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Abstract

For this thesis, different algorithms were created to solve the problem of Jop Shop
Scheduling with a number of constraints. More specifically, the setting of a (sim-
plified) car workshop was used: the algorithms had to assign all tasks of one day to
the mechanics, taking into account minimum and maximum finish times of tasks
and mechanics, the use of bridges, qualifications and the delivery and usage of car
parts. The algorithms used in this research are Hill Climbing, a Genetic Algorithm
with and without a Hill Climbing component, two different Particle Swarm Opti-
mizers with and without Hill Climbing, Max-Min Ant System with and without
Hill Climbing and Tabu Search. Two experiments were performed: one focussed
on the speed of the algorithms, the other on their performance. The experiments
point towards the Genetic Algorithm with Hill Climbing as the best algorithm for
this problem.
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Chapter 1

Introduction

1.1 Scheduling

Imagine you own an automobile repair shop. You pay fifteen full-time mechanics,
each with their own skill levels and certificates, to repair the broken cars of your
customers. Of course, you own a few bridges in case a mechanic needs to lift a
car to work underneath the car, there are lots of tools for the mechanics to use
and you maintain a certain stock of car parts. All cars that are brought in are
diagnosed, and the concerning mechanic makes a list of tasks that need to be done
in order to have the car fixed. Since you make appointments with your customers
as to when their cars are ready, this results, for each day, in a list of tasks on
specific cars that need to be done that day. Keeping in mind the different skill
levels, certificates, work times etcetera of your mechanics, for each day, you make
a schedule, which assigns each task to a specific agent, on a specific time, and
using a specific bridge (if it needs one). Of course, the specific times depend on
the delivery times of new car parts, the availability of bridges and tools, etcetera.
Furthermore, you have to be efficient: you try to have your mechanics perform
as many tasks (workshop activities) as possible every day, in order to generate
a maximum profit. Given a relatively large number of tasks, you have to assign
these tasks wisely, or else you might end up having your mechanics work late. For
these reasons, you spend a lot of time trying to create the best possible schedule.
However, imagine having created such a schedule for, say, a Tuesday. You have
each of your mechanics scheduled to do their first tasks at nine o’clock in the
morning. On Tuesday morning, you get a call from one of your mechanics, saying
he had an emergency and will be half an hour late. This means you have to create
a new schedule which deals with this mechanic being late. However, you do not
have enough time to create a good schedule, since it is almost nine o’clock. Since
each mechanic already has his hands full, the result is tasks being done too late
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and hence there are disappointed customers. And the problem you have happens
quite often, since there are multiple causes: for example, sometimes car parts are
delivered too late, sometimes a bridge is out of order, etcetera.
Of course, there are ways to solve such a problem. You could, for example, leave
some room in your future schedules, giving your mechanics small breaks between
their tasks in order to be able to shift tasks to a different time in case of a problem.
However, this would severely lower the efficiency of your schedules, and it is hard
to estimate how many of such small breaks you need, and how big they should be.
What you want is to be able to reschedule very quickly in the case of a problem
such as the one just described, in order to keep your schedule as efficient as possible
and have your customers as satisfied as possible. The solution the author proposes
in this thesis is a computer system which can schedule (and therefore reschedule)
autonomously, given a set of tasks, a set of mechanics, a set of bridges and a set
of car parts, optimizing for efficiency and customer satisfaction. Since computers
can schedule a lot faster than humans, one can have new efficient schedules very
fast during the day, in case problems show up and the old schedule is outdated.
Furthermore, you do not have to spend a lot of time on a task a computer can do
for you; therefore, you can focus on other things.
The situation just described is quite specific, but the scheduling problem is present
in many other situations, making the research of this thesis even more important.
Examples of course include other kinds of repair shops, but really any situation
in which different agents (in this case mechanics) have to be assigned to different
tasks. For example, the scheduling of high school or university classes includes as-
signing different teachers, each with their own qualities, to different classes, with
constraints like two classes attended by the same student cannot be assigned to
the same time slot. Of course, each situation is different, but the general problem
remains.
Now that we have discussed the importance of autonomous scheduling in practice,
let us briefly look at scheduling from a theoretic viewpoint. Since the problem
of scheduling itself is NP-hard, it is, given the current state of processor power,
impossible to find an algorithm that both guarantees to return the best solution
and does so in reasonable time. Simple brute force algorithms that just search
through all possible solutions finish in a workable time frame only for relatively
very small scheduling problems, and already take too much time when given a
problem which is just a little bit bigger. Of course, heuristic algorithms, which do
not search through all solutions, take much less time to return their solution but
are not guaranteed to return the best schedule. It is of course this trade-off be-
tween performance and efficiency which makes autonomous scheduling (and most
optimization problems) interesting. Furthermore, this same trade-off has led to
a lot of algorithms proposed to solve the scheduling problem, each with its own
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performance and efficiency levels. Examples of such algorithms are Genetic Algo-
rithms [21], Ant Colony Optimization [7], a collection of algorithms which includes
Ant System Optimization, and Particle Swarm Optimization [25].

1.2 Research Question

In this graduation project, different (metaheuristic) algorithms for Job Shop Schedul-
ing are compared. These algorithms are: a Genetic Algorithm (with and without
a Hill Climbing component), two Particle Swarm Optimization variants (again,
with and without a Hill Climbing component), Max-Min Ant System (also, with
and without Hill Climbing), Tabu Search and a basic Hill Climber, which will
be described later. More specifically, these algorithms are used for scheduling car
workshop activities: the algorithms should assign all tasks planned for a single day
to a specific mechanic, each on a specific time, while considering the use of scarce
resources, consumables and different skill levels of the mechanics. Resources are
entities that can be used over and over again, but can be used by only one car at
a time. For this research, the only resources are bridges, which can only lift one
car at a time, and the mechanics themselves, who of course can only work on one
car at a time. Consumables are defined as entities that can be used only once and
thus their stock has to be refilled from time to time; examples of consumables are
car parts, such as lights and tires. For this research, one consumable was defined,
simply called “car part”.
Keeping in mind the previous informal description, the research question for this
thesis is: which algorithm, or which algorithms mentioned in this subsection works
or work best for the scheduling problem mentioned here, in terms of both speed
and performance? In this context, speed means how fast a specific algorithm finds
a reasonable schedule, meaning a schedule without obvious mistakes like a task
being done after its maximum finish time, or a mechanic working after hours.
Performance includes not making those mistakes, but also efficiency: the less to-
tal work hours a schedule has (given, of course, the same tasks and mechanics
etcetera), the better it is.
The remainder of this thesis is structured in the following way. First, a theoretical
background of job shop scheduling will be given, with a more formal description
of the problem and some work that has been done to solve similar problems. After
this, all methods deployed for the research of this thesis will be described in detail,
with pseudocode. Then, in chapter 4, the experimental setup and results will be
discussed. Finally, a conclusion will be offered, together with some suggestions for
future work.
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Chapter 2

Theoretical Background of Job Shop
Scheduling

Before the author continues to describe and discuss the algorithms developed for
the research described in this thesis, it is first important to give a good theoretical
background of Job Shop Scheduling in general, with of course a formal description
and some early and some recent work that has been done to tackle the problem.

2.1 Formal Description

As noted before, before continuing to describe any algorithms solving a problem, it
is crucial to first precisely define the problem. The Job Shop Scheduling problem
as adopted for this research is defined as follows. We have a set T of tasks, or jobs,
which need to be executed. We also have a set M of mechanics who can execute
tasks. Not all mechanics are qualified to perform each task; therefore, for each
mechanic, we have a Qmechanic which contains qualifications: if and only if q2 ∈ Q1

is mechanic 1 qualified to do task 2. Furthermore, for each mechanic my ∈ M we
have a set Dy of task durations for each task the mechanic is qualified to perform.
So, if and only if δy0 ∈ Dy does it take mechanic y δy0 time units to perform task
0. Moreover, each task tx ∈ T has a corresponding pair of a minimum start time
and a maximum finish time: {τminx , τmaxx }. The same holds for each mechanic
my ∈ M : {θminy , θmaxy }. Finally, any task x may have a tpredecessorx ∈ T , where
∃p(tpredecessorx = tp ∧ p < x), which is a task that has to be finished in order for tx
to be executable. Apart from the mechanics and the tasks, we have bridges which
lift a car in order for mechanics to be able to work under the car. Therefore, each
problem has a set of bridges B. Each bridge bi ∈ B, for i > 0 (b0 would indicate
no bridge, in combination of a task which uses none) is a tuple of the maximum
weight it can lift, wmaxi and a list of time units at which the bridge is scheduled
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for use. Such a list can never contain the same time unit twice, since this would
mean a bridge has to lift two cars at once. We also have car parts, which as dis-
cussed earlier are all the same. This set is modeled as C, which simply consists of
pairs of time units at which its stock increases or decreases (by delivery or usage,
respectively) and the amount (positive or negative) with which this value changes.
Apart from this, we have the cstart, which is a constant which tells the amount
of car parts at the start of the day. It is of course crucial that the actual stock
ccurrent, which can be calculated for each time unit, can never be below zero.

A solution can now be defined as a set Si of tuples of a task, a mechanic and
a bridge (b0 if the task uses no bridge). Each task must be an element of exactly
one such tuple. There is no such constraint for the mechanics. This indeed means
that, in principle, a mechanic could end up with no tasks at all if that makes for
an efficient schedule. Such a tuple of a mechanic, a task and a bridge looks like
this: {tx,my, bz}, and means task x is to be performed by mechanic y on bridge z
(or no bridge at all in case z = 0).

The fitness value of a solution S is inversely related to:
∑
∀{tx,my}∈S δ

y
x, simply

said the total amount of work time of all mechanics. Specifically, the total amount
of hours the mechanics could potentially work is devided by the total amount they
do work:
MaximumCombinedWorktimeofAllMechanics∑

∀{tx,my}∈S δ
y
x

Furthermore, the fitness is negatively affected by agents working later than their
θmax and tasks being finished later than their τmax. More specifically, for each
hour an agent is working late and for each hour a task is finished late, the fitness
value is descreased by 1.

