
O N T H E S C A L A B I L I T Y O F D E E P I N V E R S E
R E I N F O R C E M E N T L E A R N I N G I N

H I G H - D I M E N S I O N A L S TAT E S PA C E S

henry maathuis

Supervisors:
dr . m .a . wiering

prof . dr . l .r .b . schomaker

Master’s Thesis Artificial Intelligence

University of Groningen

September 28, 2020





A B S T R A C T

Inferring intentions behind observed behaviours is arguably an impor-
tant aspect when learning new tasks. Inverse Reinforcement Learning
(IRL) is a relatively small and recent area which studies techniques
which allow for deriving reward functions on the basis of observed
behaviour. Such a reward function can be seen as a blueprint and
stipulates how an agent should behave and what it should achieve.
Once a reward function is in place, it is possible to learn a policy. A
policy provides an actual implementation what an agent does given
the state that the agent is in. Normally in a Reinforcement Learning
task, the reward function is handcrafted by a human. IRL therefore
requires an extra abstraction to first derive the reward function before
a policy can be learnt.

One of the big problems in IRL is that the algorithms do not scale
well to high-dimensional environments due to overfitting of the reward
function during the reconstruction process. As such, this thesis con-
tributes to the field of IRL by accessing the state-of-the-art Adversarial
Inverse Reinforcement Learning (AIRL) algorithm in combination
with dimensionality reduction techniques, specifically autoencoders.
Three different autoencoders are considered including one that forms
a discrete latent distribution over the data. In the experiments, the
algorithms are evaluated on several high-dimensional environments:
Catcher, Pong and Freeway. The results indicate that autoencoders
could be useful in cases where the state space is relatively complex.
Although, one should be careful when introducing autoencoders as
they can also thwart the process of learning reward functions.

Additionally, this thesis is meant as an overview of the current state
of knowledge of IRL. Hopefully this thesis piques interest amongst
new researchers to further explore the field of IRL.

iii





C O N T E N T S

1 introduction 1

1.1 Deep Reinforcement Learning 2

1.2 Deep Inverse Reinforcement Learning 2

1.3 Autoencoders 2

1.4 Research Questions and Contributions 3

i background information

2 function approximation 7

2.1 McCulloch-Pitts Model 7

2.2 Rosenblatt Perceptron 7

2.3 Multi-Layer Perceptron 8

2.4 Neural Network Optimisation 9

2.5 Convolutional Neural Network 9

2.6 Generative Adversarial Networks 11

3 dimensionality reduction techniques 15

3.1 Standard Downsampling 15

3.2 Autoencoders 15

4 reinforcement learning 21

4.1 Key Concepts 21

4.2 Reinforcement Learning Algorithms 23

5 state-of-the-art deep reinforcement learning 27

5.1 DQN 27

5.2 Policy Gradient Algorithms 28

6 inverse reinforcement learning 35

6.1 Imitation Learning 35

6.2 Inverse Reinforcement Learning 35

6.3 Maximum Margin Optimisation 37

6.4 Guided Cost Learning 39

6.5 Adversarial Inverse Reinforcement Learning 41

6.6 Convolutional Neural Network AIRL 42

ii methodology

7 general implementation 47

7.1 Environments 47

7.2 Architecture Proximal Policy Optimization 48

7.3 Autoencoders 50

7.4 Adversarial Inverse Reinforcement Learning 54

8 results 57

8.1 Sampling Expert Demonstrations 57

8.2 Learning a Low-Dimensional Embedding 57

8.3 AIRL 65

9 discussion and concluding remarks 69

v



9.1 AIRL Behaviours 69

9.2 Research Questions 71

9.3 Concluding Remarks 71

bibliography 73

vi



1
I N T R O D U C T I O N

Machine Learning is a widely studied field that concerns itself with
learning specific tasks without the need of step-by-step instructions.
The earliest form of Machine Learning described in literature con-
cerns itself with pattern classification. Nowadays the field of Machine
Learning is often separated into three fields: Supervised Learning,
Unsupervised Learning and Reinforcement Learning. These categories
are explained before diving into Inverse Reinforcement Learning. At
the end of this chapter, the research questions and the contributions
are reported.

In Supervised Learning (SL), the learners are asked to make a
prediction on the basis of an input pattern. In such algorithms the
learner has access to what the desired output prediction should be.
By allowing the learner to adapt to the input patterns, it is able to
learn how to make predictions consistent with the desired output.
In general, SL algorithms come in two flavours: classification and
regression. An example of a classification task is to distinguish images
of cats and dogs [36]. Predicting the future stock prices is an example
of regression [2].

In Unsupervised Learning (UL) there are no labels. These types of
algorithms have to find the underlying structure in the data itself or
learn something about the distribution of the data. Many of these algo-
rithms work by grouping data together that share similar properties.
This process is also called clustering. An example of a clustering is
to group similar stars in astronomical datasets together [58]. Another
class of UL algorithms learn by association. Association Rule Mining
concerns itself with learning specific rules in the data [29]. An example
are systems that look at consumer purchase behaviour. How likely is
a person to buy product B when product A is bought?

Reinforcement Learning (RL) concerns itself with learning how to
interact with an environment. A reward function specifies how well
the agent is behaving in such a system. Retrieving feedback from the
reward function differs from SL since it does not indicate what the
correct action of the agent should have been. Instead it provides a
sparser signal that indicates how well the agent performed. RL systems
therefore use trial and error in order to learn how to behave optimally
in an environment. An example of Reinforcement Learning is to learn
to grasp objects using a robotic arm [34]. RL is further discussed in
section 4.

1



2 introduction

1.1 deep reinforcement learning

Standard Reinforcement Learning techniques are limited in applica-
bility since they do not scale well to more complicated tasks. When
combining Reinforcement Learning techniques with Deep Neural Net-
works (DNN), it is possible to learn more complicated tasks which
are impossible to achieve with shallow neural networks or tabular
approaches [32]. Such DNNs are able to automatically learn features
from the input data forming a representation that can be used effi-
ciently with RL techniques without the need of handcrafting input
features. Convolutional Neural Networks (CNNs) [24] are a special
type of DNNs which can extract relevant information from pixel data.
This research makes use of CNNs in combination with DRL tech-
niques. CNNs are described in more detail in section 2.5.1. Details on
DRL techniques are found in section 5.

1.2 deep inverse reinforcement learning

Although Reinforcement Learning is able to learn behaviour by clever
consultation of a reward function, it is sometimes not feasible to use
this approach. In Inverse Reinforcement Learning (IRL) the problem
of RL is reversed [1, 35]. Instead, the goal of IRL is to derive a reward
function automatically given observed behaviour. In cases where it
is hard to come up with a reward function, IRL can be considered.
Generally speaking, IRL consists of two steps. First it attempts to
reconstruct a reward function. Second it learns a policy given the
newly reconstructed reward function. For simple tasks, IRL is able to
retrieve a reward function that reflects the observed behaviour well.
However there is a lot of work to do to improve the performance on
more complicated Deep IRL tasks. The field of IRL is still relatively
young and has many problems to overcome. Chapter 6 describes the
aspects of IRL in more detail.

1.3 autoencoders

Current Deep IRL algorithms have problems when faced with high-
dimensional data. To alleviate the problem, autoencoders could be
considered to reduce the dimensionality of the data [27]. This research
utilises several autoencoders to evaluate the performance of Adversar-
ial Inverse Reinforcement Learning [15], the state-of-the-art IRL algo-
rithm, on high-dimensional pixel environments. Most autoencoders in
this research yield a low-dimensional continuous feature vector. The
most promising autoencoder uses the concept of Vector Quantisation
algorithms to deliver a discrete low-dimensional representation [54].



1.4 research questions and contributions 3

1.4 research questions and contributions

This primary goal of this thesis is to give an answer to the research
questions which are stated in this section. Additionally in this section
the contributions of the thesis as a whole are highlighted.

1.4.1 Investigating Deep Inverse Reinforcement

Many problems with current Deep Inverse Reinforcement Learning
(IRL) algorithms are tied to the curse of dimensionality (COD). COD is
a problem widely known in the field of Machine Learning in which the
data is embedded sparsely in a large volume of space. Although some
research has been done on autoencoders to reduce the dimensionality
of the data on IRL problems, much research has to be done to properly
scale to high-dimensional problems. In order to explore the benefits of
autoencoders on deep IRL problems, the following research questions
come to mind:

1. Can vanilla and variational autoencoders help improve the re-
construction of reward functions on high-dimensional data?

2. How do these results compare to instances where raw input of
the original data is considered?

3. Vanilla and variational autoencoders learn a low-dimensional
continuous representation. Would autoencoders that learn a
binary or discrete representation instead allow for more robust
reward function reconstructions?

Note that the reward functions themselves are not evaluated. In-
stead, the policy obtained directly from the reward function is used to
evaluate the expected return of rewards.

1.4.2 Additional Contributions

Additionally this thesis is meant as a review of the current state of
knowledge that is relevant for the field of Deep Inverse Reinforcement
Learning (DIRL). Considering that the field of DIRL is relatively small,
it aims to provide researchers with a better understanding of the
problems and limitations currently faced in this field.





Part I

B A C K G R O U N D I N F O R M AT I O N





2
F U N C T I O N A P P R O X I M AT I O N

2.1 mcculloch-pitts model

Function approximation is widely studied in the domain of Machine
Learning. In the early 40s, a theoretical biological model for function
approximation has been coined; The McCulloch-Pitts model [30]. This
model is loosely based on the working of a biological neuron and
is able to partition the input space in two subspaces by means of a
straight line. One important restriction of the McCulloch-Pitts neuron
is that each of the inputs and the output are binary. Another important
restriction is that the weights are fixed in this system, therefore this
system was not able to learn on the basis of examples. The output of
the McCulloch-Pitts neuron is simply the weighted sum of the inputs
as can be seen in the equation below:

yj = f (w · xj). (2.1)

Note that w is the weight vector and xj is the input vector. f (·) is
the activation function that transforms the output yj. Since the output
is binary, f (·) can simply use a threshold value to determine whether
the output should map to 0 or 1.

2.2 rosenblatt perceptron

It took many years after the introduction of the McCulloch-Pitts model
before there was a breakthrough in the field of Neural Networks. In
1958, Rosenblatt developed the Perceptron based on the McCulloch-
Pitts model [41]. While the previous model used fixed weights, the
Rosenblatt Perceptron is able to adapt its weights when presented with
inputs. Similar to the McCulloch-Pitts model, the output is computed
as the weighted sum of its inputs.

Also the concept of bias was introduced which allows for offsetting
the decision boundary from the origin of the input space. Another
difference is that the inputs and output are also no longer restricted
to be binary. This allows the activation function f (·) to squash the
weighted sum of inputs to a non-binary value. Examples of other
activation functions are: sigmoid, tanh, linear and ReLu. These changes
cause the output computation to take the following form:

yj(t) = f (w(t) · xj + b(t)), (2.2)

7



8 function approximation

where w(t) are the weights, and b(t) is the bias at time t.
The Perceptron is able to update its weights by making use of the

discrepancy between the output of the neuron and the target output.
An often used method to optimise a neural network is called Gradient
Descent. This computation is given below:

w(t + 1) = w(t) + η · (dj − yj(t)) · xj, (2.3)

where η is the learning rate, dj is the desired output. xj,i denotes
the input i of example j. wi(t + 1) is the ith weight value at time
t + 1. In Section 2.4, there is a longer discussion on neural network
optimisation.

2.3 multi-layer perceptron

In the case of the McCulloch-Pitts model and the Perceptron, only
one neuron is used. A single neuron only allows for linear separation
of the data. Combining multiple Perceptrons in a network allows us
to learn more complex non-linear decision boundaries. An example
of such a network is called a Multi-Layer Perceptron (MLP) and the
structure is depicted in Figure 2.1. The weights are represented as
the connections between the neurons. Such a network is also called
a feedforward neural network since the activation flows forward to the
direction of the output. An MLP can be used for problems such as
regression and classification. In each of these tasks, the goal is to learn
the underlying rule in the data. Similar to the Perceptrons, MLPs can
be optimised by training on a set of examples.

x1

x2

x3

f(x)

Input  Hidden Output 

Figure 2.1: An example of an MLP. It consists of 3 input units, 1 hidden layer
holding 5 units and 1 output unit.



2.4 neural network optimisation 9

2.4 neural network optimisation

Ultimately the goal of Neural Networks is to derive the underlying
structure of the data. When a neural network is presented with an
example, it will make a prediction y. This prediction y can be com-
pared with the actual target t. In general, we want to minimise the
difference for each example between the prediction y that the neural
network makes and the actual target t. In Machine Learning, this is
often referred to as minimising a loss function.

2.4.1 Gradient Descent

Gradient Descent (GD) is an iterative optimisation algorithm which
attempts to minimise such a loss function in order to update the
parameters in machine learning models [8, 9]. Specifically, GD can
be used to update the weights in a Neural Network. Since this is an
iterative algorithm, the idea is to perform steps in the direction of the
steepest decent of the weight space.

Since GD takes steps in the direction of the minimum, it is important
to define how big those steps are. In literature this step size is often
referred to as the learning rate η. If η is too large, it is possible that we
overshoot the minimum. This allows the system to osculate around
the minimum or even diverge from it. If η is too small, it can take a
long time for the system to converge to a local minima.

2.4.2 Other optimisation algorithms

There are also other optimisation algorithms such as Stochastic Gra-
dient Descent (SGD) [40], RMSProp [51] and Adam [22]. SGD differs
from GD since it uses an approximation of the error gradient by com-
puting the loss over a random subset of data. An advantage of this
method is that it can be computationally much more efficient if a
relatively small subset is chosen. The downside is that the error land-
scape is also approximated, which can lead to undesirable steps into
the error landscape. RMSProp and Adam make some small changes
which restrict how one should travel in the error landscape. RMSProp
divides the learning rate by an exponentially decaying average of
squared gradients. Adam is similar to RMSProp, but also makes use
of exponentially decaying average of gradients .

