
A M A C H I N E L E A R N I N G A P P R O A C H T O
AU T O M AT I C L A N G UA G E I D E N T I F I C AT I O N

O F V O C A L S I N M U S I C

herman groenbroek

Supervisors:

dr . m .a . wiering

Artificial Intelligence, University of Groningen

arryon tijsma

Machine Learning Engineer, Slimmer AI

Master’s Thesis Artificial Intelligence
University of Groningen

April 7, 2021





A B S T R A C T

Audio classification is an important field within data science. Hav-
ing an automated system that is able to appropriately and quickly
respond to incoming audio can ultimately save lives, for instance in an
emergency call centre. An important first step of audio classification is
Automatic Language Identification (LID). Unfortunately, LID of vocals
in music has not made the same advancements as that of speech. At
this time, there exists no publicly accessible system that is able to
accurately classify the language that music is sung in, nor a labelled
dataset to train one.

In this thesis, a novel music dataset with language labels is described:
the 6L5K Music Corpus. A vocal fragment dataset is obtained by taking
3-second audio fragments from the 6L5K Music Corpus classified by
a pretrained vocal detector to contain vocals. Two neural network
architectures are implemented: a feedforward Deep Neural Network
(DNN), which works well for LID on speech data, and VGGish, a
powerful architecture for general audio classification tasks. For the
input features, mel spectrograms and MFCCs are computed from the
vocal fragment data, and the networks are trained and optimized for
classifying the sung language.

The results in this thesis indicate that the task of LID of sung music is
non-trivial. The DNN with various setups performs better than chance,
obtaining at best 35% accuracy with six languages. VGGish shows
more promising results on the vocal fragment data, obtaining 41%
accuracy on the same six-class dataset. When using these systems on
unseen test data however, the DNN drops to 18.1% accuracy, whereas
VGGish drops to a more respectable 35.2%. We finally implement an
Ensemble by combining the two models, but the results are no better
than an average of the two. Although VGGish performs significantly
better than the DNN, it is not accurate enough to be used reliably in
any modern-day system. These results, combined with the fact that
little research is done on LID of sung music, indicate that this subset
of audio classification has plenty of potential still for novel research.

iii



A C K N O W L E D G E M E N T S

First and foremost, I would like to thank my external supervisor at
Slimmer AI, Arryon Tijsma, for always helping out, for instance when-
ever I was stuck with programming or running code on an external
machine. His insights into the problems at hand and weekly video
calls during the COVID-19 pandemic managed to keep me motivated
during these bizarre times. I am very grateful to have had a supervisor
who could help solve problems ranging from trivial to complex, often
within a day or two. A supervisor who managed to always keep a
positive outlook, and whom I could rely on whenever I needed assis-
tance.

I would also like to thank my internal supervisor, Dr. M.A. Wiering,
for more broadly guiding this thesis in the right direction, helping to
set deadlines, and supplying proper feedback in this scientific field
where needed.

I am very grateful to all my friends and family who have directly
or indirectly helped me. Specifically, to Rachelle Bouwens for always
supporting me; to Henry Maathuis for sharing thoughts and advice
on-topic; to Adiëlle Westercappel for sharing her linguistics expertise;
to Hidde Ozinga for clearing my mind on walks, and to my family for
being patient.

Finally, I would like to thank my colleagues at Slimmer AI who
supported me through a tough time. My sincerest thanks to everyone
who checked in with me to see if I was doing alright, and for allowing
me to continue my research at my own pace.

I dedicate this thesis to my father, who was unable to witness its completion.

iv



C O N T E N T S

1 introduction 1

1.1 Language & Music 1

1.2 Research Questions 3

1.3 Societal Impact 3

1.4 Slimmer AI 4

i theoretical background

2 automatic language identification 7

2.1 The Literature 7

2.2 Audio Features 8

2.3 Artificial Neural Networks 9

3 datasets 13

3.1 Speech Data 13

3.2 Music Data 14

ii methodology

4 used methods 21

4.1 The 6L5K Music Corpus 21

4.2 Vocal Fragmentation 30

4.3 Mel Spectrograms & MFCCs 35

4.4 Input Data 38

4.5 Deep Neural Network 39

4.6 VGGish 41

5 dnn optimization 43

5.1 DNN: Band Removal 43

5.2 DNN: Hidden Layers 45

5.3 DNN: Learning Rate 46

5.4 DNN: Fine-tuned Parameters 47

6 vggish optimization 49

6.1 VGGish: Weight Initializations 49

6.2 VGGish: Dropout 51

6.3 VGGish: Hidden Layers 52

6.4 VGGish: Learning Rate 53

6.5 VGGish: Fine-tuned Parameters 54

7 test results 57

7.1 Models 57

7.2 Ensemble 58

7.3 Predictions 58

7.4 End Results 62

8 discussion & conclusion 67

8.1 Discussion 67

8.2 Conclusion 70

v



bibliography 75

appendix 81

a summed probability predictions 81

vi



1
I N T R O D U C T I O N

1.1 language & music

1.1.1 Language

Language is a tool for communication thought to be exclusive for
humans [7]. A language is often expressed in a written form or as
speech, but alternative encodings of language exist, such as signing,
whistling, and braille. In all cases, a language contains elements of
meaning (words), and rules on how to use these elements. A large
variety of languages exist across the globe, and languages continue to
vary over time, adding elements, adjusting rules, or even being created
in the first place. These modifications are often related to the culture
in which languages are used. As a common example, it is said that,
whereas the English language only has a single word for "snow", the
Inuit language has multiple [31]. Regardless of the debate whether this
is actually true, one can see how in one culture, commonly referenced
objects and ideas evolve into new, more specific language elements. In
this thesis, we look at language to the extent of spoken or sung words.

1.1.2 Music

Music has been an integral part of human society for as long as we
can remember. Music consists of various sounds that are created
by tapping, slapping, plucking, or blowing objects manufactured
to produce pleasing sounds. For thousands of years now, people
have been making musical instruments with the purpose of creating
pleasing, harmonic sounds. The earliest known musical instruments
– flutes made of bone and ivory – are said to be more than 35,000

years old [9]. Although it is still not perfectly clear why we tend
to enjoy various harmonic sounds [21], it is clear that this pleasure
is shared across humans all over the world, regardless of cultural
background. Besides manufacturing physical instruments, humans
have also learned to use their own vocal chords to produce rhythmic
and harmonic sounds. Although we tend to enjoy purely instrumental
music as well, the majority of modern-day pop music is accompanied
by vocals. These vocals are usually expressed as poetry-like texts –
lyrics – that are commonly sung, rapped, or otherwise rhythmically
spoken, with the texts often intended to either express the artist’s
feelings, or for listeners to relate to.

1



2 introduction

1.1.3 Cultural Differences

Music has been used as a cultural means for a long time. Various
cultures have adopted certain instruments and play styles that yields
a sound signature that is distinct for that culture. For instance, a
Spanish guitar is more commonly found in Spanish music, and for
typical oriental music, the erhu delivers sounds that make it highly
recognizable as such. Although globalisation has caused popular
international hits from various countries to sound somewhat similar
in terms of instrument usage, some musicians are keen on using
instruments that go back to the roots of their culture, which can
sometimes be found in these international hits as well. A more direct
cultural difference in music would be the vocals. Many countries have
a language of their own, and regions within these countries tend to
have varied dialects. These languages and dialects of individuals all
make their way into the music they produce, and as such, a set of
music tracks sung in one language may still have a large variation in
vocal sounds.

1.1.4 Language Classification

In this thesis, the focus is put on classification of language in music.
Although language is a broad concept, our focus is specifically on the
vocalized lyrics of a song. This means that, given a song, the goal is
to find in which language the song was sung. Interestingly, given the
differences between cultures, for instance with regard to instrument
usage as described in Section 1.1.3, being able to identify the instru-
ments that are used may help in the classification of the vocals. That
is, if a song where the erhu can be heard is often sung in Mandarin,
then being able to detect the erhu in a track can help suggest that the
vocal language is Mandarin as well. However, is is also possible that
various instruments uncommon for a culture matching some language
are used for an artistic purpose, and as such they may not match the
expected language of vocals.

More certainty of vocal language classification can be obtained when
only considering the vocals themselves, without any instrumental
additions that are technically irrelevant to the vocal language. Spoken
and sung languages are distinct in their phonotactic restrictions, mean-
ing that various languages do not allow some phonemes in specific
locations of a word, as well as languages featuring certain phonemes
more than others. If the phonemes in an audio fragment can be de-
tected accurately, it is possible to reasonably classify the language of
this audio fragment as well [35].



1.2 research questions 3

1.2 research questions

The purpose of this research is to discover how automatic language
identification (LID) of sung music benefits from training neural net-
work architectures for classification. For this, it is necessary to look
deep into the training data, to find which types of data work best for
obtaining an accurate neural network classifier. The main research
question can thus be defined as:

Research Question: How can we train a neural network to perform best on
the task of Automatic Language Identification in vocal music?

As this is quite a broad research question, we pose three questions that
– when answered – suggest an answer to the main research question:

Q1: What type of data is best for training neural networks to be able to
classify the language music is sung in?

Q2: Which neural network architecture works best for Automatic Language
Identification of sung music?

Q3: How do we determine which system performs better on the task of
Automatic Language Identification?

These three questions will be answered throughout this thesis, and to
conclude, the main research question will be answered in Section 8.2.2.

1.3 societal impact

In the current state of technology, companies like Google use auto-
matic language identification (LID) of speech for their smart speakers
to allow multilingual use thereof. LID is often applied in real-time to
speech with the purpose of better understanding what is said, and
acting accordingly. In some cases, for instance in the understanding of
emergency calls, having an accurate LID system can make the differ-
ence between life or death [34].

LID of music is a related field, but is less often used. Identifying the
language that music is sung in can be used for better recognizing
which song is being played however. This is already done in real-time
on modern smartphones nowadays, being able to show users on their
lock screen what the artist and title of the track is that is currently
playing in the background, even when the device is in low-power
mode [16]. First detecting the language that music is sung in can help
subset the potential music matches, thus improving the efficiency in
music recognition by having to compare fewer track fingerprints. LID



4 introduction

in music can also be used to automatically add a language label to
music videos uploaded to video sharing websites. These websites can
then better cater video suggestions to visitors by knowing in which
language music in the video is being sung.

Whereas research on Automatic Language Identification of speech
has been a well covered topic [2, 8, 17, 25, 27, 29, 32, 34, 35, 53], LID
of music is much less researched [6, 33, 41, 49]. This thesis serves as
a starting point for the application of deep neural networks on the
problem of LID of music. This thesis explains the current state of
technology regarding this topic, and applies various neural network
approaches in order to see what type of data is best trained on, and
which architectures of neural networks function best with these types
of data.

1.4 slimmer ai

This thesis is written as a result of a Master’s Project offered by
Slimmer AI, an artificial intelligence company in Groningen, The
Netherlands. Slimmer AI, at the time known as Target Holding, were
curious to see whether language as a feature of music tracks could
help predict which tracks would become popular (a ’hit’), and which
would not (a ’flop’). Being able to predict which tracks can become
a hit or a flop will not only inform the industry ahead of time how
likely it is for tracks to become popular, it would also be a great tool
during music creation to make alterations such that the system would
be more likely to predict the track becoming a hit.

The hypothesis for using language as a feature to predict hits and flops
is that tracks sung in a certain language have better odds of becoming
a hit in countries that generally prefer the sung language. For instance,
since the Dutch like to visit nearby warm countries such as Spain for
summer vacation, tracks sung in Spanish may have higher odds of
becoming a hit around the summer. On the other hand, when some
country has a very poor relationship with another country, songs sung
in that language may be less likely to become popular there.



Part I

T H E O R E T I C A L B A C K G R O U N D





2
AU T O M AT I C L A N G UA G E I D E N T I F I C AT I O N

2.1 the literature

As we have noted in Section 1.3, Automatic Language Identification
(LID) has been widely studied for application on speech data, but not
so much for music data. Here, we will give an overview of previous
research separated by whether it has been done on speech or music
data, given the inherent differences between the two. It remains to be
seen whether knowledge from existing literature of LID on speech can
help design a system that can classify sung languages in music.

2.1.1 Identifying Speech

LID of speech has been a topic of interest for quite some time. In 1980,
Li et al. researched statistical models for identifying spoken languages
[27]. Furthermore, in 1989, Cole et al. [8] already studied the feasibility
of using neural networks by classifying patterns using the distribu-
tion of phonetic categories. In older work, language identification is
often done with telephone recordings. Muthusamy et al. reviewed
various LID methods that could be considered state-of-the-art at the
time, ranging from acoustic and language modeling to speaker iden-
tification [34, 35]. Zissman continued their work by comparing four
techniques for LID of telephone speech, containing Gaussian Mixture
Models (GMMs) and language modeling methods [53].

More recent work includes that of Brümmer et al. where Joint Factor
Analysis (JFA) is used to obtain state-of-the-art results at the time
[5]. Shortly thereafter, Martinez et al. (2011) outperformed their JFA
methods by using iVectors to represent the relevant speaker data,
and building various classifiers on this [32]. This work formed the
basis of research done at Google by Lopez, Gonzales, et al. where a
novel speech dataset was created (‘Google 5M’) and was used with
Deep Neural Networks (DNNs) to classify the spoken language [17,
29]. Continuing this, Bartz et al. (2017) utilized Deep Convolutional
Recurrent Neural Networks (DCRNNs) which were able to handle
noise well, and was also easily extendable to new languages [2].

2.1.2 Identifying Music

As described, LID of music is a field that is much less researched
than LID of speech. As one of the first attempts at researching this

7



8 automatic language identification

field, Schwenninger et al. (2006) evaluated how well existing state-
of-the-art LID systems transfer to sung music [41]. They concluded
that an existing system used to distinguish Mandarin and English
did not transfer well to sung music in these languages. Tsai et al.
(2007) continued their work and included Japanese as a third language
[49]. However, their results remained insufficient, arguing that one
of the problems was a lack of available data. In 2011, Mehrabani and
Hansen evaluated a successful system for LID on singing speech [33].
However, in the same year, Chandrasekhar et al. came up with various
new approaches to LID in music [6]. Working for Google, they had
access to a large database of music videos, of which 1000 music videos
were obtained for each of 25 selected languages. Training a set of
Support Vector Machines (SVMs), one for each language, their goal
was to see whether visual information of music videos would aid
language classification of music. Given the fact that 25 languages are
used and thus the guessing probability would be 4%, their results
of audio-only features yielding 44.7% accuracy, and audio + video
features yielding 47.8% accuracy, it becomes clear that this method of
training multiple SVMs is a feasible method of distinguishing vocals
to some extent, although there is plenty of room for improvement
still.

