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Abstract 

 
The Internet: Web sites; twitter; personal messages; blogs; RSS feeds... 
Continuously, an overwhelming growing amount of information reaches our 
human brain. Mostly only a small part of this information is of true personal 
interest and therefore tracking the interesting part becomes harder every day. 
This is referred to as the problem of information overflow. Approaches to tackle 
this problem are the usage of news summaries, community interests and 
collaborative intelligence algorithms. In this research a solution is sought by 
developing a personalized adaptive netnews recommender system: 
iNewsReader. In general, recommender systems try to deliver personalized 
items or information of interest based on a profile of the user. In this research 
an advanced framework design is proposed based on multi-agent technologies 
and known working technologies from literature. As a proof of concept the main 
modules (web crawler, data storage, portal & recommenders) and the crucial 
parts (agents) of this framework are implemented for research. The focus of this 
recommender system lies on the content-based recommendation methods, 
which are mainly based on Support Vector Machine and Naive Bayes machine 
learning algorithms for text classification. The implemented recommender 
system is accessible through a web-portal and the performance is tested in a 
small experiment on continuous real time data from the internet. During this 
experiment multiple pre-configured agents try to collect articles of personal 
interest by creating user models from the users' feedback and browsing history. 
Using these personal user models, agents collect news article data from a 
growing multi-dimensional data storage. Next, the selected articles are 
presented to the above classification algorithms to form the final personal 
recommendation. The results of the conducted experiment show a positive 
effect on learning and recommendation performance, but additions and 
improvements on many parts of the system can probably elevate this result 
enormously.  
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1 Introduction 

 Information overflow 1.1

1.1.1 Problem 

Nowadays we are living in the era called the information age. An enormous, 
rapidly growing amount of information is accessible at any time and from 
anywhere. Of course, the largest source of this continuous and rapid flow of 
information is the internet. Digital information in the form of personal 
messages (e-mail, Facebook, etc.), news articles (netnews), discussions 
(community forums) and many other sources, are accessed by millions of people 
at a daily basis all around the world. But mostly only a small part of this massive 
amount of information is of real interest to the final user. Therefore it becomes 
almost impossible for us humans to keep track of the interesting part, without 
investing many hours of filtering time. This is referred as the problem of 
information overflow.  

1.1.2 Filter vs. recommendation 

One possible solution to this problem of information overflow is to 
automatically filter out the uninteresting part by using advanced intelligent 
filters. A well-known and also widely used example of such a filter is the spam-
filter. A spam-filter is used to filter out unwanted e-mail from the personal e-
mail inbox; thereby reducing time spent reading unwanted messages. In 
addition to only filtering the unwanted information, also personalized 
recommendation of probably interesting items can further tackle the problem. 
An example of such system is the product recommendation service used by 
many large web shops (i.e. amazon.com [7]). These web shop recommendation 
services try to recommend products based on previous bought or viewed items 
and use information from other buyers to present similar products probably of 
interest to the user. 

1.1.3 Research 

In this research a personalized adaptive netnews recommender system is 
implemented for managing the above described problem of information 
overflow. To handle the rapid flow of worldwide news articles, a framework 
based on multi-agent technologies is proposed, tested and analyzed using 
multiple agent configurations. All research is based on real time data and 
experiments are conducted in a large real world continuous and unpredictable 
environment; the World Wide Web. 

 Netnews 1.2

1.2.1 News 

The term news is generally described as the communication of information of 
recent events to some audience. In this research a less „strict‟ representation of 
the term „news‟ is used. Because the internet contains articles with information 
of any kind and about any moment in time, the information targeted doesn‟t 
necessarily represent a „recent event‟. Information in all its forms and from any 
moment is accepted as „news‟ source for the recommendation process as 
described in this thesis. Because the final recommendation is mainly based on 
the most recently available information, this information can be interpreted as 
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being news and therefore, in this research, the terms news and information are 
used ambiguously. 

1.2.2 Online news representations 

There are many ways the news is represented on the internet. News or 
information in general is mainly represented as written articles in textual form, 
sometimes illustrated with additional media (i.e. images or video). But also raw 
images, audio, video or other media forms aren‟t uncommon item 
representations around the web. In this research, the mainly targeted resources 
are articles in the textual form, although articles consisting only of images, 
audio, video or other media are not omitted. Recommendation of these types of 
information will be based solely on the available textual data (title, description, 
etc.) for these sources. 

1.2.3 Online news sources 

Also the online channels to access the news are widespread. First most of the 
printed newspapers also have an online version of the paper nowadays. These 
websites of classic news sources are often nicely ordered, articles are categorized 
and the most important news, selected by an editor, is displayed on top. The 
content at these news websites is mainly created and selected by professionals 
(reporters) and therefore an important source of information. Of course there 
also are lots of valuable online news sites which don‟t have a printed version of 
its contents anymore. Current examples of these „newspaper websites‟ are the 
news portals of the BBC [11] and CNN [15]. On the other side there is the widely 
available user generated content. The blogging platform is probably the mainly 
used channel to express oneself on the internet. Blogs are small websites 
containing articles mainly written by nonprofessional individuals on any subject 
available. The information on these blogs is semi-structured (mainly by using 
tags) and can be very interesting but sometimes hard to find. Another highly 
popular medium to keep tracking the news nowadays is twitter. Twitter is an 
online social network of connected people posting small messages to each other 
or towards a larger audience. The popularity of this medium is probably because 
it‟s fast and it can be accessed from anywhere on a widespread of devices 
(mobile phones, pda, laptop, etc.). The news value of the „tweets‟ (twitter 
messages) is highly unpredictable and the larger part of the messages are 
unstructured and dubious. Therefore twitter isn‟t targeted as a primary news 
source in this research, although it could be used. 

1.2.4 News collections 

Subsequently the above sources are used by websites to create collections and 
overviews of the available news and information on the internet. Google‟s news 
service [29], for example, uses a large amount of news sources to summarize 
the ongoing worldwide events. Other sites (i.e. reddit [51] or digg [21]) are 
based on user delivered content. On these sites anybody can submit links to 
articles from anywhere on the web to the community. By using a voting system, 
automatically the articles of interest to the users of the community will bubble 
to the top of the pages. Many more similar services are available, summarizing 
in some sort of way the available content on the internet.  
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 Recommender systems 1.3

1.3.1 Personalization 

Al the sources of information as described before are based on generated 
content for a larger (not personal) audience. Furthermore the performed 
filtering and ranking at the described „collection‟ websites (paragraph 1.2.4) is 
based on community interests. The content of interest to the largest part of the 
users will be on top of those pages. To personalize the information flow, 
recommender systems come into view. Recommender systems try to deliver 
personalized items or information of interest based on a profile of the user. 