Note that the time at which a task is performed is not specified anywhere in
this model. This is because, to save computation time, the algorithms do not
optimize the execution times of the tasks: they only assign a specific mechanic
and a bridge to each task. After this part of the scheduling is done, a simple algo-
rithm takes over and assigns a start time to each task. All tasks done by the same
mechanic are simpy scheduled in order, beginning with the task with the lowest
identification number and ending with the one with the highest, placing each task
as early as possible in the schedule. Doing the schedule timing this way might
result in less-than-optimimal solutions (which will be explained in more detail in
the Methods chapter), but the cost of this is far lower than the benefit of the
computation time saved.

Also note that the fitness value of a solution does not depend on the bridges
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being in double use at a certain time, or the car parts stock reaching a negative
value. This is because this simply cannot happen. Solutions are automatically
created to avoid this; tasks will simply be scheduled later, when there is a bridge
available or when the car parts stock is big enough again. Indirectly, such problems
may cause late hours for mechanics or tasks not being finished in time, which is
directly reflected in the fitness value.

Figure 2.1 gives a more schematic representation of the scheduling problem.
In this figure, it is shown that for each task, the scheduling algorithm first has to
choose a mechanic, and after this, a bridge is chosen automatically. The figure only
has four tasks, two mechanics and two bridges, and already shows many possible
schedules. This gives an appreciation of how big our scheduling problem really is:
imagine having 100 tasks, 16 mechanics and 25 bridges.

2.2 Early Work

In one of the very early papers on scheduling problems, Giffler and Thompson
[12]) describe a problem similar to the Job Shop Scheduling problem presented in
this thesis. Their problems consist of multiple facilities, which correspond to the
mechanics in this thesis, and multiple commodities, corresponding to the tasks in
this thesis. Giffler and Thompson define what they call an active schedule [12]),
which in short is a schedule in which no commodities (tasks) can be performed
earlier by the facility they are processed by without having to reschedule another
task. So, an active schedule is one in which there are no idle times between com-
modities processed on the same facility. They use the concept of active schedule
to define a very interesting algorithm: one that can, given a scheduling problem,
find all the active schedules solving that problem. An exact specification of the
algorithm is beyond the scope of this thesis (and can easily be found in [12]);
suffice it to say that the algorithm is an exhaustive one (after the search space is
defined in a smart way). The reason this is so interesting, is that in general (and in
particular in this thesis) scheduling is seen as an optimization problem, while the
algorithm of Giffler and Thompson does not just find the best solution in a class
of solutions (the class of active solutions), but it finds all of them. Alas, creating
such an algorithm for the Job Shop Scheduling problem presented in this thesis
would be impractical, since such an algorithm would take too much time to find
all the “good” solutions.
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Figure 2.1: Schematic Representation of the Scheduling Problem
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2.3 Current Algorithms

As briefly pointed out before, there have been a lot of (successful) recent attempts
to tackle the Job Shop Scheduling problem (in one form or another). Of course,
throughout time, computer power increased a lot and cleverer algorithms were in-
vented, a combination which has led to researchers being able to find good solutions
to much bigger scheduling problems. Recent examples of algorithms which have
been used to solve the problem are Genetic Algorithms [21], Simulated Annealing
[26], Ant Colony Optimization [7] and Neural Network approaches [22]. Since Ge-
netic Algorithms and Ant Colony Optimization will be covered in the next chapter,
this section will focus on Simulated Annealing and Neural Networks.

2.3.1 Simulated Annealing

Simulated Annealing is a technique for solving optimization problems which was
first described in 1983 [26]. The inspiration for and the name of this algorithm
come from a process in metallurgy named annealing, which is done to make met-
als more workable by decreasing their hardness. It works by heating the metal
and then slowly cooling it, which is where the anology with Simulated Annealing
exists. Simulated Annealing has four basic principles: the creation of neighbour-
ing solutions to the optimization problem, a decreasing temperature, an energy
function and an acceptance probability function [26]. Since this algorithm is not
used in the research described in this thesis, only an informal description will be
given. All possible solutions to the optimization problem being solved have an
energy value, which inversely describes how “good” that solution is. The goal is
to find the solution with the lowest energy associated with it. At each iteration,
Simulated Annealing creates a solution which differs just slightly from its current
solution: the neighbour. The algorithm chooses whether to take this neighbour as
its next solution or to stay at the current solution with the acceptance probability
function. This function uses the energy of the current solution, the energy of the
neighbouring solution being considered and the current temperature to compute
the probability of that neighbouring solution being chosen. If the neighbour is not
chosen, the algorithm keeps the current solution and creates a new neighbour to
repeat the process. The lower the energy of the neighbour, the higher its accep-
tance probability, all else being equal. However, a high temperature will make the
acceptance probability higher, which can lead to the choice of a neighbour whose
energy is higher than that of the current solution. The idea behind this is that only
chosing neighbours with lower energies, as in greedy algorithms, leads the search
into local minima: points in the search space with an energy lower than those of its
neighbours but not lower than solutions further away. If, however, the algorithm
is close to the global minimum (the best solution possible), one does not want it
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to jump away from it because of the temperature still being high. Therefore, the
temperature lowers gradually during the execution of the algorithm.
As each algorithm does, Simulated Annealing comes with advantages and disad-
vantages. As noted in [26], one advantage of the algorithm is its ability to guaran-
tee finding the best solution to an optimization problem. However, as expected, a
related disadvantage is its long computation time, which makes it relatively unsuit-
able for the scheduling problem of this research. Other advantages of Simulated
Annealing include ease of coding and its ability to use fitness functions with rela-
tively high levels of nonlinearities, discontinuities and constraints. Especially the
ability to process constraints itself would make Simulated Annealing great for our
scheduling problem, since this problem has a lot of constraints like scarce resources.
However, other algorithms like Genetic Algorithms can handle these constraints
too.

2.3.2 Neural Networks

Introduction “Neural networks” are a collection of tools which all work by the
same principle: distributed computing. A neural network consists of a number of
simple computational units, also called nodes (see for example [20]). Nodes are
connected to each other with interunit weights, and each compute an output value
based on the input it receives from other units via those weights and its internal
parameters. Note that these weighted connections are directed: one node’s output
multiplied by the weight of such a connection serves as input for another node,
but that same connection does not serve the other way around. This does not
mean nodes cannot have connections to each other both ways, which is the case
in Hopfield Networks, but more on those later.
Neural networks are often built as layers of nodes, each layer only having connec-
tions to the nodes of the next layer. Such networks are called Feedforward Neural
Networks. Such a network could for example be used for textual character recogni-
tion, in which case an image of a textual character is given to a Feedforward Neural
Network, which then has to decide what character it is. A complete description of
how one would build such a network is beyond the scope of this thesis. In short,
the programmer would have to create a numerical representation of the image (for
example, the pixel intensities) to give as input to the first layer of the network.
The parameters of the network then abstract patterns from the input, and finally
decide to which of a number of characters (26 in case of the alphabet) the input
belongs. It would use one node for each character in its final layer. The node
with the highest output value determines the character choice of the network. Of
course, the weights of the network somehow have to get the right values in order
to make the right decision. The process of getting those values is called learning,
and can be done by giving the network example input-output pairs, from which
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it can learn the right weights with an algorithm called backpropagation. Besides
textual character recognition, Feedforward Neural Networks have been used in a
lot of other domains. One interesting example is the application of such networks
in game playing done by a computer. One could train a network to evaluate board
positions of, for example, Othello (Reversi), after which such a network can be
used by a computer to determine which moves to play [10]. Training such a net-
work (i.e. having it set its weights to the correct values) involves having it play
a lot of games from which it learns what board positions are good and which are
bad.

Hopfield Networks Briefly described before, Hopfield Networks [22]) are a class
of neural networks with weights going from one node to another and vice versa.
More specifically, a Hopfield Network consists of a number of binary threshold units
(units which have a binary output, 1 or 0, based on whether the input is higher
than the threshold), which are all connected to each other. Weights are symmetric,
meaning the weight w1,2 from a certain node n1 to another node n2 6= n1 equals
w2,1. Hopfield Networks are a (simple) model of biological associative memory. It
works as follows: a network of N nodes has 2N states it can be in. Depending
on the values of the weights between the nodes, some of these states have lower
energy than others. The energy is calculated as follows [20]):

E = −1
2
∗
∑

i,j wij ∗ xi ∗ xj,

where xi is the state (output value) of node ni. Note that this assumes all
thresholds to be zero. The idea of the energy function, however, is clear: if nodes
with positive weights between them both fire, they lower the energy of the network;
in contrast, if nodes with negative weights between them fire, the energy increases.
If only one of the nodes of a pair fires, nothing happens since one of the factors
of the equation then is zero. If we were to run such a Hopfield Network, we could
update each node sequentially (asymmetric updating). Updating a node means
having it set its state (output value) based on its inputs, the weights corresponding
to the inputs and the threshold of the node: the sum of all inputs multiplied with
their corresponding weights is compared to the threshold. We do so for every
node, and then start over again. It can be easily shown (see for example [20]) that
the energy of such a Hopfield Network will decrease or stay the same for every
update. The network will converge to a state in which the energy cannot decrease
anymore. This is why a Hopfield Network is called associative: we input a state
and it converges to another state based on the input and its weights. It therefore
in a way remembers the state with the low energy.
Now that a short introduction on the workings of Hopfield Networks are given,
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let us see how they could be used for Job-Shop Scheduling, although not for the
specific problem described in this thesis. First, however, let us discuss how a quite
similar (at least on an abstract level) problem, the Traveling Salesman Problem,
might be solved. The objective of the Traveling Salesman Problem is to visit a
number of cities all exactly one time, and then to return to the city that was first
visited, and find the shortest route doing so. The distances between each pair of
cities are given. As is done in [19], one might design a Hopfield Network to solve
this problem. In [19], the author does this by creating a Hopfield Network with
N ∗ N nodes, where N is the number of cities. This is because each city can be
chosen at any point in the route, which of course is N steps long. Since each city
has to be visited exactly once, each column and each row have to have exactly
one node firing. This can be realized by setting the weights between nodes of the
same column and nodes of the same row negative. Furthermore, nodes that are
in adjacent rows should have weights negatively proportional to the distance, as
to enforce that the resulting path be minimal. One could do almost exactly the
same thing for solving the Job-Shop Scheduling problem. After all, each task is
done by exactly one mechanic, and we search for the “shortest” schedule, i.e. the
most efficient one with respect to time duration. One could create a network of
size T ∗M , where T is the number of tasks and M is the number of mechanics.
Each task is done by exactly one mechanic, so the nodes of a row (which consists
of M nodes) have negative weights between them. The distances of the Traveling
Salesman Problem can be directly translated to time durations for specific task-
agent combinations here: from row i to row j, the weights to each node (and the
weights from these nodes back to row i) could be negatively proportional to the
time it takes each specific agent to perform task j. A problem, however, arises.
There should be negative weights in the column, since one mechanic can only
perform a limited number of tasks. However, this is very difficult to do. If each
agent can do only one task, the problem is virtually the same as the Traveling
Salesman Problem and the weights in the columns can be set very low, say −1.
If each agent can do, say, 5 tasks, this would mean setting the weights to −1

5
.