2.5 convolutional neural network

In some cases the Multi-Layer Perceptron (MLP) is unsuitable for a
specific regression or classification task. When the prediction depends
on local spatial coherence of the data, MLPs generally perform poor.
It is important to note that it still possible for an MLP to learn a



10 function approximation

specific regression or classification task when the input images are of
sufficient low-dimensional space. Alternatively, Convolutional Neural
Networks (CNN) can take local spatial coherence of the input into
account [26]. This is achieved by Convolutional Layers and optionally
Pooling Layers. A discussion on these layers are found in Section 2.5.1
and Section 2.5.2.

2.5.1 Convolutional Layer

Convolutions in a Neural Network are performed to detect specific
features in a set of data. A convolution is defined as performing an
element-wise product with a filter (or kernel) after which a sum is
taken to obtain a single value. The output of a convolution provides
an indication whether a specific feature is present in that image. The
higher the value, the more likely the feature is located in that region.
The filter is shifted over the entire image and results in a convolved
feature.

The computation for a discrete 2D convolution is given by:

[ f ∗ g](m, n) =
∞

∑
i=−∞

∞

∑
j=−∞

f (i, j)g(m− i, n− j), (2.4)

where f is the input image, g is the kernel. m and n denote the
location of the convolved value in the resulting convolved feature. An
example of a 2D convolution is shown in Figure 2.2.

0 1 1 1 0 00
0 0 1 1 1 00
0 0 0 1 1 01
0 0 0 1 1 00
0 0 1 1 0 00
0 1 1 0 0 00
1 1 0 0 0 00

1 4 3 14
1 2 4 33
1 2 3 14
1 3 3 11
3 3 1 01

∗ =
1 0 1
0 1 0
1 0 1

f g f∗g
Figure 2.2: Convolving a 7x7 image f with a 3x3 kernel g results in a 5x5

convolved feature. Kernel g is shifted over the entire image and
computes the element-wise product at each location in the image.

Convolutional Layers simply perform a convolution to the provided
input and pass the output to the next layer.

2.5.2 Pooling Layer

Another layer that is often used in CNNs are pooling layers. Pooling
Layers are often applied after using one or more convolutional layers



2.6 generative adversarial networks 11

to prevent over-fitting by providing an abstracted form of the output
representation. Pooling layers reduce the size of the resulting con-
volved feature. This process is also called downsampling. Many forms
of pooling exists, such as maximum pooling and average pooling.

Pooling Layers use a sliding window over an input. In maximum
pooling, the maximum value of the region of the input that coincides
with the sliding window is considered the output for that location.
Strides can be used to indicate how many positions the sliding window
moves at a time. This allows for reducing the representation even more.
Similarly, average pooling follows the same procedure, except that it
takes the average of the input region that coincides with the sliding
window. An example of maximum pooling and average pooling can
be found in Figure 2.3.

1 7 3 3
6 2 6 8
6 3 3 2
3 4 3 0

7 8
6 3

4 5
4 2

Max Average Input

Figure 2.3: Performing maximum pooling and average pooling with a 2x2

stride.

2.5.3 Transposed Convolutional Layer

The convolutional layers and pooling layers in CNNs cause the input
of the data to be reduced (downscaling) or kept the same. Transposed
Convolutional Layers are used to upsample an input feature map
to obtain a feature map of higher spatial dimensionality. An exam-
ple where transposed convolutional layers are used are decoders in
autoencoder systems. In such systems the goal is to reconstruct the
original input image from a smaller representation. A more detailed
explanation on Transposed Convolution Layers is described in [12].

2.6 generative adversarial networks

In generative models the aim is to learn a probability distribution over
some data. This specification allows for generating new samples from
the learnt distribution. It is possible to test the performance of these
models by observing what the samples from such a distribution look
like. One example of a generative model are variational autoencoders
as discussed in section 3.2.2. These variational autoencoders learn a la-



12 function approximation

tent variable model from which samples can be generated. Generative
Adversarial Networks (GANs), a relatively new class of generative
models, have been coined by Goodfellow et al, [17]. GANs consists of
two parts, a generator and a discriminator network.

2.6.1 Discriminator

A discriminator can be seen as a simple classifier. It estimates the
probability that the data came from the training set consisting of
real data rather than from the fake generated data. The task of the
discriminator is to correctly distinguish between the real and the fake
samples.

2.6.2 Generator

The goal of the generator is to capture the overall data distribution.
By doing so, it could generate samples which fool the discriminator
by stating that they came from the original data distribution. New
samples are formed by constructing a noise vector from which the
generator attempts to reconstruct the data.

2.6.3 Combining the Discriminator and Generator

The discriminator and generator compete with each other in order
to improve their individual task. The discriminator stimulates the
generator to adapt based on how well the generator fools the discrimi-
nator. In turn the discriminator is adapted to improve its classification
capabilities concerning real and fake samples. In each iteration both
the generator and discriminator are updated to ensure that they are
continuously improving. An overview of the GAN architecture is
depicted in 2.4.



2.6 generative adversarial networks 13

Generator

Real data Sample

Sample

Discriminator Fake or Real?

Discriminator
Loss

Generator
Loss

Training

Training

Figure 2.4: Overview of the Generative Adversarial Network.

Limitations

Although the concept of GANs are rather intuitive, they are noto-
riously hard to train. GANs are susceptible to problems including
vanishing gradients, mode collapse, overfitting, sensitivity to hyper-
parameter initialisation and non-convergence issues [4]. There is a lot
of ongoing research in the field of generative modelling that aims to
stabilise GAN training. Two versions of GANs and their implications
are discussed in section 2.6.4.

2.6.4 Training a GAN

The vanilla version of GANs utilises the Jensen-Shannon (JS) Diver-
gence to measure the similarity between the training data and gen-
erated samples [17]. This version could be considered as a minimax
game in which the generator tries to fool the discriminator and the
discriminator classifies the data as fake or real. In each training step,
both the generator and discriminator are updated. The discriminator
is adapted to maximise its accuracy while the generator is adapted
to minimise the accuracy of the discriminator. The minimax objective
that the discriminator D and generator G collectively want to reach is:

min
G

max
D

E
x∼Pr

[log(D(x))] + E
x̃∼Pg

[log(1− D(G(z)))], (2.5)

where Pr is the distribution of the real training data and Pg is the
distribution of the generated fake data.

Another version of a GAN is the Wasserstein GAN (WGAN) [3].
WGANs differ from vanilla GANs by changing the role of the discrim-
inator. The discriminator no longer decides whether the sample came
from the original distribution, but instead acts as a critic. Generally



14 function approximation

speaking high values for the discriminator now indicate that the data
is real and small values indicate fake data.

WGANs aim to solve the problem of non-continuity in the parame-
ters of the generator caused by the JS-divergence. As an alternative,
Earth-Mover distance is used which looks at how much mass should
be transported from one distribution P to the other Q to transform
P to Q. The benefit of this approach is that it is fully differentiable.
WGANs still make use of the minimax objective although it can be
simplified to:

min
G

max
D

E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(G(z))]. (2.6)

Research has shown that WGANs are much more robust against
problems such as mode collapse and it allows the generator to still
learn properly even when the critic is powerful and well-trained.



3
D I M E N S I O N A L I T Y R E D U C T I O N T E C H N I Q U E S

The aim of this chapter is to explain several dimensionality reduction
(DR) techniques. DR concerns itself with finding or constructing a
new subset of features that can describe the data with fewer dimen-
sions. A large portion of this chapter is dedicated to a specific class of
DR techniques, namely autoencoders. There exist many flavors of au-
toencoders each specialised to invoke constraints on the learned data
encoding. The context for DR techniques and therefore the use of au-
toencoders in this research is to prevent the overfitting problem that is
present in high-dimensional inverse reinforcement learning problems.
However many other reasons to use autoencoders exist including data
visualization, speeding up computation time in algorithms or data
storage.

3.1 standard downsampling

One of the easiest ways to reduce the dimensionality of data is to
perform downsampling. In statistical signal processing, downsampling
is a process of compression in which an approximation is obtained
by lowering the sampling rate of a signal. Any type of data can be
considered to be a signal, hence downsampling can be applied to
a variety of different data types including images. In the case of
images, downsampling simply lowers the resolution by throwing
away a number of pixels. For example, downsampling an image by
two means that every other pixel in both the width and the height
of the image is thrown away. The new obtained image is therefore
an approximation of the original image. Although it is farily easy to
apply, the downside of this approach is that the lost data cannot be
recovered.

3.2 autoencoders

Another way to reduce the dimensionality of the data is through the
use of autoencoders [42]. Autoencoders are neural networks which
are trained to learn a low dimensional representation of the original
data. Normally an autoencoder consists of two parts: an encoder
and a decoder. Both the encoder and the decoder make use of a
separate neural network, for example a Multi-Layer Perceptron or a
Convolutional Neural Network. The goal of the encoder is to embed
the original input data to a lower dimension latent space. In turn,
the decoder attempts to reconstruct the latent embedding back to

15



16 dimensionality reduction techniques

the original data. The reconstructions are useful since it allows for
validating the effectiveness of the autoencoder by comparing it to
the original data. A metric is then used to minimise the discrepancy
between the original and the reconstructed data.

3.2.1 Vanilla autoencoder

One of the most simple autoencoders is the vanilla autoencoder. This
autoencoder consists of three layers: one input layer, one output layer
and one hidden layer. The input and output layer have the same
amount of nodes and should match the dimensionality of the data. An
embedding is learnt by training the system end-to-end by optimising a
loss function. In many cases this means the minimization of the Mean
Squared Error (MSE). Figure 3.1 demonstrates two autoencoders. The
autoencoder on the left implements a multilayer perceptron and the
autoencoder on the right makes use of convolutional neural network
in order to deal with input images. Note that convolutional layers
are used to obtain the lower dimensional latent space. By means of
transposed convolutional layers a reconstructed image is obtained
from the latent space representation.

Input
Nodes

Hidden
Nodes

/
Latent

Output
nodes

Input
Image

Latent Space
Representation

Output
Image

Figure 3.1: Left: An example of an autoencoder utilising a multi-layered
perceptron. Right: An example of an autoencoder utilising a
convolutional neural network.

3.2.2 Variational Autoencoder

Although the autoencoders as described above have proven to be use-
ful for learning a more compact representation, there are also short-
comings to the vanilla autoencoders. One of the fundamental problems
with these types of autoencoders is that there is no constraint on the
learnt embedding space. This means that the embedding space might
contain gaps between the datapoints. By sampling from a space that
contains discontinuities, an unrealistic output can be obtained. Varia-
tional AutoEncoders (VAEs) are designed to construct latent spaces
which are continuous [23]. One of the powerful features of VAEs is
that they approximate the latent vectors z as probability distributions.
VAEs generally model the latent space to be a centered normally



3.2 autoencoders 17

distributed Gaussian. A new latent sample can be constructed by
sampling from the standard deviation vector and adding the mean to
it.

The goal is to maximise the Evidence Lower BOund (ELBO) which
is needed to approximate the posterior inference. The loss of a VAE is
computed as:

L(θ, φ; x, z) = Eqφ(z|x)[logpθ(x|z)]− DKL(qφ(z|x)||p(z)), (3.1)

where the first part is the reconstruction or generative loss and
the second part is the latent loss which uses the KL-divergence to
enforce normality on the latent vectors with mean 0 and standard
deviation 1. Furthermore, x denotes the original data and z denotes
the latent embedding. θ and φ are learnable parameters required to
form a reconstruction.

Since VAEs provide more control over the latent embedding space
they can be preferred over the use of vanilla autoencoders.

3.2.3 Vector Quantised-Variational AutoEncoder (VQ-VAE)

More recent research [54] combines concepts of Vector Quantisation
(VQ) [18] with Variational Autoencoders. These types of autoencoders
make use of discrete latent spaces. According to the authors many
things in the real world are discrete such as phonemes or classes of
animals. It would not make sense to interpolate between these types
of categorical data. Another benefit is that categorical distributions,
generally speaking, are easier to model. Before going into the details
of VQ-VAE, it is worth explaining how Vector Quantisation works.

Vector Quantisation

The goal of VQ is to partition the input space into L distinct regions.
Each cell in L is called a Voronoi region and is represented by its
respective codevector. The idea is to map n-dimensional vectors x
into a finite set of n-dimensional codevectors. The finite set of n-
dimensional codevectors is often referred to as a codebook. To find
the codevector to which an input pattern relates, a search metric such
as Euclidean distance can be used. The input pattern is assigned to
the closest codevector in the codebook.

Learning happens by updating the location of the codevectors. Ini-
tially the codevectors are distributed at random or according to some
metric which ensures that the codevectors are spread evenly. For each
iteration, the input patterns are assigned to the closest codevector.
The update step is implemented by moving each codevector to the
average location of the input patterns corresponding to that codevector.
This step is repeated until a stopping criterion is met. For example,
one could stop whenever the change of codevectors is smaller than a
specific threshold.



18 dimensionality reduction techniques

Combining VQ with Autoencoders

The novelty in this type of autoencoder is that it utilises a quanti-
sation layer to build a discrete latent space alongside the standard
autoencoder algorithm. The overall architecture is shown in Figure
3.2.

Figure 3.2: A visualization of VQ-VAE acting on image data. Reprinted from
[54].

obtaining the latent representation The latent embed-
ding space is defined by e ∈ RKxD, where K represents the size of the
latent space that follows from the encoder and D is the dimensionality
of the latent codevector. An input pattern x is mapped to this space by
the encoder resulting in ze(x). The quantisation layer in turn maps the
output of the encoder to RK by committing to the closest codevector ej
in the codebook given by:

q(z = k | x) =

{
1 for k = argminj

∥∥ze(x)− ej
∥∥

2

0 otherwise
. (3.2)

This shows the strength of the approach by projecting the embed-
ding space to a much lower dimensional space in which only the
indices of each codevector are considered.

training the system Since the quantisation layer makes use of
the argmin operation it is not possible to propagate the gradients back
through the system directly. One way to deal with this is to copy over
the gradients from zq back to ze. The stop gradient operator sg[·] is
used in the computation of the loss function to restrict the flow of
gradients where they cannot be computed.