1.3.2 Currently available recommender systems 

Personalized recommender systems are already in use in some areas. For 
example, there are websites recommending movies (i.e. imdb [33]), music (i.e. 
last.fm [41]), television shows (i.e. showfilter [57]) or products (i.e. amazon 
[7]). These recommender systems are mainly based on collaborative 
intelligence algorithms. Collaborative systems try to find users with similar 
interest by matching user profiles. If a match is found, their items of interest 
(i.e. bought products or watched television shows) are recommended to the 
current user of the system. In this way not the articles of interest for the 
community in general, but those from specific users within the community with 
similar interests are displayed. 

1.3.3 Recommender systems for netnews  

Also personalized news recommendation systems are already in use. One of the 
larger systems is implemented by Google‟s newsreader [19], [30]. This 
important work describes a massive user, massive item collaborative filtering 
algorithm, serving millions of articles to millions of users. In more detail, this 
news recommendation system is based on an advanced modified k-Nearest 
Neighbor algorithm (k-NN; see also paragraph 2.3.4). The Google newsreader 
solely uses binary user click data (article opened or not?) as a user profile for 
this collaborative news recommendation system.  
Another example of a netnews recommendation system is Genieo [27]. This 
system is based on a desktop application that creates a magazine style 
personalized homepage. All kind of information (browsing history, top news, 
personal interests, etc.) is used to match articles of interest to the users from all 
around the web. 

 Research questions 1.4

The main goal of this research is to find a solution for the problem of 
information overflow. The target is to reduce the time needed for filtering out 
unwanted information and increase the time actually consuming articles of 
personal interest. A solution is sought in the field of recommender systems by 
developing and implementing an intelligent personal netnews filter based on 
multi-agent technologies. Therefore the main research question is:  
 
“In what way can a recommender system alleviate the problem of information 
overflow?” 
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To answer this main question, the following sub-questions need to be answered: 
 

1. Which techniques can be used to reduce human filtering time given a 
selection of articles? 

2. How can a recommender system increase the time actually spent on 
reading the articles of personal interest? 

 
The first question is related to the number of interesting articles selected by the 
system and questions the effectiveness of the information selection method(s) 
related to the subjects‟ interests in the content of the selected articles. If more 
articles of personal interest are selected, the user will most likely open a higher 
percentage for reading. 
 
If an article is opened for reading, the time spent will be an implicit indicator for 
the subjects‟ interest for the content. Increasing reading times (relative to 
earlier usage of the system) together with positive user votes can indicate the 
success of the profiling and feedback handling techniques. This is covered by the 
second research question. 
 
The development and implementation of the netnews recommender is based on 
a mash up of modern (AI) technologies. The question of successfulness of each 
individual technique within the system is of interest for its overall performance. 
By using an agent based approach, it is possible to add/remove specific agents 
and measure the influence and performance of the single agents within the main 
system. So for each of the individual techniques the following questions are of 
interest: 
 

1.  “What is the influence of this technique or agent towards the outcome 
of the system?” 

2. “What is the performance of this technique?” 
 
These questions will help answering the main research question and can 
possibly indicate a synergy of the system. 

 Overview 1.5

In the next chapter, first a detailed description is given about the current 
available techniques and ongoing research within the field of recommender 
systems. The next section continues with the theory on data mining and text 
classification methods. Finally an overview of multi-agent systems is given. 
Chapter 3 describes the methods used to implement the personal recommender 
system. The results of a small experiment on the recommendation performance 
of this system are analyzed in chapter 4. Finally a conclusion is drawn in the last 
chapter, which also includes a discussion about the shortcomings and points to 
future work for further improvements. 
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2 Theoretical framework 

 Recommender systems 2.1

Originally recommender systems are defined as systems in which people 
provide recommendations as inputs, which the system then aggregates and 
directs to appropriate recipients [53]. Nowadays a broader view is appropriate 
where recommender systems can be described as personalized information 
agents that can provide recommendations: suggestions for items likely to be 
useful for a user [14]. Overviews of currently used techniques, shortcomings 
and possible extensions of recommender systems are given in [14] , [5] and 
[13]. 

2.1.1 Item-profiles 

To be able to recommend (news) items to a user, a recommender application 
needs to gather and exploit some information about both the individual and the 
available items. Generally item-profiles are kept relatively simple. Usually a 
small description, information about where to find the item and some semantic 
representation (i.e. a feature vector representing word counts for a news article) 
are being stored for each item. For detailed information on item-representation 
and feature vectors, see paragraph 2.2.3. The process of automatically gathering 
information to be stored within an item-profile is called data mining and is 
described in section 2.2. 

2.1.2 User profiles 

Most current research on recommender systems is directed to user-profiling. 
All kinds of information about the individual and its actions are being collected 
and stored to create accurate User Models. The two main types of information 
stored in a user-model are users’ preferences (i.e. interests) and a history of 
system interaction (i.e. viewed articles). Thereby, both explicit (i.e. name, birth 
date, item ratings or a list of interests) and implicit (i.e. opened articles, reading 
times or visited links) information is used for mapping these user interests [17] 
and [25]. In addition different user memory models are presented to represent, 
long- and short-term interests of users. In [9] for example a framework is 
presented for adaptive news access built on a hybrid user-model consisting of a 
short-term memory (k-NN; see also paragraph 2.3.4) and a long-term memory 
(Naïve Bayes; described in 2.3.3), using both implicit and explicit user 
feedback. With this advanced hybrid User Model the system tries to recommend 
a set of interesting news items where the information which a user already 
„knows‟ is filtered out. 

2.1.3 Filter techniques  

After data mining and profiling, the next step in the recommendation process is 
the filtering of relevant items. The main four techniques used, described and 
compared in the papers are: content-based, collaborative, knowledge-based 
and demographic filtering techniques. In [13] also a fifth technique: utility-
based filtering is described and compared to the others. Short descriptions of 
these techniques are given below: 
 
Content-based (CN): A Content-based recommendation system [48] 
recommends an item to a user based upon a description of the item and a profile 
of the user‟s interests. Content-based recommenders treat recommendation as a 
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user-specific classification problem and learn a classifier from the user‟s likes 
and dislikes based on product features. 
 
Collaborative (CF): Collaborative recommendation systems aggregate ratings or 
recommendations of objects, recognize commonalities between users on the 
basis of their rating, and generate new recommendations based on inter-user 
comparison. In [42] two types of CF techniques are described and combined in 
a hybrid system: CF based on user (CF-U) and CF based on item (CF-I) 
comparison. 
 
Knowledge-based (KB): A knowledge-based recommender suggests products 
based on inferences about a user‟s needs and preferences. This knowledge will 
sometimes contain explicit functional knowledge about how certain product 
features meet user needs. 
 
Demographic (DM): A demographic recommender provides recommendations 
based on a demographic profile of the user. Recommended products can be 
produced for different demographic niches, by combining the ratings of users in 
those niches. 
 
Utility-based (UT): Utility-based recommenders make suggestions based on a 
computation of the utility of each object for the user. The main problem here is 
how to create such a utility function for each user, which is a domain specific 
task. 
 