However, this is too naive: some tasks only take ten minutes, where others take
two hours. Tasks of ten minutes should have weights closer to zero than the
long tasks. Since weights are symmetric, it seems impossible to determine the
weights between short and long tasks in the same column. Furthermore, adjacent
nodes in the same column already have weights between them: the time duration
weights. Furthermore, our scheduling problem has other constraints which are
seemingly impossible to implement in this network: the use of scarce resources
and consumables. Solutions to all the problems might be available, but would (at
least as far as the author can see) all lead to very large networks, which obviously
have high computation times. This is why no neural network was created for our
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scheduling problem.
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Chapter 3

Methods

3.1 Introduction

In this chapter, all algorithms that were used for scheduling in this research are
described. However, before this, it is important to discuss what the algorithms
exactly need to do. First of all, let us look at the input the algorithms receive.
For this research, a problem generator was created: a script that creates an array
of tasks, an array of agents (the mechanics), an array of cars, an array of car parts
and an array of bridges. A task has a number of parameters: a minimum start
time, a maximum finish time, a boolean variable indicating whether or not a bridge
is needed to perform the task, a variable indicating whether another task has to
be performed before this task, and if so, which one, and a variable indicating
whether it needs its executing agent to have a certificate, and if so, which one,
and two arrays indicating which car parts the task needs and how many of each,
respectively. Just like a task, a agent has parameters as well: most importantly, it
has an array with duration values, indicating for each task how long it takes the
agent to perform that task. Furthermore, an agent has a time at which he should
be finished with his tasks to go home. A car only has one parameter: its weight,
which is important if it needs to be lifted by a bridge. Related to this, a bridge has
as its only parameter the maximum weight it can lift. As said before, the problem
generator creates problems with only one type of car part; therefore, the array
of car parts has only one entry. A car part has three parameters: one specifying
the initial amount of that car part at the start of the day, a list of delivery times
(times at which a new amount of this car part arrives at the workshop) and a list
of values indicating how many car parts arrive at those delivery times.
Now, let us discuss what the algorithms have to do once they receive a problem
created by the problem generator. The goal is to have each task assigned to exactly
one agent and, if needed, exactly one bridge, at a specific time, of course without
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violating the constraints (the times at which the agents go home, the stock of the
car parts, etc.). It is very important to note here that the algorithms do not have
to plan the execution times of the tasks explicitly: these values are calculated
automatically once an algorithm has finished planning. All the algorithms need
to do is assigning each task to a specific agent and bridge (if a bridge is needed).
After this, all tasks assigned to the same agent will be planned directly behind each
other in time, the order being determined by which tasks have to be finished first
in order for other tasks to be executable. Tasks being performed at the same time
by different agents will automatically be assigned to different bridges, if possible.
If this is impossible, one of the tasks has to be scheduled later in time than the
other. This specific bridge problem can lead to suboptimal schedules. For example,
Task 0 and Task 1 are both assigned to Agent 0, and Task 2 and Task 3 to Agent
1. All four tasks take the same amount of time given this assignment, and no
other tasks have to be scheduled. Task 3 has to be performed after Task 2, but
Task 0 and Task 1 can be executed in whatever order. Also, there is one bridge,
Bridge 0, and Task 0 and Task 2 both need a bridge. Now, Task 0 will at first be
scheduled before Task 1, since its identifier (0) is lower (and there is no specified
order). Task 0 will of course be assigned to Bridge 0. Task 2 will obviously be
scheduled before Task 3 and will also be assigned to Bridge 0. This results in
Task 2 being performed after Task 0 since these tasks use the same bridge, which
results in Agent 1 doing nothing while Agent 0 is executing Task 0, and finishing
late. This could have been avoided by having Agent 1 perform Task 1 first and
then Task 0. In practice, however, this does not seem to be a frequently occuring
problem. Therefore, the cost of this problem is far lower than the benefit of the
computation time saved.

3.2 Hill Climbing

3.2.1 Introduction

Hill Climbing is the simplest algorithm used in the research of this thesis. Al-
though its results may not be as good as the other algorithms described in this
thesis, Hill Climbing is surpisingly good considering how simple it is and how fast
the algorithm returns a solution. The authors of [32] compare the workings of
Hill Climbing (or steepest-ascent) with trying to find the top of Mount Everest,
while having amnesia and walking in a thick fog: you have no memory of the route
you took so far, and you can only see what is very near to you. Hill Climbing
works very much like this: it is a so-called Local Search algorithm. It starts with
a random solution to the problem it is trying to solve. It then generates all neigh-
bouring solutions: states that can be created out of the original solution with only
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a small change. The algorithm then uses its objective function to determine the
best of all those neighbouring solutions. If the best one is better than the original
solution, the original is replaced by that new solution (this makes Hill Climbing
a greedy algorithm). Hill Climbing then repeates the previous steps until it gets
stuck: that is, if no neighbouring solution is better than the current best solution.
If this happens, the algorithm returns the current solution.
As noted before, Hill Climbing is computanionally cheap: it returns a solution
very fast and only requires a constant and small amount of memory. In relation
to these points, the authors of [11] conclude that Hill Climbing scales well with
larger problem spaces, which causes this algorithm to have a big advantage over
the other algorithms described in this thesis. There is, however, a big problem
with Hill Climbing: being a pure Local Search algorithm, it uses no memory or
Global Search techniques whatsoever, often causing it to not find the global op-
timum and instead having it get stuck in a local optimum. These characteristics
of Hill Climbing (high speed, low memory, local search, and low probability of
finding the optimal solution) contrast strongly with some of the more complicated
algorithms, like a Genetic Algorithm. Genetic Algorithms work slower, use much
more memory but have a higher probability of finding the optimal solution to a
problem. Genetic Algorithms will be discussed in detail in the next section; for
now, it is interesting to note that Hill Climbing and Genetic Algorithms seem to be
opposite extremes in problem solving [31]. Renders and Bersini [31] had the idea
to use the powers of both algorithms and create hybrid algorithms which should
find a global optimum relatively efficiently. This idea and the algorithms it led
to will be explained in more detail at the end of the section on Genetic Algorithms.

3.2.2 Hill Climbing for Job Shop Scheduling

Now that we have discussed the theoretical background of Hill Climbing, it is time
to look at how this algorithm was used to solve the Job Shop Scheduling problem
presented in this research. As discussed before, Hill Climbing works with a current
solution, from which it creates a set of neighbouring solutions. This current solu-
tion is initially random (createRandomSolution()). Those neighbouring solutions
look a lot like the current solution: they are different at only one point. So, what
we have at the start of each iteration of the algorithm is a current solution in
the form of a task assignment: an array of numbers, each indicating the specific
agent carrying out the task of which the identifier equals the entry number of the
agent number in the array. Creating a neighbouring solution is simple: simply
change the agent number of one of the tasks, which comes down to changing one
number in the task assignment. However, this way, creating all the neighbouring
solutions could become impractical, since this number increases quite fast if the
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problem size grows. Therefore, it is more practical to select a number of these
neighbours. In this research, this is done as follows. Imagine the algorithm tries
to find a neighbour by changing the first number in the task assignment. Also
imagine we have to make a schedule for 10 workers. Now, the algorithm iterates
over all possible agent numbers (9, not counting the current one used) and simply
picks the first one that results in a solution better than the current solution. After
all, we are looking for a solution better than the current one. If the algorithm
finds such a number, it selects that mechanic as the new mechanic for that task
and changes the current solution. The algorithm then moves on to the next task,
repeating the previous process for this task. After the algorithm has gone through
all the tasks, it simply starts over, with the first task. Indeed, a mechanic was
already selected for this task, but a lot may have changed in the solution, so now,
another mechanic might be the best fit. If there are no better mechanics to find
for any of the tasks, the algorithm is in a local (and hopefully global) maximum,
stops optimizing and returns the current solution. For a description of this Hill
Climbing algorithm in pseudocode, see Algorithm 1.

Algorithm 1 Hill Climbing

Solution ← CreateRandomSolution()
while Stopconditions Not Met do

CurrentFitness ← Fitness(Solution)
for Each Task in Solution do

CurrentMechanic ← Solution[Task]
for Each Mechanic in Solution do

Solution[Task] ← Mechanic
if Fitness(Solution) ≤ CurrentFitness then

Solution[Task] ← CurrentMechanic
else
{Better Solution Found}
End For Loop

end if
end for

end for
end while
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3.3 Genetic Algorithm

3.3.1 Introduction

Greatly inspired by natural evolution, a Genetic Algorithm (pioneered by John
Holland, [21]) uses a population of initially random solutions to a problem it is
trying to solve [32]. Those solutions, being different from each other, all have
their own fitness value, given by the objective function (or fitness function) of the
Genetic Algorithm. At each iteration, the algorithm selects the n best solutions
(i.e. the solutions with the highest fitness) and throws away the other ones. The
n best solutions are allowed to generate offspring, for example by copying them-
selves and mutating the new solution, or by making a new solution by merging two
existing ones. The original n best solutions are kept in the population. Newly cre-
ated solutions will sometimes have higher fitness values than the original solutions
(and often, they will be worse). This way, iteration after iteration, the population
evolves, untill a plateau is reached (or a time limit is reached). Then, the best
solution of the population is returned. This relatively simple algorithm has proven
to be a very powerful strategy to solve very different optimization problems. This
is at least partially because a Genetic Algorithm makes no assumptions about the
problem it has to solve: one can add as many constraints and non-linearities as one
likes, because given a big enough population, the algorithm will spawn some im-
proved individuals. Part of the power comes from keeping multiple best solutions,
not just one: this way, if the absolute best solution cannot create better ones, one
of the other best solutions might. Of course, like with every algorithm, there is no
free lunch: larger populations increase the algorithm’s chance of finding the best
solution, but make the algorithm slower. This is a problem since we want to have
a solution fast. As we will see later, Memetic Algorithms, a variant of Genetic
Algorithms, handle this problem quite well while keeping the ability to find good
solutions.