2.2 audio features

Digital audio is a representation of sound waves, having been trans-
formed into samples with a specific sample depth. In general, CD-
quality audio can be seen as a standard for digital audio, which
contains 44,100 samples per second (the sampling rate), with each
sample having 16-bit depth. Higher bit depth standards exist, such
as DVD and Blu-ray quality, which support up to 24-bit depth. Often,
audio is recorded in stereo, featuring two audio tracks per file. The
lower the bit-depth, the smaller the file sizes, but this is paired with a
lower audio quality.

Monophonic digital audio in itself can be seen as a one-dimensional ar-
ray of data points. A 3-second audio clip for instance with a sampling
rate of 44,100 can be seen as a feature vector of 132,300 dimensions.
For pattern recognition, which is at the basis of classification tasks, it
is key to reduce the dimensionality of the data while retaining most
relevant data. As an example, the last second of a 3-second audio clip
may be completely silent; a third of the feature vector would therefore
not contain any more information than the single fact that no audio
is present. Classification tasks are often solved through mathematical
computations on the feature vectors. A higher dimensionality may
result in exponentially longer computation times. As such, there is
a large variety of methods to reduce the dimensionality of specific



2.3 artificial neural networks 9

types of data while retaining the important information, also known
as feature extraction [42].

One of the most important discoveries for feature extraction of audio
signals is the Fourier transform, which transforms a time-series into a
frequency-series [4]. Simply put, an audio signal can be transformed
into the frequencies that it consists of. For feature extraction, the short-
time Fourier transform (STFT) is often used, which is a windowed
method of computing the Fourier transform per time frame [18].
With the STFT, essentially a frequency summary per timestep can
be taken. This can be visualized in a spectrogram, with the x-axis
containing the time frames, and on the y-axis the frequency. For feature
extraction of speech, the mel scale comes into play: this is a scale
with which the frequency scale can be transformed into a subjective
magnitude scale, which deals with the fact that the human perception
of differences in frequencies is not linear [46]. Given this mel scale, a
mel spectrogram of any audio signal can be computed, which results
in a spectrogram that is ‘corrected’ for human perception. For many
speech-related classification tasks such as speaker identification or
automatic language identification, these mel spectrograms provide
a useful representation of the audio data [30, 39]. Moreover, a mel
spectrogram is often converted to mel-frequency cepstral coefficients
(MFCCs) by taking the discrete cosine transform [11]. This yields a set
of coefficients that can be more compact than mel spectrograms, while
still representing the power spectrum of an audio signal.

2.3 artificial neural networks

2.3.1 Multilayer Perceptron

For the purpose of classification tasks, countless statistical and self-
learning methods exist. In recent years, many different architectures
of artificial neural networks (ANNs) have been applied to classifica-
tion tasks, yielding unprecedented accuracy scores [17, 24, 26, 47].
Although these ANNs largely differ in architecture, they are all based
on the concept of a multilayer perceptron.

The first model that we are implementing is a multilayer perceptron
(MLP). An MLP is a feedforward neural network, meaning that there
is no cycle or loop in the connections between nodes. It is defined
as having one input layer with at least one input node, one or more
hidden layers each with at least one hidden node, and one output
layer with at least one output node. Although an MLP with a sin-
gle hidden layer is not often referred to as a Deep Neural Network
(DNN), one with multiple hidden layers can be described as such.
For each node in a layer of the network, there is a connection to all



10 automatic language identification

nodes in the following layer. Given input data, an MLP can be trained
for either supervised, unsupervised, or reinforcement learning. Here,
supervised refers to data which comes with labels, where the system
learns to predict these labels. With unsupervised learning, there are
no explicit labels to predict, and a network is generally trained to
recognize patterns, to cluster, or as an autoencoder. Lastly, with re-
inforcement learning, the network learns to optimize some reward,
which may increase upon taking good actions and decrease upon
bad ones. Regardless of the learning type, an MLP is able to learn
by updating each layer’s set of weights. These weights are what each
of the values from the input layer towards the output layer are mul-
tiplied with. The key is to update these weights in such a way that
the current output given an input sample more closely resembles the
label: the values that the output should have been, in the ideal scenario.

With an initially randomly initialized network (i.e. randomly initial-
ized weights), the initial prediction for an input sample is likely to
be very different from the label of the sample. From the differences
between output prediction and true label, an error can be computed.
The function for this is referred to as the cost or loss function, and is
decided on by the neural network architect depending on how severe
the differences are deemed (the mean squared error is often used).
Given the error between prediction and true label, the goal is to figure
out which weights to change how much, in order for the same input
to predict an output closer to the true label. For this, Rumelhart et
al. (1986) introduced the backpropagation algorithm [40]. With this
algorithm, the gradients of the loss function can be computed. Given
the gradients, the weights can be adjusted in the right direction with
the use of an optimizer. Changing the magnitude of weight adjust-
ments can be done with varying the learning rate, but keep in mind
that a learning rate that is too low or too high may not let the network
converge at all.

2.3.2 Convolutional Neural Network

The second model that we are implementing is VGGish, a Convolu-
tional Neural Network (CNN) [19]. A CNN is based on the concept
of an MLP, but with a key difference that allows it to work better
on image-like data. Whereas each node in a hidden layer of an MLP
receives input from all nodes in the previous layer, a CNN contains
kernels that reach only a subset of nodes in the previous layer, also
known as the receptive field. This takes place in a convolution layer,
where kernels with weights slide across the entire input, each learning
a specific feature that appears relevant in the input data. After a convo-
lution layer, the dimensionality is often reduced with a pooling layer,
downsampling by taking the maximum or the average of multiple



2.3 artificial neural networks 11

values. After the convolution and/or pooling layers, of which multiple
may be used, a CNN often contains fully connected (FC) layers at
the end, which are also found in MLPs. The penultimate layer of a
CNN, when using FC layers, can be seen as an embedding layer, as
this is a vector representation of all relevant information found in the
input data for the task that a CNN has been trained for. Although an
MLP or DNN can also be used on the same image-like data, generally
speaking CNNs learn faster and perform better on image classification
tasks, as they are better suited for find relevant patterns in the input
data due to the sliding window method.

2.3.3 Regularization

Neural networks are not trivial to train. Despite the promise of MLPs
being a universal approximator [10, 20], these networks are often
very computationally complex, require expensive hardware to train,
and a lot of data to be able to generalize well. A supervised neural
network only learns to predict correct labels for the types of data that
it has seen during training. Using a well-designed neural network
architecture does not guarantee success on any given problem. In
order to make sure that neural networks are able to generalize to
unseen data, which does not appear in the training dataset, there are
a number of regularization methods that are often applied.

Validation Data

First off, for training a supervised neural network, a large set of rele-
vant, labelled training data needs to be available. In almost all cases,
the training data will not cover all potential input and output (label)
combinations. As such, the network will have to learn an approxima-
tion to the function mapping the input to the correct output. When
only the accuracy on a training dataset is taken into account, running
the network on unseen data may drastically lower the test accuracy. It
is good practice to split the training dataset into a validation portion,
which is never used during training, but will be tested on after each
epoch of training. This way, you can see during training whether the
network is able to generalize what it learns from the training data, to
the unseen (validation) data. The expectation is that the accuracy on
the validation data more closely resembles the accuracy on future test
data, given that the validation data is also representative of the data
the network will be run on in the future.

Dropout

Dropout is a technique that regularizes a neural network by randomly
dropping units and their connections between the input layer and the
penultimate layer during training with a specified probability p [45].



12 automatic language identification

After training, the units are present but their weights are multiplied by
this p. This results in a significant reduction of overfitting. Although
this is a popular technique for fully connected layers in a feedforward
neural network, the use of dropout in convolution and pooling layers
of a CNN is still debated [51].

Batch Normalization

Generalization can also be improved by using batch normalization [22].
Here, normalization is applied per mini-batch. This is a regularization
technique that helps train a network faster, allows for stable training
with a higher learning rate, and may eliminate the need for dropout
in some cases. Similarly to dropout, batch normalization may also
not work well with a CNN as it does with a feedforward DNN. It is
possible to restructure batch normalization in order to work well with
CNN architectures, however [23].

Cyclical Learning Rate

When training a neural network, the learning rate is one of the main
hyperparameters that needs to be decided on, which can drastically
influence the course of the training session. With a default learning
rate, the idea is to decrease the learning rate as the training progresses,
in order to slowly converge to an optimal set of network weights. With
an initial learning rate that is too low or too high for the machine
learning problem at hand, the network may converge very slowly, or it
may not converge at all. Smith (2017) came up with a cyclical learning
rate, where the learning rate varies between epochs of the training
process, meaning that the learning rate in the short term varies within
reasonable bounds, while as a whole, the learning rate is still ever
decreasing [44]. This is shown to help a network converge faster,
and to allow it to better move beyond local optima. In their paper,
Smith argues that this reduces how much experimental fine-tuning
the learning rate needs in order to obtain sufficient results.



3
D ATA S E T S

As we saw in Section 2.3, neural networks act as a function approx-
imator. Let us look at Automatic Language Identification (LID) as a
problem of finding a function that takes as input a music track, and
outputs the vocal language that the track contains. If we wish to train
a model using data with the purpose of approximating the function
of LID, the dataset that is trained on needs to be representative of the
music that the model will be used for in the future. As such, given the
fact that an LID-trained model needs to function well for all possible
variations of vocal music, it is necessary for the dataset to represent
as many genres and variations in music as possible. Otherwise, the
model may not be able to generalize well, and even a state-of-the-art
model will not be able to perform well in this case.

As we now understand the importance of finding a dataset representa-
tive of the complete set of possible vocal music, let us dive into exactly
how the dataset may look. At the time of writing, there exists no pub-
licly available music dataset containing sufficient language labels. As
such, we are left with a few options. For starters, there exist multiple
speech datasets that are labelled with the language that is spoken,
for the purpose of LID of speech. It may be possible to augment this
speech data to make it resemble music, for instance changing the pitch
and adding background instrumentals. Whether this is an accurate
representation of actual music remains to be seen. A second option
is to look at music datasets and add a language label indirectly. That
is, by means of song lyrics and other metadata. However, this may be
prone to labelling errors depending on the quality of the metadata.
Alternatively, relevant metadata may be largely missing. As a third
option, one could exclusively look at correctly labelled music data,
and make do with the amount of data that can be directly found. In
this chapter we will describe which method works best.

3.1 speech data

TopCoder Biblical texts

TopCoder Inc. have released a speech dataset containing 66,176 .mp3

audio files spoken in one of 176 possible languages. The files con-
tain audio from spoken Biblical texts [48]. Unfortunately, within the
176 languages, we do not find the more common Western languages
such as English, French, Spanish or Italian. Instead, the languages are
rather uncommon, including languages such as Ojibwa Northwest-

13



14 datasets

ern, Quechua Margos-Yarowilca-Lauricocha, and Nahuatl Highland
Puebla. Although the dataset is interestingly large, given the rarity of
the languages that are contained, this dataset will not be very useful
for automatic language identification in music.

CSS10: Collection of 10 Single Speakers

Since there aren’t many publicly available multi-language speech
datasets, Park and Mulc have published a freely available 10-language
dataset containing speech from LibriVox audiobooks produced by a
single speaker per language, with the purpose of applying machine
learning techniques to for instance text-to-speech [37]. The languages
include Dutch, Finnish, German, Russian, and Spanish. Since the
dataset contains a large amount of speech data for various common
languages, this could be used for language identification. However, as
every language is spoken by only a single speaker, it is easy to forget
that a model trained for language identification on this dataset may
act more like a speaker identifier, as this is generally an easier function
to approximate in the context of machine learning.

Google 5M LID

Lopez-Moreno et al. and Gonzalez-Dominguez et al. have successfully
applied deep neural networks to the problem of automatic language
identification (LID) of speech. For this, they created a dataset they
refer to as the Google 5M LID Corpus [17, 29]. Unfortunately, they
have not made this dataset publicly accessible. According to Gonzalez-
Dominguez et al., the dataset contains “[...] anonymized queries from
several Google speech recognition services such as Voice Search or the Speech
Android API". The dataset is worth mentioning given the sheer size
and the fact that LID has been successfully applied using this dataset.
However, it will not be of further use for this thesis, given its private
nature.

3.2 music data

3.2.1 FMA: Free Music Archive

The Free Music Archive (FMA) is a publicly available dataset contain-
ing 106,574 music tracks with metadata [12]. Just over 15,000 tracks
contain the label of which language the track is sung in. Unfortunately,
14,819 tracks contain the language label ’English’. The second most
occurring language label in the FMA dataset is Spanish, which occurs
for only 205 tracks. For the purpose of language identification, this
music dataset is simply not varied enough.



3.2 music data 15

3.2.2 Google Audio Set

Researchers at Google have made a huge human-labelled audio dataset
available to the public [14]. This dataset contains 1,011,305 YouTube
videos labelled to contain music. Although the quantity and quality
is high, it does not contain any language labels directly. Since the
dataset refers to YouTube videos, it is possible to look into the video
description language and the video uploader’s country of residence for
a potential language label. On the other hand, this would require large
assumptions to be made, such as the fact that music language would
always match the video description language, which is sometimes, but
far from always, the case. As such, this dataset will not be of much
use to our final LID dataset.

3.2.3 Slimmer AI: HitFinder Charts

For a few years now, Slimmer AI’s HitFinder system has been track-
ing which songs are popular on Spotify in which country. Using this
dataset of popular tracks for various countries, it is possible to create
a dataset of labelled music tracks. For a subset of languages that was
manually picked (Dutch, English, French, German, Portuguese, and
Spanish), we know which country the track was popular in, and we
have the track’s artist and title. Given the following two assumptions,
we can turn this into a language-labelled dataset:

(1) The language of a song title matches the language that the song is sung
in.

(2) A song sung in some language is more likely to be popular in the country
where this language is spoken natively, than in another, with the exception of
world languages such as English.

There are methods to classify the language of written text. Given
such a method, for instance langdetect1 in Python, it is possible to
classify the language of a track under assumption (1). Let us take
the Dutch song: "Ronnie Flex - In Mijn Bed". Given the fact that this
track was found in the charts for The Netherlands, and the track title
language is Dutch, we may want to assume that this track is in fact
sung in Dutch. The effectiveness of this assumption largely relies on
the quality of the language detector. The issue is that many song titles
contain only one or two words, making the language classification
either tough, ambiguous, or impossible altogether. A solution is to
look into song lyrics, and use the language detector on this instead of
the title. This requires one to find the lyrics for every track and run the

1 A Python port of Google’s language-detection library: https://pypi.org/project/
langdetect/

https://pypi.org/project/langdetect/
https://pypi.org/project/langdetect/


16 datasets

language detector on this. Although theoretically possible, this may
be a computationally expensive operation.