In this research most attention is dedicated to Content-based recommendation.  

2.1.4 Cold start issues 

The learning-based systems (CF, CN & DM) suffer from the so called  
“cold start” problems in one way or another. These problems indicate a decrease 
in performance due to an initial lack of information. The main two scenarios 
are:  
 

1) New User: When a new user is added to the system, no profile is 
present. So it is unknown what items to recommend to this person based 
on his or her interests alone. Possible solutions are explicitly asking for a 
users‟ interest information or the use of global popular items. Also 
demographic information could be used. 
 

2) New Item: When a new item is added to the system, it has not been 
rated yet, so it will not be recommended. This is a big problem for single 
CF systems, particularly when there exists a high item turn over (i.e. a 
news recommender). A solution is to gather initial ratings from other 
sources or to recommend new items randomly to some users initially. 
Another solution is to use non-CF techniques in this case. 

2.1.5 Hybrid techniques 

To provide a general solution to overcome the cold start problems from the 
previous paragraph, researchers have combined these filtering techniques to 
create better performing systems. Multiple strategies for combining the 
techniques are compared in [13]. Seven different combination types are 
described: weighted, switching, mixed, feature combination, feature 
augmentation, cascade and meta-level combinations. The results show the 
largest synergy for cascade and feature augmented systems.  
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2.1.6 Multi-dimensional filtering 

In [4] and [3] Adomavicius et al. try to lift the recommendation process to an 
even higher level. Opposed to the „traditional‟ two dimensional user/item 
systems previously described, this system uses a multi-dimensional approach by 
incorporating contextual information (i.e. multiple ratings, demographic 
information, time, etc.).  The system described in this paper is based on multi-
dimensional feature vectors and supports data warehouse capabilities. 

2.1.7 Clustering 

Recommendation can become a time consuming process if the item space, the 
user space or both becomes large. One way to reduce computation time is to use 
clustering methods. By putting similar users and/or items into a single cluster, 
calculations of similarities between these clusters, instead of single users and 
items, can reduce computation time enormously. This clustering process itself 
can be executed offline. Recent research on clustering for recommendation 
systems [56] describes such an effective clustering method for collaborative 
tagging systems. In this research a framework based on hierarchical 
agglomerative clustering of tags is evaluated to bridge the gap between users 
and resources. 

 Data mining 2.2

Before being able to recommend articles to a user, a list of articles and more 
detailed information about these articles (item-profile) needs to be available 
first. The process of collecting and extracting patterns of information from large 
sources of data is called data mining. A typical data mining cycle (Figure 1) 
exists of four phases [23]. These phases include collecting data, pre-processing 
the data, feature extraction and evaluation or classification. The final phase is a 
key part of the recommendation process and will therefore be described 
separately in the subsequent section (2.3). The current section will focus on the 
harvesting part (collection, pre-processing and feature extraction processes) of 
the data mining cycle. 

2.2.1 Data collection 

The process of collecting data and harvesting information from the internet is 
called web crawling or web spidering. A computer program (called a bot, 
spider or agent) automatically searches the web for usable data. Early research 
on citation analyses by Garfield in the 1950s is the foundation of two well-
known popular hyper textual crawling processes HITS [39] and PageRank [47] 
(Foundation of the Google Company; Figure 2). These two classic hyper textual 
algorithms are both designed to crawl and index the internet for search engine 
web-search activities. Hyper textual links are extracted from page-sources and 
article references are counted for ranking purposes.  
 

 

Figure 1: Data mining cycle 
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The core techniques from these HITS 
and PageRank algorithms still form the 
basis for many modern web spiders. 
 
A web crawler starts searching by 
inspecting sources from a Queue of 
known web-addresses. This queue will 
continuously grow by adding new 
addresses extracted from the inspected 
page sources. Because of the dynamic 
structure of the web, the content of the 
visited sources changes over time. 
Therefore a revisit policy is used to 
rescan the sources in the queue. The 
most used policies are based on data 
accuracy (freshness) and age (latest 
update) [18]. Finally, the data 
extracted by crawlers is stored in large 
databases for further processing. 

2.2.2 Pre-processing 

Once the raw data is collected during the crawling process, it needs to be 
preprocessed before the data can be used for further analysis. To structure the 
raw data and remove clutter, the following pre-processing steps are generally 
executed: noise reduction, segmentation, common words filtering and 
stemming. 
 
First the data is cleared from unwanted information during the noise reduction 
process. In the case of web crawling for text classification, html tags and other 
obscured unnecessary information is therefore removed from the source. 
Thereafter, during the segmentation phase, the noise filtered data is split into 
usable chunks or segments of data. For text processing this generally means the 
data is split into sets of words, sentences or phases. In the next step each 
segment is validated against a list of common words. It is known at forehand 
commonly used words (i.e. “the”, “and”, etc.) don‟t contribute to the actual 
meaning and classification of the content; therefore these words are filtered out. 
Because the final goal is to create a unique profile for each item, these common 
words can be omitted without losing information. The next and final step during 
pre-processing for text classification is stemming.  
 
Stemming is the process of reducing the words to their stem, root or base form. 
A stemming algorithm reduces the words “walking”, “walked”, “walk” and 
“walker” all to the word “walk”. By using word stems, the system is able to 
classify five different articles, each containing at least one of the above words, 
into the same category and not into five separate categories. Another advantage 
of using the stem form is the reduction of the length of the overall word lexicon. 
This furthermore results in a reduction of the size of the feature vectors 
(paragraph 2.2.3) and therefore increases the speed of the recommendation by 
reducing the dimensions of the data space used by the classification algorithms. 
A disadvantage of using stemming algorithms is the loss of word meaning. 
There are multiple implementations for stemming algorithms, ranging from 
using lookup tables to n-gram algorithms. Stemming is language specific, 
related to syntax of the languages‟ grammar. The de-facto standard and widely 
used stemmer for English is written by Martin Porter [49].  

Figure 2: PageRank architecture, from the original 

paper [47]. Foundation of the Google Company. 
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2.2.3 Feature extraction 

To be able to perform calculations on the data, a textual representation is of no 
direct use. A text needs to be represented as a list of numerical values called a 
feature vector to be usable for the recommendation algorithms. These features 
can be anything related to the text, ranging from publish date, text length, 
category index or community rating to individual word counts or other 
advanced structural values from language processing techniques. The goal of a 
feature vector is to create a unique representation of the article displaying (a 
measurement of) its contents.  
 
Since different terms have different importance in texts, an importance 
indicator, the term weight, can be associated with each term instead of a regular 
word count. Three main components that affect the importance of a term in a 
text are the term frequency (tf), the inverse document frequency (idf) and the 
document length normalization.  
 
The first indicator (tf) measures the occurrences of a term ti within a document 
dj, defined as follows.  
 