The authors use three loss functions in order to train the system
end-to-end. First, similar to the vanilla autoencoder, the reconstruction
loss (or MSE) is used to optimise the encoder and the decoder:

Lreconstruction = − log
(

p
(
x | zq(x)

))
. (3.3)



3.2 autoencoders 19

Second, a codebook loss is implemented to minimise the difference
between the embedding vectors and the encoder output using l2
regularisation:

Lcodebook = ‖sg [ze(x)]− e‖2 . (3.4)

This is basically how the vanilla VQ algorithm works.
Last is the commitment loss. The commitment loss causes the output

of the encoder to be relatively close to the embedding space. It also
helps with committing to a specific codevector by minimising flucta-
tions between multiple codevectors in the codebook. The commitment
loss is given by:

Lcommitment = β ‖ze(x)− sg[e]‖2 , (3.5)

where β is a parameter that indicates how important the commit-
ment loss is compared to the other two losses. The authors chose
β = 0.25 and have shown robust results when varying β between 0.1
and 2.0.

Combining the loss functions yields:

Ltotal = Lreconstruction + Lcodebook + Lcommitment. (3.6)

Since this involves a minimisation process, it is impossible to propa-
gate the gradients back through the quantisation layer.

state-of-the-art In further research, VQ-VAE has proven to
be suitable for large scale image generation [39]. Other applications
include music generation and compressing speech while maintaining
high reconstruction quality [11, 16].





4
R E I N F O R C E M E N T L E A R N I N G

Neural Networks are able to approximate an arbitrary decision bound-
ary. As such they can also be combined with Reinforcement Learning
(RL) algorithms. In a standard RL setting, an agent is situated in an
unknown environment and has no apriori knowledge on how to be-
have in the environment. The goal of the RL agent is to derive a policy
or strategy that allows the agent to maximise its future rewards. By
interacting with the environment an agent receives rewards which can
be used to adapt to the environment by altering its strategy. Figure
4.1 illustrates the typical RL cycle. The purpose of this section is to
provide an overview of the basics of RL and the parts that are relevant
for this thesis. A more complete overview can be found in [56], [49]
and [25].

Agent

Environments

state st

reward rt

rt+1
st+1

action at

Figure 4.1: The typical Reinforcement Learning cycle. An agent performs an
action at in state st. Upon taking that action it receives a reward
rt+1 and ends up in a new state st+1.

The next section provides a formal description of the key concepts
in RL.

4.1 key concepts

environment The agent is situated in an environment. In this
environment, the agent can act and observe what the consequences
are. Formally it defines the transitions from one state to another upon
taking an arbitrary action a.

state space The state space S is the set of states in an environment
that an agent can observe. These states can take many forms. States
can be discrete and continuous. An example of a continuous state
are the joint positions of a robotic arm or the pixel information of a
video-game. An example of a discrete state might be the configuration
of a chess board.

21



22 reinforcement learning

action space The action space A is the set of possible actions that
the agent can take. An example related to the robotic arm is the ability
to control the robotic arm by utilising the stiffness of the muscles. The
stiffness could be represented by a continuous value. Another instance
are the actions one could perform on an Atari console. Some Atari
games use a joystick which is able to move to any of the 8 cardinal
directions such as represented on a compass. Additionally the joystick
has a neutral position when no direction was indicated. This results
in a discrete action space of length 9.

reward function Reward functions are required to provide
stimuli to agents which allows them to be aware of the consequences
of their actions. A reward function R can be associated with both
a state S (R : S → R) or with a state-action pair (R : S × A →
R). A reward function can provide positive and negative rewards.
Positive rewards can be provided when the agent performed desirable
behaviour. On the other hand, negative reward can be provided when
the agent acts undesirably in the environment. In some cases negative
rewards are distributed to encourage an agent to reach a terminal
state as quickly as possible. The agent attempts to minimise these
accumulating penalties obtained from the negative rewards by finding
a solution that requires the least amount of steps.

The sum of discounted future rewards, also called return, is defined
as:

Gt = Rt+1 + γRt+2 + .... + γT−1RT + ... =
∞

∑
k=0

γkRt+k+1 (4.1)

where Rt+1 is the reward at time t + 1 and γ is the discount factor.

discount factor The discount factor γ (0 ≤ γ ≤ 1) is a meta-
parameter that denotes how important future rewards are. A value
close to 0 leads to choosing actions that only maximise the immediate
reward. A discount factor close to 1 is preferred when rewards in the
distant future are preferred. In general, the closer the discount factor
γ is to 1, the further the rewards will propagate through time. As seen
in Equation 4.1, the discount factor is used to discount all the rewards
that are accumulated over time. The further the reward is away, the
less influence it has on the overall return due to the exponentiation of
the discount factor.

markov decision process Markov Decision Processes (MDPs)
allow systems to act optimally when faced with uncertainty. Formally
an MDP is defined as a 5-tuple consisting of states, actions, transition
probabilities, rewards and a discount factor. A process is Markovian if
the transition probability distribution of the next state only depends
on the current state and action. Formally this means that P(st+1|st, at).



4.2 reinforcement learning algorithms 23

policy The policy defines the behaviour of an agent. Formally it
maps each observed state to a particular action π : S → A. In RL
the aim is to iteratively adjust the policy of the agent such that it
maximises the sum of discounted rewards.

optimal value function There are several ways to compute an
optimal policy. A policy is optimal if there does not exist another policy
that returns a higher expected sum of discounted rewards. There can
exist multiple optimal policies if the expected sum of discounted
rewards is the same.

A state value function Vπ(s) roughly indicates how good it is to
be in a specific state. Vπ(s) effectively returns the discounted sum of
rewards when starting in state s following policy π. The computation
for this value function is given in Equation 4.2.

Vπ(s) = Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣∣∣s0 = s, π

]
(4.2)

The state-action value function as given in Equation 4.3 computes
the discounted sum of rewards when performing action a in state s
after which policy π is followed.

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k+1

∣∣∣∣∣s0 = s, a0 = a, π

]
(4.3)

The goal is to maximise both value functions. This is achieved by
considering the policy π that yields the highest sum of discounted
rewards. The computation for the optimal state value function is given
in 4.4.

V∗(s) = max
π

Vπ(s) (4.4)

In Equation 4.5, the optimal state-action value function is computed
by considering the policy that yields the highest sum of discounted
rewards.

Q∗(s, a) = max
π

Qπ(s, a) (4.5)

4.2 reinforcement learning algorithms

A wide variety of methods exist to find an optimal policy. Two ap-
proaches are value iteration [6] and policy iteration [19].

Value iteration starts with a random value function and makes use
of the Bellman equation to find the optimal value function. To achieve



24 reinforcement learning

this, an iterative process is performed to find new value functions. In
Equation 4.6, the update for the state value function is given.

Vπ
i+1(s) = max

a

[
R(s, a) + γ ∑

s′∈S
p
(
s′ | s, a

)
Vi(s′)

]
(4.6)

Equation 4.7 shows the update for the state-action value function.

Qπ
i+1(s, a) = R(s, a) + γ ∑

s′∈S
p
(
s′ | s, a

)
Qi(s′, a′) (4.7)

Once the optimal value function is determined, it is trivial to obtain
the optimal policy. Equation 4.8 shows how to recover the policy using
the obtained state value function.

π(s) = arg max
a∈A

[
R(s, a) + γ ∑

s′∈S
p
(
s′ | s, a

)
V(s′)

]
(4.8)

In Equation 4.9 the policy is recovered using the obtained state-
action value function.

π(s) = arg max
a∈A

Q(s, a) (4.9)

Policy Iteration differs from Value Iteration by also updating the
policy at each step. This is achieved in two steps. The first step recovers
the value function given a policy (policy evaluation). The second step
is to find a new policy based on this previous value function. These
steps are repeatedly executed to obtain an optimal policy.

Value Iteration and Policy Iteration are often not a viable algorithm
to derive the optimal policy. One limitation is that both algorithms
require the model to be fully observable. This means that the transition
probabilities (dynamics of the environment) and rewards should be
known. Both Value Iteration and Policy Iteration also iterate over all
the states in the state space S. If the state space is large it is not possible
to find an optimal policy in reasonable time.

4.2.1 Monte Carlo Methods

Monte Carlo methods provide an alternative to Value Iteration and
Policy iteration in order to learn value functions and optimal policies.
These kinds of methods learn value functions on the basis of experi-
ences (state-action pairs) sampled from the environment at hand. This
means that the dynamics of the environment are not required to learn
an optimal policy. Since learning is based on individual examples an



4.2 reinforcement learning algorithms 25

approximated value function is obtained as a result. A Monte Carlo
update can be expressed as:

V(St) = V(St) + α(Gt −V(St)), (4.10)

where Gt is the sum of discounted future rewards and α ∈ [0, 1] is
the learning rate. The return Gt is only known after the entire episode
(once all the state-action pairs are presented). The result is a more
practical approach to computing the value function.

4.2.2 Temporal Difference Learning

td(0) Temporal Difference (TD) Learning differs from Monte Carlo
methods by using a single state-action pair to approximate the value
function [48]. The update equation is adapted to take the following
form:

V(St) = V(St) + α

[
Rt+1 + γV(St+1)−V(St))

]
. (4.11)

This form of TD learning is called TD(0) or one-step TD since only
one state-action pair is used to update the value function. Note that
TD(0) is similar to Monte Carlo, except that the update takes place
after every step.

q-learning An off-policy TD control algorithm is Q-Learning
[55]. Q-Learning is used to obtain the Q-function which denotes the
utility of performing action a in state s. The Q-function approximates
the optimal state-action value function independent of the policy that
is followed. The Q-function is updated according to the following
Equation:

Q(st, at) = Q(st, at) + α(rt+1 + γ max
a′

Q(st+1, a′)−Q(st, at)) (4.12)

sarsa SARSA [43] is an on-policy TD control algorithm. It uses
experiences of the form (st, at, rt+1, st+1, at+1) to update the state-action
value function Q(s, a) rather than using state-action pairs. Equation
4.13 shows how the Q-function is updated.

Q(st, at) = Q(st, at) + α(rt+1 + γQ(st+1, at+1)−Q(st, at)) (4.13)

A more elaborate explanation on TD learning and other forms of
TD learning are discussed in [49].





5
S TAT E - O F - T H E - A RT D E E P R E I N F O R C E M E N T
L E A R N I N G

Humans are able to adapt well to various situations they encounter. In
normal situations, complex problems such as grabbing an object with
your hands or driving a car without causing an accident can be tackled
rather easily by a human. Control tasks or high-level cognitive tasks
as such are not trivial to solve using an artificial construct. The goal of
this chapter is to describe the recent advances of Deep Reinforcement
Learning (DRL). DRL utilises deep learning to solve complex RL
problems.

The first part focuses on the Deep Q-Network (DQN), an exten-
sion on Q-learning. The second part describes several policy gradient
methods to obtain policies. Specifically, Deep Deterministic Policy Gra-
dient (DDPG), Trust Region Policy Optimisation (TRPO) and Proximal
Policy Optimisation (PPO) are discussed.

5.1 dqn

In 2013, researchers successfully implemented a Deep Neural Network
that is able to learn control policies directly from pixel data using
RL [32]. Their approach, DQN, was able to play Atari 2600 games
reasonably well, outperforming human players in some games using
only pixel information.

DQN differs from online Q-Learning by employing an Experience
Replay (ER) buffer in combination with Convolutional Neural Net-
works and optionally a target network. An ER buffer accumulates
the experiences (st, a, r, st+1) of the agent at each time step. At each
step samples are taken uniformly from the ER buffer, yielding a list of
experiences. On each of these experiences a Q-Learning update step
is performed. Finally the algorithm chooses an action based on the
ε-greedy strategy similar to Q-Learning.

There are several advantages with this approach over the standard
Q-Learning approach. Firstly, it allows the algorithm to be more data
efficient as the experiences in the ER buffer are reused multiple times
to adjust the weights of the network. Secondly, there are less corre-
lations between the experiences that the network is trained on. In
Q-Learning, the experience that the network is trained on depends on
the previous experience. DQN takes random experiences and therefore
there is less correlation between subsequent experiences. This leads to
a decrease in variance in the Q-Learning updates.

27



28 state-of-the-art deep reinforcement learning

5.2 policy gradient algorithms

Another approach to solving Reinforcement Learning problems is Pol-
icy Gradient (PG) [50]. Policies in PG algorithms are represented by a
parametric distribution πθ(a|s) = [P][a|s; θ) and actions are stochasti-
cally selected according to the policy parameters θ. Many approaches,
including DQN, are value-based methods which use a value-function
to both optimise the policy and perform action selection. Similar to
DQN, PG algorithms use value functions to model and optimise a
policy. However, PG algorithms do not require a value function to
perform action selection. By interacting with the environment, one
is able to continuously update the parameters of the model θ until
the network converges to the optimal policy π∗. Updating the model
using PG methods is done by ascending the gradient of the policy
with regards to a local maximum J(θ):

∆θ = α∇θ J(θ), (5.1)

where ∇θ J(θ) is the policy gradient. There are no limitations on the
parameterisation of the policy as long as the policy is differentiable.

PG has several advantages over value function approaches. Depen-
dent on the task, sometimes it is easier to solve the problem by learning
a policy directly rather than solving it by using a value function. In
general PG approaches have better converging properties. Value func-
tions are known to oscillate or diverge. PG approaches perform small
updates to the policy directly which leads to a much smoother learn-
ing trajectory. PG is more effective in continuous and high dimensional
spaces. Another advantage is that PG allows for learning stochastic
policies, which is useful to learn a set of tasks which can otherwise not
be solved optimally by maximising a value function. As PG methods
are stochastic, it is possible to learn probabilities for taking actions
rather than learning a deterministic action by inheriting randomness
in the model.

One downside from vanilla PG algorithms is that the variance of the
gradients is high. Other PG algorithms attempt to reduce the variance.

5.2.1 REINFORCE

REINFORCE is one of the most basic policy gradient based approaches
[57]. The algorithm uses episode samples to update the policy Θ in an
online manner. This is achieved by estimating Q by using an unbiased
return sample. Using this information, an update to the parameters is
performed in the direction of the stochastic gradient:

∆θt = α∇θ log πθ(st, at)Gt. (5.2)



5.2 policy gradient algorithms 29

A baseline can be used to reduce the variance in a PG system.
No bias is introduced when adding a baseline. This means that a
value function is used in the computation of the gradient. With a
baseline, REINFORCE can converge to a local minimum but is slow
and produces high variance estimates. This is due to the nature of
Monte Carlo methods.