3.3.2 Previous Work

Before we move on to how to create a Genetic Algorithm for our Job-Shop Schedul-
ing problem, let us see what kind of optimization problems Genetic Algorithms
have been used for before, just to give a general idea of their power. For our
scheduling problem, multiple objectives have to be realized: the schedule has to
be efficient, the mechanics should not have to work after hours, tasks should be
finished in time, etcetera. It was chosen to create a single fitness function which
takes all objectives into account. This results in the algorithms being more easy
to create than in case it was chosen to keep the multiple objectives separate and
create as many fitness functions. However, to demonstrate the power of Genetic
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Algorithms, it is interesting to discuss previous research that did keep multiple
objectives separate. This option was, for example, chosen in [5]: these researchers
created a fast Genetic Algorithm that finds very good solutions in multiple dimen-
sions. As they discuss, such multi-objective algorithms are in search of so-called
Pareto-optimal solutions. Pareto-optimality is a state in which one cannot im-
prove the solution in the dimension of one objective without making it worse in
the dimension of another objective. Of course, as the reader can imagine, multiple
Pareto-optimal solutions might exist to a problem, and without having more in-
formation, the algorithm cannot know which of those solutions is the “best” and
thus has to return all of them [5].

3.3.3 Genetic Algorithm for Job Shop Scheduling

After the general theoretical background of Genetic Algorithms, let us now discuss
how such an algorithm can be applied to the problem of Job Shop Scheduling. As
said before, we start with a number (in this case 500) of initial solutions, produced
randomly, called the population. These solutions again exist in the form of task
assignments. We let the fitness function evaluate each of these solutions, after
which we can keep the best ones. For this research, the number of task assignments
kept is two, but more on this later. The algorithm deletes the other 498 solutions,
and creates new ones. This is done as follows. Earlier in this thesis, we discussed
the fact that sometimes Genetic Algorithms create new individuals by copying one
of the best solutions, and sometimes, they take two of the best and merge them
together to make a new one (by taking about half of the task assignment of the
first solution, and half of the second). For this research, it was chosen to only do
the first method: copying one solution. This choice was made because in general,
the best solutions possible will have the workload divided approximately equally
among all workers. That is one of the reasons the initial solutions are created
randomly, as this will give such a distribution (most of the time). Taking two
solutions and merging them together could easily create a new solution in which
such an approximately equal distribution is destroyed. Therefore, it was chosen
to always take one of the best solutions, copying it, and then mutate the newly
“born” individual. Of course, this mutation process is the most important feature
of the Genetic Algorithm: it is this process that creates the ultimately winning
solution. A mutation can be one of the following two processes in this research.
The first one is a simple random change: one of the tasks gets a randomly chosen
agent (other than the one it has now), which simply means randomly changing one
of the numbers in the task assignment. However, the task to which this is done
is not completely randomly chosen: it is one of the tasks currently causing the
schedule not to be optimal, for example by being finished too late. Choosing such
tasks for the mutation process (and not tasks which cause no problems) makes the
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algorithm a bit faster. The second mutation process is a swap: two tasks swap
their executing agent. In such a swap, again at least one of the tasks is a task
which currently causes a problem in the schedule. Forcing both taks of a swap to
have that property would be too much, since there may be only one task in the
whole task assignment that causes a problem. If the algorithm decides to try a
swap, it tries to find two suitable tasks for a maximum of ten times before it gives
up. Tasks not suitable for a swap are tasks which have at least one mechanic not
qualified to do the other task. Each time a solution has to be mutated, there is
a 20% probability the first mutation process is used and an 80% probability the
second one is used.
The mutations just described cause the initial population of solutions to evolve.
Each individual that needs to be mutated in a cycle is mutated once or twice, which
is randomly decided (with fifty-fifty odds). The Genetic Algorithm described in
this section is described in pseudocode in Algorithm 2 and Algorithm 3.

Algorithm 2 Genetic Algorithm

Solutions ← 500 random solutions
BestSolutions ← FindBestTwoIndividuals()
while Stopconditions Not Met do

GenerateNewIndividuals(Solutions, BestSolutions)
FindBestIndividuals(Solutions, BestSolutions)
BestSolutions ← FindBestTwoIndividuals()

end while
return BestSolutions[0]

3.4 Memetic Algorithm: Genetic Algorithm with Hill

Climbing

3.4.1 Introduction

As noted in for example [35], modern optimization algorithms combine exploration
and exploitation: exploration means finding new regions in your search space, while
exploitation is intensifying the search in a known region. Therefore, they say, it
has been suggested to combine meta-heuristic strategies (for exploration) with lo-
cal search algorithms (for exploitation). As we will see later in this thesis, such a
combination leads to a class of very powerful algorithms.
As discussed before, the researchers of [31] decided to combine the powers of both
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Algorithm 3 GenerateNewIndividuals(Solutions, BestSolutions)

for Each Solution in Solutions do

if Solution not in BestSolutions then

repeat

if Random() < 0.2 then
Mutate1(Solution)

else
Mutate2(Solution)

end if
until Repeated Twice or Random() < 0.5

end if
end for

Genetic Algorithms and Hill Climbing, to create a hybrid algorithm. More specif-
ically, hybrid algorithms created of Genetic Algorithms and local search methods
(such as Hill Climbing) are called Memetic Algorithms. The authors of [31] suc-
ceeded in creating Memetic Algorithms with higher speed and no loss in per-
formance compared to their Genetic Algorithm (indeed, their ultimate hybrid
performed better). Let us look a bit at the theoretical background of Memetic
Algorithms.

As noted in [30], the word “memetic” has the word “meme” in it, which is in-
vented by the famous Richard Dawkins [4]. Dawkins [4] explains that a meme can
be, for example, a catch-phrase, or an idea, which propagates itself from human
to human via imitation much like genes propagate themselves via sperm and eggs.
Memetic Algorithms have the word “meme” in them because they use heuristics
[30], which are ideas to improve performance, the heuristic in the case of this thesis
being a local search method.

3.4.2 Previous Work

To discuss the strength of Memetic Algorithms, let us first look at research per-
formed by Zitzler and Thiele [36]. In this research, the authors developed Evo-
lutionary Algorithms to solve a special kind of optimization problem: the Multi-
Objective 0/1 Knapsack Problem. As noted in [36], the problem is NP-hard,
though easy to describe. What we have is a generalization of the standard 0/1
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Knapsack Problem, which works as follows. We have a knapsack which can hold
a number of items, which together must not exceed a weight maximum. Further-
more, we have a number of items, each with a weight and a profit. The purpose
is to fill the knapsack with items in such a way that the maximum weight is not
exceeded and the total profit is maximized. To extend this 0/1 Knapsack Problem
to the Multi-Objective 0/1 Knapsack Problem, Zitzler and Thiele [36] simply al-
low an arbitrary number of knapsacks. This results in multiple total profits to be
maximized, hence the multi-objective property. Zitzler and Thiele [36] developed
an Evolutionary Algorithm called SPEA to solve the Multi-Objective 0/1 Knap-
sack Problem. The details of the inner workings of SPEA are beyond the scope
of this thesis; more important is their conclusion that SPEA outperformed other
existing Evolutionary Algorithms, while even those algorithms are quite suitable
for multi-objective optimization problems [36].
Now that we have discussed the Multi-Objective 0/1 Knapsack Problem, let us
discuss the research performed by Knowles and Corne, described in [28]. These
authors took the Multi-Objective 0/1 Knapsack Problem described in [36], and de-
veloped their own Memetic Algorithm to solve it. This Memetic Algorithm, called
M-PAES (Memetic Pareto Archived Evolutionary Algorithm), is a combination of
their earlier developed (1+1)-PAES [27] and population and recombination tech-
niques. (1+1)-PAES is a relatively simple to create local search algorithm [27],
intended to be used as a baseline to compare more complicated algorithms with.
However, it was found to be quite competitive with respected Evolutionary Al-
gorithms, altough the experimental settings required further investigation [27].
Again, the details of (1+1)-PAES are not relevant for this thesis. What is relevant
is the Memetic Algorithm, M-PAES, that incorporated it. M-PAES was found to
be competitive with and on some problems even better than SPEA [27]. It is noted
[27], however, that comparison between the algorithms is difficult and that further
investigation is needed. That makes the comparison between Memetic Algorithms
and Genetic Algorithms in this thesis (even) more relevant.

3.4.3 Memetic Algorithm for Job Shop Scheduling

Of course, both speed and performance are very interesting for the research de-
scribed in this thesis, but it is mostly the speed part that is of importance. Genetic
Algorithms are by themselves not very fast algorithms, and it is of great impor-
tance that an algorithm is created that will not only find a good solution to quite
large scheduling problems, but does so in a matter of seconds, and not minutes.
When things do not work out as planned in a car workshop, a new planning needs
to be generated as fast as possible, especially when mechanics are waiting for a
job to be assigned to them. Because of this, for this research too, a Memetic
Algorithm was implemented. The original Genetic Algorithm, described in the
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previous paragraph, was used and adapted. This was done as follows. After the
Genetic Algorithm has found the best two candidate solutions in its population,
those two (and only those two) are optimized using Hill Climbing. Optimizing all
the solutions in the population would take too much time, and would take away
the advantage we are trying to establish by using Hill Climbing in the first place.
What is more, the Hill Climbing part does not (at least not necessarily) fully op-
timize the solutions it works with: it only does two iterations. Again, the reason
is simply time constraints. Moreover, using Hill Climbing on solutions worse than
the two best solutions will generally result in new solutions worse than the solu-
tions generated by Hill Climbing on the two best solutions, and will thus not be
very useful.
The Genetic Algorithm which forms the basis for the Genetic Algorithm with Hill
Climbing is described with pseudocode in Algorithm 2 and Algorithm 3. For the
Genetic Algorithm with Hill Climbing, Algorithm 3 is replaced with Algorithm
4. Also, Algorithm 5 is added to show the procedure of optimizing the best two
solutions with Hill Climbing in pseudocode.