𝑡𝑓𝑖,𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑘,𝑗𝑘
 

Formula 1: Term frequency (tf) 

 

Where ni,j indicates the number of occurrences of the term ti in the document dj.  
 
The second measurement (idf) is a measure of general importance of the term in 
relation to the availability in the corpus (all documents). The inverse document 
frequency is calculated by taking the logarithm of the total number of 
documents D in the corpus divided by the number of documents d containing 
the term ti, given by the following formula. 
 

𝑖𝑑𝑓𝑖 = log
𝐷

|*𝑑: 𝑡𝑖 ∈ 𝑑+|
 

Formula 2: Inverse document frequency (idf) 

 
Where |*𝑑: 𝑡𝑖 ∈ 𝑑+| indicates the number of documents the term ti appears, 
division-by-zero must be prevented. 
 
These first two factors (tf & idf) can be used to calculate the so called tf-idf 
measurement for each term. This commonly used measurement indicates the 
importance of a word within a document, where the importance increases 
proportionally to the number of occurrences in the document, but is offset by 
the frequency of the word in the corpus. This is defined as 
 

(𝑡𝑓-𝑖𝑑𝑓)𝑖,𝑗 = 𝑡𝑓𝑖,𝑗  × 𝑖𝑑𝑓𝑖,𝑗  

 
This tf-idf measurement can be used as term weight in the final feature vector. 
Finally, before the feature vector is stored in the database and ready for usage in 
the classification and recommendation processes, the values should be 
normalized to account for variations in document length. Normalization is 
explained in the next paragraph (2.2.4). 
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2.2.4 Normalization 

Document length normalization of term weights is used to remove the 
advantage that long documents have in retrieval over short documents. 
The main reasons to normalize the term weights are: 
 

1) Higher term frequencies: Long documents usually use the same 
terms repeatedly. As a result, the term frequency factors may be large for 
long documents, increasing the average contribution of its terms 
towards the term frequency counts within the corpus. 

 
2) More terms: Longer documents logically also have more distinct 

terms. This increases the influence and chances of retrieval for longer 
documents over shorter texts during the recommendation process. 

 
Document length normalization is therefore used to penalize the term weights 
for a document in accordance with its length. The most commonly used 
normalization technique is the Cosine Normalization (CN). The Cosine Normal 
factor is computed as 
 

√𝑤1
2 + 𝑤2

2 +⋯+ 𝑤𝑡
2  

        Formula 3: Cosine normalization 

 
Where wi is the calculated tf-idf term weight (paragraph 2.2.3). 
 
Each wi is finally divided by this normalization factor. This way the Cosine 
Normalization attacks both normalization reasons above (higher tf and more 
terms) in one step. Higher individual term frequencies increase individual wi 
values, thereby increasing the penalty on the term weights. Also, if a document 
has more terms, a higher normalization factor is returned. More advanced 
research on normalization is given by [58]. 
 
This final normalized feature vector will be the stored article content 
representation within the item-profile in the database and can be accessed by 
the classification algorithms to generate recommendations. 

 Text classification 2.3

The goal of text classification is to automatically categorize a set of articles into 
two or more categories. Targeting netnews recommendation, this can be 
translated to labeling articles into at least the categories „like‟ or „dislike‟ to 
indicate a user‟s interest for the articles content. More categories could be 
thought of, for example a category „known‟ to filter out articles of subjects 
already known, but this research will concentrate on the binary classification 
task. Besides a label, a likelihood parameter on how likely the article belongs to 
its category should be calculated. This likelihood parameter or „degree of 
interest‟ is used for ranking and therewith presents the most interesting article 
to the user first (i.e. display on top of the page). The next paragraphs review a 
number of machine learning techniques [44] commonly used for this text 
classification task. 
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2.3.1 Machine learning 

Because they try to learn a function that models each user‟s interests, 
classification algorithms based on machine learning techniques are the key 
component of content-based recommendation systems. Given a new item and a 
user model, the function predicts whether the user would be interested in the 
item. This is a supervised learning task. In the case of netnews personalization, 
the learning task is to create a model to categorize new articles from the web 
based on the users‟ feedback on already displayed articles in the past. This 
feedback can be both explicit (i.e. votes) or implicit (i.e. system interactions) 
and is read from the user profile (paragraph 2.1.2).  An overview of machine 
learning techniques used for automated text categorization is given by [55]. 
 
The main difficulties with machine learning for text classification are high 
dimensionality and noise. Because of the huge set of possible terms in the 
corpus, the chances of over fitting increase. Especially when a classifier is 
trained with a small data set the chances of distributing articles over unique 
dimensions are higher (no referencing terms). The use of normalization 
techniques (paragraph 2.2.4) partly tackles this problem. Furthermore, text is 
unstructured and noisy data. The input noise is reduced by pre-processing the 
data (paragraph 2.2.2) and by the use of feature vectors with tf-idf values 
(paragraph 2.2.3). But especially output noise can reduce classification 
performance. When a classifier is trained with data pointing to the wrong 
classes, such a classifier can never predict accurately. 
 
For personal recommendation these can be difficult problems to tackle. Because 
user feedback is scarce and hard to gather, the training sets are often small. 
Also, when using implicit feedback (system interactions) the output noise can 
become a large negative factor.  

2.3.2 Cosine similarity 

Although generally not documented as „machine learning algorithm‟ on its own, 
the cosine similarity is a widely used measurement to compare and classify 
documents for content based recommendation. This measurement searches for 
the cosine of the angle between two vectors. The cosine similarity is defined as 
follows: 
 

cos(𝛼) =  
𝐴 ∙ 𝐵

‖𝐴‖ × ‖𝐵‖
 

Formula 4: Cosine similarity 

 
Where A and B are the document feature vectors containing tf-idf values 
(paragraph 2.2.3).  
 
The results of this cosine similarity range from 0 to 1 (tf-idf values cannot be 
negative) and can be interpreted as an inverted distance measurement between 
two documents. Therefore the cosine similarity can be used as a likelihood 
estimate for an articles‟ category by combining similarities of all documents in a 
category. Categorization itself is based on threshold values. For example values 
< .5 = “dislike”, > .9 = “known” and articles in-between are labeled “like”. 
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2.3.3 Naïve Bayes  

Because of simplicity and effectiveness, also Naïve Bayes classifiers are often 
used in text classification applications and experiments. However its 
performance is often degraded because it does not model text well. These 
classifiers are mostly implemented for the long-term memory models. 
 
Naïve Bayes models are a probabilistic approach to text classification. These 
models are based on the Bayesian theorem, given by 
 

𝑃(|𝐷) =  
𝑃(𝐷|)𝑃()

𝑃(𝐷)
 

   Formula 5: Bayes theorem: Given a hypothesis (h) and data (D), calculate the chance of h given D. 