5.2.2 Actor-Critic Methods

Actor Critic methods utilise two approximators to learn a value func-
tion and a policy. Actor-Critic methods combine value function ap-
proximation with policy methods. While the vanilla PG approach uses
the return to estimate the action value function, now a critic is used to
estimate the value function. To estimate this function, a policy eval-
uation algorithm should be considered such as temporal-difference
learning.

In an Actor-Critic system there are two components. The critic is
responsible for evaluating the decisions of the actor. The evaluation
determines how to adapt the policy parameters (actor) in the direction
suggested by the critic. The actor is the component that acts in the
environment by choosing the actions.

Actor-Critic methods share some similarities with the REINFORCE
algorithm. Both approaches use value functions as a baseline. However
Actor-Critic methods use bootstrapping while REINFORCE does not
[49].

5.2.3 Off-Policy Actor Critic methods

Actor-Critic Systems can also be modelled off-policy. This means that
the policy gradient is estimated using a separate behaviour policy
β(a|s) rather than the using the target policy πθ(a|s) itself. The be-
haviour policy is also used to generate trajectories. The critic in turn
evaluates the state value function from these sampled trajectories in
an off-policy manner. Gradient temporal difference learning is used
for this. The actor also makes use of these trajectories off-policy by up-
dating the policy parameters θ by means of stochastic gradient ascent.
Importance sampling is used to correct for the mismatch between the
behavioural policy and the target policy πθ(a|s)

βθ(a|s) .

5.2.4 DDPG

Deep Deterministic Policy Gradient (DDPG) [28] is a model-free
off-policy Actor-Critic system that is able to learn policies in high-
dimensional and continuous action spaces and is based on Determin-
istic Policy Gradient (DPG) [47]. Unlike the previous discussed PG



30 state-of-the-art deep reinforcement learning

algorithms which are all stochastic, DPG is a deterministic algorithm.
One important difference between stochastic and deterministic PG
algorithms is that deterministic algorithms only integrate over the
state space. Stochastic PG algorithms integrate over both the state and
action space. Stochastic policies require more examples to estimate the
policy gradient since integration is done over states and actions. Espe-
cially with high dimensional action spaces, computing the gradient
becomes less efficient.

Deterministic policies have more difficulty to fully explore the state
and action spaces when compared to stochastic policies. Determinis-
tic Policy Gradient introduces an off-policy learning algorithm that
chooses actions according to a stochastic exploration policy while
learning is done with a deterministic target policy.

DDPG combines the advantages from DPG and DQN. DQN sta-
bilises learning by introducing experience replay buffer. This buffer
allows for training the function approximator off-policy while min-
imising the correlation between samples. Note however that DQN only
works well in discrete spaces due to the maximisation step needed to
obtain the highest Q. DDPG extends DQN to be able to work with
continuous action spaces while learning a deterministic policy.

5.2.5 TRPO

A scalable model-free algorithm for optimising policies is Trust Re-
gion Policy Optimisation (TRPO) [45]. TRPO guarantees monotonic
improvements when optimising a policy. As of writing, TRPO is
considered one of the strongest baseline algorithms to test when im-
plementing new policy gradient algorithms. TRPO relies on the use
of Natural Gradient Descent. A conjugate gradient together with a
line search is computed to obtain the gradient. Trust Region methods
are used to constrain the update step to improve the policy. TRPO
specifically considers the KL divergence, which computes the differ-
ence between the old and new policy parameters, as a measurement
of trust. The objective function that is maximised given the constraint
is:

maximise
θ

Êt

[
πθ(at|st)

πθold
(at|st)

Ât

]
, (5.3)

which is subject to

Êt
[
KL
[
πθold (· | st) , πθ (· | st)

]]
≤ δ. (5.4)

Natural Gradient Descent

. Performance
when solving optimisation problems using standard gradient descent
approaches is heavily dependent on the parameterisation of the model.



5.2 policy gradient algorithms 31

Gradient descent is an optimization strategy that minimizes some
objective in an iterative fashion. Each iteration, the algorithm takes a
step in the direction of the steepest descent. There is no guarantee that
the network parameters before and after a gradient descent update
are similar. In order to become invariant to model parameterisation,
Natural Gradient Descent [20] can be considered. Using a similarity
measure such as KL divergence, Natural Gradient Descent computes
the similarity between the distribution of network parameters before
and after the update and limits how different our distribution becomes
when following the gradient. This ensures that the behaviour of the
policy is similar before and after the update step which results in more
stable learning.

Performance when solving optimisation problems using standard
gradient descent approaches is heavily dependent on the parameteri-
sation of the model. Gradient descent is an optimization strategy that
minimizes some objective in an iterative fashion. Each iteration, the
algorithm takes a step in the direction of the steepest descent. There is
no guarantee that the distribution for action selection before and after
a gradient descent update are similar. In order to become invariant
to model parameterisation, Natural Gradient Descent [20] can be con-
sidered. Using a similarity measure such as KL divergence, Natural
Gradient Descent computes the similarity between the distribution for
action selection before and after the update and limits how different
the distribution becomes when following the gradient. This ensures
that the behaviour of the policy is similar before and after the update
step which results in more stable learning.

Fisher Information

KL divergence provides a measure of similarity between two proba-
bility distributions. In order to compute the similarity between two
distributions, The Fisher Information measure is used to compute the
second derivative or Hessian of the KL divergence.

Surrogate Loss

TRPO utilises a surrogate loss function to optimise the policy. First the
likelihood ratio between the new and old distribution parameters is
computed. Then the likelihood is multiplied by the estimated advan-
tage. The loss is obtained by taking the negative mean of the previous
result.

Conjugate Gradient

Optimisation of the policy is done via the conjugate gradient method
and line search. The value function is updated by means of stochastic
gradient descent. Conjugate Gradient aims to approximately solve
x = A−1b, where A is a symmetric positive-definite matrix. This



32 state-of-the-art deep reinforcement learning

matrix is given by the Fisher information matrix. An iterative process
is started to minimise 1

2 xT Ax− bx.

Trust Region Methods

Optimising objectives can be done using line search methods and trust
region methods. Line search finds a direction to improve the policy
by means of gradient descent using a selected step size. In contrast,
trust region methods first select a trust region. A trust region caps the
maximum step length. Then the goal is to search the region around
our estimate to find a point which optimises the object. Trust region
methods approximate the objective f with a simpler objective f, and
only the region is considered that approximates the original objective f
close enough. This simpler objective is achieved by not using the new
state distribution frequency, but maintaining the old state visitation
frequency.

5.2.6 Proximal Policy Optimisation

Proximal Policy Optimisation (PPO) [46] aims to solve some of the
limitations of other RL algorithms. Vanilla PG approaches fail to use
data efficiently and learning is not robust. The data inefficiency is
caused by only training on the data that is generated by the policy.
After a single policy gradient update the old data is no longer used.
Learning is not robust since there is no constraint on the gradient
step size. A step size too big leads to poor policies, while a small
step size causes a slow learning process. Instead, PPO attempts to
improve on the work of TRPO by making the algorithm more scalable,
robust and data efficient. To ensure reliability and stability, trust region
methods are used. In PPO, policy optimisation is achieved in two steps.
The first step is to sample data from the policy. The second step is to
optimise the policy by multiple epochs of stochastic gradient ascent. As
discussed, TRPO maximises a surrogate objective function and is hard
constrained by the size of the update step. Instead of a hard constraint,
PPO reformulates the objective function such that the problem is no
longer a hard constraint optimisation problem. The authors of PPO
propose two alternatives to the constraint. One alternative is to have
an adaptive KL penalty coefficient. The other alternative is to use
a clipped surrogate objective function as described below. Results
indicate that using a clipped surrogate objective function yields better
performance than using an adaptive KL penalty coefficient. In this
research only the clipped surrogate objective function is considered.
[46] describes the adaptive KL penalty in more detail.



5.2 policy gradient algorithms 33

Clipped Surrogate Objective

Consider the ratio between the new and the old policy rt(θ). The next
step is then to approximate the long-term reward η by optimising the
surrogate objective function:

LCPI(θ) = Êt[
πθ(at|st)

πθold(at|st)
Ât] = Êt[rt(θ)Ât]. (5.5)

Maximising this objective without a constraint causes the update
step to be very large. Note that CPI stands for conservative policy
optimisation. PPO proposes to optimise the following function instead
which penalises updates which are too large:

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], (5.6)

where ε is a hyperparameter used to clip the probability ratio
rt(θ). Note that LCLIP(θ) is a lower bound of LCPI(θ). Optimising the
objective function for PPO is less computationally expensive compared
to the objective function for TRPO.





6
I N V E R S E R E I N F O R C E M E N T L E A R N I N G

Reinforcement Learning (RL) provides powerful set of tools to learn
how to operate in an environment through trial and error.

As discussed in Chapter 4, the goal of RL is to derive an optimal pol-
icy which specifies what action is to be performed given an arbitrary
state. Deriving such a policy is achieved by allowing an agent to carry
out a set of actions in an environment. By providing rewards or pun-
ishments to the agent, it is possible to reinforce its behaviour or policy.
These rewards and punishments are captured in a reward function,
which provides a specification of how well an agent is performing
given the state that the agent is in.

This section discusses several methods to obtain a policy without
the need of reward engineering. The main purpose is to provide an
overview of different Inverse Reinforcement Learning (IRL) algorithms.
Before going into the several IRL algorithms, a short discussion on Im-
itation Learning is given to bridge the gap between Imitation Learning
and IRL.

6.1 imitation learning

One way to learn behaviour is to clone the behaviour of an expert
directly. One way to achieve this is through Behavioural Cloning
(BC) [31, 38]. BC attempts to learn for each state what action has
to be performed in a supervised learning manner. This is achieved
by sampling state-action pairs from trajectories or another source of
demonstrations and training a supervised learner to minimise the
discrepancy between the output of the learner and the desired action.
There are several drawbacks using this approach. First, there is no
reasoning about the outcome and dynamics in behavioural cloning.
The actions are simply copied from the demonstrations of the expert.
This can lead to poor generalisation when faced with an unseen state.
Second, BC has only proven to be effective in applications where no
long-term planning is required. Considering the limitations, it can be
desirable to reason what the goal of the expert is rather than copying
the actions blindly. The following section is dedicated to Inverse
Reinforcement Learning which aims to alleviate these limitations.

6.2 inverse reinforcement learning

Inverse Reinforcement Learning (IRL) attempts to solve the problem
of deriving reward functions automatically when only expert demon-

35



36 inverse reinforcement learning

strations are readily available [35, 44]. Generating reward functions
using IRL methods is generally more useful than Behavioural Cloning,
as discussed in the previous section, since it allows for better generali-
sation in environments. An agent trained using Behavioural Cloning is
able to store examples from the training demonstrations, but is likely
to fail in situations that are not captured in the training data. IRL
methods attempt to derive what the goal of the environment is given
the expert demonstrations.

There are several reasons to study the field of Inverse Reinforcement
Learning.

• To understand that IRL inverts the RL problem. RL derives a
policy given a reward function while IRL tries to reconstruct a
reward function learning from expert demonstration. In some
cases, expert examples are easier to capture compared to provid-
ing a sensible reward function which leads to desirable behaviour.
Manually defining a reward function limits the applicability of
the model.

• It is possible to model the rewards more closely to the expert
demonstration in contrast to manually specifying such a reward
function.

• A reward function is a representation that describes the prefer-
ences of an agent in a well-defined manner. In [44], the authors
claim that a reward function is more transferable than a learnt
policy. A small change in the environment causes the policy to
collapse, however a reward function might be able to generalise
to different environments.

• In some tasks it is beneficial to capture the preference of an
expert in the system. In autonomous vehicle control tasks, it is
not possible to start with tabula rasa initialisation and learn a
policy by exploration. This would be a dangerous procedure if
there are no measures to prevent collisions.

6.2.1 Definition IRL

Consider a MDP (S, A, T, γ) without a reward function. Given a finite
state space S, a set of action A, the transition probabilities Tsa(s′|s, a)
describe the probability of ending up in s′ when performing action a
in state s, a discount factor γ, and a policy π; the goal is to find the
set of reward functions R which lead to an optimal policy π∗ in the
specified MDP.



6.3 maximum margin optimisation 37

6.2.2 Limitations of IRL

Before going into the specific IRL algorithms it is important to describe
some of the problems associated with IRL algorithms. One of the prob-
lems is that most IRL algorithms are susceptible to reward shaping.
This means that the recovered reward function contains a shaped
component. As this component is dependent on the dynamics of the
environment it is impossible to generalise to unseen environments.
It is inevitable, without taking further measures, to obtain expert ex-
amples that do not contain any information about the environment
that was used to extract them. This means that the IRL algorithm
should take this into consideration when deriving a reward function.
Reward shaping causes IRL to be an under-defined problem. There are
multiple reward functions that can yield an optimal policy by means
of standard RL for a specific environment.

Another challenge is that multiple policies can be found which
explain the same set of expert examples. It is important to know that
IRL algorithms assume that the policy of the expert is optimal with
respect to the unknown reward function [37]. The policy is directly
evaluated on the basis of the unknown reconstructed reward function.

6.3 maximum margin optimisation

Many IRL algorithms make use of maximum margin optimisation
(MMO) to find a reward function that yields the best possible policy
by a margin. The problem of maximum margin can be formulated as:

minimize
w

||w||22
subject to wTµ(π∗) ≥ wTµ(π)∀π,

(6.1)

where π∗ is the optimal policy and µ(·) is the expected cumulative
discounted sum of feature expectations. This optimisation problem
leads to a large number of constraints. Iterative Constraint Generation
is used to solve each constraint. Maximum Margin approaches are
known to introduce bias into the learned reward function. Entropy
approaches attempt to avoid any bias.

6.3.1 Entropy Optimisation

Entropy Optimisation [21] methods make use of the maximum entropy
principle. In an IRL setting, these methods try to obtain a distribution
over possible reward functions and avoid bias.

Maximum Entropy IRL (MaxEnt IRL) [59] attempts to recover a
distribution over all trajectories which maximises the entropy. The
distributions that are considered are subject to the feature expecta-
tions of the policy and should match the expert data. By utilising a



38 inverse reinforcement learning

probabilistic model of behaviour, MaxEnt IRL resolves the ambiguity
that multiple reward functions map to the optimal policy and that
multiple policies can lead to the same feature count.