Figure 3.1: The number of tracks per language of six hand-picked languages
in the HitFinder Charts dataset, given a labelling method: if
a track’s title language matches the country that the track is
popular in, or if the track’s title is English, then classify the track’s
language as such.

Excluding the fetching of track lyrics, we have given this method a try
to classify tracks’ sung language. In Figure 3.1 it can be observed that
the dataset is not exactly balanced in terms of language frequencies.
Furthermore, manual inspection has shown that a sizeable number of
track titles’ languages are classified poorly by the language detector.
As such, this dataset requires quite a bit of cleaning up before use.

3.2.4 Spotify API & ‘spotdl’

An alternative method for obtaining a relevant, balanced dataset takes
advantage of the free Spotify Web API that can be used to query
Spotify.2 With this API, the Spotify search results can be queried for
tracks and playlists, and a track’s metadata can be requested. Unfor-
tunately, the sung language is not present in a track’s metadata at
this time. However, we can take advantage of user generated playlists
to get language-labelled music after all. This takes inspiration from
Chandrasekhar, Sargin, and Ross, who created a dataset of YouTube

2 A (free) Spotify account is required for access to the Spotify Web API: https://
developer.spotify.com/documentation/web-api/

https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/documentation/web-api/


3.2 music data 17

music videos (1,000 videos for each of 25 different languages) by
querying YouTube for “[...] ‘English songs’, ‘Arabic songs’, etc." [6].
Querying the Spotify API similarly, a dataset of track titles, artists and
Spotify URLs can be created. Although these tracks cannot be directly
downloaded using the free Spotify Web API, having the Spotify track
URL, or artist and title, is sufficient for a command-line tool such as
‘spotdl’3 to process similarly named tracks off YouTube. Note that this
method makes various assumptions that may affect the quality of the
dataset:

(1) The Spotify API search results are representative of the search query.

(2) The tracks inside user-generated playlists on Spotify are representative
of the playlists’ title (i.e. there is only music sung in Dutch inside a playlist
called "Dutch music").

(3) The command-line tool spotdl is able to match a track title and artist
found through Spotify with audio of a YouTube video that matches the track,
if such video exists.

Note that (2) does not always hold. Sometimes ‘language playlists’
contain piano music; sometimes a playlist for "English music" con-
tains, in fact, Spanish music, and sometimes English music sung by
a Dutch artist is considered "Dutch music". That being said, (3) is
the main cause for a sub-optimal quality of the dataset. In the ideal
case, downloading tracks directly off Spotify would ensure the highest
quality possible, and there would be little to no mismatches with
track data and the track’s audio itself. Downloading the audio of a
YouTube video similarly titled to the track’s title and artist is prone
to mismatches. For instance, some downloaded tracks are karaoke
versions of the original track, meaning that there are no vocals present.
If these errors are only present in a limited quantity, we may make a
fourth assumption:

(4) The errors caused by assumptions (1), (2), and (3) do not affect the quality
of the dataset enough to significantly deteriorate the performance of an LID
model that is trained on this dataset.

3 Spotify-Downloader: https://pypi.org/project/spotdl/

https://pypi.org/project/spotdl/




Part II

M E T H O D O L O G Y





4
U S E D M E T H O D S

Figure 4.1: Diagram showing an overview of the methodology used in this
thesis. In green: Spotify is queried for track URLs for the six
languages we are interested in. In blue: for each URL, matching
audio is downloaded from YouTube (this is our 6L5K Music Cor-
pus) and processed into 3-second fragments. ’Essentia’ makes sure
only 3-second fragments containing vocals are kept. In purple: the
3-second waveforms are further processed into mel spectrograms
and MFCCs, as input for our systems.

4.1 the 6l5k music corpus

In Section 3.2 we described existing music datasets. As can be re-
marked, there is no single publicly available dataset that is large,
balanced, varied, and has the sung language as a label. Naturally,
without a publicly available, labelled dataset, a music dataset for Au-
tomatic Language Identification (LID) needs to be hand-crafted. In
Section 3.2.4, we described a method using the Spotify API, down-
loading music for each language label off YouTube, which gives the

21



22 used methods

most promising results of the methods described for language-labelled
music. As such, we opted for the method described in Section 3.2.4.
Here, we start building the music dataset from music, as opposed to
starting from speech, which results in the dataset better representing
the complete set of music. Moreover, a similar technique has been
successfully used by Chandrasekhar, Sargin, and Ross for obtaining a
language-labelled sung music dataset [6].

A music dataset for the purpose of LID needs to be carefully crafted.
There are a number of requirements for crafting a dataset in order
to make it representative of music sung in various languages for use
with LID:

1. The data needs to be available: there needs to be a source for ob-
taining a sufficient amount of music sung in various languages.

2. The data needs to be varied: all tracks must be unique; many
different genres must be represented for each language; artists
must not be over-represented; the ratio male-to-female of singers
must be near equal; and for each language the music must
represent the various accents available in that language.

3. The data needs to be high-quality: the quality of the audio tracks
at the source must be consistently good, meaning that there
should be little to no clipping; all tracks must have a similar
volume; and tracks should be near CD-quality.

Based on these three requirements, we have managed to collect audio
tracks sung in six languages: English, Dutch, German, French, Spanish,
and Portuguese. We call this new language-labelled music dataset the
’6L5K Music Corpus’. The following sections go more in-depth into
how this music dataset was obtained.

4.1.1 Spotify Track URLs

Generating a language-labelled music corpus is not a trivial task. Most
music is not widely available for download. Spotify – the popular mu-
sic streaming service – requires a paid subscription for downloading
music. On the other hand, Spotify has an API that can be accessed with
a free Spotify account, with which music metadata may be collected.
In order to obtain a dataset containing audio, we use a Python library
spotdl, which is able to download audio from YouTube given a track
URL on Spotify. It also uses the metadata found on Spotify as the
metadata for the downloaded track.



4.1 the 6l5k music corpus 23

Language Abbrev. Query

English en english music

Dutch nl nederlandse muziek

German de deutsche musik

French fr musique française

Spanish es música española

Portuguese pt música portuguesa

Table 4.1: Queries for Spotify for obtaining music in each of the languages in
the 6L5K Music Corpus.

For Requirement 1 of hand-crafting a music dataset, YouTube suffices
as a source for audio, given its popularity for music videos. This
can be downloaded as described with spotdl. What remains is the
question of how to get the language labels right. For this, we use a
similar method to Chandrasekhar, Sargin, and Ross (2011) [6]. With the
Spotify API, we can query Spotify for track URLs in certain playlists.
We can also query Spotify for playlists with certain names. Our method
of obtaining language-labelled music tracks is by querying Spotify for
playlists that are named after each language: see Table 4.1 for the exact
queries used. This makes the assumption that playlists found by using
this type of query contain music sung in the same language. Since
the majority of playlists on Spotify are made by its users, we cannot
claim for the language labels to be perfectly accurate. However, given
that Spotify had 320 million monthly active users in September 30,
2020

1, and given that there is no clear reason for users to put music
in playlists that does not represent the playlist’s title, this assumption
should be safe to make.

4.1.2 Downloading Audio With SpotDL

For the 6L5K Music Corpus, Spotify was queried for 5,000 track URLs
and metadata, and audio was downloaded from YouTube on August
1, 2019. The queries that were used for each of the six languages can
be seen in Table 4.1. In order to best adhere to Requirement 2, we
made sure during the collection of Spotify track data to only take
unseen tracks into account, so that all tracks are unique. For each
artist, a maximum of five tracks was allowed in the dataset, to keep
artist variation high as well. With the queries we used, we also left out
genre descriptions. It has to be noted that a query such as "english
music" might yield more tracks of a genre that is more typical of the
language and its countries, as opposed to yielding generic music sung
in that language. We hope that this does not affect how well the data
represents the overall set of music sung in that language too much.

1 Spotify company info: https://newsroom.spotify.com/company-info/

https://newsroom.spotify.com/company-info/


24 used methods

Furthermore, it is tough to analyse the male-to-female singer ratio and
accent diversity, given that there is no direct metadata available for this.

Having obtained a dataset of Spotify track URLs from the queries,
audio can be downloaded from YouTube. Specifically, for a given
Spotify track URL, it looks at the metadata on Spotify for the artist
and title, then queries YouTube with the following format:

{artist} - {title} lyrics

Spotdl selects the first video YouTube suggests for the query. This best
matching video is then used to download the audio from. Note that
this leaves room for mismatching errors, since YouTube videos are
often uploaded by consumers rather than professionals. However, for
popular music tracks, record labels often upload high-quality music
videos. Furthermore, by design of many modern search engines, the
more popular a search result is, the higher it appears in the searched
list. This applies to YouTube as well as Spotify, meaning that querying
either will result in popular, thus likely high quality content. As such,
track mismatching between Spotify and YouTube should be kept to a
minimum.
It has to be noted however, that the further we dive into the language-
labelled playlists on Spotify, the fewer popular results we find, thus
the higher the odds that mismatched or low-quality audio makes its
way into the 6L5K Music Corpus. Figure 4.2 indicates that hundreds
of Spotify track URLs did not have matching audio on YouTube. This
means that none of the languages have 5,000 tracks in the 6L5K Music
Corpus. Luckily, it is apparent that each of the languages have an
approximately equal number of tracks missing, and so this dataset
can still be considered ’balanced’ in terms of the number of tracks per
language. Finally, apart from the filters we put in place for obtaining
the Spotify track URLs (querying only language-labelled playlists;
allowing only unique tracks; one artist occurring at most 5 times), we
did not filter out any tracks afterwards, as this would put additional
bias into the music dataset regarding what we would filter out.



4.1 the 6l5k music corpus 25

Figure 4.2: Diagram showing the total number of tracks in the 6L5K Music
Corpus for each of the six hand-picked languages. Note that none
of the counts reach 5,000 – this is because some Spotify URLs do
not have matching audio tracks on YouTube.

4.1.3 Inspecting The Dataset

For the 6L5K Music Corpus, it is important that the data is represen-
tative of the complete set of music, since it will be used to build a
generalized classifier with. For this, we may look into the diversity of
track release year, track duration, and genres.

Figure 4.3 shows the distribution of release years of all tracks in the
6L5K Music Corpus. From this, we can tell that most tracks have
been released at most 20 years from now. This means that the 6L5K
Music Corpus is representative of modern music; much less of mu-
sic throughout history. As such, any classifier trained on this music
dataset is expected to work better on music released after the year
2,000 rather than before, although this improvement may be negligi-
ble if there is no clear difference between various periods of music
production.



26 used methods

Figure 4.3: Distribution of the release years of tracks in the 6L5K Music
Corpus, plotted from 1970 through 2019.

In Figure 4.4, we see how track durations differ per language label.
Most importantly, we can see that for each of the languages, a majority
of tracks have a duration of approximately three to four minutes, with
variations ranging from two to six minutes – there is no clear difference
between the languages in this aspect. This means that, given the fact
that each of the languages also contain an approximate equal amount
of tracks, the total amount of music data for each of the languages
is approximately equal as well. This suggests that the 6L5K Music
Corpus is balanced in the amount of training data per label. If we look
more closely however, we notice that the languages have some outliers
in terms of track durations as well. Most notably, the music corpus
contains a few English and German tracks which take over 14 minutes.
Of these outliers, two are classical tracks without vocals, and two are
spoken fairy tales.



4.1 the 6l5k music corpus 27

Figure 4.4: Box plot showing the variation in track durations per language in
the 6L5K Music Corpus. Although some languages have outlier
tracks with a duration of more than 10 minutes, it can be seen
that the majority of tracks are between 3 and 4 minutes long,
regardless of sung language.

In order to tell whether the 6L5K Music Corpus is a balanced dataset,
it can be useful to look at music genres within the dataset – if the most
frequent genres correspond with popular genres, then the dataset
shows resemblance to the complete set of modern music. Furthermore,
genres that appear in all languages indicate that the music between
languages does not show too much variation, which is ideal for any
model trained on the data in order to not overfit on these specific
genres and the sounds that are typical for it. Figure 4.5 shows the
10 most frequent genres in the 6L5K Music Corpus, and how often
each genre occurs per language label. Two notable observations can be
made. On the one hand, it appears that most languages feature popular
genres such as Hip Hop, Pop, Indie, and Rock (’genre balance’). On
the other hand, in the 10 most frequent genres, there are a few that are
apparently specific to only one of the languages (’genre uniqueness’):
Chanson, Cantautor, Carnaval, and Francoton. What this means is that,
for each language, we find overlap in the more popular genres, but we
also find genres that are language-specific. This can be argued to be
a good trait of a music dataset: on the one hand, with genre balance,
there will be overlap between languages in terms of how the music



28 used methods

sounds, which means that a self-learning classifier needs to properly
learn to identify the sung language in order to classify accurately. On
the other hand, with genre uniqueness, there are language-specific
genres which are much easier for such a classifier to learn, meaning
that the classifier can have a high accuracy on tracks that are more
typical for a specific language.



4.1 the 6l5k music corpus 29

Figure
4.

5:The
1
0

m
ostfrequentgenres

in
the

6L
5K

M
usic

C
orpus,and

the
num

ber
oftim

es
they

occur
per

language.N
ote

thatthese
genres

are
d

erived
from

the
track

m
etad

ata
on

Spotify.It
can

be
observed

that
fou

r
genres

occu
r

alm
ost

exclu
sively

in
a

single
langu

age
(i.e.

C
hanson,C

antautor,C
arnaval,and

Francoton).



30 used methods

Figure 4.6 illustrates differences in audio quality (specifically the
amplitude) of tracks in the 6L5K Music Corpus. Most tracks that were
downloaded via YouTube are high-quality, and have waveforms similar
to the upper waveform. However, some music videos on YouTube –
especially those with lyrics – contain low-quality audio, with the
lower waveform being one of which. What you can see in the lower
waveform is a very low maximum amplitude, meaning that the music
sounds rather quiet. This suggests that the audio may have been
tampered with between the initial recording in a studio and uploading
to YouTube, as most tracks are released with a higher dynamic range.
As such, some audio found on YouTube may be of lower quality than
how the music was originally recorded. Fortunately in general, the
higher the audio quality of a music video, the more likely it is to
become popular as it is then more pleasant to listen to. As we have
explained in Section 4.1.2, the 6L5K Music Corpus is expected to
feature mostly popular tracks, hence this is not likely to pose much of
a problem. Therefore, Requirement 3 holds as well for our dataset.