 

Generally the most probable hypothesis h ∈ H, called the maximum a posteriori 

hypothesis (hMAP), is used for classification and is given by 
 

𝑀𝐴𝑃 = arg max
ℎ∈𝐻

 𝑃(|𝐷) = arg max
ℎ∈𝐻

 𝑃(𝐷|)𝑃() 

Formula 6: Maximum a posteriori hypothesis 

 
Where P(D) is dropped because it is a constant independent of h. 
 
By interpreting an article as a bag of unrelated words instead of a structured 
article, the „naïve‟ assumption applies. This assumption can be used to define 
the Naïve Bayes classifier for inductive learning. This is defined as modeling a 
concept function 𝑓: 𝑋 → 𝐶, where 𝑐 ∈ 𝐶 represents a class label and 𝑥 ∈ 𝑋 
models a feature described by a feature vector 〈𝑥𝑖, … , 𝑥𝑛〉: 
 

𝐶𝑀𝐴𝑃 = arg max
𝑐∈𝐶

 𝑃(𝑐|𝑥𝑖 , … , 𝑥𝑛)  =  arg max
𝑐∈𝐶

 𝑃(𝑥𝑖, … , 𝑥𝑛|𝑐)𝑃(𝑐) 

Formula 7: Bayesian learning 

 
Finally, by using the Naïve Bayes assumption of independent features, the Naïve 
Bayes classifier is derived: 
 

𝐶𝑁𝐵 = arg max
𝑐∈𝐶

 𝑃(𝑐)∏𝑃(𝑥𝑛|𝑐)

𝑛

 

Formula 8: Naive Bayes classifier 

 
Therefore to classify a new article a with a feature vector 〈𝑥𝑖, … , 𝑥𝑛〉 by using a 
Naïve Bayes classifier trained on a dataset D with known feedback c: 

- Training:  Calculate the individual term probabilities 𝑃(𝑥𝑛|𝑐) from 
each 𝑑 ∈ 𝐷 (articles) with known classification c (feedback). 

- Testing: Score each c using CNB (Formula 8) on 〈𝑥𝑖, … , 𝑥𝑛〉 in article a. 
Return c with the highest probability.  
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2.3.4 k-Nearest Neighbors  

Another widely used machine learning algorithm is k-Nearest Neighbors  
(k-NN). The nearest neighbor algorithm simply stores all its training data in 
memory. Therefore it‟s also called a lazy algorithm belonging to the category of 
instance based learning algorithms. For text classification, each article feature 
vector 〈𝑥𝑖, … , 𝑥𝑛〉 with a known class (feedback) is therefore stored as a data 
point in a multi-dimensional data space ℝ𝑛, where n is the variety of terms in 
the corpus. Because of the high demand on memory, this algorithm is mostly 
used for smaller datasets and therefore in the case of personal recommendation 
it is mainly implemented for short-term user models. 
 
In order to classify a new unlabeled item, the algorithm compares it to all stored 
items using a similarity function and determines the “nearest neighbor” or k 
nearest neighbors. The default similarity measurement is the Euclidian 
distance. This distance d measurement between the current, unseen, article ac 
and all other articles ai in ℝ𝑛, is calculated by 
 

𝑑(𝑎𝑐 , 𝑎𝑖) =  √∑(𝑥𝑟,𝑖  − 𝑥𝑟,𝑐)
2

𝑁

𝑟=1

 

Formula 9: Euclidian distance 

 
Where xr,i represents a feature (term value) r from article i. 
 
Another distance measurement often used within k-NN, especially for text 
classification, is the cosine distance as explained in a previous paragraph 
(2.3.2). Finally, the class label and/or numeric score for a previously unseen 
item can be derived from the class labels of the calculated k nearest neighbors. 
Thereby, the most widely used selection method is majority voting. 

2.3.5 Support Vector Machines 

Support Vector Machines (SVM), introduced by V. Vapnik et al [61], are 
becoming increasingly popular as machine learning algorithm for text 
classification [36]. The main reasons of the success of SVMs in this field are: (1) 
SVMs are universal learners, (2) independence of dimensionality of feature 
space and (3) heuristics exist for automatic parameter selection [35].  
 
First SVMs are universal learners. In their basic form, SVMs learn a linear 
threshold function. Nevertheless, by a simple “plug-in" of an appropriate kernel 
function, they can be used to learn polynomial classifiers, radial basis function 
(RBF) networks and three-layer sigmoid neural nets. 
 
The second property of SVMs is the ability to learn independent of the 
dimensionality of the feature space. SVMs measure the complexity of 
hypotheses based on the margin with which they separate the data, not the 
number of features. This means that, unlike k-NN, SVMs can generalize even in 
the presence of very many features, if the data is separable with a wide margin 
using functions from the hypothesis space. 
 
The same margin argument also suggests a heuristic for selecting good 
parameter settings for the learner. Usually a grid search combined with cross-
validation is used to optimize the classification parameters. 
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Figure 3: Support Vector Machine; 2-dimensional example 

 
A Support Vector Machine performs classification by constructing an 
N-dimensional hyperplane that optimally separates the data into categories.  
To illustrate this, an idealized example in a 2-dimensional data space ℝ2 is given 
in Figure 3. Each dot in the picture represents a feature vector xi. Class labels 
y𝑖 ∈  *−1, 1+ are indicated by color. The basic idea is to find a hyperplane 
optimally separating the data by maximizing the margin between support 
vectors. A hyperplane can be described as a set of points x satisfying  
𝒘 ∙ 𝒙 − 𝑏 = 0, where 𝒘 denotes the normal vector perpendicular to the 
hyperplane. The distance of the hyperplane to the origin is given by the 

value 
𝒃

‖𝒘‖
. The goal is to maximize the distance 

2

‖𝒘‖
 between the canonical 

hyperplanes connecting the support vectors (dotted lines in Figure 3), these 
hyperplanes are described by the equations 𝒘 ∙ 𝒙 − 𝑏 = 1 and 
𝒘 ∙ 𝒙 − 𝑏 = −1. Therefore the final goal becomes to minimize ‖𝒘‖, described as 
 

Φ(𝑥) = min
𝑤,𝑏

 ‖𝒘‖ = min
𝑤,𝑏

 
1

2
(𝒘 ∙ 𝒘)        𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) ≥ 1, for 𝑖 = 1,… , 𝑛 

Formula 10: SVM optimization problem 

 
This equation is subject to constraints to prevent data points within the margin. 
 