Consider a trajectory τ = {s1, a1, ..., st, at, ..., sT, aT} drawn from the
expert policy D : {τi} ∼ π∗. The reward of the trajectory is Rψ(τ) =

∑t rψ(st, at).
The probability of the trajectory under the expert is defined as an

energy-based model for behaviour:

p(τ) =
1
Z

exp(Rψ(τ)). (6.2)

This indicates that the trajectories associated with a high reward are
more likely to be sampled from our expert. Evaluating the partition
function Z is relatively easy in low dimensional state spaces or when
the dynamics are known. In high dimensional state spaces or if the
dynamics are unknown, evaluating Z is hard. The reward function is
in turn reconstructed by maximising the log likelihood of the set of
demonstrations:

max
ψ
L(ψ) = ∑

τ∈D
log prψ(τ)

= ∑
τ∈D

log
1
Z

exp(Rψ(τ))

= ∑
τ∈D

Rψ −M log Z

= ∑
τ∈D

Rψ −M log ∑
τ

exp(Rψ(τ)),

(6.3)

where M is the number of expert trajectories. Gradient Descent is
applied to optimise the objective. This results in:

∇ψL(ψ) = ∑
τ∈D

dRψ(τ)

dψ
−M

1
∑τ exp(Rψ(τ))

∑
τ

exp(Rψ(τ))
dRψ(τ)

dψ

= ∑
τ∈D

dRψ(τ)

dψ
−M ∑

τ

p(τ|ψ)
dRψ(τ)

dψ

= ∑
τ∈D

dRψ(τ)

dψ
−M ∑

τ

p(s|ψ)
drψ(s)

dψ
.

(6.4)

Note that p(s|ψ) is the state visitation frequency. This is the proba-
bility of visiting the state at any given time under the demonstration
policy for a reward function parameterised by ψ. In [59], the authors
describe an efficient way to compute the state visitation frequencies by
approximating the state frequencies using a large fixed time horizon
based on the value iteration algorithm.

The Maximum Entropy IRL algorithm has several steps:



6.4 guided cost learning 39

1. Initialise the policy parameters ψ

2. Sample expert demonstration D

3. Derive the optimal policy π(a|s) considering the current reward
function rψ

4. Compute the state visitation frequencies p(s|ψ)

5. Compute the gradient ∇ψL(ψ) of the objective as shown in 6.4

6. Update reward parameters using the gradient ∇ψL(ψ)

7. Repeat steps 3 to 6

6.4 guided cost learning

Guided Cost Learning (GCL) [13] attempts to overcome some of the
issues of MaxEnt IRL by making the algorithm more robust towards
larger state spaces. Additionally, GCL is able to deal with systems
in which the dynamics are unknown, unlike MaxEnt IRL. This is
achieved by making two changes.

• One change is to estimate the partition function rather than com-
puting the partition function analytically. This is achieved by
importance sampling which allows for sampling from a distribu-
tion whose probabilities are proportional to the absolute value
of the exponential of the reward function. Since the optimal re-
ward function is not known, adaptive sampling is performed to
estimate the partition function. This means that the distribution
changes when optimising the objective function.

• The second change is to remove the need for optimising the
policy fully every time a new reward is computed. Instead, only
one policy optimisation step is performed after each modification
of the reward function.

The following section describes how Generative Adversarial Net-
works (GANs) are related to IRL and how they can be combined.

6.4.1 GANs and IRL

The strength of Generative Adversarial Networks (GAN) [17] is to
learn an objective for generating data. The generator could be exploited
as such that it attempts to generate data similar to data from expert
demonstrations. In turn, the goal of the reward function is to associate
high rewards to samples of the expert demonstrations and low rewards
to samples from the generator. There are some noticeable differences
between GANs and IRL on how they operate. Section 2.6 describes
GANs in more detail.



40 inverse reinforcement learning

• GANs operate on single samples while IRL algorithms oper-
ate on entire trajectories. Consequently, GANs generate single
samples while IRL learns a policy that generates trajectories.

• IRL uses a reward function whereas GANs use a discriminator
to discriminate between policy data and demonstration data

The next section described a method that unifies GANs and GCL.

6.4.2 GAN-GCL

GAN-GCL [14] optimises the following discriminator or reward func-
tion:

D∗(τ) =
p(τ)

p(τ) + q(τ)
, (6.5)

where q(τ) is the probability of the trajectory coming from the
policy and p(τ) is the probability of the trajectory coming from the
expert distribution. Note that this could be rewritten to:

D∗(τ) =
1
Z exp(Rψ(τ))

1
Z exp(Rψ(τ)) + q(τ)

, (6.6)

where Rψ(τ) = log π∗(τ), and Rψ is the approximation of the reward.
A justification for this formulation is given in [15]. This means that
updating the discriminator is directly linked to updating the reward
function. The discriminator cross-entropy loss is given by:

Ldiscriminator(ψ) = Eτ∼p[−logDψ(τ)] +Eτ∼p[−log(1−Dψ(τ))]. (6.7)

The generator attempts to learn a distribution close to the expert
data. The idea is that discriminator should not able to distinguish
between whether the data is sampled from the policy or whether it
came from the expert demonstrations. The loss of the generator or
policy is computed as:

Lgenerator(θ) = Eτ∼q[log(1− Dψ(τ))− logDψ(τ)]

= Eτ∼q[logq(τ) + logZ− Rψ(τ)].
(6.8)

This is also called Entropy-Regularised Reinforcement Learning as
both the expected reward and the entropy are maximised.

Although these algorithms have better scaling capabilities and can
deal with unknown dynamics, there is still a reasonable amount of
drawbacks. One drawback is that GANs are notoriously hard to opti-
mise. Another drawback is that GAN-GCL and other IRL algorithms
have difficulty scaling to high dimensional raw pixel data. This is
due to the high variances occurring when approximating the reward
functions since full trajectories are used in the optimisation process.



6.5 adversarial inverse reinforcement learning 41

6.5 adversarial inverse reinforcement learning

As shown GAN-GCL operates on full trajectories. This can lead to
high variance estimates. Adversarial Inverse Reinforcement Learning
(AIRL) [15] reduces the variance estimates by considering single state,
action pairs. By adapting Equation 6.5, the discriminator takes the
form:

D∗(s, a) =
p(s, a)

p(s, a) + q(s, a)
. (6.9)

The authors argue that the use of this form is suitable for imitation
learning but not for learning a reward function. This formulation
causes an entangled reward function which is not robust to changes
in environment dynamics. This is also called the reward ambiguity
problem.

6.5.1 Reward Ambiguity Problem

Consider the reward transformation,

r̂(s, a, s′) = r(s, a, s′) + γΦ(s′)−Φ(s), (6.10)

for any function Φ : S → R, the policy is optimal. Since IRL al-
gorithms learn on the basis of expert demonstrations, it is hard to
disambiguate between the reward functions inside this set of trans-
formations. By restricting how reward functions are learned, it is
possible to find reward functions that are robust to changes in the
environment dynamics. By restricting the discriminator to operate
only on the current state it is possible to remove reward shaping. A
shaping term can be introduced which acts similar to how the advan-
tage function works in Reinforcement Learning. This shaping term
is only dependent on the state and prevents any unwanted reward
shaping. This state-only version of AIRL prevents imitation learning
from happening and allows for learning a representative unshaped
reward function.

6.5.2 Generalisation performance

The authors have shown that AIRL can properly reconstruct reward
functions when training on a set of of control tasks by using the
techniques described above. To validate whether the reward function
is unshaped, the authors mirrored the environment during testing.
The agent still managed to do its task successfully indicating that the
reward functions are robust to changes in dynamics.



42 inverse reinforcement learning

6.6 convolutional neural network airl

Although AIRL was able to reconstruct unshaped reward functions
for control tasks, these are considered to be relatively low-dimensional
in state. Learning reward functions in high-dimensional state spaces
such as the Atari video game environments is substantially harder.

6.6.1 Arcade Learning Environment

The Arcade Learning Environment (ALE) [5] is often used to bench-
mark algorithms on pixel data as it provides an interface to hundreds
of Atari environments. In many of these environments, the state space
is 210x160x3 resulting in 100,800 dimensions when considering that
each dimension ranges from 0 to 255. Comparatively, Humanoid Mu-
joco, an environment in which the goal is to control a 3D robot to walk
as fast as possible, only has 376 dimensions [52].

6.6.2 Scaling to Pixel Data

In [53], an attempt has been made to scale Inverse Reinforcement
Learning techniques to higher dimensional pixel data. In order to
achieve this, their work modifies the existing AIRL architecture in
two ways. First by adapting the AIRL algorithm to support CNNs
rather than MLPs for both the discriminator and generator architecture.
Second by performing Proximal Policy Optimisation rather than Trust
Region Policy Optimisation. This baseline is called CNN-AIRL. To
stabilise training they propose several extensions to the CNN-AIRL
baseline.

• The authors of [53] introduce a novel autoencoder which is tuned
to work for video game environments. An autoencoder learns a
low-dimensional embedding of the data. The embedded repre-
sentation is fed to the reward network, allowing that the reward
architecture is able to learn from fewer expert demonstrations.
As only the discriminator is susceptible to the curse of dimen-
sionality, the policy does not have to make use of the embedded
representation, but can use the original pixel data instead.

• Another extension is to compute the mean reward and standard
deviation over the last sample of trajectories that are used for
training the discriminator. In that way the rewards can be cen-
tered and scaled. This makes sure that the order of the rewards
are stationary upon updating the rewards. This is important as
Policy Gradient techniques take gradient steps.

• Dataset expansion is required the prevent overfitting of the dis-
criminator. To expand the dataset, the authors use the last k



6.6 convolutional neural network airl 43

rollouts of the forward RL step. This is done for each discrimina-
tor training step.

6.6.3 Difficulties in Training

• The authors note that the reward function is often discontinuous
in video games. Hitting or missing a target with a gun is binary,
even though a shot could have been off only by a few centimetres.
Control tasks are in general more continuous as the reward
function is often a function of speed (forward velocity in the
case of Humanoid Mujoco) or distance from goal. It is therefore
important that reward functions with sharp decision boundaries
can be reconstructed.

• Training the discriminator is rather difficult. The training of the
discriminator should be powerful; negative rewards are to be
generated whenever the trajectories of the sampled policy devi-
ate sufficiently from the demonstrations of the expert. However
it should also be noted that the discriminator should not be too
powerful. In that case the discriminator always discriminates the
expert trajectories from the sampled policy trajectories. In liter-
ature this is referred to as the discrimination-rewarding trade-off
[7].

• In order to find a good balanced discriminator one has to solve
the curse of dimensionality problem. In high dimensional state
spaces it is impossible to train on sufficiently many expert trajec-
tories causing the discriminator to overfit. To solve this problem,
dimensionality reduction techniques can be used.

6.6.4 Limitations of AIRL

• One of the limitations of AIRL is that it utilises Policy Optimi-
sation algorithms such as TRPO and PPO although they do not
provide the state-of-the-art results on many Atari environments.
Instead, Q-Learning based approaches such as DQN often out-
perform Policy Gradient methods. However, Q-Learning based
methods are sensitive to changes in reward functions after each
discriminator update. This is undesirable for learning a stable
policy. Therefore it is important to train these algorithms on en-
vironments which are known to be solvable by Policy Gradient
approaches.

• Although autoencoders provide a way to reduce the dimension-
ality of the input data, they are trained to reconstruct the whole
input data. One of the limitations is that a trained latent embed-
ding also captures information that is irrelevant for constructing



44 inverse reinforcement learning

the proper reward function. For example in Pong only the loca-
tions of the ball and the paddles are relevant. For future research
the authors propose to learn an embedding using the Causal
InfoGAN method as this takes into consideration the sequential
nature of the data.



Part II

M E T H O D O L O G Y





7
G E N E R A L I M P L E M E N TAT I O N

This chapter describes the overall pipeline for the experiments. The
goal is to describe the design decisions and how these will answer
the research questions as stated in Section 1.4. First, a description of
the data environment is given. Second, the three steps required for
training the overall architecture are described consisting of collecting
expert demonstrations, learning a low-dimensional representation of
the data and training the Adversarial Inverse Reinforcement Learning
(AIRL) algorithm. As discussed in Section 6.6, many IRL algorithms
suffer from the curse of dimensionality in which the discriminator
overfits on the high-dimensional data. In order to alleviate the problem
of overfitting, the representation obtained from autoencoders can be
used.

The goal of the experiments is to test whether AIRL can recover rea-
sonable reward functions when challenged with high-dimensional en-
vironments. Specifically, low-dimensional representations from three
different autoencoders are fed to the AIRL algorithm. One of the
autoencoders constructs a discrete latent vector which might proof
useful in solving the Atari environments.

7.1 environments

arcade learning environment The larger part of the experi-
ments are performed on two Atari 2600 games from the Arcade Learn-
ing Environment (ALE) [5]. ALE is commonly used by researchers
and provides access to a range of challenging high-dimensional pixel
environments. In the experiments, the performance of the algorithms
are evaluated on Pong and Freeway. In Figure 7.1 an example of the
environments is displayed. Pong is visually relatively simple while
Freeway is visually more complex. Both environments generate colour
images of size 210x160x3 which are downscaled to 80x80 grayscale
images. In order to train on these environments efficiently, an action
is repeated for 4 consecutive frames. Due to the nature of Pong and
Freeway, there is no need for framestacking. The expert can minimise
the distance between the ball and the bat independent of the direction
the ball is moving in. This means that the state at any given time is
simply one 80x80 grayscale image.

pygame learning environment A small number of experi-
ments are performed on the Catcher environment. Catcher is part of
PyGame Learning Environment (PLE) and offers environments which

47



48 general implementation

are visually less complex compared to the environments found in
ALE. A frame of the Catcher environment is displayed in Figure 7.1.
The generated images are of size 80x80 and are converted to grayscale
such that frame representation is identical to the ones used for Pong
and Freeway.

7.1.1 Additional changes to Pong and Freeway

There is no need to be aware of the score in order to play Pong and
Freeway effectively. In order to accelerate the training process, the
scores are replaced by the background colour of their environment.
Figure 7.2 shows some example frames after the preprocessing steps.

(a) The Catcher environ-
ment.

(b) The Pong environ-
ment.

(c) The Freeway environ-
ment.