Algorithm 4 GenerateNewIndividualsMemetic(Solutions, BestSolutions)

for Each Solution in Solutions do

if Solution not in BestSolutions then

repeat

if Random() < 0.2 then
Mutate1(Solution)

else
Mutate2(Solution)

end if
until Repeated Twice or Random() < 0.5

else
Solution ← OptimizeWithHillClimbing(Solution)

end if
end for

28



Algorithm 5 OptimizeWithHillClimbing(Solution)

while Stopconditions Not Met do

CurrentFitness ← Fitness(Solution)
for Each Task in Solution do

CurrentMechanic ← Solution[Task]
for Each Mechanic in Solution do

Solution[Task] ← Mechanic
if Fitness(Solution) ≤ CurrentFitness then

Solution[Task] ← CurrentMechanic
else
{Better Solution Found}
End For Loop

end if
end for

end for
end while

3.5 Ant Colony Optimization

3.5.1 Introduction

Invented by Marco Dorigo for his PhD-thesis [7], Ant Colony Optimization can
be seen as a member of the swarm intelligence methods [9]. According to [24],
the defining properties of any swarm intelligence algorithm are that local rules
and interactions between self-organizing agents cause the emergence of a collec-
tive intelligence. The local rules have no relation to the global pattern. These
properties, as we will see, clearly hold in Ant Colony Optimization. As the name
suggests, this algorithm is inspired by the behavior of ants. As described in for
example [9], ants who are looking for the shortest path to a food source use a
process called stigmercy (first described by [18]). Stigmercy is a communication
process in which ants communicate with each other with locally released (and only
locally receivable), non-symbolic information; this information is released in the
form of pheromones, which is smelled by ants and constantly released by each
ant. Pheromones evaporate over time. Ants choose where to go based partially
on the pherome concentrations around them: the higher the concentration, the
more likely it is ants will go there. Imagine there are two paths to a food source,
a long path and a short one (see for such an experiment [17]), which split at a
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certain obstacle, at which each ant has to choose to go left or to go right. Since
the ants have no prior knowledge of which path will be the shortest, initially, each
ant will choose left or right at random. This results in both paths initially being
walked by roughly the same amounts of ants, and thus both paths will (again,
initially) receive the same amount of pheromones. However, over time, this results
in the shorter path having a higher pheromone concentration: because the path
is shorter (and the number of ants walking it is inititially the same), it is walked
by more ants per time unit. Because of this, more and more ants will walk the
shorter path, and thus the group of ants as a whole demonstrates optimization. It
is important to note, however, that even in case the two paths in the previously
described problem are of equal length, the ants will still all follow the same path
after a while, due to early random fluctuations in the pheromone concentrations [6].

As noted before, the ants together show intelligence when finding paths to a
food source: they are optimizing with the use of stigmercy. Because of this opti-
mizing, they serve as inspiration for the class of algorithms known as Ant Colony
Optimization algorithms. What these algorithms all share is the use of swarm
intelligence and the release and reception of virtual pheromones to simulate stig-
mercy, which is used to optimize the solutions to optimization problems such as
the scheduling problem discussed in this thesis. As [3] notes, it is (partly) this
swarm intelligence characteristic that gives Ant Colony Optimization its strength
in solving optimization problems. The domain to which Ant Colony Optimization
applies is huge: the algorithms are applicable to all discrete optimization prob-
lems, if there is some kind of solution-creating procedure possible [8]. The general
optimization process of Ant Colony Optimization may be best explained when ap-
plying it to an example problem. For this, the famous Traveling Salesman Problem
is chosen. As explained before, this problem has a number of cities with specific
distances between each pair of cities, and a salesman who has to visit each city
exactly one time and has to return to the first city he visited afterwards, creating
the shortest possible route doing so. As the general form of the Ant Colony Opti-
mization algorithms is described in [9], such an algorithm would repeatedly follow
the following steps: construct ant solutions, apply local search, such as Hill Climb-
ing (this is optional), and finally update the pheromone values. Technical details
will be discussed in the paragraph about Max-Min Ant System, one of the variants
of Ant Colony Optimization (indeed, the details depend on the exact algorithm),
but let us look at the first and last steps in a little bit more detail. Constructing
ant solutions happens in the following way. Each virtual ant creates a solution to
the Traveling Salesman Problem, traveling each city and returning to the first one.
While creating such a tour, at each city, an ant has to choose which city to visit
next. It does so probabilistically, the probability to visit each city depending on

30



the pheromone value on the path to that city: the higher that value, the higher
the probability. The final step of an iteration of Ant Colony Optimization is the
updating of the pheromone values between the cities. Again, the technical details
will be discussed later; for now, the update of a pheromone value depends on how
good the solutions were containing the path of that pheromone value. This way,
over time, good solution parts will receive more and more pheromone value, and
will be used more and more in new solutions, optimizing in the process.

3.5.2 Ant System

Having discussed the general way in which Ant Colony Optimization algorithms
solve a discrete optimization problem, it is time to turn to a more precise and more
technical description of a specific algorithm which is the father of the algorithm
used in the research described in this thesis: the algorithm called Ant System.
This is the first algorithm in the Ant Colony Optimization class [9]. An important
feature of Ant System is the fact that it lets all of its ants update the pheromone
values, and not just for example the ant with the best tour [9]. The pheromone
update is governed by the following update rule [9]:

τij ← (1− ρ) ∗ τij +
∑m

k=1 ∆τ kij

In this equation, τij is the pheromone on the edge joining cities i and j, ρ is the
evaporation factor (causing pheromone values to decline) and ∆τ kij is the amount
of pheromone per unit length ant k deposits on the edge joining cities i and j.
Thus, this equation simply tells us that the pheromone values on each edge in
the graph of the Traveling Salesman Problem are increased by all the amounts of
pheromone dropped on it by the ants (and decreased slightly by the evaporation
factor ρ). Now, let us define the pheromone update ∆τ kij (as in [9]):

∆τ kij =

{
If ant k used edge ij in its tour Q

Lk

Else 0

In this equation, Lk is the length of the tour made by ant k, and Q is simply a
constant defined by the programmer. In summary, all the edges that were used by
one or more of the ants in its construction of its solution get a positive pheromone
update which is inversely proportional to the lengths of the tours that edge is in.

31



Now that we have discussed the pheromone update rules, let us go on to define
how the ants construct their solutions. At each step in creating a solution for the
Traveling Salesman Problem, an ant has to choose which of the remaining cities
it is going to visit next. As discussed before, this is done probabilistically. The
probability of ant k visiting city j when currenty it is in city i, pkij, is defined as
follows [9]:

pkij =

if j ∈ allowedk
ταij∗η

β
ij∑

l∈allowedk
ταil∗η

β
il

Otherwise 0

Here, ηij is the heuristic information on edge ij, equal to the reverse of the
length of this edge: ηij = 1

dij
. allowedk is the list of cities that have not yet been

visited by ant k. α and β are simply parameters governing the relative influence
of the pheromones and the heuristic information, respectively.
Note that Ant System uses a greedy heuristic (the distance between two cities in
case of the Traveling Salesman Problem), which by itself usually leads to relatively
bad solutions [3]. The Ant System still converges to a good solution (most of the
time). This is very interesting indeed; the use of a simple, usually bad working
heuristic applied multiple times results in a good solution. Of course, the reason
for this is the powerful (though simple) communication between the ants.

Before we continue to the paragraph about the Max-Min Ant System algorithm
(which was used for the Job-Shop Scheduling problem described in this thesis),
let us look at some problems the Ant System algorithm has been applied to in
the past. As described in [3], Colorni et al. have successfully applied the Ant
System for a Job-Shop Scheduling problem, very similar to the one described in
this thesis. As said before, one of their conclusions was that the strength of the
Ant System algorithm comes from the swarm characteristic. More specifically,
the algorithm is successful because of the cooperation among the ants, which is
done using the release and reception of pheromones. Looking at one ant, the
tour it creates is (usually) in part good and in part bad; this is because it uses
the greedy policy. Overall, the individual ant’s solution is therefore not very
good. However, there are multiple ants all creating different tours. All these
tours have good parts and bad parts. Overall, good parts will be chosen more
often than bad parts since their pheromone trails will be and will become the
highest (positive reinforcement), because they are more often in good tours. The
process just described is called a probabilistic superposition of effects [3]. The term
probabilistic is already explained; the superposition term comes from the fact that
the strength of the Ant System lies not in the individual ant, but in the cooperation
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of the group.

3.5.3 Max-Min Ant System

As the name already suggests, Max-Min Ant System [34] is a more specific variant
of the more general Ant System algorithm. Max-Min Ant System introduces two
changes to the original algorithm. The first change is the fact that only the best
ant can update the pheromone trails, in contrast to the property of Ant System
that all ants update these trails. Secondly, Max-Min Ant System does have, as
the name suggest, minimum and maximum pheromone values. The equation for
pheromone updates thus becomes [9]:

τij ← (1− ρ) ∗ τij + ∆τ bestij

However, it τij drops below the minimum value or becomes higher than the
maximum value, it will automatically become equal to the minimum or maximum
value, respectively. Apart from these few differences, the Max-Min Ant System
works the same as the Ant System.