In Figure 3, one (green) data point is deflected from the group and is situated on 
the opposite of the separating hyperplane and will therefore be misclassified. To 
allow such mislabeled data a soft margin is introduced to split the examples as 
clearly as possible. The optimization problem from Formula 10 is therefore 
extended with slack variables ξi indicating the error of the margin as follows: 
  

Φ(𝑥) = min
𝑤,𝑏

{
1

2
(𝒘 ∙ 𝒘) + 𝐶∑𝜉𝑖

𝑛

𝑖=1

}  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) ≥ 1 − 𝜉𝑖 , for 𝑖 = 1,… , 𝑛 

Formula 11: SVM optimization problem with soft margin 
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To solve this optimization problem, it can be rewritten to a Lagrangian 
formulation: 
 

𝐿𝑃 ≡ min 
𝒘,𝑏

max
 ∝

  {
1

2
‖𝒘‖2 −∑𝛼𝑖 ,𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) − 1 + 𝜉𝑖-

𝑛

𝑖=1

} 

Formula 12: Lagrangian formulation 

 

Where ‖𝒘‖ is replaced by 
1

2
‖𝒘‖2 and positive Lagrange multipliers αi, i = 1, …, l, 

are introduced.  
 
The solution can now be calculated using quadratic programming techniques 
(QP). QP is a well-studied class of optimization algorithms to maximize a 
quadratic function of some real-valued variables subject to linear constraints. 
The subject of quadratic programming lies outside the scope of this research 
and therefore the exact formulation of the solution [12] is omitted. The result 
should be a vector w with a linear combination of relatively small percentage of 
points xi (the support vectors) expressed by: 
 

𝒘 =∑𝛼𝑖𝑦𝑖𝒙𝑖

𝑁

𝑖=1

    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) ≥ 1, for 𝑖 = 1,… , 𝑛 

Formula 13: Solution to optimization problem 

 
The problem of classifying a new data point x is now simply solved by looking at 
the sign of: 𝑠𝑖𝑔𝑛(𝒘 ∙ 𝒙 − 𝑏). 
 
Furthermore, the above simplified linear example in 2d space can be extended 
to higher (possibly infinite) feature spaces ℝ𝑛: Φ(𝑥) = *Φ1(𝑥),Φ2(𝑥),… ,Φ𝑛(𝑥))+ 
to solve non-linear classification problems by preprocessing the data  𝑥 → Φ(𝑥) 

using a kernel function K(𝑥𝑖, 𝑥𝑗) = Φ(𝑥𝑖) ∙ Φ(𝑥𝑗). Examples of such kernels are  

K(𝑥, 𝑦) = (𝑥 ∙ 𝑦 + 1)𝑃 (Polynomial) and K(𝑥, 𝑦) =  𝑒−𝛽|𝑥−𝑦|
 
 (Guassian RBF). 

This process is illustrated in Figure 4. 
 
 

 

Figure 4: SVM; Mapping to higher dimension(s) by using a kernel function 
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 Agent models 2.4

Much less attention has been gained by recommender systems based on multi-
agent architectures [45]. An overview of this field of research is given by [62]. 
In the next two paragraphs a short introduction to agent based models and 
some examples of research on agent based recommender systems are given. 

2.4.1 Multi-agent systems 

Multi-agent systems (MAS) are systems 
composed of multiple interacting software 
agents. These systems can be used to solve 
problems of higher complexity which are difficult 
or impossible to solve for an individual agent. A 
general definition of an agent [62] is as follows: 
 
An agent is a computer system that is situated in 
some environment, and is capable of 
autonomous action in this environment in order 
to meet its design objectives. 
 
An abstract view of this agent model from the above definition is illustrated in 
Figure 5. An important aspect of this model is the decoupling of the 
environment and the agent. Generally the environment is assumed to be non-
deterministic and non-predictable. Agents can interact with the environment 
and influence it, but they do not have full control over it. 
 
In a multi-agent architecture agents often share knowledge by communication, 
using a language available from a pre-specified communication protocol. 
Two important characteristics of many multi-agent systems are 
decentralization and self-organization. Decentralization is obtained by the 
absence of a central designated control agent. All agents act on their own based 
on their internal properties and the environmental influences. Mostly, the result 
is self-organization, whereby a (non-planned) pattern of agent behavior 
emerges from the system interactions. 

2.4.2 Agent based recommender systems 

An early and experimental agent based recommender system METIOREW is 
given by [20]. In this work a framework is proposed which combines a set of 
agents with specific goals and information sharing capabilities. It‟s a promising 
setup, but no experiments are conducted, so no results can be presented from 
this work. One of the first (positive) results using a collection of information 
filtering agents is found in [28]. These filterbots are capable of reducing noise 
in collaborative filtering results using content information. The conclusion in 
this research is that better results are obtained by using multiple simple agents 
instead of using a single complex agent. Another research [10] also shows an 
increase in performance of an agent based recommendation system. In this 
research a system supporting communities of people searching the web is 
proposed. Agents share their knowledge about users‟ behavior gained from data 
mining techniques. More recent work of [2] describes an agent based approach 
where personalized content models and missing data models are combined to 
produce item-based predictions of user ratings. These scores are combined in a 
stacked agent model, where the agents are trained using an SVM (paragraph 
2.3.5) to produce recommendations. This research shows positive results 
compared to single content-based models. 

Agent 
action 

 output 

Environment 

sensor 

input 

Figure 5: Abstract agent model 
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 Related work  2.5

Some classic influential papers for the field of recommender systems are:  
[52] One of the first collaborative filters for netnews articles; [8] Content-based 
and collaborative filtering using agents and [37] A tour guide software agent for 
the web capable of suggesting hyperlinks. Main research (groups) are 
GROUPLens research group [31] and work by Pazzani et al. The newest 
techniques are presented yearly at the international conference for the subject: 
RecSys [1]. Public commercial systems using recommender techniques are i.e. 
[22] a system filtering, scanning and collating stories from the web, based on 
user interests and [50] a party providing a search engine for news articles 
(Postrank; technique based on Google‟s pagerank for web pages). Furthermore 
this last service also includes a collaborative filtering technique. 
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3 Methods 

The theory above is combined and tested by implementing a personalized 
adaptive netnews recommender system:  iNewsReader. A conceptual multi-
agent driven framework will be described in the next paragraphs. This 
framework is largely implemented, some parts are left out or „short wired‟ to 
reduce workload and enable more precise measurements of the individual 
components. Finally, an experiment is conducted, whereby the system is tested 
and analyzed on real-world live data. This experiment is described in the next 
chapter. 

 Information sources 3.1

The recommender system as an intelligent filter for netnews articles uses Really 
Simple Syndication (RSS) feeds as primary data source. RSS feeds are dynamic 
lists of web content in a pre-specified XML format (Figure 6). These feeds are 
generally accepted and implemented all around the web to publish frequently 
updated information. This way a huge amount of structured articles is available 
for automatic processing.  
 

 

Figure 6: RSS source 

 
By using RSS as a main data source, instead of plain HTML-documents, the 
clutter of html markup (not contributing to the meaning of an article) is partly 
omitted. Furthermore semantic information about the articles (i.e. author, title, 
tags, category, etc.) is directly available from within the RSS feed.  
 
