leuven Belgium,
2013.

8