Figure 4.6: Differences in quality of tracks in the 6L5K Music Corpus, specifi-
cally in terms of amplitudes (i.e. track volume). The top waveform
belongs to the track "Alan Walker - Faded", whereas the bottom
is a low-quality version of "Coldplay - Amazing Day".

4.2 vocal fragmentation

4.2.1 Fragmentation

Given the audio in the 6L5K Music Corpus, we would like to be able
to use this as input to our neural networks. In earlier attempts at LID
but on speech, researchers have been able to obtain state-of-the-art
classification accuracies using only 3-second audio fragments to learn
from, as opposed to using the full track [17]. Using fragments of 3

seconds also increases the number of samples in the dataset by a large
margin: given that the average track duration is approximately 3.5
minutes (see Figure 4.4), splitting tracks into non-overlapping 3-second



4.2 vocal fragmentation 31

fragments yields approximately 70× more samples than when a single
track is seen as one sample.

For our fragmented data, we take each of the tracks, we trim poten-
tial silence at the start and at the end, and we split each track into
non-overlapping 3-second fragments and discard any audio less than
3 seconds that may remain at the end of a track. We decided against
overlap due to the fact that the 6L5K Music Corpus is a large dataset
by itself, and 3 seconds of unseen audio is always preferred over
overlapping audio for less overfitting on the training data. If the frag-
mented dataset ends up too small for its purpose, fragment overlap
may be reconsidered. We also keep the information on which artist
and title belongs to these fragments, such that fragments from one
track do not appear in both the training and the validation dataset,
which could otherwise give the validation dataset an unfair advantage
given the similarity in sounds within one track.

The next step for the fragmented dataset is to try and put a focus
on the vocals in each track. This is a preprocessing step that is not
strictly necessary, as we plan to use mel spectrograms and MFCCs
which already put a focus on human speech, and neural networks
that will be trained to classify the language and should thus learn
to distinguish the vocals themselves. However, preprocessing to put
a focus on the vocals may drastically help out the training of neural
networks if they are otherwise unable to distinguish the language
based on the vocals. We describe two methods to separate the vocals
from the instrumental and background audio: direct and indirect vocal
separation.

4.2.2 Direct Vocal Separation

With direct vocal separation, the portion of the audio that makes up
vocals is separated completely from the background or instrumental
portion of the audio. As neural networks can be used for general
purpose classification tasks, they can also be used to classify which
frequencies in a Fourier transform correspond with the vocal portion,
and which correspond with the background audio. Zhou (2018) built
and trained a singing voice separator using a Recurrent Neural Net-
work (RNN) [52]. It first computes the short-time Fourier transform
(STFT) of an audio track using Python package librosa, which be-
comes the input to the RNN, and outputs the STFT ideally containing
only the vocals. Using the inverse STFT, the audio can be reconstructed.
We found, however, that the quality of the reconstructed audio did
not represent a high enough quality vocal separation to be used as a
preprocessing step for all audio fragments. The reconstructed audio
sounded like various frequency filters were applied, and background



32 used methods

noises as well as instrumentals were still audible to some extent. As
such, we opted for a more indirect approach to vocal separation.

4.2.3 Indirect Vocal Separation

With indirect vocal separation, we do not separate the vocals from the
background audio by modification, but by selection instead. A vocal
detector can be run on all 3-second audio fragments to classify which
fragments contain vocals. The fragments that do not (sufficiently)
contain vocals can be discarded. This way, we can be certain that
the audio fragments that are used all contain vocals, and thus the
fragments with vocals are separated from those without. Keep in
mind however that this does not necessarily reduce the amount of
instrumental or background audio in the fragments with vocals. The
assumption is that neural networks will learn to focus on the parts of
the audio that make up the vocals, as this is ultimately what defines
the sung language of a track, and thus these trained networks will
learn to disregard background audio.

Essentia’s Vocal Classifier

Essentia is an open-source library for audio analysis, which comes with
many implementations of audio-related algorithms and pre-trained
classifier models [3]2. One of these classifiers is the voice-instrumental
classifier, a Support Vector Machine (SVM) which has been trained
to classify an audio sample as either containing voice, or containing
purely instrumentals. Although it is unclear exactly how this SVM
has been trained, Essentia specifies the accuracy of this pre-trained
SVM, shown in Table 4.2. Further specification indicates that a set
of high-level descriptors are used as the feature vector for the SVM,
including the spectral, time-domain, and tonal descriptors.

Predicted (%)

Actual (%)
instrumental voice

instrumental 94.20 5.80

voice 6.60 93.40

Table 4.2: Accuracy of the voice-instrumental Support Vector Machine by
Essentia [3]. The overall accuracy is 93.80%.

Obtaining Vocal Fragments

After Section 4.2.1, we were left with a dataset of 3-second fragments
in all six languages. Using Essentia, for each fragment, we compute
the available high-level features, and then run the voice-instrumental

2 We used version Essentia 2.1_beta1



4.2 vocal fragmentation 33

classifier on these features. The classifier output indicates whether
voice has been detected in the audio fragment with probability p, or
whether instrumental or background audio has been detected with
probability 1 − p. Given probability p, we would like to separate frag-
ments containing little to no voice or vocals, in order to keep the
remaining fragments as vocal fragments. This can be done by setting a
threshold θ for p, above which the fragments are considered to contain
vocals (and thus, to ’be vocal’). A default threshold of θ = 0.5 was
considered, but we found that too many fragments were kept that
did not contain clear vocals. Increasing the threshold yields fewer
vocal fragments for the final dataset, but it improves the clarity of
vocals in these fragments. Considering this trade-off, we found that
θ = 0.8 allows for a large dataset of vocal fragments, while making
sure that most fragments clearly contain vocals. Figure 4.7 shows how
the vocal fragmentation differs between pop and classical music. With
θ = 0.8, the pop-music track still yields 27 vocal fragments out of
71 fragments in total, whereas the classical piece yields zero vocal
fragments, as would be expected given that no singing or speaking is
present throughout the track. Note that the classification on this classi-
cal piece shows the inconsistency of the voice-instrumental classifier
– as with any imperfect classifier, variations in output classification
probabilities are present, despite the fact that only one piano can be
heard throughout the track. It is also not clear where the spike 21

seconds into the track stems from; the audio simply sounds like piano,
not even a cough can be heard.



34 used methods

(a) Voice classification probability per 3-second fragment in the pop-music track ’Alan
Walker - Faded’.

(b) Voice classification probability per 3-second fragment in the classical piece
’Frédéric Chopin - Prélude in E minor Op 28 No 4’.

Figure 4.7: Voice classification probabilities for each of the 3-second frag-
ments (each of which is plotted at its centre) in a pop-music track
and a classical piece. The red line indicates threshold θ = 0.8,
above which the 3-second fragments are considered to contain
sufficiently clear vocals: 27 fragments for the pop-music track,
and 0 fragments for the classical piece.

With θ = 0.8, the vocal fragments have been separated from the non-
vocal ones. The size of the resulting dataset can be seen in Figure 4.8.
Unfortunately, the balance in terms of the number of tracks per lan-
guage that was present in the 6L5K Music Corpus does not transfer to
the vocal fragmented dataset. Here we can see that Dutch and German
tracks have more voice detected in the 3-second fragments. For Dutch
this can be explained due to the fact that Carnaval is one of the major
genres present in the Music Corpus (see Figure 4.5), and Carnaval hits
often sound more speech-like than the average pop song. It remains
to be seen whether this language count imbalance leads to any under-
or overfitting of a trained neural network for any of the languages.



4.3 mel spectrograms & mfccs 35

Figure 4.8: The number of vocal fragments per language, computed from
the tracks in the 6L5K Music Corpus. Although the 6L5K Music
Corpus is balanced in terms of the amount of tracks per language,
the vocal separation does not keep this balance.

4.3 mel spectrograms & mfccs

4.3.1 Mel Spectrograms

In Section 4.2 we obtained a dataset of 3-second music fragments
which likely contain vocals. Although these vocal fragments can be
used directly as input to a 1-dimensional Convolutional Neural Net-
work (1D CNN) [43], we opt to process the data further in order to
put more emphasis on the vocal aspects of the audio. As described
in Section 2.3, the mel spectrogram uses a mel scale which allows
more emphasis on human perception of the audio, as it scales linearly
with how it is perceived by humans. Using a spectrogram as input
instead of the raw waveform, we are able to use neural networks that
have been optimized for pattern recognition in image data. The mel
spectrograms are computed with librosa, a popular Python library
for audio manipulation and analysis3. The default parameters are
used except that the sampling rate is 16,000. As such, the input is

3 For documentation on the computation of mel spectrograms, see: https://librosa.
org/doc/main/generated/librosa.feature.melspectrogram.html

https://librosa.org/doc/main/generated/librosa.feature.melspectrogram.html
https://librosa.org/doc/main/generated/librosa.feature.melspectrogram.html


36 used methods

sampled with windows of size 2048 using the Hann window func-
tion, with a hop length of 512. A total of 128 mels are used, which
results in mel spectrograms of 130 × 128 pixels. For the first model
that we are implementing, a Deep Neural Network (DNN), this mel
spectrogram could be used as the input by flattening it to a feature
vector of 130× 128 = 16640 input nodes. However, for a DNN this is a
rather large feature vector. DNNs generally perform best with a much
smaller feature vector; even a smaller image of 64 × 64 = 4096 input
nodes is seen as rather large for a DNN, and may pose a problem
for convergence when training the network. On the other hand, our
second model – VGGish – is a convolutional neural network (CNN)
which generally performs better on image-related tasks than a DNN,
meaning that for VGGish, an image of 64x64 pixels is perfectly usable.
VGGish, which will be further described in Section 4.6, comes with
pretrained weights, which have been trained on mel spectrograms of
96 × 64 pixels however. As such, we are using mel spectrograms of
the same size despite the fact that 96 × 64 = 6144 input nodes makes
the DNN rather complex. Our computed mel spectrograms need to
be downscaled from 130 × 128 to 96 × 64. Doing this through linear
interpolation, the mel spectrograms are downscaled but the features
remain similar, which is important for pattern recognition within the
spectrograms. A downscaled sample is shown in Figure 4.9. Note that
the values of the mel spectrograms are not normalized, as VGGish
uses the full range of spectrogram values as the input by default.

Figure 4.9: A sample mel spectrogram of a fragment of music containing
vocals, downscaled to 96 × 64 features.

4.3.2 Mel-Frequency Cepstral Coefficients

Although VGGish should train well with mel spectrograms as input,
DNNs have been more successful for Automatic Language Identifica-



4.3 mel spectrograms & mfccs 37

tion when using Mel-Frequency Cepstral Coefficients (MFCCs) [28],
or MFCC-like features such as PLP [29]. We focus on MFCCs instead
of PLP since there is little improvement in performance when using
either of the two [38], and MFCCs are better documented. The MFCCs
are calculated with librosa as well4. MFCCs are a more compressed,
but also more decorrelated representation of what is captured with
mel spectrograms. The computation relies heavily on the computation
of mel spectrograms, as it can be seen as processing the mel spectro-
grams further. Specifically, the MFCCs can be computed by calculating
the Discrete Cosine Transform (DCT) of the mel spectrogram, essen-
tially creating a spectrogram of a spectrogram – this is referred to
not as a spectrum-of-a-spectrum but a cepstrum (notice the first four
letters reversed). As such, MFCCs are the cepstral coefficients given
the previously computed frequencies on the mel scale. Given that
Lopez-Moreno et al. (2014) calculated 39 PLP features, we decided to
let our MFCCs capture 39 features as well (n_mfcc = 39). However,
whereas they are using 21 frames for each of the PLP features, we
decided to keep the 64 frames from the previously computed mel
spectrograms for our MFCCs, as the data can always be downscaled
when needed. In fact, we tested both the DNN and VGGish on down-
scaled mel spectrograms and MFCCs (mel spectrograms of 48 × 64
and 48× 32; MFCCs of 39× 32 and 20× 32), but we saw no noticeable
improvements of using downscaled feature vectors. As such, we will
keep using mel spectrograms of 96 × 64 and MFCCs of 39 × 64 pixels.
A sample of MFCCs is shown in Figure 4.10. Again, no normalization
is applied to the MFCCs; this is because VGGish uses non-normalized
spectrograms as input, therefore we also feed it similar MFCC data.

Figure 4.10: Sample MFCCs computed from the mel spectrogram in Fig-
ure 4.9 with 39 × 64 features.

4 For documentation on the computation of MFCCs, see: https://librosa.org/doc/
main/generated/librosa.feature.mfcc.html

https://librosa.org/doc/main/generated/librosa.feature.mfcc.html
https://librosa.org/doc/main/generated/librosa.feature.mfcc.html


38 used methods

4.4 input data

4.4.1 Training & Validation Data

Given the dataset of vocal fragments, we have now computed mel
spectrograms and MFCCs for each of the fragments. With this and the
original language label of a fragment, the data that serves as the input
to our neural networks is complete. The set of vocal fragments, each
now consisting of a mel spectrogram, the MFCCs, and the language
label, is shuffled. In order to check during training how well a model
performs on unseen data, a subset of the data is taken as a separate
validation dataset. 90% of the vocal fragments are used for training;
the remaining 10% is used for validation. Each of the vocal fragments
contains the name of the track it originates from, and we make sure
that there is no overlap in track fragments between the training and
validation data. That is, if any vocal fragment of some Track A appears
in the validation data, all vocal fragments of Track A are used for
the validation data. After all, having very similar samples in both the
training and the validation data will give the validation data an unfair
advantage, as these samples should be unseen data. It can be argued
that the same is true to some extent not just for various fragments
of one track, but also for various tracks of one artist. We consider
different tracks by a single artist to be different enough to be allowed
in both the training and the validation data, and assume that this does
not give the validation data an unfair advantage over truly unseen test
data.