The initial implementation of iNewsReader was solely based on the contents of 
these RSS feeds, omitting the source of the full article referred to. During 
processing it turned out this information is often sparse and incomplete. 
Therefore the implemented crawler is extended by also inspecting the referred 
full article source. Information from the RSS feed is thereby used to extract the 
article body from the page and remove all other information (section 3.5).  
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 General system setup 3.2

The concept of the iNewsReader recommender system is built around four 
main components (Figure 7): data storage, web crawler, recommender(s) and 
a web portal / user interface (For reference, see also appendix 7.1 for the 
original and initial system proposals). All system actions, communication and 
data transfers between these main components are executed by small software 
agents. So no direct communication takes place between the components. On 
the contrary, the agents themselves should be able to communicate and interact 
with each other. A central organ manages these agents (AMS) and provides the 
communication and transport layers for this agent interaction. 
 

Agent 

Management 

System (AMS)

Crawler

Portal

Recommender(s)

Data storage

Item Server Profile Server

 

Figure 7: General system setup  

 
The process starts with an agent asking for the next RSS feed to harvest; this 
feed is read from a queue stored at the item server in the data storage. The feed 
is presented to the crawler, which collects the data and returns item-profiles for 
each article in the feed (section 2.2). These item-profiles contain article 
information including pre-processed feature vectors to be stored into the item 
server. 
 
When a user logs in to the system via the portal (web) interface, multiple user 
centered agents are activated to retrieve personal information for the user. 
Some agents directly return information by providing a list of articles from 
online RSS feeds (i.e. personal static feed agents or 3th party agents). Other 
agents contact the item server to retrieve the information (i.e. search or 
popularity agents). The more advanced agents use the recommender 
components to estimate the rate of user interest for a set of articles. These 
recommender components on their behalf use agents to retrieve user 
information and history from the profile server to train the classification 
algorithms (section 2.3). Finally intermediate agents can filter or sort the 
retrieved list of articles before it‟s presented to the user. Of course multiple 
alternative routes and non-described agents could contribute to the final 
personalized recommendation. 

Legend

Agent 

RSS feed (static)

Popular articles

(common interests)

Web service (3th party)

Collaborative intelligence

Content-based

Long-term interests 

(based on history)

Short-term interests 

(based on current readings)

Explicit (feedback)

Implicit (feedback)

Search (keyword)

Filter

Order

Custom
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 Framework implementation  3.3

As a proof of concept a large part of the above system is implemented. In the 
first place, all four main components (data storage, crawler, recommenders and 
portal) are built. No personalized netnews recommendation is possible if one of 
these components is missing. To reduce implementation costs (time), only a 
basic version of the agent management system (AMS) is constructed. By „short 
wiring‟ the communication with the data storage, the functionality of the AMS 
can be reduced to only handle the recommendation agents and provide the 
primal communication between the portal and the recommender components. 
This way the core experiment of testing multiple recommender agent 
configurations isn‟t influenced and all information displayed to the user is still 
gathered by calling the responsible agents. The final reduced implementation of 
the framework is illustrated in Figure 8. The main disadvantage of this 
approach is the reduced flexibility in distributed processing. This „short wiring‟ 
requires multiple processes to be executed on the same machine; therefore this 
approach causes a decreased performance of the testing environment. For a 
detailed discussion about additional shortcomings, see also section 3.9 and 
paragraph 5.2.1 . 
 

Crawler

Portal

Recommender(s)Data storage

Item Server Profile Server

AMS

 

Figure 8: Implemented recommender framework (legend of Figure 7 applies) 

 
Finally, a choice needed to be made what kind of recommenders, and related 
agents, to implement (theoretically, an infinite amount of agents can be 
attached to the system). Because it‟s hard to generate a large reliable user base 
for a project this size, this research is more directed toward content based 
recommendation. Furthermore, lately a lot of research has been conducted 
towards collaborative algorithms and these techniques are already widely 
implemented in production systems. Therefore two content based recommender 
algorithms are implemented providing Naïve Bayes and Support Vector 
Machine classification. These algorithms are interfaced with eight unique 
configurations of recommender agents, based on recommender type, feedback 
(implicit/explicit) and memory model (short- / long-term).  
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 Data storage 3.4

The data storage is split into two database servers, an item storage and a (user) 
profile storage. Both databases are relational storages hosted by MS SQL Server 
2008 instances. The item server (Figure 9) is responsible for storage of all item 
related information. The n-dimensional data warehouse capability for storage 
of article information and related term feature vectors is implemented by using 
a cross table („ArticleTerm‟ table in Figure 9), linking article information 
(„Article‟ table) with term feature values („Term‟ table).  
 

 

Figure 9: Item-server 

 
The profile-server (Figure 10) contains all user information and their 
preferences. Information about user system interaction, user feedback and 
other user related information are also stored here. Furthermore, offline pre-
calculated personal recommendations are stored at the profile server. 
 

 

Figure 10: Profile-server 

 

The data access layers providing the interfaces to both database servers are 
implemented using the ADO.NET Entity framework. This entity framework 
creates a data-oriented object to SQL Query translation. The Language-
integrated query (LINQ) technology is thereby used to query the databases and 
return pre-defined data objects. This way the application is free from data 
(model) dependencies and data can be accessed using an object-oriented 
approach supporting compile-time syntax validation for queries against a 
conceptual model. 
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 Harvesting 3.5

The crawler module for harvesting information from the internet is 
implemented using the techniques described in section 2.2. The crawler is 
responsible for the first three phases, collecting data, pre-processing the data 
and feature extraction, of the data mining cycle (Figure 1). This entire 
harvesting procedure is executed offline in a separate process, so it has no 
influence on the speed of the recommendation process itself and is therefore 
unnoticeable for the user of the system. 
 
For reasons described in section 3.1, the crawler inspects both the provided RSS 
feeds as the html source of the articles referred to. But before the data is 
collected from the internet, first a few basic checks are executed. The feed and 
article urls are checked on format and parse dates. Already parsed articles and 
also black listed urls are skipped from processing. After these checks, the 
available article information from the RSS feed is stored into the item-server.  
 
The next stage is the processing of the html page source of each article referred 
to from the RSS feed. Webpages contain lots of uninteresting information (i.e. 
headers, menu, footer, advertisements, etc.). The tree structured html source 
(Document Object Model) of each page is traversed to filter out the information 
referred to by the RSS feed. The general idea is illustrated in Figure 11 below. 
 

 

Figure 11: HTML Document structure (DOM tree) 

 
In the figure, the code block between the red lines (<div class=’article’> … 
</div>) contains the actual information referred to from the RSS feed, the 
additional code above and below clutters this information and needs to be 
filtered out. To find this block of code, first the crawler tries to match the title 
and description provided by the RSS feed with the information at the html page 
and registers their DOM nodes (<h2>Article title</h2> and <p>Article 

<html> 

  <head> 

 <!— document info --> 

  </head> 

  <body> 

 <div class=’header’>…</div> 

 <div class=’menu’>…</div> 

 … 

 <div class=’article’> 

   <h2>Article title</h2> 

   <span class=’summary’>  

  <span>publish date: 01-01-2010</span> 

  <p>Article Description</p> 

  </span> 

  <span class=’content’>  

  <p>Article body</p> 

  <img src=’illustration.jpg’/> 

  </span> 

</div> 

… 

<div class=’advertisements’>…</div> 

<div class=’footer’>…</div> 

  </body> 

</html> 
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Description</p> in the example source). Next the first parent node, traveling 
backward on the DOM tree using XPath, enclosing both title and description 
nodes (<div class=’article’>) is registered as final „article‟ node and 
returned for further processing.  
 