Figure 7.1: The Catcher Pong and Freeway environments.

(a) The Catcher environ-
ment.

(b) The Pong environ-
ment.

(c) The Freeway environ-
ment.

Figure 7.2: The processed frames used further in the pipeline.

7.2 architecture proximal policy optimization

Inverse Reinforcement Learning techniques make use of expert data in
order to reconstruct a reward function. One way to gather expert data
is to learn an environment by means of standard Reinforcement Learn-
ing. Once an expert has learned to play an environment effectively, it



7.2 architecture proximal policy optimization 49

Parameter Value

Parallel Runs 8

Value Function Coefficient 0.5

Entropy Coefficient 0.01

Horizon 128

# of epochs when optimising the surrogate 4

$ of training minibatches per update 4

Discount Factor γ 0.99

GAE Parameter λ 0.95

Learning Rate η alpha * 2.5e-4

Cliprange 0.1

# of Environments 8

# of Workers 8

# of Timesteps 10e6

Table 7.1: Shared settings for all experts.

is possible to collect high quality expert trajectories. Proximal Policy
Optimisation (PPO) is the state-of-the-art policy gradient algorithm
to effectively learn high-dimensional pixel environments. In Chapter
5, PPO is explained in detail. The chosen parameters for this architec-
ture are displayed in Table 7.1 and reflect the default parameters for
the Atari environment in the OpenAI baselines package [10]. In the
experiments, PPO utilises Convolutional Neural Networks (CNNs)
as function approximators for the Actor and the Critic. Chapter 2

describes CNNs in greater detail. Both the Actor and the Critic make
use of the vanilla CNN architecture as described in [33]. The PPO
architecture is trained using the stochastic optimisation algorithm
Adam [22] and is described in Section 2.4.2.

7.2.1 Collecting expert data

After reaching a proper policy through PPO, it is possible to sample
demonstrations from it. The Inverse Reinforcement Learning algo-
rithms as discussed in this thesis assume that the demonstrations are
sampled from an optimal policy. Therefore it is important that the
samples are taken from a policy which result in high reward scores. A
perfect game of Pong yields a maximum reward of +21. The current
human highscore for Freeway is +38 1. The authors of PPO [46] ob-

1 As consulted from http://highscore.com/games/Atari2600/Freeway/10875 (16-07-
2020)

http://highscore.com/games/Atari2600/Freeway/10875


50 general implementation

Parameter Value

Weight initialization He

Optimization Adam

Learning rate η 1e-4

Encoding regularization term (if used) 0.01

# of Environments 8

Batchsize per Environment 32

Size Replay Buffer 100 batches of size 8 x 32

Maximum amount of Epochs 2500

Table 7.2: Shared settings for all autoencoders

tained a reward of +32.5 in Freeway for PPO which is close to the level
of human experts. In the Catcher environment there is no maximum
reward value. The game simply ends when the ball passes the paddle.
Training continues until the reward exceeds a score of 100 meaning
that it successfully catches 100 balls before dropping one.

7.3 autoencoders

One of the biggest challenges in Inverse Reinforcement Learning (IRL)
algorithms is to deal with high-dimension state spaces. Autoencoders
are a class of dimensionality reduction techniques in which the goal is
to compress the original data as much as possible while maintaining
all relevant information. In the experiments, three different autoen-
coders will be tested: vanilla autoencoder, variational autoencoder and
vector-quantised variation autoencoder. All of these autoencoders are
discussed in more detail in Chapter 3.

7.3.1 General Implementation Autoencoders

The vanilla, variational and vector-quantised variational autoencoders
share a set of settings and hyperparameters across the autoencoders.
Table 7.2 provides these settings and parameters.

7.3.2 Vanilla Autoencoder

The vanilla autoencoder makes use of Batch Normalisation (BN),
Convolutional (Conv) Layers and fully connected (FC) layers to learn
a compressed representation of the data. To obtain the reconstructed
image, the decoder makes use of Deconvolutional (Deconv) Layers.



7.3 autoencoders 51

Layer Type Kernel Depth Stride

1 Conv + BN + LeakyRelu 8 32 4

2 Conv + BN + LeakyRelu 4 64 2

3 Conv + BN + LeakyRelu 3 64 1

4 FC + sigmoid - 80 -

Table 7.3: Encoder architecture for the Vanilla Autoencoder and VAE. The
only difference for VAE is that the depth for the last layer is split in
two parts since the mean and log-variance are encoded separately.

encoder The input consists of the 80x80 preprocessed frames. It
follows the standard Nature CNN architecture as described in Table
7.3. The end result is a continuous feature vector of size 80.

decoder The decoder is fed the output of the encoder and attempts
to reconstruct the input image. The architecture for the decoder is
listed in Table 7.4.

optimisation Adam is used as the optimisation algorithm. A
regularisation term of 0.01 is chosen to prefer values close to 0 in the
latent vector. Furthermore, the encoding is optimised by minimising
the mean squared error between the original and the reconstructed
image.

7.3.3 Variational Autoencoder

Another way to encode data is to utilise Variational Autoencoders
(VAEs). Unlike vanilla autoencoders, VAEs are generative models and
make assumptions regarding the distribution of the latent variables
defined by a mean and standard deviation. Section 3.2.2 describes
VAEs in more detail. In the experiments, the VAEs are parameterised
by convolutional neural networks.

encoder The architecture for the VAE encoder identical to the
Vanilla Autoencoder is listed in Table 7.3.

decoder The architecture for the decoder is listed in Table 7.4.
It is identical to the decoder of the Vanilla Autoencoder except that
the depth is split in two parts since the mean and log-variance are
encoded separately.

optimisation Similar to the vanilla autoencoder, VAE computes
the difference between the reconstructed and the original image using
the mean squared error. Additionally a latent loss is computed which



52 general implementation

Layer Type Kernel Depth Stride

1 Deconv + Relu 3 64 1

2 Deconv + Relu 4 64 2

3 Deconv + Relu 8 32 4

Table 7.4: Decoder architecture for the Vanilla Autoencoder and VAE.

forces the output distribution of the encoder to be close a standard
Gaussian. Adam is again the optimisation algorithm.

7.3.4 Vector Quantised Variational Autoencoders

Recent work combines Vector Quantisation [18] with Variational Au-
toencoders [23]. In Section 3.2.3 the overall architecture of Vector
Quantised Variational Autoencoders (VQ-VAE) is discussed.

autoencoder parameters Table 7.5 lists all the relevant pa-
rameters to instantiate the encoder, vector quantisation layer and
the decoder. These parameters are discussed in Section 3.2.3. Both
the encoder and the decoder have Residual Blocks as part of their
architecture. The architecture for these blocks is shown in Table 7.7.

Parameter Value

Commitment Cost 0.25

Embedding Dimensionality 16

# of Embeddings 4

Size of image 80x80

Table 7.5: Decoder architecture for the VAE.

encoder The encoder constructs a low-dimensional image map
representing a compressed version of the original data. In the experi-
ments, the parameters are carefully chosen on the basis of previous
research. Similar to the previous autoencoders, the encoder in VQ-VAE
operates on 80x80 images. The encoder architecture is displayed in
Table 7.6. The resulting output is a 20x20x16 map which needs to be
processed by the vector quantisation layer.



7.3 autoencoders 53

Layer Type Kernel Depth Stride

1 Conv + ReLu 4 8 2

2 Conv + ReLu 4 16 2

3 Conv + ReLu 3 16 1

4 Residual Block (see Table 7.7)

5 Residual Block (see Table 7.7)

Table 7.6: Encoder architecture of VQ-VAE.

Layer Type Kernel Depth Stride

1 Input + ReLu - - -

2 Conv + ReLu 3 32 2

3 Conv 1 128 2

4 Layer 1 + Layer 3 - - -

Table 7.7: Residual Block used in the encoder and decoder of VQ-VAE.

vector quantisation A vector quantisation step is performed
on the latent representation obtained from the encoder. Recall that
the number of embeddings is 4 which can be represented with 2 bits.
This results in a 20x20 map holding values n ∈ {1, 2, 3, 4}. All relevant
parameters for the Vector Quantisation (VQ) step are listed in Table
7.5. Consult 3.2.3 or [54] for a more detailed explanation on the Vector
Quantisation step.

representation for airl The map has to be transformed to a
representation suitable for the AIRL algorithm. This is done by first
flattening the vector after which a binarisation step is performed to
yield a binary vector of size 800.

decoder After the Vector Quantisation step, the quantised latent
embedding map is consumed by the decoder. Table 7.8 lists the layers
necessary to create a reconstruction of the original image.

optimisation The optimisation process is explained in detail in
Section 3.2.3. The commitment cost is set to 0.25. Again Adam is used
as the optimisation strategy.



54 general implementation

Layer Type Kernel Depth Stride

1 Conv 3 16 1

2 Residual Block (see Table 7.7)

3 Residual Block + ReLu (see Table 7.7)

2 Deconv + ReLu 4 8 2

3 Conv + (Sigmoid - 0.5) 4 16 2

Table 7.8: Decoder architecture for the VQ-VAE.

7.4 adversarial inverse reinforcement learning

Inverse Reinforcement Learning deals with the reconstruction of a
reward function by learning from expert examples. The cornerstone
of this research is the Adversarial Inverse Reinforcement Learning
(AIRL) algorithm that is extensively described in Chapter 6. AIRL
allows for reconstructing reward functions on the basis of adversarial
examples and expert data. However research has shown that AIRL
scales poorly to high-dimension problems in which the dynamics are
unknown. The pseudocode for AIRL is described in Algorithm 1 and
is reprinted from [15]. Although several solutions are proposed to
alleviate the overfitting problem, there is still a lot of improvement
possible.

Algorithm 1 Adversarial Inverse Reinforcement Learning

1: Obtain expert trajectories τE
i

2: Initialise policy π and discriminator Dθ,φ.
3: for step t in {1, ..., N} do
4: Collect trajectories τi = (s0, a0, . . . , sT, aT) by executing π.
5: Train Dθ,φ via binary logistic regression to classify expert data

τE
i from samples τi.

6: Update reward rθ,φ (s, a, s′) ← log Dθ,φ (s, a, s′) −
log
(
1− Dθ,φ (s, a, s′)

)
.

7: Update π w.r.t. rθ,φ using any policy optimisation method.
8: end for

7.4.1 Architecture AIRL

In this research several configurations for AIRL are considered to
solve the Catcher, Pong and Freeway environments as described in 7.1.
This research aims to investigate the performance of AIRL on high-
dimensional pixel data. In order to alleviate the problem of discrimina-
tor overfitting, autoencoders are used to form a low-dimensional latent



7.4 adversarial inverse reinforcement learning 55

Parameter Value

# of Expert Demonstrations 20

# of Training Epochs 200

Batch Size 256

Entropy Weight 0.01

Autoencoders None, Vanilla Autoencoder, VAE, VQ-VAE

# of Discriminator Iterations 100

# of PPO steps in batch 4

Discount Factor γ 0.99

Reward Architecture MLP (CNN if no encoding is used)

Reward Shaping Architecture MLP (CNN if no encoding is used)

RL Algorithm PPO with CNN for Actor and Critic

Table 7.9: Training parameters for the AIRL architecture. Different autoen-
coders are tested on their performance. Several batch sizes and
number of expert trajectories are considered to reconstruct a proper
reward function.

on which the discriminator is trained. Finding a reasonable number of
expert trajectories is important to reduce the chance of overfitting. The
same holds for the batch size. Since the iterations are computationally
very expensive, the batch size and number of expert trajectories are
based on previous research. [53]. The implementation is based on [53].

In all experiment the batch size is set to 256 and the number of
expert trajectories is 20. The amount of training epochs is set to 100,
surpassing the 40 training epochs used in previous research on Atari
environments [53]. The other parameters have less influence on the
optimisation process and are chosen based on existing literature [15,
53]. All parameters relevant to the AIRL training process are listed in
Table 7.9.

In order to evaluate the performance of the autoencoders in the
AIRL system, it is important to have a baseline. This baseline is the
AIRL architecture and does not use any autoencoder. The input of the
system are the raw 80x80 images and the reward architecture makes
use of standard Nature CNNs. The results are collected and depicted
in Chapter 8.





8
R E S U LT S

This chapter is structured by evaluating the results of each step in
the Inverse Reinforcement Learning (IRL) pipeline as described in
Chapter 7. IRL requires expert demonstrations in order to learn the
underlying rewards. The first step is to train a policy to optimality
from which expert demonstrations can be sampled from. To prevent
the discriminator from overfitting in the IRL process, it is important
to work with low-dimensional representations of the game states. The
second step is therefore to train autoencoders to reduce the dimension-
ality of the original data. The last step is to evaluate the IRL algorithm
as a whole by feeding it the low-dimensional representation of the
sampled expert demonstrations. The next sections cover these three
steps and provide the reader with the outcomes of the experiments.

8.1 sampling expert demonstrations

Gathering high quality expert demonstrations is important to prop-
erly train IRL algorithms as they assume that demonstrations are
approximately optimal. The behaviour should be optimal under the re-
ward function that IRL attempts to recover. One way to obtain expert
demonstrations is to first learn a policy using standard Reinforce-
ment Learning from which the demonstrations can be sampled. As
discussed in 7, PPO is used throughout the experiments to obtain a
policy. PPO is trained on three different environments: Catcher, Pong
and Freeway.

The reward curves for Catcher, Pong and Freeway are displayed
in Figure 8.1 and indicate that the agents are able to properly learn
the environments yielding high rewards for Catcher, a maximum
reward of 21.0 for Pong and a high reward of 32.6 for Freeway. Each
update step corresponds to 1024 frames by training on 8 different
environments of the same game with a batch size of 128 in parallel.

After training, the policy epoch that yielded the highest rewards
is used to sample expert demonstrations from. This ensures that the
expert demonstrations are of sufficient quality. The next step is to learn
a low-dimensional embedding of the states encountered in Catcher,
Pong and Freeway.