4.4.2 Testing Data

The testing data is obtained completely separately from the training
data. In fact, none of the tracks in the 6L5K Music Corpus are used. In
a similar fashion however, new tracks are downloaded off YouTube
via the Spotify API (see Section 4.1.2). Instead of the 5,000 tracks per
language that were downloaded on August 1, 2019, for the testing
dataset we downloaded metadata for another 5,000 tracks from Spotify
on 17 December, 2020. However, not all tracks are used, since it is very
likely to overlap with the training and validation data. We take a subset
of the tracks, containing only tracks that appear in the 2020 metadata
but not in the 2019 metadata. These unique tracks are download, and
considered to be the final unseen test dataset. The number of tracks
is shown in Table 4.3. Similar to the training and validation data,
3-second fragments are taken from each of the tracks, and we separate
these fragments into vocal and non-vocal (instrumental) using the
vocal detector from Essentia (see Section 4.2.3). The distribution of
fragments which contain vocals per language is shown in Figure 4.11.
Here we can see that there is not much difference between vocal



4.5 deep neural network 39

fragments computed for tracks of each of the languages. On average,
a track in the test dataset appears to yield roughly 4 vocal fragments,
and most tracks yield between 0 and 10 vocal fragments.

Language Track count

English 2440

German 2222

French 1886

Spanish 2015

Dutch 1456

Portuguese 1914

Table 4.3: Number of tracks per language, unique to the testing dataset.

Figure 4.11: Distribution of vocal fragments per track, computed from the
tracks in the test dataset. Most tracks regardless of language have
fewer than 10 computed 3-second audio fragments containing
vocals.

4.5 deep neural network

For the Deep Neural Network (DNN) architecture, we use a simi-
lar method to the model trained by Lopez-Moreno et al. (2014) for



40 used methods

Automatic Language Identification of speech data [29]. Our default
parameters can be seen in Table 4.4, and the architecture is visual-
ized in Figure 4.12. Interestingly, Lopez-Moreno et al. do not indicate
whether dropout was used. We use 20% dropout for the input layer
and 50% dropout for the hidden layers, as this is more commonly
used [1]. Furthermore, since the mel spectrograms and MFCCs are
not normalized, we make use of Batch Normalization in the DNN
to effectively feed normalized values to the DNN anyway (refer to
Section 2.3.3). Lastly, we make use of early stopping, which means
that when the validation loss did not improve over the last n epochs,
then training is halted to prevent overfitting on the training data when
no improvements on the validation data are seen.

Figure 4.12: Visualization of our Deep Neural Network (DNN) architecture.
The number of input nodes depends on whether mel spectro-
grams or MFCCs are used. Both hidden layers contain 2560

nodes each, and the output layer contains 6 nodes correspond-
ing with the number of languages to be classified.



4.6 vggish 41

Parameter Value

Mel architecture: 6144] – [2560 – 2560] – [6

MFCC architecture: 2496] – [2560 – 2560] – [6

Dropout: 20%] – [50% – 50%] – [0%

Activation functions: linear] – [relu – relu] – [softmax

Loss function: Categorical Cross-Entropy

Regularization: Batch Normalization

Epochs: 50

Early stopping: 10

Batch size: 200

Optimizer: Adam (β1 = 0.9; β2 = 0.999; ε = 1e-7)

Learning rate: 0.001

Weight initialization: Truncated Normal

Table 4.4: Default parameters for the Deep Neural Network (DNN). For the
network architectures and activation functions, the open blocks
indicate the input and output layer sizes; the closed block refers to
the hidden layers.

4.6 vggish

VGGish is a model built on a Convolutional Neural Network (CNN),
shown to obtain very promising results in the field of audio classifica-
tion [19]. Not only is the implementation of VGGish open-source, but
a model pretrained on mel spectrograms from the Audio Set corpus is
available as well [15]. Given that VGGish has a predefined architecture,
we base our version of VGGish on this same architecture5. Our exact
default parameters for VGGish can be found in Table 4.5, and an
overview of the architecture is shown in Figure 4.13. Two pretrained
models are available: one with the top fully connected (FC) layers,
and one without. We will use the model that includes the FC layers.
For any modifications made to to the architecture that make it so
that the pretrained model weights cannot be used (such as resizing
an FC layer), those specific weights will be randomly initialized by
means of the Glorot Uniform initialization while the rest keeps the
pretrained weights. Furthermore, when using MFCCs instead of mel
spectrograms, the pretrained weights can still be used in all layers
except the input layer. Even though mel spectrograms and MFCCs
are very different data types, the patterns may look similar, and the
pretrained weights may still be a better initialization than a random
one. Before the hyperparameters are formally optimized in Section 6, a

5 Specifically, the Keras version at https://github.com/DTaoo/VGGish which is in
turn based on the original TensorFlow version at https://github.com/tensorflow/
models/tree/master/research/audioset/vggish

https://github.com/DTaoo/VGGish
https://github.com/tensorflow/models/tree/master/research/audioset/vggish
https://github.com/tensorflow/models/tree/master/research/audioset/vggish


42 used methods

number of informal runs are made in order to find parameters that let
the network converge to some extent. This is why a cyclical learning
rate of 0.00002 is used, as it appeared to converge well enough to be
used as a good starting point.

Figure 4.13: Visualization of our VGGish architecture. The yellow blocks
indicate convolutional layers, the green blocks indicate the 2 ×
2 max-pooling layers, and the grey blocks indicate the fully
connected (FC) layers (twice 4096 nodes, then once 128 nodes),
much like the hidden layers in the Deep Neural Network in
Figure 4.12. The FC output layer is shown in blue, which contains
6 nodes corresponding with the number of languages to be
classified.

Parameter Value

Mel spectrogram architecture: 6144] – [{FMs} – {FCs} – Embeddings] – [6

MFCC architecture: 2496] – [{FMs} – {FCs} – Embeddings] – [6

FC layers: [4096 – 4096]

Embeddings: [128]

Activation functions: linear] – [{relu} – {relu} – relu] – [softmax

Loss function: Categorical Cross-Entropy

Regularization: No Dropout

Epochs: 100

Early stopping: 10

Batch size: 200

Optimizer: Adam (β1 = 0.9; β2 = 0.999; ε = 1e-7)

Learning rate: 0.00002, cyclical

Weight initialization: Glorot Uniform

Table 4.5: Default parameters of our version of VGGish, with the same archi-
tecture base as the original. In the architectures described above,
the open blocks indicate the input and output layer sizes; the closed
block refers to the hidden layers. Furthermore, curly brackets indi-
cate a multi-layer structure, where ’FMs’ refer to VGGish’ default
Feature Maps and ’FCs’ refer to the Fully Connected feedforward
layers. ’Embeddings’ refer to the single, penultimate layer.



5
D N N O P T I M I Z AT I O N

5.1 dnn : band removal

For the Deep Neural Network (DNN), we use the architecture as
described in Table 4.4 as the default. Figure 5.1 shows a sample 3-
second vocal fragment sung in Dutch. More precisely, Figure 5.1(a)
shows a mel spectrogram that is computed from the audio fragment,
and Figure 5.1(b) shows the MFCCs that are computed from the mel
spectrogram. The mel spectrogram shows distinct patterns of power,
whereas such pattern in the MFCCs is less apparent, instead showing
the most distinct pattern in the lower frequency bands (this pattern
can be found in effectively all vocal fragment MFCCs). As such, we
hypothesized that the initial training may profit from more contrast in
the MFCCs, meaning more distinct patterns. By removing a number of
frequency bands, Figure 5.1(c) and (d) were obtained. For use with the
DNN, all image arrays are flattened. This way, the mel spectrograms of
96x64 yield 6144 input values; the default MFCCs of 39x64 yield 2496

values, and the MFCCs with four bands removed, at 35x64, yield 2240

values. We will see whether removing the lower frequency bands and
optionally the upper bands as well improves the initial performance
of the DNN.

43



44 dnn optimization

(a) Mel-frequency spectrogram of 96x64 pixels. (b) MFCCs of 39x64 pixels.

(c) MFCCs of 35x64 pixels;
2 upper and 2 lower bands removed from (b).

(d) MFCCs of 35x64 pixels;
4 lower bands removed from (b).

Figure 5.1: A 3-second vocal fragment visualized by its mel spectrogram and
its MFCCs. Figures (c) and (d) are a variation on (b) only with
specific frequency bands removed.

Figure 5.2 shows the results of the DNN trained with our default
parameters, on the four data types shown in Figure 5.1. First off, we
can see that the DNN converges more slowly on the mel spectrograms
than on MFCCs, and both the training and validation accuracy remain
lower than when MFCCs are used. Furthermore, there does not seem
to be a large effect of the removal of MFCC bands, except that training
and validation accuracies stay slightly lower when more of the lower
bands are removed. It appears that the best results are obtained when
keeping the MFCCs as-is. As such, we will put the focus on the full
MFCCs as input data, visualized in Figure 5.1(b).



5.2 dnn : hidden layers 45

Figure 5.2: Results of the Deep Neural Network (DNN) with default archi-
tecture being trained on mel spectrograms and MFCCs; both
training and validation accuracies (resp. ‘train’, ‘val’) are shown.
For some of the MFCCs, four bands have been removed, indicated
by array indexing (e.g. [2:37] discarding two of the lower and
upper bands).

5.2 dnn : hidden layers

Now that the focus remains on training from MFCC data, let us
experiment with the network architecture. The number and size of the
hidden layers determine the capacity of the network, which needs to
be large enough to be able to approximate the function of Automatic
Language Identification (LID) given the input data, yet small enough
to converge quickly enough and to prevent overfitting. Figure 5.3
shows the performance of the DNN with various hidden layers. As
described in Table 4.4, the default hidden layer contains 2560-2560

nodes, which is based on the findings by Lopez-Moreno et al. (2014).
Interestingly, although not many differences can be observed in this
Figure, it is clear that the highest validation accuracy at the end of the
training sessions is obtained with the same setup for the hidden layer



46 dnn optimization

as worked best in the literature for LID of speech, namely 2560-2560.
When using a fewer nodes for the hidden layers, thus having a less
complex network, the validation accuracy starts higher but never
reaches much above this score. With three large hidden layers, that
is 4096-4096-4096, the network does not progress beyond 19.80%
validation accuracy, which seems to be obtained when consistently
predicting only the most frequent class in the training data. Since
the network needs to have the capacity to approximate the complex
function of LID, and the literature also indicates that 2560-2560 works
well for LID given PLP (MFCC-like) features, it is a safe choice to keep
this hidden layer architecture.

Figure 5.3: Results of the Deep Neural Network (DNN) being trained on
default MFCCs, comparing various hidden layer architectures of
the network.

5.3 dnn : learning rate

So far, none of the potential improvements to the training process
have been shown to be beneficial. Looking at various learning rates
on the other hand, we have found a welcome change for improved



5.4 dnn : fine-tuned parameters 47

performance. Not only did we test different learning rates, we also
implemented a cyclical learning rate [44], which effectively varies the
learning rate within a training session. Figure 5.4 shows the effect
of various cyclical and non-cyclical learning rates on the validation
accuracy. The learning curves between various learning rates are
similar, but it becomes clear that the use of a cyclical learning rate helps
to converge faster and train for longer. The highest validation accuracy
(35%) is found when using a cyclical learning rate of 0.00002, which is
also where the model trains the longest given the implementation of
early stopping with 10 epochs.

Figure 5.4: Results of the Deep Neural Network (DNN) being trained with
various learning rates; cyclical and non-cyclical.

5.4 dnn : fine-tuned parameters

In the previous sections, we described our method of optimizing
the hyperparameters of the DNN for use with the vocal fragments
computed from the 6L5K Music Corpus. We have hereby shown that
the hyperparameters in Table 5.1 lead to the best found model for the
Deep Neural Network (DNN) when training on the vocal fragment



48 dnn optimization

data. The predictive power of this setup can be seen in Chapter 7,
where the network is examined with the test dataset.

Parameter Value

MFCC architecture: 2496] – [2560 – 2560] – [6

Dropout: 20%] – [50% – 50%] – [0%

Activation functions: linear] – [relu – relu] – [softmax

Loss function: Categorical Cross-Entropy

Regularization: Batch Normalization

Epochs: 50

Early stopping: 10

Batch size: 200

Optimizer: Adam (β1 = 0.9; β2 = 0.999; ε = 1e-7)

Learning rate: 0.00002, cyclical

Weight initialization: Truncated Normal

Table 5.1: Optimal parameters for the Deep Neural Network (DNN) by em-
pirical evidence. Bold indicates alterations from the default pa-
rameters in Table 4.4. For the network architecture and activation
functions, the open blocks indicate the input and output layer sizes;
the closed block refers to the hidden layers.



6
V G G I S H O P T I M I Z AT I O N

6.1 vggish : weight initializations

In Table 4.5, we described the network architecture behind VGGish,
as well as the hyperparameters for training VGGish on the vocal
fragment data computed from the 6L5K Music Corpus. Although
VGGish was designed for training on mel spectrograms, we have also
trained VGGish on MFCCs, making for a slightly different input size
at 39x64 pixels as opposed to 96x64. Figure 6.1 shows the validation
accuracy of VGGish being trained on mel spectrograms and MFCCs.
Each input type is either trained with randomly initialized weights;
weights from an existing, pretrained model that was trained on mel
spectrograms for speech classification, or the same pretrained weights
but with all convolutional layers being frozen (i.e. only the input layer
and fully connected layers change weights during training). In the
case of pretrained weights, all weights that cannot be loaded are still
randomly initialized.

49



50 vggish optimization

Figure 6.1: Results of VGGish being trained on mel spectrograms and MFCCs
with various weight initializations. The pretrained mel weights
refer to an existing model that was trained on mel spectrograms
for speech classification.

As is shown, VGGish converges most quickly with the pretrained
weights, and with all layers being trainable (not frozen). It appears
that the pretrained model’s weights are a better initialization for
learning a similar task (Automatic Language Identification (LID) of
music as opposed to speech) than randomly initialized weights (Glorot
Uniform). Interestingly, this is regardless of whether the same input
type as the pretrained model is used (mel spectrograms), or a different
type of input (MFCCs), although similar patterns between the two
data types can be seen (refer to Figure 5.1(a) and 5.1(b)). Still, mel
spectrograms with pretrained weights yields the best results, which
is in contrast to the results of the Deep Neural Network (DNN) in
Section 5.1 where MFCCs allowed the network to score a higher
validation accuracy than mel spectrograms, albeit with no pretrained
weights available.



6.2 vggish : dropout 51

6.2 vggish : dropout

Our model of VGGish can be seen to overfit on the training data
in Figure 6.2. Here, we apply dropout to the Fully Connected (FC)
layers, and not in the convolutional or pooling layers [51], to try and
alleviate the overfitting. The results indicate that a higher amount of
dropout helps marginally reduce overfitting on the training data, with
the training accuracy lowering as the amount of dropout increases.
However, the validation accuracy stays at roughly the same level. In
order to decide on which amount of dropout works best, we can
look at the training sessions that ran the longest, indicating that the
validation loss was improving for longer due to early stopping. For
this, the runs at 30% and 50% dropout stand out slightly. Since the
differences seem negligible when it comes to validation accuracy, we
prefer to go for the middle ground, using 30% dropout for the FC
layers in future runs, which also happens to end with a slightly higher
validation accuracy at the final epoch here.