3.5.4 Max-Min Ant System for Job Shop Scheduling

In the previous paragraphs, we have discussed how Ant Colony Optimization in
general solves optimization problems, and more specifically how the Max-Min Ant
System algorithm, a variant of the Ant System, does this. Now that we have dis-
cussed its pheromone update rules and its move selection probability equations,
let us look at how the Max-Min Ant System algorithm can be applied to solve the
Job Shop Scheduling problem defined in this thesis. As with the other algorithms,
solutions are coded as task assignments: arrays of numbers in which the index is
symbol for a task and the value stands for the agent (mechanic) performing that
task as defined by that specific solution. The construction of such a task assign-
ment by an ant in the Max-Min Ant System is a lot like the creation of a tour in
the Traveling Salesman Problem, which we discussed earlier. Instead of traveling
from one city to the next to create a tour, as happens in the Traveling Salesman
Problem, in the Job Shop Scheduling problem an ant “travels” from one task-agent
combination to the next. The “distance” between such task-agent combinations
is defined as the time it takes the agent to perform the task. At the start, the
ant chooses the agent for task 0. It can choose from all agents qualified to per-
form that task. The choice of such a task-agent combination happens according
to the probability equation described in the previous paragraph, and is exactly
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like the choice of a city in the Traveling Salesman Problem. After the choice of an
agent for task 0, the ant moves on to choose an agent for task 1, etcetera. After
all ants have assigned an agent to each task, their tours are evaluated according
to the fitness function. The best created tour since the start is kept in memory.
After this, the pheromone updates happen. After this, the whole process starts
over, until the solutions converge. There is, however, a problem which arises when
we compare the application of a Max-Min Ant System to the Traveling Salesman
Problem to the application of a Max-Min Ant System to Job Shop Scheduling.
The fitness of a solution to the Traveling Salesman Problem is inversely related
to the total distance travelled, and is completely determined by this. In contrast,
the fitness of a solution to the Job Shop Scheduling problem has a more compli-
cated calculation: it is indeed related to the total “distance travelled”, but it also
depends on how much overtime each agent has, the degree to which each task is
finished before its deadline, etcetera. This makes the “distance” a weak heuristic
in the case of the Job Shop Scheduling problem, while it is more than that in the
Traveling Salesman Problem. Since the pheromone updates are done using the
fitness function (and are thus related to overtime etcetera), this might negatively
influence the optimization process.

The parameters of the Max-Min Ant System are set as follows. First of all,
the α and β parameters are both equal to 1.0. The minimum pheromone value
equals 0.01, while the maximum value is 1.00. The Q-factor is set to 0.5 and ρ
equals 0.08. There are 200 ants constructing solutions. The Max-Min Ant System
described in this section is more formally described in pseudocode in Algorithm 6
and Algorithm 7.

Algorithm 6 Max-Min Ant System

while Stopconditions Not Met do

UpdateProbabilities()
CreateTours()
BestTour ← FindBestTour()
UpdatePheromoneValues()

end while
return BestTour
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Algorithm 7 CreateTours()

for Each Ant in Ants do

for Each Task in Tasks do

CumulativeProbability ← 0.0
RandomFloat ← Random()
for Each Mechanic in Mechanics do

CumulativeProbability ← CumulativeProbability + Probabili-
ties[Task][Mechanic]
if RandomFloat < CumulativeProbability then

Tours[Ant][Task] ← Mechanic
end if

end for
end for

end for

3.6 Max-Min Ant System Combined with Hill Climbing

As suggested by the general Ant Colony Optimization algorithm (see for example
[9]), the Max-Min Ant System presented in the previous subsection was combined
with local search in the form of Hill Climbing. The general idea is to simply
improve each ant’s tour after it has created one by itself, but, of course, before
the pheromone values are updated. However, again, because of time constraints,
it was decided to only improve the best tour with Hill Climbing, not all the tours.
Again, the Hill Climbing component runs for a maximum of two rounds.

3.7 Particle Swarm Optimization

3.7.1 Introduction

In its standard form, Particle Swarm Optimization [25] uses continuous variables.
Of course, for the problem at hand, we need algorithms that use discrete vari-
ables; hence, an adapted version of the standard algorithm was needed, which is
described later in this section. First, we will look at the basic, continuous variables
using algorithm.

Just like Genetic Algorithms and Ant Colony Optimization algorithms, Parti-
cle Swarm Optimization, invented by Kennedy and Eberhart [25], is inspired by
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nature. This algorithm works in analogy with the way birds or fish find a food
source: once one of the birds or fish finds food, shortly after many others come
to the same place. In the same way, Particle Swarm Optimization starts with
a large number of particles flying around in the problem space, defined along a
number of dimensions. While initially being random, the velocities of the parti-
cles are updated each cycle using information found so far about where the global
best solution might be [33]. In the basic form of the algorithm, this information
for each particle comes from two variables: the best found solution so far of the
particle itself, and the best found solution so far of all particles. The velocity
(more precise, the speed and direction) of each particle is then adjusted in order
to have it move more in the direction of those two variables. This velocity update
is done for each axis individually. The positions of the particles on each axis are
then updated using their new velocities. The equations [33] for the velocities and
positions of the particles are as follows:

vid = vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗Rand() ∗ (pgd − xid)
xid = xid + vid

Here, vid is the velocity of particle i in dimension d and xid is the position of
particle i in dimension x. pid is the best position reached so far in dimension d by
particle i, and pgd is the best position reached overall, again in dimension d. c1
and c2 are constants regulating the influence of the previous two variables, whereas
rand() and Rand() are two functions generating random numbers between 0 and
1.

3.7.2 Discrete Particle Swarm Optimization

As discussed before, the standard Particle Swarm Optimization algorithm solves
problems with continuous variables. In the scheduling problem the optimization
algorithms use task assignments (where each task has a specific mechanic who per-
forms that task), and these assignments are, of course, discrete. We therefore need
an adapted algorithm: Discrete Particle Swarm Optimization. In [23], such an al-
gorithm is used to solve the Grid Job Scheduling problem, a problem similar to Job
Shop Scheduling. What is most interesting in their approach is not the position of
the particles, but their velocities. The problem is that using standard, continuous
domain velocities leads to continuous positions, which then have to be rounded to
whole numbers. Even worse, velocities in the classic sense do not make sense here:
moving “towards” a previously encountered good solution will usually not give
the particle interesting new positions, since in the problems we are discussing, for
example resources are randomly ordered in the resource dimension. The author
therefore follows the approach of [23] and models velocities as probabilities. In
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this approach, each particle has a probability distribution for each dimension of
the problem space. The position of a particle on each axis is therefore determined
probabilistically, using this probability distribution. Two Discrete Particle Swarm
Optimization algorithms were created modeling velocities as probabilities. The
first one works as follows. For each particle, its best position in the problem space
so far is kept in memory. The same is done for the best position of all particles.
The probabilities are calculated as follows. Each particle gets is own probabiliy
distribution, initially (in each iteration) giving each coordinate the same probabil-
ity along each axis (except for those places where the probability is zero, caused by
an agent being unqualified for that task). Then, the best position of each particle
so far updates the probability distribution of that particle by increasing the proba-
bilities of the coordinates of its best task assignment so far with a factor: if its best
assignment so far has value 4 in entry 3, then the probability of value 4 in entry
3 is increased. The same goes for the best task assignment overall so far, with
the difference that this one updates the probability distributions of all particles.
Furthermore, another difference is that the best task assignment overall increases
probabilities with a bigger factor than the particles’ own best task assignments do.
Of course, the probability distributions are normalized after the updates, as they
have to add up to 1.
The second way probabilities are calculated in this thesis works almost the same
as the first one, with one major difference: the best task assignments of each
individual particle update all probability distributions, not just their own. The
factor with which this best task assignments update the probability distributions
has to be small here, since each probability distribution now gets a great number
of updates from such task assignments, this number being equal to the number of
particles. If this factor is too big, the overall best solution will hardly have any
influence. While calculating the probabilities the second way may be less popular,
it does give the word “probability” more meaning per iteration: giving a, say, 0.01
probability update to all particles usually actually results in around one percent
of the particles changing their state according the update. This alternative algo-
rithm will be called Particle Swarm Optimization 2, as opposed to the first Particle
Swarm Optimization algorithm, called Particle Swarm Optimization 1.

3.7.3 Discrete Particle Swarm Optimization for Job Shop Scheduling

Now that we have discussed the general workings of the Discrete Particle Swarm
Optimization algorithm designed for the Job Shop Scheduling problem, it is time
to look at how to apply the algorithm to the problem. As discussed before (and
as always) task assignments are used to encode solutions. Each particle therefore
exists as a task assignment, with each index representing a task and each value
representing the agent performing that task. As discussed before, these particles
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“fly around” in the problem space, with multiple dimensions. If particles exist as
task assignments, each dimension represents a specific task. The agents are mod-
eled along each axis. This way, a particle being five steps away from the origin on
the axis belonging to task 2 is a task assignment assigning agent 6 to task 2, as
the origin represents agent 0.

For the Discrete Particle Swarm Optimization algorithms, the parameters are
set as follows. For Particle Swarm Optimization 1, the best task assignments of
each individual particle multiply the probabilities corresponding to that task as-
signment with 1.003. This factor is set to 1.0003 for Particle Swarm Optimization
2. The corresponding factor of the best overall task assignment for the two algo-
rithms is set to 1.3 and 1.03, respectively. The swarm sizes are set to 100 for each
algorithm. Furthermore, it should be noted that in Particle Swarm Optimization
2, all probabilities are reinitialized at the beginning of every cycle, while this is not
the case in Particle Swarm Optimization 1. Furthermore, Particle Swarm Opti-
mization 2 sets the probability for mechanics not qualified for a task to zero, which
Particle Swarm Optimization 1 does not. Therefore, Particle Swarm Optimization
2 could be seen as an updated version of Particle Swarm Optimization 1.
Algorithm 8 describes both Particle Swarm Optimization 1 and Particle Swarm
Optimization 2 in pseudocode.

Algorithm 8 Discrete Particle Swarm Optimization

Particles ← 500 random solutions
while Stopconditions Not Met do

CalculateParticleFitnesses()
for Each Particle in Particles do

UpdateIndividualBestPosition(Particle)
end for
CalculateOverallBestPosition()
UpdateParticleVelocities()
UpdateParticlePositions()

end while
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3.8 Discrete Particle Swarm Optimization Combined with Hill

Climbing

3.8.1 Introduction

As noted before, combinations between meta-heuristic algorithms and local search
techniques often lead to powerful new algorithms (see for example [35]), such as
Memetic Algorithms, discussed in a previous section. Since this approach seems
so powerful, it was decided to combine the Particle Swarm Optimization variants
used in this research with the Hill Climbing algorithm discussed earlier, just as
was done with the Genetic Algorithm. A (brief) description of how this was done
will be given in the next paragraph; for now, let us have a look at the research
performed by [35]. They created a hybrid algorithm, Particle Swarm Optimization
combined with Hill Climbing, for a problem in multiprocessing in computation
systems. More specifically, this problem is called the Task Assignment Problem
and is about optimizing the assignment of tasks that need to be executed to the
distributed processors in order to minimize the costs associated with the execution
of the task assignment and the communication between the tasks. The hybrid
algorithm [35] proposed to solve the Task Assignment Problem is just as one would
expect: what they have is a Particle Swarm Optimizer, and after each iteration,
each particle’s position is improved using a Hill Climbing optimizer. Interestingly,
[35] compared their hybrid optimizer to a Genetic Algorithm and found that their
hybrid algorithm was faster and more scalable, i.e. the difference in speed increased
with the problem size.