8.2 learning a low-dimensional embedding

To prevent the overfitting problem of the discriminator in AIRL, au-
toencoders are implemented to reduce the dimensionality of the

57



58 results

0 50 100 150 200 250 300 350
Number of updates

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Re
wa

rd

Learning curve for Catcher on 80x80

(a)

0 2000 4000 6000 8000
Number of updates

22
20
18
16
14
12
10
8
6
4
2
0
2
4
6
8

10
12
14
16
18
20
22

Re
wa

rd

Learning curve for Pong on 80x80

(b)

0 2000 4000 6000 8000
Number of updates

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Re
wa

rd

Learning curve for Freeway on 80x80

(c)

Figure 8.1: Reward curves for the two Atari environments. The curves repre-
sent the rewards obtained by a single agent in one simulation.

data. This section illustrates the results from the three different au-
toencoders: vanilla autoencoder, variational autoencoder and vector-
quantised variation autoencoder. All autoencoders are trained sepa-
rately for 2500 training steps for all environments. To ensure the best
results, only the model of the autoencoders which yields the lowest
loss is stored.

8.2.1 Vanilla Autoencoder

The simplest way to encode the data is through a vanilla autoencoder.
This autoencoder enforces no constraints on the latent embedding
and only requires that the difference between the original image and
its reconstruction is minimised. Figure 8.2, 8.3 and 8.4 illustrate the
quality of the vanilla autoencoder on the different environments. The
first column displays the original images. The second column displays
the reconstructed images. The third column displays the difference
between the original and the reconstructed frames. A uniform black
image in the last column would indicate that the original image and
its reconstruction are identical.



8.2 learning a low-dimensional embedding 59

(a) Original (b) Reconstructed (c) Difference

Figure 8.2: Reconstructions with a standard autoencoder on Catcher. The dif-
ference images indicate that all the details are properly captured
in the reconstruction.

(a) Original (b) Reconstructed (c) Difference

Figure 8.3: Reconstructions with a standard autoencoder on Pong. The dif-
ference images indicate that the overall structure of the frames is
captured. However, fine details are missing in the reconstructions.



60 results

(a) Original (b) Reconstructed (c) Difference

Figure 8.4: Reconstructions with a standard autoencoder on Freeway. The dif-
ference images indicate that the overall structure of the frames is
captured. However, fine details are missing in the reconstructions.

Although the decoded image reflects the original encoded images
rather well, there are some important issues. First, in some cases the
position of the objects is not properly represented. Second, sometimes
the objects disappeared in the decoded image. This could arguably
lead to a decrease in performance further in the pipeline. Third, the
contrast between the objects and the background is often reduced.

8.2.2 Variational Autoencoder

In order to obtain more control over our latent distribution, Variational
Autoencoders (VAEs) could be considered. Figure 8.5, 8.6 and 8.7
illustrate the quality of the VAE. Similar to results from the vanilla
autoencoder, the original, the reconstruction and the difference images
are represented in the first, second and third column accordingly.



8.2 learning a low-dimensional embedding 61

(a) Original (b) Reconstructed (c) Difference

Figure 8.5: Reconstructions with a variational autoencoder on Catcher. The
difference images indicate that all the details are properly cap-
tured in the reconstruction.

(a) Original (b) Reconstructed (c) Difference

Figure 8.6: Reconstructions with a variational autoencoder on Pong. The
difference images indicate that the overall structure of the frames
is captured. Some small details are missing in the reconstructions.



62 results

(a) Original (b) Reconstructed (c) Difference

Figure 8.7: Reconstructions with a variational autoencoder on Freeway. The
difference images indicate that the overall structure of the frames
is captured. Some small details are missing in the reconstructions.

Looking closely at the decoded images, similar issues can be seen
as with the vanilla autoencoder. However, the reconstruction quality
is improved drastically.

8.2.3 Vector-Quantised Variational Autoencoder

Vector-Quantised Variational Autoencoders (VQ-VAEs) learn a dis-
crete latent embedding map of the data. In the experiments, the 80x80

input are encoded as a 20x20 embedding map. Figure 8.8, 8.9 and 8.10

illustrate the quality of the VQ-VAEs. The first three columns again
represent the original, reconstruction and the difference images. Addi-
tionally a fourth column is added to visualise the 20x20 embedding of
the respective input frame. Each pixel in the embedding map indicates
one of four categories and can be encoded using 2 bits. Therefore, the
embedding map uses 800 bits to encode the original image.



8.2 learning a low-dimensional embedding 63

(a) Original (b) Reconstructed (c) Difference (d) Embedding

Figure 8.8: Reconstructions with VQ-VAE on Catcher. The difference images
indicate that the encoding properly captures the environment for
different frames. The embedding of the original image is listed in
the last column.



64 results

(a) Original (b) Reconstructed (c) Difference (d) Embedding

Figure 8.9: Reconstructions with VQ-VAE on Pong. The difference images
indicate that the encoding properly captures the environment for
different frames. The embedding of the original image is listed in
the last column.

As seen in Figure 8.9, VQ-VAE is able to properly capture the
information of the Pong environment. The reconstructions are almost
identical to the original frame meaning that the original input can be
represented as a 20x20 embedding map in which each pixel is one of
4 classes. The embedding map shows some spatial similarities to the
original images. It is evident that the multiple pixels in the embedding
map are required to capture the variability of complex objects. An
example is the large number of pixels used to capture the ball in the
first two embedding images. Since an individual pixel can only store
4 values, it requires the neighbouring pixels to capture the variability
of the ball in more detail.



8.3 airl 65

(a) Original (b) Reconstructed (c) Difference (d) Embedding

Figure 8.10: Reconstructions with VQ-VAE on Freeway. The difference im-
ages indicate that the encoding properly captures the environ-
ment for different frames. The images in the last column show
the embedding of the original image.

Pong is relatively simple to encode due to the limited amount of
objects in the input images. Freeway, which is visually much more
complex, could be more challenging to encode. The results for Freeway
are depicted in Figure 8.10. It appears that 800 bits is enough to encode
the Freeway images properly. Spatially, there are again similarities
between the original images and their respective encoding.

The vanilla and variational autoencoder had issues with capturing
and representing the objects of the environments properly. Evidently,
VQ-VAE is not susceptible to these issues and allows for better recon-
structions. The next section illustrates the results when combining the
different autoencoders with AIRL.

8.3 airl

This section describes the overall results from the AIRL experiments
on all environments. The demonstrated reconstructed reward curves
below represent the rewards obtained from the ground-truth reward
function when evaluated on the policy that is directly obtained from
the reconstructed reward function through AIRL. In order to establish
the effectiveness of the low-dimensional embedding of the autoen-
coders, a baseline is required for each of the environments. These
baselines do not make use of any autoencoders and act directly on



66 results

the 80x80 input images. Afterwards, AIRL is trained with the autoen-
coders and the results are compared with the baselines. The goal is to
see whether the autoencoders reduce the overfitting problem of the dis-
criminator in the AIRL architecture. Reducing the overfitting problem
should yield better reward curves. In the following subsections, the
reward curves are displayed and discussed per environment. Chapter
9 investigates in more detail the intricacies of the learnt behaviour.

8.3.1 AIRL performance on Catcher

The easiest environment to learn is the Catcher environment. Although
there are only two objects present in the environment, the raw ob-
servation is still 80x80 pixels. Figure 8.11 displays the reward curves
obtained in the Catcher environment.

0 20 40 60 80 100
Number of updates

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Re
wa

rd

Reconstructed Learning curves for Catcher
RAW
VQVAE
AE
VAE

Figure 8.11: The reconstructed reward curves of the Catcher environment.

The reward curves indicate that all the AIRL agents are able to learn
the objective of catching the ball with the pedal. It should be noted
that the highest reward values were obtained when raw pixel data was
considered. This is surprising since it indicates that the discriminator
might not be overfitting to an extreme extent on the raw input images.
An explanation could be that the input space is relatively simple, hence
not requiring an autoencoder to alleviate the problem of overfitting.
The following sections demonstrate the results obtained from the more
challenging Pong and Freeway environments.



8.3 airl 67

8.3.2 AIRL on Pong

The next environment is Pong. Although Pong is similar to Catcher,
the state space is considerably more diverse. Pong offers an opponent
and two pedals instead of one. Additionally the representation of the
objects is richer and provides more variation. The results of AIRL for
Pong are displayed in Figure 8.12.

0 20 40 60 80 100
Number of updates

21.0
20.9
20.8
20.7
20.6
20.5
20.4
20.3
20.2
20.1
20.0
19.9
19.8
19.7
19.6
19.5
19.4
19.3
19.2
19.1

Re
wa

rd

Reconstructed Learning curves for Pong
RAW
VQVAE
AE
VAE

Figure 8.12: The reconstructed reward curves of the Pong environment.

Unfortunately, the reward curves indicate that the environment is
hard to learn. The rewards stay low, even with the autoencoders, and
there is no clear evidence that specific behaviour is learnt directly from
the figure.

8.3.3 AIRL on Freeway

The last environment is Freeway. Compared to Pong, Freeway is vi-
sually a lot more demanding. However, the controls are easier since
the only task is to cross the road. Every time the player crosses the
road, a point is scored. It should be noted that scoring points is easier
in Freeway compared to Pong. This makes Freeway an interesting
environment to evaluate AIRL on. Figure 8.13 demonstrates the recon-
structed reward curves of Freeway.



68 results

I

0 20 40 60 80 100
Number of updates

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Re
wa

rd

Reconstructed Learning curves for Freeway
VQVAE
AE
RAW
VAE

Figure 8.13: The reconstructed reward curves of the Freeway environment.

The effectiveness of the Vector Quantised Variational Autoencoder
is clearly visible in the reconstructed reward curves. After 100 epochs
the rewards stabilised at around 21. The other agents failed to get close
to this result. This indicates that the use of autoencoders, in specific
discrete latent autoencoders, can help to improve the performance
of AIRL algorithms. The next and last chapter wraps up this paper
by zooming in on the specific behaviours that follow from the policy
derived from the reconstructed reward functions.



9
D I S C U S S I O N A N D C O N C L U D I N G R E M A R K S

In Chapter 8 the empirical results of the experiments are presented.
Firstly, this chapter is meant as an extension on the results to provide
more insight into the specific behaviours that follow from the Adver-
sarial Inverse Reinforcement Learning (AIRL) algorithm. Ultimately,
the behaviours are the most important aspect of the agents and should
be evaluated. Secondly, the research questions as stated in Section 1.4
are answered. Finally, some concluding remarks are written to wrap
up this thesis.

9.1 airl behaviours

In order to assess the quality of the reconstructed reward functions, it
is important to inspect the behaviour of the agent in each environment
carefully.

9.1.1 Pygame: Catcher

The reconstructed reward curves in Section 8.3 indicate that Catcher
could be solved with AIRL both with and without the autoencoders.

raw input The highest rewards were obtained without the use
of autoencoders. The agent performs some unnecessary movements
before catching a ball by first moving the bat all the way to the right
(or top) of the environment. Even with this behaviour, the agent is
able to robustly catch the ball in the majority of the cases.

vanilla autoencoder The agent displays behaviour which is
rather chaotic behaviour. A lot of unnecessary movements are per-
formed in between the process of catching balls. However, even with
the unnecessary movements the agent is still able to successfully catch
the balls in the majority of the cases.

variational autoencoder The agent performs the task and
only moves towards the ball when this is needed. In contrast to the
Vanilla Autoencoder, the agent displays fewer unnecessary movements
and it is successful at catching the ball in the majority of the cases.

vector quantised variational autoencoder Some unnec-
essary movements are visible, although less evident compared to

69



70 discussion and concluding remarks

the results with the vanilla autoencoder. Again, the agent is able to
successfully catch the ball.

9.1.2 Atari: Pong

The results in Section 8.3 indicate that Pong is hard to solve with AIRL.
Even in combination with autoencoders, no usable reward function is
reconstructed. In all of the experiments for Pong the behaviour of the
agent is similar by displaying random movement of the bat. It should
be noted that, compared to Catcher, it is much harder to score points.
The opponent is able to return the ball in the majority of the cases
even if the ball is hit by the agent. Rewards are therefore scarce and
this influences the learning process of the AIRL algorithm.

9.1.3 Atari: Freeway

In contrast to Pong, the results for Freeway look promising as dis-
played in Section 8.3.

raw input When considering the raw input images, the results do
not exceed a reward score of 9. Looking closely at the behaviour of
the agent reveals that it crosses the road but is unable to do this in an
efficient manner. In some situations the agent suddenly stops moving
forward while this is not necessary. The agent only moves forward
and never moves back.

vanilla autoencoder Compared to the raw input version, this
agent performs poorly. It takes the agent longer to cross the road. Also
the agent moves back in situations when this is not necessary. This
results in lower rewards compared to the raw input version.

variational autoencoder The agent performs almost identi-
cally to the raw input version. Again, the agent only moves forward
and does not move backwards. The amount of time it takes to cross
the road is on average also similar compared to the raw input version.

vector quantised variational autoencoder The best re-
wards were obtained using a Vector Quantised Variational Autoen-
coder. A reward close to 22 was obtained. When looking at the specific
behaviour of the agent, it becomes clear that the agent tries to move
forward as fast as possible. Unfortunately the agent did not learn to
avoid the cars. The agent learned to optimise its rewards by crossing
the road as quickly as possible.



9.2 research questions 71

9.2 research questions

In Section 1.4, the research questions are stated. This section aims to
provide an answer to all research questions.

can vanilla and variational autoencoders help improve

the reconstruction of reward functions on high-di-
mensional data? Although vanilla and variational autoencoders
could alleviate the problem of overfitting in the discriminator, they fail
to provide an accurate enough embedding. As seen in Section 8.2.1
and 8.2.2, the decoded images do not accurately represent and capture
the details of the environments. However, there is enough information
present in the encoding to allow the agent to make informed decisions.

In Catcher, the best results were obtained without the use of autoen-
coders. This could be explained by the fact that the environment is
relatively sparse in state. However, in a complex environment such
as Freeway, the use of autoencoders could make the training process
more robust and could increase the reward. This can also be seen in
Figure 8.13 which demonstrates that the rewards increase steadily
without a large variance.

how do these results compare to instances where the

raw input of the original data is considered? For more
complex environments, the use of autoencoders helped to improve
the quality of the reward functions. In Catcher, both experiments with
and without autoencoders were able to learn a stable policy. For more
complex environments, the use of autoencoders is recommended as
this decreases the likelihood of the discriminator overfitting on the
data.

vanilla and variational autoencoders learn a low-di-
mensional continuous representation. would autoen-
coders that learn a binary or discrete representation

instead allow for more robust reward function recon-
structions? In order to obtain a binary encoding, a vector quan-
tised variational autoencoder (VQVAE) was used. In complex environ-
ments such as Freeway, the usefulness of a binary encoding became
evident. The best results for Freeway were obtained with VQVAE
indicating that a discrete representation could allow for more robust
reward function reconstructions.