Figure 6.2: Training and validation accuracies for various amounts of dropout
during the training of VGGish on mel spectrograms.



52 vggish optimization

6.3 vggish : hidden layers

Continuing improving the hyperparameters of the VGGish network,
we will take a closer look at the architecture of the Fully Connected
(FC) layers. Originally, after the Feature Maps (FMs) in VGGish, there
are two FC layers each of 4096 nodes, after which there is an embed-
ding layer (Embeddings) of 128 nodes, also fully connected. We added
a final softmax layer after the Embeddings for classifying each of
the six languages. For hyperparameter testing, we vary the FC layers
to see how much it affects the training and validation accuracy. See
Figure 6.3. Here, we can see that the validation accuracy is not affected
much by a change in the FC architecture. On the other hand, smaller
FC layers (i.e. having 512 nodes per layer as opposed to 4096) cause
less overfitting on the training data. Although not much of a difference
can be seen in the validation accuracy, the architecture where there is
only a single FC layer of 4096 nodes does yield a higher validation
accuracy than the other architectures for most epochs. Despite the
fact that this architecture makes VGGish largely overfit on the train-
ing data, obtaining almost 95% training accuracy after 15 epochs, we
still consider this the better architecture given the validation accuracy
scores.



6.4 vggish : learning rate 53

Figure 6.3: Training and validation accuracies for various amounts of nodes
in the Fully Connected (FC) layers of VGGish, training on mel
spectrograms. A dash indicates multiple layers (i.e. ‘512-512’ in-
dicates two layers with 512 nodes each). Note that for the FC
architecture with 4096-4096* nodes, pretrained weights are avail-
able, and are used.

6.4 vggish : learning rate

Now that we have a decent architecture for training VGGish on our
mel spectrograms, let us look at differences in training when using
a variety of learning rates. Figure 6.4 shows numerous differences
in the results between various learning rates. Commonly, a standard
learning rate of 0.001 is used initially to see if the model is able to train
on the training data. We can see that this yields the lowest training
and validation accuracies for all tested learning rates at the end of
the training run. We can also see a distinct pattern of using a cyclical
learning rate: standard learning rates yield smooth accuracy curves,
whereas cyclical learning rates yield large variations between epochs.
This is because with cyclical learning rates, internally the learning rate
differs per epoch in the range of 1 − 6× the supplied learning rate.



54 vggish optimization

This also means that the initial learning rate when using a cyclical
learning rate should be lower than when using a standard learning
rate, to get a similar average learning rate. Still, it is the internal
variation of the learning rate when using a cyclical one that makes it
converge more quickly than a standard one. In this figure, the highest
validation accuracy (41%) is found with a cyclical learning rate of
0.0001, which also yields the highest training accuracy of 97%.

Figure 6.4: Training and validation accuracies for various learning rates,
cyclical and non-cyclical (standard), training VGGish on mel
spectrograms.

6.5 vggish : fine-tuned parameters

Starting with our default parameters for VGGish in Table 4.5, we found
a number of improvements through hyperparameter optimization
for training VGGish on the mel spectrograms computed from vocal
fragments in the 6L5K Music Corpus. The best found model of VGGish
can be trained using the fine-tuned parameters shown in Table 6.1.
Chapter 7 examines the predictive power of our VGGish setup on the
test dataset.



6.5 vggish : fine-tuned parameters 55

Parameter Value

Mel spectrogram architecture: 6144] – [{FMs} – {FCs} – Embeddings] – [6

FC layers: [4096]

Embeddings: [128]

Activation functions: linear] – [{relu} – {relu} – relu] – [softmax

Loss function: Categorical Cross-Entropy

Regularization: 30% FC Dropout

Epochs: 100

Early stopping: 10

Batch size: 200

Optimizer: Adam (β1 = 0.9; β2 = 0.999; ε = 1e-7)

Learning rate: 0.0001, cyclical

Weight initialization: Pretrained on mel spectrograms for Speech LID

Table 6.1: Optimal parameters for VGGish by empirical evidence. Bold indi-
cates alterations from the default parameters in Table 4.5. In the
architectures described above, the open blocks indicate the input
and output layer sizes; the closed block refers to the hidden layers.
Furthermore, curly brackets indicate a multi-layer structure, where
’FMs’ refer to VGGish’ default Feature Maps and ’FCs’ refer to
the Fully Connected feedforward layers. ’Embeddings’ refer to the
single, penultimate layer.





7
T E S T R E S U LT S

7.1 models

In Chapter 5, we experimented and found which parameters work
best for training the Deep Neural Network (DNN) on our vocal frag-
ment training data. Furthermore, in Chapter 6 we found the optimal
parameters for VGGish as well, given the data. Both architectures have
been trained for more epochs, with early stopping set to 20 epochs
instead of 10 which was used during hyperparameter optimization.
The prolonged training runs are visualized in Figure 7.1.

Figure 7.1: Training and validation accuracy during the training of the DNN
and VGGish, each with the best tuned hyperparameters.

For both the DNN and VGGish, we can see the model overfitting on
the training data. In both cases, the model has converged well before

57



58 test results

the final epoch is reached, indicating that training for more epochs
would likely not improve the model by much. The final results show
that the DNN reaches a validation accuracy of 36% being trained on
MFCCs, whereas VGGish reaches 42% being trained on mel spectro-
grams. The trained weights for our prediction models for the DNN
and VGGish are taken at the very end of the prolonged training runs.

7.2 ensemble

Having two separately trained neural networks, the Deep Neural
Network (DNN) and VGGish, we may introduce a third system: an
Ensemble based on the two. For each vocal fragment in the test dataset,
the computed MFCCs are classified by the DNN, and the computed
mel spectrograms are classified by VGGish. This Ensemble relies on
the concept of "the whole is greater than the sum of its parts", as its pre-
diction is based on the sum of the output classification probabilities of
the two models which is then normalized. The idea of how this might
work can be described with an example:

Suppose we have a Dutch vocal fragment, which the DNN classifies
as English first (p = 0.6), as Dutch second (p = 0.5), and as Spanish
third (p = 0.1). The same vocal fragment is classified by VGGish as
Spanish first (p = 0.7), as Dutch second (p = 0.6), and as English
third (p = 0.2). The DNN will label the vocal fragment incorrectly
as English, whereas VGGish will classify the vocal fragment incor-
rectly as Spanish. The ensemble will classify the vocal fragment as
follows: English: p = 0.6+0.2

2 = 0.4; Spanish: p = 0.7+0.1
2 = 0.4, Dutch:

p = 0.5+0.6
2 = 0.55. As such, the Ensemble correctly classifies the ex-

ample as Dutch, whereas each model that it consists of classifies the
example incorrectly.

Whereas the Ensemble may sound promising, it may also reject a
correct classification from one of the models in favour of a close
second of both models. However, the Ensemble can never reject a
correct classification made by both models on a vocal fragment, as
the sum of this class’ probability will inevitably also be the highest.
There is no guarantee that this method improves performance over
the existing models.

7.3 predictions

Taking each of the trained models for the Deep Neural Network (DNN)
and VGGish as described in Section 7.1, and the Ensemble explained
in Section 7.2, we run these models on a separate test dataset from
which we have computed the vocal fragment mel spectrograms and
MFCCs (see Section 4.4.2). For each model and for each language, we



7.3 predictions 59

compute how often the class with the highest predicted classification
probability matches the true language label of a vocal fragment, which
is then converted to a percentage. The results are shown in Figure 7.2.
For a more specific visualization of the predictions on vocal fragments
of a single arbitrary track per language, refer to Appendix A.

Figure 7.2: Accuracies on predicting the correct language class from the set
of 3-second vocal fragments computed from the test set.

Looking at the accuracies per language, we see large differences be-
tween the DNN and VGGish. Whereas VGGish’ classifications of the
test set are somewhat similar between languages, the DNN mostly
classifies English well, and all of the other languages obtain a rather
low accuracy. The Ensemble method yields accuracies that appear to
be roughly the average of the DNN and VGGish results combined,
with a rather high accuracy for English, but with lower accuracies for
the other languages than VGGish. All in all, the results for VGGish
are comparable to the results on the validation dataset, whereas the
DNN behaves somewhat unexpectedly, classifying mostly English. If
the DNN were to classify most inputs as English, then it makes sense
for a single class to obtain such a high accuracy. However, this would
make it no better than random guessing. A more detailed comparison
between the models can be made with confusion matrices, where one
can compare which false languages have been confused for each of
the true languages.



60 test results

Figure 7.3: Confusion matrix showing how often the correct class in the test
dataset was predicted by the DNN (in the diagonal), and how
often each of the other classes was erroneously predicted instead.

Figure 7.4: Confusion matrix showing how often the correct class in the test
dataset was predicted by VGGish (in the diagonal), and how often
each of the other classes was erroneously predicted instead.



7.3 predictions 61

Figure 7.5: Confusion matrix showing how often the correct class in the test
dataset was predicted by the Ensemble (in the diagonal), and how
often each of the other classes was erroneously predicted instead.

In Figures 7.3, 7.4, and 7.5, the confusion matrices for each of the mod-
els are shown. In these confusion matrices, the top-left to bottom-right
diagonal indicates the correct classification accuracies for each of the
languages. These accuracies correspond with the accuracies found in
Figure 7.2. For each column, the non-diagonal values indicate how
often the column language was mistaken for another one.

As we can see for the DNN in Figure 7.3, there is no clear pattern to
be found in the diagonal, which means that the model was not able to
learn to distinguish the classes in the test dataset. Rather, each of the
columns appear similar in values, indicating that the predictions of
the DNN did not depend on which class the input data was from. It
can be seen that mostly true Dutch and true German vocal fragments
have been classified as English, more than the other languages, and
the rest of the values for these two true languages also appear similar.
If the DNN has learnt anything, it could be that Dutch and German
songs sound somewhat similar. However, since it could not distinguish
any of the languages from one another, and since Dutch and German
songs are not particularly more confused by one another, it is unclear
whether Dutch and German songs are actually similar, or whether this
is found by chance.



62 test results

The confusion matrix for VGGish in Figure 7.4 clearly shows a pattern
of higher accuracies on the diagonal. This indicates that for each of the
languages in the test dataset, VGGish has been able to more or less
distinguish these tracks from other languages. The highest accuracy is
obtained for Dutch vocal fragments, at 52.8%. Moreover, there are two
cases outside of the diagonal where VGGish erroneously classified
one language as another for over 20% of the cases. In both cases, the
languages were erroneously classified as Dutch. This suggests that
VGGish may have been overfitting on Dutch vocal fragments, given
that it also has the highest accuracy of all languages. In one case,
German vocal fragments are confused for Dutch, which may make
sense as the languages can be seen as closely related, and the coun-
tries where these languages are spoken are adjacent. Furthermore, in
the other case French vocal fragments are mistaken for Dutch, which
could be explained by Belgium. In this country, both Dutch and French
is spoken and sung, and Belgian music sung in Dutch may contain
French accents or influences.

Lastly, the confusion matrix of Figure 7.5 is remarkable: it appears
as roughly the mean of Figure 7.3 and 7.4. Although we had hoped
that the Ensemble would lead to more interesting results, it appears
as though the combination of the DNN and VGGish does not lead to
any noteworthy improvements.

7.4 end results

In Section 1.2 we posed the question of which neural network architec-
ture works best for Automatic Language Identification (LID) of sung
music. We have fully tested two models – the Deep Neural Network
(DNN) and VGGish – and created a third based on these two: the
Ensemble. Table 7.1 shows the total number of correct predictions
made per language, by each of the models. In accordance with Sec-
tion 7.3, the DNN has the highest number of correct predictions for
the English language, whereas VGGish scores better for all of the other
languages. The Ensemble does worse than either of the two models
for all languages.



7.4 end results 63

Language DNN VGGish Ensemble Total

en 446 247 392 1085

de 27 297 173 497

fr 56 155 109 320

es 15 228 136 379

nl 160 419 381 960

pt 71 159 130 360

Total 775 1505 1321 3601

Table 7.1: The number of correct predictions for each language and for each
of the systems. Bold indicates which system performs best on a
language.

The overall accuracy on the test dataset for the DNN, VGGish, and
the Ensemble can be seen in Figure 7.6. The DNN scores barely higher
than chance, and the best model – VGGish – scores 35.2%. Although
VGGish can distinguish each of the languages as shown in Section 7.3,
a final accuracy score of 35.2% on an unseen dataset is not enough
to put to use in a system that needs to be reliable. Comparing this to
other attempts at LID in the literature, our results are not bad. For one,
Schwenninger (2006) obtained 64% classifying only two languages:
Mandarin and English [41]. Tsai et al. (2007) obtained 65% accuracy
distinguishing three classes: Mandarin, English, and Japanese [49].
More notably however, Chandrasekhar et al. (2011) obtained 44.7% ac-
curacy having trained a set of linear Support Vector Machines (SVMs)
on 25 classes on a combination of audio features (19.6% accuracy on
spectrograms; 26.1% on MFCCs) [6]. In comparison, our best results
of VGGish seem to fit in with the existing literature; LID of vocals in
music is a complex problem.



64 test results

Figure 7.6: The overall accuracy per system on the test dataset. The red line
indicates an accuracy no better than chance, at 16.7% given the
six classes.

In Section 1.2 we asked ourselves how we can determine which model
performs best on the task of LID. For this, we will focus again on
the two neural networks and disregard the Ensemble, which does
not appear to perform better than the averaged sum of its parts. As
the DNN scores marginally better than chance, and VGGish is able
to distinguish sung languages, we want to show whether VGGish
is in fact able to predict the sung language significantly better than
the DNN. For this, we need to perform a statistical test on the test
results. Using Fisher’s Exact Test, we can tell whether the proportions
of one variable are significantly different from the proportions of
another variable [13]. We first compute the contingency table for the
DNN and VGGish with counts for the number of correct and incorrect
predictions, the results of which can be seen in Table 7.3.

Correct Incorrect Total

DNN 775 3505 4280

VGGish 1505 2775 4280

Total 2280 6280 8560

Table 7.2: Contingency table showing the total number of correct and incor-
rect classifications for the DNN and VGGish on the test dataset.



7.4 end results 65

Fisher’s Exact Test is calculated as:

p =
(a + b)! (c + d)! (a + c)! (b + d)!

a! b! c! d! n!
(7.1)

with the variables for Fisher’s Exact Test being defined as:

Correct Incorrect Total

DNN a b a + b

VGGish c d c + d

Total a + c b + d n

Table 7.3: Indication of variables for Fisher’s Exact Test.