3.8.2 Discrete Particle Swarm Optimization Combined with Hill Climb-
ing for Job Shop Scheduling

After the general introduction on how to combine Particle Swarm Optimization
with Hill Climbing, it is time to discuss how this was done in this research. This
approach is basically the same as the one discussed in [35], except that again,
only the best particle is updated with Hill Climbing. At the end of each iteration,
after each particle has its position updated, its position is improved with the Hill
Climbing algorithm described earlier. Note that Hill Climbing again runs for only
two cycles, due to time constraints.
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3.9 Tabu Search

3.9.1 Introduction

With the obvious exception of Hill Climbing, Tabu Search is the only algorithm
discussed in this thesis that is classified as a local search algorithm. Invented
in 1986 by Fred Glover (see for the original paper [13]), it was formalized three
years later [14] and [15]). As noted in [14], Tabu Search has the ability to use
specialized heuristics and to direct them in order to overcome the limitations of
local search. This is, of course, an extremely interesting property. In Artificial
Intelligence, algorithms are often classified as a local search or a global search al-
gorithm, and this classification, in its pure form, is still applicable to Tabu Search.
However, classifying this algorithm as local search (which was done at the start
of this chapter and is technically correct) might suggest it has the same limita-
tions as other local search algorithms, such as Hill Climbing, often have, the most
important limitation probably being their tendency to get stuck in local optima.
However, as Glover [14] states, Tabu Search overcomes the limitations other local
search algorithms have. As we will see later, it still has the powers of a local search
algorithm: high optimization speed and low memory usage (although it needs a
little bit more memory than Hill Climbing).
To give an impression of what Tabu Search is capable of, here is a list of ex-
amples of problems Tabu Search has been applied to in previous research [16]:
employee scheduling, maximum satisfiability problems, space planning and archi-
tectural design, Job Shop Scheduling, probabilistic logic problems, neural network
pattern recognition, quadratic assignment problems, the Traveling Salesman Prob-
lem, graph coloring and Flow Shop Sequencing.
After the very general introduction on Tabu Search that is just given, let us discuss
how the algorithm solves a problem. As all the other algorithms in this research,
Tabu Search is an optimization algorithm, meaning it tries to find the solution
with the highest value according to some objective function, which in this thesis
is called the fitness function. Let us discuss a simple form of Tabu Search, which
starts with a simple heuristic we have seen before, be it in another form: the Hill
Climbing heuristic. Glover [14] describes the first steps of the heuristic as follows.
The algorithm starts with an initial solution to the problem. Using this solution,
it creates a neighbourhood of new solutions. Note that Glover does not describe
how to create such a neighbourhood, which is apparently up to the creator of the
simple Tabu Search variant. Now, after the creation of the neighbourhood, the
next step is to select the neighbour whose penalty is the lowest (and thus whose
fitness is the highest) of all the neighbours [16]. In [14], a version of Hill Climbing
that does not require the best neighbour to be selected is described; just a neigh-
bour with a better fitness than the current solution is required. For the research
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in this thesis, the first variant was chosen. Back to the algorithm itself, if the best
neighbour is not better than the current solution, then the algorithm is in a local
(and hopefully global) maximum and terminates. If such a neighbour does exist,
the current solution is replaced by one of those neighbours with better fitness val-
ues, after which the next iteration of the algorithm can begin.
Now that we have discussed a simple heuristic with which Hill Climbing can work,
let us go on to discuss what the Tabu Search algorithm actually looks like using
this heuristic. To do this, it may be best to start with the previously discussed
problem of Hill Climbing: its ability to get stuck in local optima. The strength of
Tabu Search partially comes from the fact that it does not stop if it has arrived
in such a place in the fitness landscape: in each iteration, the algorithm simply
chooses its best neighbour, whether this neighbour is better than the current so-
lution or not. This alters the algorithm’s termination criterium, since it can in
principle infinitely continue to look for new solutions. Tabu Search stops after a
determined number of steps or when a certain penalty or fitness threshold is met.
The sharp reader might have noticed another problem which arises when the best
neighbour is not required to be better than the current solution in order to be
chosen as the next current solution: the possibility of infinite switching between
two (or more) solutions. Imagine a landscape with solutions s0 and s1, which are
neighbours of each other. Furthermore, s0 has neighbours n0

0 and n0
1, which are

not neighbours of s1. s1 has neighbours n1
0 and n1

1, which are not neighbours of
s0. s0 and s1 both have fitness value 1, while n0

0, n
1
0, n

0
1 and n1

1 all have fitness
value 0. If the current solution is s0, the algorithm will move to s1 since this is
the best neigbhour of s0. After this, Tabu Search will move back to s0, because
this is the best neighbour of s1. Then it will again move to s1, then back again
to s0, indefinitely looping and never finding new and possibly better solutions. To
prevent this, Tabu Search has its most important feature: the tabu moves. As the
term suggests, tabu moves are moves the algorithm is not allowed to take (unless
in some specific cases, in which aspiration criteria hold, which we will see later)
[16]. Having moves marked as tabu can be realized in the form of a tabu list, a
kind of short term memory which stores certain solutions that may not be visited.
Such solutions are stored because they meet the tabu conditions [14], and are kept
till new “memories” push them out of the finite tabu list. The tabu conditions can
simply be whether the solution is visited recently or not. Going back to the infinite
looping between two (or more) solutions, such tabu conditions would prevent this
from happening. Visiting s0 would put s0 in the tabu list, so when the algorithm
visits s1 after, it will not move back to s0 since s0 is marked tabu. That is how
Tabu Search is able to navigate the search space efficiently, and has a relatively
low probability of getting stuck in a local maximum.
Coming back to the aspiration criteria, these can be interesting when tabu condi-
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tions prevent a move to a solution which would be the best one found so far. In
such a case, for example, aspiration criteria could overrule the tabu restrictions
[16]. As noted in [16], the core of Tabu Search is its short term memory. This
component can be summarized as follows, which immediately gives us a simple
Tabu Search algorithm:

1. Begin with a starting current solution

2. Create a candidate list of solutions from the current solution: the neighbour-
hood

3. Choose the best admissable neighbour as the new current solution

4. If the stopping criterium holds, stop;
else, update the Tabu Restrictions and Aspiration Criteria and start again

3.9.2 Tabu Search for Job Shop Scheduling

In the previous section, an overview of the Tabu Search algorithm was given, along
with a general description of how the algorithm works. Now that this is done, as
with the other algorithms, it is time to discuss how Tabu Search can be applied to
the Job Shop Scheduling problem described in this thesis. However, before we go
any further, note that with the Tabu Search algorithm applied here, the aim has
been to create an algorithm as simple as possible, to contrast it with other more
complex algorithms described in this thesis, like the Max-Min Ant System and the
Discrete Particle Swarm Optimizers. Simplicity can lead to good results, and it is
always important to question the usefulness of using a more complex algorithm.
Hence, in this research, some more complex algorithms are compared to a simple
(though quite powerful) variant of Tabu Search. Now that the reader understands
the motive behind this algorithm, we can continue to describe it.

Basically, the Tabu Search variant used here is a Hill Climber with a short
term memory (storing ten of the most recent solutions) and the ability to choose
positions with a fitness value not higher than that of its current position. The
algorithm starts with a random solution, again in the form of a task assignment: an
array of numbers representing the mechanics performing the task corresponding to
the array index. It then creates the neighbourhood: solutions similar to the current
one, but differing a little bit. The neighbours it creates are all solutions with differ
in one entry of the task assignment (meaning one task is performed by another
mechanic) and all solutions which have two entry values swapped (meaning two
tasks have swapped their mechanics). The algorithm moves to the best neighbour,
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Algorithm 9 Tabu Search

CurrentSolution ← CreateRandomSolution()
while Stopconditions Not Met do

CurrentSolution ← FindBestNeighbour(Tabulist)
if CurrentSolution not in Tabulist then

Append CurrentSolution to TabuList
end if
if Size(Tabulist) > TabulistMaxSize then

Delete(Tabulist[0])
end if

end while
return CurrentSolution

and stores the previous solution in the short term memory. Algorithm 9 describes
this Tabu Search algorithm in pseudocode.
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Chapter 4

Experiments and Results

4.1 Experiments

In the previous chapters, a broad description of the scheduling problem was given,
as well as descriptions of a number of algorithms and how they are used to solve this
scheduling problem. Now, it is time to discuss what experiments were performed
to determine which of these algorithms is the best fit for our scheduling problem.
Of course, “best” is not that easily defined: both the schedule quality and the
time it takes an algorithm to make a good schedule are important. To this end,
two experiments were designed. In the first experiment, 4 sets of 50 problems
are created by the problem generator: one set with problems of 25 tasks, one
with problems of 50 tasks, one with problems of 75 tasks and one with problems
of 100 tasks, for a total of 200 problems for each algorithm. The algorithms
have a maximum of two minutes to create a reasonable solution for each problem,
and their average duration and standard deviation over all 50 problems, for each
problem size, are compared, as well as the intra-algorithm scoring difference for
different problem sizes. “Reasonable” means “containing no mistakes”, which are
tasks being performed after their maximum finish time and mechanics having to
work after hours. Efficiency (total work hours of a solution) does not count in this
experiment. As a baseline algorithm, a random schedule generator was created.
All this algorithm does is creating a thousand random schedules and return the
one with the highest fitness value. This algorithm is included to compare the more
complicated algorithms to.