9.3 concluding remarks

This section concludes the thesis by summarising the findings of the
study, describes the limitations and highlights the importance of future
research.



72 discussion and concluding remarks

findings of the study A set of AIRL experiments were per-
formed on three different environments. In order to reduce the over-
fitting problem of the discriminator in AIRL, different encodings are
proposed from several autoencoders: vanilla autoencoders, variational
autoencoders and vector quantised variational autoencoders.

In simple environments, the use of autoencoders could thwart the
process to learn reconstructed reward functions. This became apparent
when training an agent to play Catcher. However, in more visually
complex environments such as Freeway in which the rewards are
relatively easy to obtain, the use of discrete autoencoders could help
to learn more robust reward functions. It is difficult to successfully
train an agent using AIRL in environments such as Pong where it is
relatively hard to score points.

limitations Inverse Reinforcement Learning and some Imitation
Learning algorithms are computationally very expensive. Even with
the introduction of algorithm such as Generative Adversarial Imitation
Learning and AIRL which do not require to evaluate the entire policy
after each reward learning step, it is still a computationally expensive
process.

In this research, the parameters such as batch size and the number
of demonstrations are based on previous research. All environments
are different in their representation and testing for different batch
sizes and number of demonstrations could yield better reward recon-
structions.

Additionally in all AIRL experiments, the agent is trained for 100

epochs. Although this exceeds previous research by a factor of 2.5,
more epochs could yield an improvement in the quality of the recon-
structed reward curves.

impact and future research Understanding observed be-
haviour is a hard but important problem. Current Inverse Reinforce-
ment Learning (IRL) algorithms offer ways to learn the intuition be-
hind behaviour, but decline in performance as the data dimensionality
increases. Although in this research some measures are taken to alle-
viate the problem of the current state-of-the-art algorithm Adversarial
Inverse Reinforcement Learning (AIRL), future work should be done
to allow for even more robust ways of recovering reward functions.

The impact IRL could have in the field of Machine Learning is
massive. In cases where reward functions are hard or even impossible
to manually specify, IRL could provide the abstractions required to
learn reasonable policies. As discussed in 6.2, reward functions are
more transferable than policies. Finally, it could also be preferable to
capture the expert behaviour in the system in contrast to forming a
policy directly from a reward function.



B I B L I O G R A P H Y

[1] Pieter Abbeel and Andrew Y Ng. “Apprenticeship learning via
inverse reinforcement learning.” In: Proceedings of the twenty-first
international conference on Machine learning. 2004, p. 1.

[2] Adebiyi A Ariyo, Adewumi O Adewumi, and Charles K Ayo.
“Stock price prediction using the ARIMA model.” In: 2014
UKSim-AMSS 16th International Conference on Computer Modelling
and Simulation. IEEE. 2014, pp. 106–112.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasser-
stein gan.” In: arXiv preprint arXiv:1701.07875 (2017).

[4] Samuel A Barnett. “Convergence problems with generative ad-
versarial networks (gans).” In: arXiv preprint arXiv:1806.11382
(2018).

[5] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowl-
ing. “The arcade learning environment: An evaluation platform
for general agents.” In: Journal of Artificial Intelligence Research 47

(2013), pp. 253–279.

[6] Richard Bellman. “A Markovian decision process.” In: Journal of
mathematics and mechanics (1957), pp. 679–684.

[7] Xin-Qiang Cai, Yao-Xiang Ding, Yuan Jiang, and Zhi-Hua Zhou.
“Expert-Level Atari Imitation Learning from Demonstrations
Only.” In: arXiv preprint arXiv:1909.03773 (2019).

[8] Augustin Cauchy. “Méthode générale pour la résolution des
systemes d’équations simultanées.” In: Comp. Rend. Sci. Paris
25.1847 (1847), pp. 536–538.

[9] Haskell B Curry. “The method of steepest descent for non-linear
minimization problems.” In: Quarterly of Applied Mathematics 2.3
(1944), pp. 258–261.

[10] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor,
Yuhuai Wu, and Peter Zhokhov. OpenAI Baselines. https://
github.com/openai/baselines. 2017.

[11] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook
Kim, Alec Radford, and Ilya Sutskever. “Jukebox: A generative
model for music.” In: arXiv preprint arXiv:2005.00341 (2020).

[12] Vincent Dumoulin and Francesco Visin. “A guide to convolution
arithmetic for deep learning.” In: arXiv preprint arXiv:1603.07285
(2016).

73

https://github.com/openai/baselines
https://github.com/openai/baselines


74 bibliography

[13] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided cost
learning: Deep inverse optimal control via policy optimization.”
In: International conference on machine learning. 2016, pp. 49–58.

[14] Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine.
“A connection between generative adversarial networks, inverse
reinforcement learning, and energy-based models.” In: arXiv
preprint arXiv:1611.03852 (2016).

[15] Justin Fu, Katie Luo, and Sergey Levine. “Learning robust re-
wards with adversarial inverse reinforcement learning.” In: arXiv
preprint arXiv:1710.11248 (2017).

[16] Cristina Gârbacea, Aäron van den Oord, Yazhe Li, Felicia SC
Lim, Alejandro Luebs, Oriol Vinyals, and Thomas C Walters.
“Low bit-rate speech coding with VQ-VAE and a WaveNet
decoder.” In: ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019,
pp. 735–739.

[17] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua
Bengio. “Generative adversarial nets.” In: Advances in neural
information processing systems. 2014, pp. 2672–2680.

[18] Robert Gray. “Vector quantization.” In: IEEE Assp Magazine 1.2
(1984), pp. 4–29.

[19] Ronald A Howard. Dynamic programming and markov processes.
MIT Press, Cambridge, 1960.

[20] Sham M Kakade. “A natural policy gradient.” In: Advances in
neural information processing systems. 2002, pp. 1531–1538.

[21] Jagat Narain Kapur and Hiremaglur K Kesavan. “Entropy op-
timization principles and their applications.” In: Entropy and
energy dissipation in water resources. Springer, 1992, pp. 3–20.

[22] Diederik P Kingma and Jimmy Ba. “Adam: A method for
stochastic optimization.” In: arXiv preprint arXiv:1412.6980 (2014).

[23] Diederik P Kingma and Max Welling. “Auto-encoding varia-
tional bayes.” In: arXiv preprint arXiv:1312.6114 (2013).

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Ima-
genet classification with deep convolutional neural networks.”
In: Advances in neural information processing systems. 2012, pp. 1097–
1105.

[25] Maxim Lapan. Deep Reinforcement Learning Hands-On: Apply
modern RL methods, with deep Q-networks, value iteration, policy
gradients, TRPO, AlphaGo Zero and more. Packt Publishing Ltd,
2018.



bibliography 75

[26] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio.
“Object recognition with gradient-based learning.” In: Shape,
contour and grouping in computer vision. Springer, 1999, pp. 319–
345.

[27] Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y Ng.
“Efficient sparse coding algorithms.” In: Advances in neural infor-
mation processing systems. 2007, pp. 801–808.

[28] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wier-
stra. “Continuous control with deep reinforcement learning.” In:
arXiv preprint arXiv:1509.02971 (2015).

[29] Bing Liu, Wynne Hsu, and Yiming Ma. “Integrating classifica-
tion and association rule mining.” In: Proceedings of the Fourth
International Conference on Knowledge Discovery and Data Mining.
1998, pp. 80–86.

[30] Warren S McCulloch and Walter Pitts. “A logical calculus of the
ideas immanent in nervous activity.” In: The bulletin of mathemat-
ical biophysics 5.4 (1943), pp. 115–133.

[31] Donald Michie, Michael Bain, and J Hayes-Miches. “Cognitive
models from subcognitive skills.” In: IEE control engineering series
44 (1990), pp. 71–99.

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller.
“Playing atari with deep reinforcement learning.” In: arXiv
preprint arXiv:1312.5602 (2013).

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin Ried-
miller, Andreas K Fidjeland, Georg Ostrovski, et al. “Human-
level control through deep reinforcement learning.” In: Nature
518.7540 (2015), p. 529.

[34] M. A. Moussa and M. S. Kamel. “A connectionist model for
learning robotic grasps using reinforcement learning.” In: Pro-
ceedings of International Conference on Neural Networks (ICNN’96).
Vol. 3. 1996, 1771–1776 vol.3.

[35] Andrew Y Ng, Stuart J Russell, et al. “Algorithms for inverse
reinforcement learning.” In: Icml. Vol. 1. 2000, p. 2.

[36] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV
Jawahar. “Cats and dogs.” In: 2012 IEEE conference on computer
vision and pattern recognition. IEEE. 2012, pp. 3498–3505.

[37] Bilal Piot, Matthieu Geist, and Olivier Pietquin. “Bridging the
gap between imitation learning and inverse reinforcement learn-
ing.” In: IEEE transactions on neural networks and learning systems
28.8 (2016), pp. 1814–1826.



76 bibliography

[38] Dean A Pomerleau. “Alvinn: An autonomous land vehicle in
a neural network.” In: Advances in neural information processing
systems. 1989, pp. 305–313.

[39] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. “Generating
diverse high-fidelity images with vq-vae-2.” In: Advances in
Neural Information Processing Systems. 2019, pp. 14866–14876.

[40] Herbert Robbins and Sutton Monro. “A stochastic approxima-
tion method.” In: The annals of mathematical statistics (1951),
pp. 400–407.

[41] Frank Rosenblatt. “The perceptron: a probabilistic model for
information storage and organization in the brain.” In: Psycho-
logical review 65.6 (1958), p. 386.

[42] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning internal representations by error propagation. Tech. rep.
California Univ San Diego La Jolla Inst for Cognitive Science,
1985.

[43] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning
using connectionist systems. Vol. 37. University of Cambridge,
Department of Engineering Cambridge, UK, 1994.

[44] Stuart Russell. “Learning agents for uncertain environments.”
In: Proceedings of the eleventh annual conference on Computational
learning theory. ACM. 1998, pp. 101–103.

[45] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan,
and Philipp Moritz. “Trust region policy optimization.” In: In-
ternational conference on machine learning. 2015, pp. 1889–1897.

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. “Proximal policy optimization algorithms.”
In: arXiv preprint arXiv:1707.06347 (2017).

[47] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan
Wierstra, and Martin Riedmiller. “Deterministic Policy Gradient
Algorithms.” In: International Conference on Machine Learning.
2014, pp. 387–395.

[48] Richard S Sutton. “Temporal credit assignment in reinforcement
learning.” In: PhD thesis, University of Massachusetts (1985).

[49] Richard S Sutton and Andrew G Barto. Reinforcement learning:
An introduction. MIT press, 2018.

[50] Richard S Sutton, David A McAllester, Satinder P Singh, and
Yishay Mansour. “Policy gradient methods for reinforcement
learning with function approximation.” In: Advances in neural
information processing systems. 2000, pp. 1057–1063.



bibliography 77

[51] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent magni-
tude.” In: COURSERA: Neural networks for machine learning 4.2
(2012), pp. 26–31.

[52] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A
physics engine for model-based control.” In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE.
2012, pp. 5026–5033.

[53] Aaron Tucker, Adam Gleave, and Stuart Russell. “Inverse rein-
forcement learning for video games.” In: arXiv preprint arXiv:
1810.10593 (2018).

[54] Aaron Van Den Oord, Oriol Vinyals, et al. “Neural discrete repre-
sentation learning.” In: Advances in Neural Information Processing
Systems. 2017, pp. 6306–6315.

[55] Christopher John Cornish Hellaby Watkins. “Learning from
delayed rewards.” In: PhD thesis, King’s College, Cambridge (1989).

[56] Marco Wiering and Martijn Van Otterlo. Reinforcement Learning.
Vol. 12. Springer, 2012.

[57] Ronald J Williams and David Zipser. “A learning algorithm for
continually running fully recurrent neural networks.” In: Neural
computation 1.2 (1989), pp. 270–280.

[58] Yanxia Zhang and Yongheng Zhao. “Automated clustering algo-
rithms for classification of astronomical objects.” In: Astronomy
& Astrophysics 422.3 (2004), pp. 1113–1121.

[59] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind
K Dey. “Maximum Entropy Inverse Reinforcement Learning.”
In: AAAI. Vol. 8. Chicago, IL, USA. 2008, pp. 1433–1438.




	Abstract
	Contents
	1 Introduction
	1.1 Deep Reinforcement Learning
	1.2 Deep Inverse Reinforcement Learning
	1.3 Autoencoders
	1.4 Research Questions and Contributions

	 Background Information
	2 Function Approximation
	2.1 McCulloch-Pitts Model
	2.2 Rosenblatt Perceptron
	2.3 Multi-Layer Perceptron
	2.4 Neural Network Optimisation
	2.5 Convolutional Neural Network
	2.6 Generative Adversarial Networks

	3 Dimensionality Reduction Techniques
	3.1 Standard Downsampling
	3.2 Autoencoders

	4 Reinforcement Learning
	4.1 Key Concepts
	4.2 Reinforcement Learning Algorithms

	5 State-of-the-Art Deep Reinforcement Learning
	5.1 DQN
	5.2 Policy Gradient Algorithms

	6 Inverse Reinforcement Learning
	6.1 Imitation Learning
	6.2 Inverse Reinforcement Learning
	6.3 Maximum Margin Optimisation
	6.4 Guided Cost Learning
	6.5 Adversarial Inverse Reinforcement Learning
	6.6 Convolutional Neural Network AIRL


	 Methodology
	7 General Implementation
	7.1 Environments
	7.2 Architecture Proximal Policy Optimization
	7.3 Autoencoders
	7.4 Adversarial Inverse Reinforcement Learning

	8 Results
	8.1 Sampling Expert Demonstrations
	8.2 Learning a Low-Dimensional Embedding
	8.3 AIRL

	9 Discussion and concluding remarks
	9.1 AIRL Behaviours
	9.2 Research Questions
	9.3 Concluding Remarks

	 Bibliography