Calculating Fisher’s Exact Test given the equation in 7.1 and the data
in Table 7.3, we get:

p =
4280! 4280! 2280! 6280!

775! 3505! 1505! 2775! 8560!
= 1.55 × 10−72 (7.2)

From the calculation in Equation 7.2, we can conclude that there is a
significant difference in proportions between the number of correct
predictions made by the DNN, and those made by VGGish (p <

0.0001). As such, VGGish scores significantly better than the DNN,
which in turn is marginally better than chance.





8
D I S C U S S I O N & C O N C L U S I O N

8.1 discussion

This research has not fully gone according to plan. A large portion of
work went into obtaining the 6L5K Music Corpus, and determining
a representation of this data that can be used as input to various
neural networks. Still, we argue that the quality of the dataset and
the representation of the data are the main areas for improvement.
Furthermore, we only tested two types of neural networks and added
a third combination of the two. There are a number of improvements
that can be attempted, unfortunately outside the scope of this research.

8.1.1 The 6L5K Music Corpus

Although a large portion of time went into obtaining the language-
labelled dataset we have named the ’6L5K Music Corpus’, it is in-
herently flawed, to some extent. The playlist queries for obtaining
language-labelled tracks off Spotify look fine at first glance (refer to Ta-
ble 4.1), but given the fact that it is an automated method for obtaining
labelled data which solely relies on Spotify’s search engine and users
creating the playlists, it is prone to causing errors. We have discussed
this in Section 4.1: there are audio mismatches, causing tracks sung in
a completely different language to appear at each label. Not only that,
but Spotify’s search engine also yields unexpected results. For instance,
Chinese, Japanese, and even orchestra music would be obtained with
the language playlist queries. Given that it is highly unlikely that
tracks in one of our languages has a title containing kanji, we filtered
out tracks containing these types of symbols. However, there is no
trivial automatic filtering method to remove orchestra tracks, or more
importantly, tracks sung in a different language. It is unclear exactly
how many tracks have an incorrect label in the training data. If we
knew, we would be able to filter these out. Unfortunately, manual
filtering is outside the scope of this research, but it would be very
beneficial for future work to ensure that the labels are correct. The
danger in having incorrect language labels can be seen when tracks
that belong to one language class have a label of another existing
class. This makes it so that self-learning systems have a harder time
distinguishing these two languages.

Besides label mismatching and overlap, there is more bias put into the
selection of the data. Although we checked genre differences between

67



68 discussion & conclusion

the language classes, we did not check for gender differences. If one
of the classes contains significantly more music sung at a higher pitch,
then this becomes an easy factor for a self-learning system to overfit
on. Balancing a music dataset to eliminate most of the variations so
that a system will only learn the sung music is a complex task. In
fact, one might argue that it is okay for such a system to overfit on,
for instance, specific instrumental sounds mainly produced in specific
languages.

Moreover, the computed vocal fragments may also contain some bias.
Each 3-second audio fragment is determined to be selected or omitted
based on whether Essentia’s Vocal Detector classifies the fragment as
being ‘vocal’ (see Section 4.2). As such, if the Vocal Detector has any
bias in the sense that it detects vocals more for certain languages or
instruments, then this bias translates directly to our vocal fragment
dataset. For this reason however, we decided to look at the total num-
ber of vocal fragments computed per language class in the training
dataset (see Figure 4.8). We found that the counts differ, with the Dutch
class containing most vocal fragments at 83,119 vocal fragments, and
English the second to lowest amount, at 59,759 vocal fragments. Com-
paring this to the trained neural network predictions in Section 7.3,
we would expect a bias towards Dutch given the quantity, which can
actually be seen in the results of VGGish. Furthermore, the second
highest amount of vocal fragments is for German, which also has the
second highest accuracy for VGGish. It looks like VGGish has been
overfitting on the sheer number of vocal fragments, making Dutch
and German more likely predictions than the other classes. However,
it does not explain why the DNN overfit almost entirely on English,
having nearly the least amount of vocal fragments. What we can learn
from this is that it is important to balance the final dataset that is
used as the input to self-learning systems in terms of total counts.
Although the number of tracks per language is balanced in terms of
counts (see Figure 4.2), the transformation to vocal fragments is not,
and the effects can be seen in the best trained model of VGGish.

8.1.2 The Algorithms

In this thesis, not many different algorithms have been tested. In the
literature, various non-neural-network approaches to Automatic Lan-
guage Identification (LID) have obtained decent results on speech, for
instance Hidden Markov Models [34] and Logistic Regression [32].
Moreover, there are other types of complex neural network architec-
tures that may yield better results as well, such as a Long Short-Term
Memory (LSTM) network, a 1-dimensional Convolutional Neural Net-
work (1D-CNN), or even Google’s WaveNet altered as a discriminator
[36]. In other words, there are a number of existing algorithms and



8.1 discussion 69

network architectures that are worth researching for the purpose of
Automatic Language Identification of vocals.

As we discussed in Section 8.1.1, the input data may have been flawed
as well. Rather than looking at the flaws in the method of obtain-
ing the training data, we may also wonder if the representation of
the data is good enough to use as input for neural networks. Typi-
cally, Deep Neural Networks (DNNs) do not handle image-like data
very well, and the MFCCs that were used, although flattened to a
1-dimensional vector, can be seen as an image (see Figure 5.1). For this
purpose, CNN architectures better handle the complexity of image
data as these architectures are better suited for finding patterns in the
images. Our results of VGGish, performing significantly better than
the DNN (see Section 7.4), add to this argument. Mel spectrograms
and MFCCs are widely used for audio classification tasks. However,
converting vocal music to 3-second fragments, determining whether
a fragment contains vocals, and turning the vocal fragments directly
into mel spectrograms and MFCCs may not have been the best rep-
resentation for learning to classify sung languages. Although we do
try to make sure that the systems obtain music fragments that feature
vocals, some of these fragments will only contain instrumentals (given
that Essentia’s Vocal Detector is imperfect), and all fragments will
contain instrumentals and background noise overlapping with the
vocals. Rather than directly computing mel spectrograms and MFCCs,
reducing the instrumentals and background noise first, such that the
opposite of a karaoke-version of a track is given, the audio and its
mel spectrogram and MFCC translations become much more clearly
focused on the vocals in music. Our systems had to find patterns in
the instrumentals and vocals together, in order to classify in which
language is sung, which makes it much harder to determine whether
these systems really learnt which language the vocals are sung in, or
whether they simply learned how likely certain instruments appear in
each of the languages, although it has to be noted that the transforma-
tion to MFCCs already emphasizes the human-perceptible range and
thus also vocals. We believe that improving the preprocessing steps
may drastically increase the performance of the systems.

Finally, VGGish comes with pretrained weights for speech embed-
dings, which can be used for transfer learning. It was interesting to
see whether weights that have been trained on speech would benefit
classification of vocals as well. Since speech and vocals are produced
by the same organ, the frequency range is similar, though vocals do
tend to be higher and lower pitched than speech, essentially increasing
the expected range. Interestingly, the pretrained weights for speech
embeddings resulted in faster convergence of the network when used
as a starting point for training further (see Figure 6.1). However, the



70 discussion & conclusion

pretrained weights had been trained on mel spectrograms, but MFCC
input also benefited from this weight initialization. Because of this, it
appears that the pretrained weights for speech embeddings are simply
a good starting point for VGGish in any case, rather than randomly
initializing the weights. After all, these pretrained weights give the
network non-random patterns to start from, which may not differ
much between speech and vocal mel spectrograms, and even MFCCs.

8.2 conclusion

8.2.1 Findings

Automatic Language Identification (LID) of vocals in music is not a
trivial task. Existing literature mostly focuses on LID of speech, and
the literature on LID of music is few and far between. In the literature,
the accuracy scores of LID of music also shows that there is plenty
of room for improvement (64% on two languages [41]; 65% on three
languages [49]; 44.7% on 25 languages using audio-only features [6]).
In this thesis, we explore the field of LID, create and describe a novel
language-labelled music dataset – the 6L5K Music Corpus, compute
3-second fragments containing vocals, compute mel spectrograms and
MFCCs given these vocal fragments, and train neural networks to
classify the language thereof.

Initially, a Deep Neural Network (DNN) is designed and tuned for the
task of LID on the vocal fragments. We find that the DNN works best
with MFCC input, however it is shown to mainly overfit on a single
language: English. Whereas the accuracy on the validation data is over
35%, the accuracy on a separate test dataset, which we transformed
into vocal fragments similar to the training data, is no higher than
18.1%. Next, for a CNN architecture, we use VGGish on mel spectro-
gram input, using pretrained weights for speech embeddings. Training
on the vocal fragment training dataset, we optimize VGGish’ parame-
ters and come to a validation accuracy of 41%. As we use this model
on the unseen test data, the accuracy lowers to 35.2%. The confusion
matrices show that the DNN is unable to distinguish the languages of
the test data, whereas VGGish is able to distinguish the languages to
some extent. We also merge the two models into an Ensemble, where
the output is based on the combined output probabilities of both the
DNN and VGGish. Although it is possible for this Ensemble technique
to yield better results, in the end the Ensemble appeared to be no
better than an average of the DNN and VGGish, obtaining an accuracy
of 30.9% on the test data. The DNN performance on the test set is
marginally better than chance, and using a Fisher’s Exact Test we
show that VGGish performs significantly better than the DNN for LID



8.2 conclusion 71

of vocals in music.

8.2.2 Research Questions

In Section 1.2, we defined the main goal of this research. Three ques-
tions were posed, with which the main research question can be
answered. We will go through these questions in the same order.

Q1: What type of data is best for training neural networks to be able to
classify the language music is sung in?

For starters, the more the data focuses on the vocals in music, the
better the data can be used for classifying the sung language. Since no
publicly available language-labelled dataset existed at the time of re-
searching, we created the 6L5K Music Corpus from language-labelled
music playlists. With this music data, we put emphasis on vocals
by splitting each music track into 3-second fragments, and using a
Vocal Detector to omit audio fragments where no vocals are detected,
such that all 3-second fragments should contain vocals. Next, instead
of using the raw audio waveform as input to our networks, we re-
duce the dimensionality by computing mel spectrograms, which more
clearly show patterns for the frequencies that are used in the fragment.
Lastly, for more emphasis on human-perceptible frequencies, we also
compute the MFCCs, for a more compact representation of the vocal
fragments. These are the methods that we used, but there are improve-
ments to be made by for instance preprocessing the data such that only
vocals are present in the audio, as our vocal fragments still contain
background audio that may be irrelevant to the language classification.

Q2: Which neural network architecture works best for Automatic Language
Identification of sung music?

Given image-like data such as mel spectrograms and MFCCs, Deep
Neural Networks (DNNs) tend to not be able to handle the complexity
of finding patterns in this data. On the other hand, a CNN architecture
is able to find patterns in this type of data. The best neural network ar-
chitecture for Automatic Language Identification (LID) of sung music
largely depends on the type of input data. In our findings, VGGish – a
CNN architecture with Fully Connected layers – is able to distinguish
six classes of vocal music based on mel spectrograms thereof. However,
there may be novel state-of-the-art discriminators that can distinguish
languages of vocals better, such as attention models, or Transformers
[50].



72 discussion & conclusion

Q3: How do we determine which system performs better on the task of
Automatic Language Identification?

In order to determine which system performs better, a statistical test
is necessary. For neural network performance, a contingency table
can be made with the number of correct and incorrect classifications
per model, and Fisher’s Exact Test can be applied to find whether
there is a statistically significant difference in proportions between the
models. Note however that if more than two models are compared, it
is important to adjust the p-value for multiple tests, for instance using
the Bonferroni correction. We find that our best trained VGGish model
in fact performs significantly better on the test dataset than the DNN
(p < 0.0001; see Section 7.4).

Research Question: How can we train a neural network to perform best on
the task of Automatic Language Identification in vocal music?

In this thesis, we have described our methods with which an accuracy
of 35.2% on the task of LID of vocals in unseen music can be obtained.
All of our methodology, results, and discussions indicate how a neural
network can, and cannot, be trained to perform well on the task of
Automatic Language Identification in vocal music. This thesis is also
intended as a starting point for future research on this problem, as
a quick-start in order to attempt novel approaches. Although our
best model – VGGish – is able to distinguish six languages to some
extent, it will likely not transfer well to the problem when more than
six languages are present. As such, the overall problem of LID of
vocal music remains open for further research, as there is room for
improvement.

8.2.3 Limitations & Future Work

This work poses numerous insights for a very narrow field: Auto-
matic Language Identification (LID) of vocals in music. The results are
limited by relatively low accuracies on unseen data, as well as time
constraints. The best trained network, VGGish, has been trained to dis-
tinguish six languages to some extent, but in real-world systems, this
model should be no more than an informative addition. An accuracy
of 35.2% can unfortunately not be reliably used. However, none of the
LID systems of vocals in the literature can be reliably used, as either
very few languages are used [41, 49], or the accuracy remains under
50% when more than six languages are used [6]. As such, there is a lot
of potential for future work in this narrow field of LID to improve over
the current findings. Specifically, taking care that preprocessing steps
are put in place that emphasize the vocals in music and decrease the
presence of instrumentals and background noise, perhaps researching



8.2 conclusion 73

a better representation of vocals than mel spectrograms or MFCCs,
and using different state-of-the-art discriminators [50], should make
way for vastly improved performance with regard to LID of vocals in
music.





B I B L I O G R A P H Y

[1] Pierre Baldi and Peter Sadowski. “The dropout learning algo-
rithm.” In: Artificial intelligence 210 (2014), pp. 78–122.

[2] Christian Bartz, Tom Herold, Haojin Yang, and Christoph Meinel.
“Language identification using deep convolutional recurrent
neural networks.” In: International conference on neural information
processing. Springer. 2017, pp. 880–889.

[3] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez Gutiérrez, Sankalp
Gulati, Herrera Boyer, Oscar Mayor, Gerard Roma Trepat, Justin
Salamon, José Ricardo Zapata González, Xavier Serra, et al.
“Essentia: An audio analysis library for music information re-
trieval.” In: Britto A, Gouyon F, Dixon S, editors. 14th Conference
of the International Society for Music Information Retrieval (ISMIR);
2013 Nov 4-8; Curitiba, Brazil.[place unknown]: ISMIR; 2013. p. 493-
8. International Society for Music Information Retrieval (ISMIR).
2013.

[4] Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier
transform and its applications. Vol. 31999. McGraw-Hill New York,
1986.