The second experiment has more focus on performance than on speed. Here,
10 problems are created and given to each algorithm, but now the algorithms
have 10 minutes for each problem. Their score (fitness) after these 10 minutes is
compared. Speed does not count here: it is all about creating the most efficient
schedule containing no mistakes.
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In both experiments, each problem description contains a number of bridges,
with is dependent on the number of tasks in that problem: the number of bridges
is equal to one sixth of the number of tasks, and one half of the tasks actually
needs a bridge. Each task needs exactly one car part, the stock of which is refilled
in the middle of the day. Mechanics are qualified for at most half of the tasks of the
problem (the exact number being randomly decided). Furthermore, each mechanic
has its own time duration specifications for each task. These durations are taken
from a dataset provided by Bungert GMBH & CO. KG, and are values ranging
between 12 minutes and 174 minutes and are mutated a little (minus zero minutes,
ten minutes, or twenty minutes for task durations longer than twenty minutes) for
each mechanic in order to get differences between them. The tasks each have a
80% probability of having another task which has to be finished before it can start.
Finally, there is only one type of car part, of which the stock is initially 100. Each
task uses exactly 1 car part, and the stock is increased by 100 at the exact middle
of the day.

4.2 Results

4.2.1 Experiment 1: Speed

As explained before, the first experiment was designed to see how fast the different
algorithms can produce a reasonable schedule. The results of Experiment 1 can
be found in Table 5.1 and Table 5.2. Because not all the algorithms were able
to create a reasonable solution for each of the problems, the percentage of times
they did find one is included in the table as the fourth column. For a more visual
representation, each algorithm’s performance is visualized in a graph (Figures 5.1-
5.6). The rounds on the x-axis of these figures refer to the cycles of the algorithms,
which are described in their pseudocode.
The first conclusion is that the Random Scheduler does not perform well. For the
25 tasks problems it performs more or less comparable to Hill Climbing, but in
the other three categories it is far worse worse than Hill Climbing (which itself
does not perform well). These results tell us that more sophisticated algorithms
are necessary to tackle the scheduling problem. Looking at the more complicated
algorithms, the Genetic Algorithm with Hill Climbing is quite clearly the best in
this experiment. Not only does it produce reasonable schedules in almost all of
the cases (missing only 4% in the two largest problem classes), it is also one of
the fastest algorithms on all problem sizes, and the absolute fastest on the two
largest problem classes. Furthermore, it is surprising how much better the Genetic
Algorithm performs if the Hill Climber is added. On the 100 tasks problems, the
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Genetic Algorithm only produces a reasonable schedule 20% of the time, a number
that increases to 96% if the Hill Climber is added. This performance increase due
to an added Hill Climbing component is true for every algorithm with this option,
except for Particle Swarm Optimization 2 on the 50 tasks problems. Also, adding
a Hill Climber does not increase the performance of the Max-Min Ant System on
the larger problem classes, but this is a clear bottom effect.
Another conclusion is that Particle Swarm Optimization 2 clearly performs better
than Particle Swarm Optimization 1, although the difference is less clear when both
algorithms add a Hill Climber. A last conclusion is that Tabu Search performs
surprisingly well for such a simple algorithm; the performance does drop, however,
when the problems become larger.

Figure 4.1: Experiment 1: Performance of Hill Climbing

4.2.2 Experiment 2: Performance

After the discussion of the results of Experiment 1, it is time to analyse the results
of Experiment 2 before moving on to the conclusion of this thesis. The results can
be found in Table 5.3. Three algorithms positively stand out from the group here:
Genetic Algorithm with and without Hill Climbing and Tabu Search, with the
third of these algorithms performing the best of all algorithms. Just as in the first
experiment, it is clear that adding a Hill Climber improves the performance of all
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Table 4.1: Results of Experiment 1 - First Part. The Mean and SD values are in
seconds, and list the time values corresponding to the 25, 50, 75 and 100 tasks
problem classes, in that order.

Algorithm Mean SD % Good Schedules
Random Scheduler 24.30 47.85 80

117.73 15.92 2
120.00 0.00 0
120.00 0.00 0

Hill Climbing 31.41 52.51 74
32.34 49.34 76
47.96 48.12 70
47.08 30.36 88

Genetic Algorithm 6.20 16.36 98
41.34 22.50 96
90.97 22.49 88
117.95 6.96 20

Genetic Algorithm with HC 3.09 0.81 100
15.65 6.76 100
34.05 21.55 96
61.17 26.24 96

Particle Swarm Optimization 1 1.06 1.30 100
64.16 51.69 54
116.90 15.41 4
120.00 0.00 0

Particle Swarm Optimization 1 with HC 1.18 1.36 100
30.81 22.73 96
91.48 26.95 62
118.29 7.05 6
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Table 4.2: Results of Experiment 1 - Second Part. The Mean and SD values are
in seconds, and list the time values corresponding to the 25, 50, 75 and 100 tasks
problem classes, in that order.

Algorithm Mean SD % Good Schedules
Particle Swarm Optimization 2 0.60 0.63 100

17.43 21.35 100
101.16 32.36 32
120.00 0.00 0

Particle Swarm Optimization 2 with HC 1.06 1.72 100
25.44 31.91 92
70.21 36.85 72
115.70 15.60 8

Max-Min Ant System 9.31 24.84 98
117.12 14.99 4
120.00 0.00 0
120.00 0.00 0

Max-Min Ant System with HC 2.52 6.89 100
107.53 28.40 20
120.00 0.00 0
120.00 0.00 0

Tabu Search 6.06 23.87 96
11.05 22.54 96
33.18 29.05 94
65.70 32.39 88
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Figure 4.2: Experiment 1: Performance of Genetic Algorithm and Genetic Algo-
rithm with Hill Climbing (dashed)

algorithms with this ability. While Particle Swarm Optimization 2 performs better
than Particle Swarm Optimization 1, this effect reverses when the Hill Climbing
component is added to these algorithms.

Again, the Max-Min Ant System performs very poorly, even worse than the
basic Particle Swarm Optimizers, which already perform very badly. It seems that
the Max-Min Ant System and the Particle Swarm Optimizers are just not suited
for the scheduling problem presented in this thesis, at least not for the larger
problems. The bad performance of the Max-Min Ant System might be due to the
heuristic it uses: the time it takes a mechanic to do a task. Since there are many
constraints in our scheduling problem, this heuristic may be too simple. However,
more research is needed to conform this.
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Figure 4.3: Experiment 1: Performance of Particle Swarm Optimization 1 and
Particle Swarm Optimization 1 with Hill Climbing (dashed)

Figure 4.4: Experiment 1: Performance of Particle Swarm Optimization 2 and
Particle Swarm Optimization 2 with Hill Climbing (dashed)
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Figure 4.5: Experiment 1: Performance of Max-Min Ant System and Max-Min
Ant System with Hill Climbing (dashed)

Figure 4.6: Experiment 1: Performance of Tabu Search
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Table 4.3: Results of Experiment 2. The Mean is the average fitness value over 10
problems with each 100 tasks, which has to be at least 1.0 in order for the schedule
to be reasonable. Higher than 1.0 means a more efficient schedule.

Algorithm Mean SD % Good Schedules
Hill Climbing 0.14 3.02 96
Genetic Algorithm 1.33 0.05 100
Genetic Algorithm with HC 1.44 0.05 100
Particle Swarm Optimization 1 -36.18 23.13 80
Particle Swarm Optimization 1 with HC -2.55 8.42 86
Particle Swarm Optimization 2 -20.58 21.37 80
Particle Swarm Optimization 2 with HC -7.87 12.59 82
Max-Min Ant System -90.01 29.49 80
Max-Min Ant System with HC -65.34 35.92 80
Tabu Search 1.46 0.06 100
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Chapter 5

Conclusion

The research described in this thesis aimed to find an algorithm that can solve
a job shop scheduling problem with multiple constraints. More specifically, the
setting of a simplified car workshop was chosen. The results of Experiment 1
and Experiment 2 together clearly indicate that of all the algorithms tested, the
Genetic Algorithm with Hill Climbing is best suited for the scheduling problem
presented in this thesis. In terms of performance, only Tabu Search beats this one,
and only slightly. In terms of speed, it is only slightly outranked by a few other
algorithms on the three smaller problem classes (25 and 50 and 75 tasks), but still
wins on the 100 tasks problems. This directly and clearly answers the research
question.
There are more conclusions to be drawn. A very important one seems to be that
some algorithms, while elegant, are just not suited for this kind of problem. The
Max-Min Ant System is the most obvious example here, but the Particle Swarm
Optimizers also perform very bad, also (but less) when enhanced with Hill Climb-
ing. This might be due to the number of constraints present in the schedules;
however, to know this for sure requires more (specific) research. For example,
Max-Min Ant System uses the time it takes a mechanic to perform a task as
heuristic to choose that mechanic for that task; this might be too simple consid-
ering all the constraints. Another conclusion is that for all the algorithms tested
here, it almost always helps to incorporate a Hill Climbing component. Finally,
Particle Swarm Optimization 2 outperforms Particle Swarm Optimization 1 on
both speed and performance. Adding a Hill Climber makes Particle Swarm Opti-
mization 1 perform better in experiment 2, but the inverse is true in experiment
1.
Now that a conclusion is offered, it is important to note that the design goals of
the algorithms can have a clear impact on the results of the experiments. The
Genetic Algorithms (with or without the Hill Climber) were designed to quickly
work towards a reasonable schedule: one that has no tasks performed too late or
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agents working too late. In order to do this, mutations were primarily aimed at
fixing such mistakes, and less at making a more efficient schedule. Shifting the
focus towards creating more efficient schedules might have had a positive influence
on the performance, and a (small) negative influence on the speed. This is the
speed/performance dilemma mentioned in the introduction of this thesis, and of
course is always a problem in this research area; it is however worth mentioning
again, since the impact of such design choices can be quite large.

Because of the great performance of the Genetic Algorithm with Hill Climbing,
future work could investigate more variants of Genetic Algorithms to possibly
find even better algorithms for our scheduling problem. But more importantly,
the presented algorithms were tested on simulated car workshop problems, but
could be more generally applied to similar problems. As said before, one can
imagine applying these algorithms to other kinds of repair shops, or even university
scheduling. Of course, for such problems, other algorithms than the ones winning
here might prevail, and some algorithms might have to be adapted to be suited
to such problems. Without a doubt, it would be interesting to try to create an
algorithm that would be suited for all scheduling problems. However, future work
will have to decide whether this is a realistic option.
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