[5] Niko Brümmer, Albert Strasheim, Valiantsina Hubeika, Pavel
Matějka, Lukáš Burget, and Ondřej Glembek. “Discriminative
acoustic language recognition via channel-compensated GMM
statistics.” In: Tenth Annual Conference of the International Speech
Communication Association. 2009.

[6] Vijay Chandrasekhar, Mehmet Emre Sargin, and David A Ross.
“Automatic language identification in music videos with low
level audio and visual features.” In: 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2011, pp. 5724–5727.

[7] Dorothy L Cheney and Robert M Seyfarth. “Why animals don’t
have language.” In: Tanner lectures on human values 19 (1998),
pp. 173–210.

[8] Ronald A Cole, Jon WT Inouye, Yeshwant K Muthusamy, and
Murali Gopalakrishnan. “Language identification with neural
networks: a feasibility study.” In: Conference Proceeding IEEE
Pacific Rim Conference on Communications, Computers and Signal
Processing. IEEE. 1989, pp. 525–529.

[9] Nicholas J Conard, Maria Malina, and Susanne C Münzel. “New
flutes document the earliest musical tradition in southwestern
Germany.” In: Nature 460.7256 (2009), pp. 737–740.

75



76 bibliography

[10] George Cybenko. “Approximation by superpositions of a sig-
moidal function.” In: Mathematics of control, signals and systems
2.4 (1989), pp. 303–314.

[11] Steven Davis and Paul Mermelstein. “Comparison of parametric
representations for monosyllabic word recognition in continu-
ously spoken sentences.” In: IEEE transactions on acoustics, speech,
and signal processing 28.4 (1980), pp. 357–366.

[12] Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and
Xavier Bresson. “FMA: A Dataset for Music Analysis.” In: 18th
International Society for Music Information Retrieval Conference.
2017. url: https://arxiv.org/abs/1612.01840.

[13] Ronald A Fisher. “On the interpretation of χ 2 from contingency
tables, and the calculation of P.” In: Journal of the Royal Statistical
Society 85.1 (1922), pp. 87–94.

[14] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal, and
Marvin Ritter. “Audio Set: An ontology and human-labeled
dataset for audio events.” In: Proc. IEEE ICASSP 2017. New
Orleans, LA, 2017.

[15] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal, and
Marvin Ritter. “Audio Set: An ontology and human-labeled
dataset for audio events.” In: Proc. IEEE ICASSP 2017. New
Orleans, LA, 2017.

[16] Beat Gfeller, Ruiqi Guo, Kevin Kilgour, Sanjiv Kumar, James
Lyon, Julian Odell, Marvin Ritter, Dominik Roblek, Matthew
Sharifi, Mihajlo Velimirović, et al. “Now Playing: Continuous
low-power music recognition.” In: arXiv preprint arXiv:1711.10958
(2017).

[17] Javier Gonzalez-Dominguez, Ignacio Lopez-Moreno, Pedro J
Moreno, and Joaquin Gonzalez-Rodriguez. “Frame-by-frame
language identification in short utterances using deep neural
networks.” In: Neural Networks 64 (2015), pp. 49–58.

[18] Karlheinz Gröchenig. Foundations of time-frequency analysis. Springer
Science & Business Media, 2001.

[19] Shawn Hershey et al. “CNN Architectures for Large-Scale Audio
Classification.” In: International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2017. url: https://arxiv.org/
abs/1609.09430.

[20] Kurt Hornik. “Approximation capabilities of multilayer feedfor-
ward networks.” In: Neural networks 4.2 (1991), pp. 251–257.

[21] David Huron. “Is music an evolutionary adaptation?” In: Annals
of the New York Academy of sciences 930.1 (2001), pp. 43–61.

https://arxiv.org/abs/1612.01840
https://arxiv.org/abs/1609.09430
https://arxiv.org/abs/1609.09430


bibliography 77

[22] Sergey Ioffe and Christian Szegedy. “Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift.” In: arXiv preprint arXiv:1502.03167 (2015).

[23] Wonkyung Jung, Daejin Jung, Sunjung Lee, Wonjong Rhee, Jung
Ho Ahn, et al. “Restructuring batch normalization to accelerate
CNN training.” In: arXiv preprint arXiv:1807.01702 (2018).

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
genet classification with deep convolutional neural networks.”
In: Advances in neural information processing systems 25 (2012),
pp. 1097–1105.

[25] Lori F Lamel and Jean-Luc Gauvain. “Language identification us-
ing phone-based acoustic likelihoods.” In: Proceedings of ICASSP’94.
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing. Vol. 1. IEEE. 1994, pp. I–293.

[26] Quoc V Le. “Building high-level features using large scale un-
supervised learning.” In: 2013 IEEE international conference on
acoustics, speech and signal processing. IEEE. 2013, pp. 8595–8598.

[27] K Li and T Edwards. “Statistical models for automatic language
identification.” In: ICASSP’80. IEEE International Conference on
Acoustics, Speech, and Signal Processing. Vol. 5. IEEE. 1980, pp. 884–
887.

[28] Beth Logan et al. “Mel frequency cepstral coefficients for music
modeling.” In: Ismir. Vol. 270. Citeseer. 2000, pp. 1–11.

[29] Ignacio Lopez-Moreno, Javier Gonzalez-Dominguez, Oldrich
Plchot, David Martinez, Joaquin Gonzalez-Rodriguez, and Pedro
Moreno. “Automatic language identification using deep neural
networks.” In: 2014 IEEE international conference on acoustics,
speech and signal processing (ICASSP). IEEE. 2014, pp. 5337–5341.

[30] Yanick Lukic, Carlo Vogt, Oliver Dürr, and Thilo Stadelmann.
“Speaker identification and clustering using convolutional neural
networks.” In: 2016 IEEE 26th international workshop on machine
learning for signal processing (MLSP). IEEE. 2016, pp. 1–6.

[31] Lauras Martin. ““Eskimo words for snow”: A case study in the
genesis and decay of an anthropological example.” In: American
anthropologist 88.2 (1986), pp. 418–423.

[32] David Martinez, Oldřich Plchot, Lukáš Burget, Ondřej Glembek,
and Pavel Matějka. “Language recognition in ivectors space.” In:
Twelfth annual conference of the international speech communication
association. 2011.

[33] Mahnoosh Mehrabani and John HL Hansen. “Language iden-
tification for singing.” In: 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2011,
pp. 4408–4411.



78 bibliography

[34] Yeshwant K Muthusamy, Etienne Barnard, and Ronald A Cole.
“Reviewing automatic language identification.” In: IEEE Signal
Processing Magazine 11.4 (1994), pp. 33–41.

[35] Yeshwant Muthusamy, Kay Berkling, Takayuki Arai, Ronald
Cole, and Etienne Barnard. “A comparison of approaches to
automatic language identification using telephone speech.” In:
Third European Conference on Speech Communication and Technology.
1993.

[36] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Si-
monyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew
Senior, and Koray Kavukcuoglu. “Wavenet: A generative model
for raw audio.” In: arXiv preprint arXiv:1609.03499 (2016).

[37] Kyubyong Park and Thomas Mulc. “CSS10: A Collection of
Single Speaker Speech Datasets for 10 Languages.” In: arXiv
preprint arXiv:1903.11269 (2019).

[38] Josef Psutka, Ludek Müller, and Josef V Psutka. “Comparison
of MFCC and PLP parameterizations in the speaker indepen-
dent continuous speech recognition task.” In: Seventh European
Conference on Speech Communication and Technology. 2001.

[39] Shauna Revay and Matthew Teschke. “Multiclass language iden-
tification using deep learning on spectral images of audio sig-
nals.” In: arXiv preprint arXiv:1905.04348 (2019).

[40] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
“Learning representations by back-propagating errors.” In: na-
ture 323.6088 (1986), pp. 533–536.

[41] Jochen Schwenninger, Raymond Brueckner, Daniel Willett, and
Marcus E Hennecke. “Language Identification in Vocal Music.”
In: ISMIR. 2006, pp. 377–379.

[42] Garima Sharma, Kartikeyan Umapathy, and Sridhar Krishnan.
“Trends in audio signal feature extraction methods.” In: Applied
Acoustics 158 (2020), p. 107020.

[43] Shikhar Shukla, Govind Mittal, et al. “Spoken language iden-
tification using convnets.” In: European Conference on Ambient
Intelligence. Springer. 2019, pp. 252–265.

[44] Leslie N Smith. “Cyclical learning rates for training neural net-
works.” In: 2017 IEEE Winter Conference on Applications of Com-
puter Vision (WACV). IEEE. 2017, pp. 464–472.

[45] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. “Dropout: a simple way to prevent
neural networks from overfitting.” In: The journal of machine
learning research 15.1 (2014), pp. 1929–1958.



bibliography 79

[46] Stanley Smith Stevens, John Volkmann, and Edwin Broomell
Newman. “A scale for the measurement of the psychological
magnitude pitch.” In: The journal of the acoustical society of america
8.3 (1937), pp. 185–190.

[47] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior
Wolf. “Deepface: Closing the gap to human-level performance
in face verification.” In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2014, pp. 1701–1708.

[48] Inc. TopCoder. Problem: SpokenLanguages2. 2010. url: https://
community.topcoder.com/longcontest/?module=ViewProblemStatement\

&rd=16555\&compid=49304.

[49] Wei-Ho Tsai and Hsin-Min Wang. “Automatic identification of
the sung language in popular music recordings.” In: Journal of
New Music Research 36.2 (2007), pp. 105–114.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polo-
sukhin. “Attention is all you need.” In: arXiv preprint arXiv:1706.03762
(2017).

[51] Haibing Wu and Xiaodong Gu. “Towards dropout training for
convolutional neural networks.” In: Neural Networks 71 (2015),
pp. 1–10.

[52] Yuxiao Zhou. Singing Voice Separation. https://github.com/
CalciferZh/Singing-Voice-Separation. 2018.

[53] Marc A Zissman. “Comparison of four approaches to automatic
language identification of telephone speech.” In: IEEE Transac-
tions on speech and audio processing 4.1 (1996), p. 31.

https://community.topcoder.com/longcontest/?module=ViewProblemStatement\&rd=16555\&compid=49304
https://community.topcoder.com/longcontest/?module=ViewProblemStatement\&rd=16555\&compid=49304
https://community.topcoder.com/longcontest/?module=ViewProblemStatement\&rd=16555\&compid=49304
https://github.com/CalciferZh/Singing-Voice-Separation
https://github.com/CalciferZh/Singing-Voice-Separation




A
S U M M E D P R O B A B I L I T Y P R E D I C T I O N S

(a)
Totalclassification

probability
on

a
track

sung
in

English.
(b)

Totalclassification
probability

on
a

track
sung

in
G

erm
an.

(c)
Totalclassification

probability
on

a
track

sung
in

French.

(d)
Totalclassification

probability
on

a
track

sung
in

Spanish.
(e)

Totalclassification
probability

on
a

track
sung

in
D

utch.
(f)

Totalclassification
probability

on
a

track
sung

in
Portuguese.

Figure
A

.
1:Exam

ple
predictions

produced
by

our
besttrained

D
eep

N
euralN

etw
ork

(D
N

N
)m

odelon
an

arbitrary
m

usic
track

per
language

in
the

testdataset.A
llvocalfragm

ents
(see

Section
4.2;Table

A
.1)ofthe

track
w

ere
used

as
input,and

the
outputpredictions

w
ere

sum
m

ed
and

norm
alized.Each

figure
show

s
the

sum
m

ed
probabilities.

R
ed

indicates
an

erroneous
prediction;green

indicates
the

true
language

of
the

track.

81



82 appendix

(a)
Totalclassification

probability
on

a
track

sung
in

English.
(b)

Totalclassification
probability

on
a

track
sung

in
G

erm
an.

(c)
Totalclassification

probability
on

a
track

sung
in

French.

(d)
Totalclassification

probability
on

a
track

sung
in

Spanish.
(e)

Totalclassification
probability

on
a

track
sung

in
D

utch.
(f)

Totalclassification
probability

on
a

track
sung

in
Portuguese.

Figure
A

.
2:Exam

ple
predictions

produced
by

our
besttrained

V
G

G
ish

m
odelon

an
arbitrary

m
usic

track
per

language
in

the
testdataset.

A
llvocalfragm

ents
(see

Section
4.

2;Table
A

.
1)

of
the

track
w

ere
used

as
input,and

the
output

pred
ictions

w
ere

sum
m

ed
and

norm
alized

.E
ach

fi
gu

re
show

s
the

su
m

m
ed

probabilities.R
ed

ind
icates

an
erroneou

s
pred

iction;green
ind

icates
the

true
language

of
the

track.



appendix 83

Language Artist - Title # F # VF

en Caleb Santos - I Need You More Today 78 11

de Olaf - In Der Kneipe Von Camillo 65 20

fr SARA’H - Un Monde à Nous 74 21

es 7 Muelles - Hoy Como Ayer 92 18

nl Spang! - Hier Ben Ik 69 33

pt Nuno Prata - Vai Andando Sobre as Águas 65 5

Table A.1: An arbitrarily-picked track per language, the total number of 3-
second fragments in the track (’# F’), and the number of fragments
that contain vocals (’# VF’) with which the results of Figure A.1
and Figure A.2 were obtained.


	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Language & Music
	1.2 Research Questions
	1.3 Societal Impact
	1.4 Slimmer AI

	 Theoretical Background
	2 Automatic Language Identification
	2.1 The Literature
	2.2 Audio Features
	2.3 Artificial Neural Networks

	3 Datasets
	3.1 Speech Data
	3.2 Music Data


	 Methodology
	4 Used Methods
	4.1 The 6L5K Music Corpus
	4.2 Vocal Fragmentation
	4.3 Mel Spectrograms & MFCCs
	4.4 Input Data
	4.5 Deep Neural Network
	4.6 VGGish

	5 DNN Optimization
	5.1 DNN: Band Removal
	5.2 DNN: Hidden Layers
	5.3 DNN: Learning Rate
	5.4 DNN: Fine-tuned Parameters

	6 VGGish Optimization
	6.1 VGGish: Weight Initializations
	6.2 VGGish: Dropout
	6.3 VGGish: Hidden Layers
	6.4 VGGish: Learning Rate
	6.5 VGGish: Fine-tuned Parameters

	7 Test Results
	7.1 Models
	7.2 Ensemble
	7.3 Predictions
	7.4 End Results

	8 Discussion & Conclusion
	8.1 Discussion
	8.2 Conclusion

	 Bibliography
	 Appendix
	A Summed Probability Predictions