Of course the example above is over simplified and real world data is much less 
structured, but the process still applies. A random example of a parsed 
TechCrunch [59] news article is given in Figure 12. The matched DOM nodes 
are bordered (CSS) using the same colors as in Figure 11. 
 

 

Figure 12: Crawler output 

 
Two algorithms are implemented for matching strings of text. These algorithms 
are used for matching the title and description from the RSS feed with the text 
at the page source. First, a faster but less reliable algorithm calculates the 
percentage of words present in both strings by counting occurrences. If no 
reliable match is found (using a threshold constant T = .9, or < 90%), a second 
algorithm takes over, calculating the Levenshtein distance. The Levenshtein 
distance is obtained by calculating the cheapest way to transform one string into 
another by using insertions, deletions and/or substitutions, the process is 
illustrated in the example below (Figure 13). 
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    Two shortest distances (‘=’ math; ‘o’ substitution; ‘+’ insertion and ‘-’ deletion): 

 

Figure 13: Levenshtein distance 

        
An implementation of the algorithm is given by  
 

 

   Figure 14: Levenshtein algorithm 

 
Alternatively, if neither of these algorithms finds a reliable match for the title or 
description within the article source, the „article DOM node‟ can‟t be located and 
the full page body is returned.  
 
Next, the returned page source is stripped from its html elements, so only the 
inner text remains. The result is combined with the RSS data and further pre-
processed as explained in section 2.2, continuing from 2.2.2. At the end, the 
page source is also inspected for references to new RSS feeds. These feeds are 
added to the feeds queue at the item-server to be harvested in future processing. 
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 Portal 3.6

The main user interface (UI) and access point for the recommendation services 
is a public web portal. Users are able to subscribe and set preferences for their 
system usage. Prior to this registration the portal displays a random set of 
articles. After registration the interface shows articles of personal interest to the 
user. During reading of these articles, users are able to provide feedback for 
each article (voting). This explicit user feedback and additional implicit interest 
indicators are stored in the profile-server at the data storage. This feedback is 
thereafter accessed by the system to refine the list of interesting articles over 
time for future recommendations.  

3.6.1 Web server 

A Microsoft Internet Information Services v7.5 (IIS 7.5) web server is configured 
to run the public web portal. The portal itself is written in the ASP.NET (C#) 
web language and structured using the Model View Controller (MVC 2.0) 
pattern, provided by Microsoft. To prevent page refreshes Asynchronous 
JavaScript and XML (AJAX) Services are used to call special purpose web 
services. Examples of these services are the voting and search services. The 
server side framework for these web services is based on the Windows 
Communication Foundation (WCF), a service oriented architecture supporting 
distributed computing. 

3.6.2 User accounts 

To be able to identify users and provide personal recommendation, users need 
to register themselves first. The registration process is kept as simple as possible 
and only asks for a username, password and e-mail address. During registration 
a user account with a unique identifier (User ID) is created and stored at the 
profile server. This unique identifier is used for all further references and 
database couplings to the user profile. For authentication, the built-in 
authentication services from the MVC 2.0 framework are used. On every next 
visit the user can directly login using the created credentials.  

3.6.3 User interface 

It is known the user interface (UI) is of great influence for the successfulness of 
the overall system. A bad interface won‟t attract users, which are on their turn 
necessary for collaborative techniques. Also, a less attractive interface influences 
the reading „pleasure‟, this probably results in a negative effect on system usage. 
There is also a huge diversity in web browsers and screen resolutions to account 
for accessibility. Again, to reduce the overall size of the project, these collaborate 
techniques were already omitted in the first place and also the UI gains less 
attention as it deserves. The focus in this project lies on the techniques „under 
the hood‟. So the usability, attractiveness and accessibility of the system are 
beforehand left open for future research. 
 
The first impression of the interface, the home-page, is shown in Figure 15. 
At the top of the page a header includes the logo, menu and authentication 
components. The logo identifies the portal and can be clicked to return to the 
home page at all times. For navigation the menu provides the buttons to access 
all functionality on the site. This menu is extended at user login with additional 
buttons to restricted pages. Users can login and register using the login form on 
the top right of the page. 
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Figure 15: User Interface (Portal - Home) 

 
Underneath the header the actual content is presented.  On the left side, the 
main recommendation view is displayed. In the screenshot above a set of 
random articles is shown, after authentication, this list will be replaced by a set 
of articles from the recommendation agents. A refresh button can be used to call 
for a new set of articles. The right side displays a search box and two random 
static personal RSS feeds. The search box can be used to call a „search agent‟ to 
query the item-server for articles on a specific subject. The static feeds can be 
configured (if logged in) using the configuration icon. Each user can add a 
(theoretically) unlimited amount of their personal favorite RSS feeds to occupy 
the home page (Figure 16). 
 

 

Figure 16: Manage personal RSS feeds 

 
The portal is built using a scalable 100% screen width layout. This way higher 
screen resolutions also display more information. The layout of the page is 
constructed using Cascading Style Sheets (CSS) to decouple the page html 
source from the graphical interface and thereby increase the flexibility and 
control of the interface. The portal is furthermore optimized and tested for the 
Firefox and Google Chrome web browsers. 
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Figure 17: User Interface (article + voting) 

 
If the user has selected an article for reading, the reading interface (Figure 17) is 
shown. Again this interface is split in two layers. On top the iNewsReader 
toolbar, providing functionality for voting, authentication and main navigation 
buttons (home and close buttons). Below the requested article is displayed. 
 
Technically the screen is split using three html frames, a main frame handling 
all communication and two inner frames, one loading the toolbar and another 
displaying the article. This way an external web page can be displayed without 
leaving the iNewsReader domain and thereby preserve all inner database 
communication possibilities. The external source is automatically loaded into its 
own security sandbox, so no direct communication is possible between the split 
domains. Disadvantages of this setup are the outdated and discouraged 
technology of using frames and some sites don‟t allow to be displayed inside a 
frame. These websites use a so called frame bust script (Figure 18), causing the 
toolbar to be removed and thereby disable the possibility to vote for the article. 
 

 

Figure 18: Frame bust script 

 
To overcome the problem of frame busting scripts, the main frame includes an 
anti frame bust script (Figure 19). This script detects the unloading of the inner 

<script type="text/javascript"> 

  if (top.location != location) 

    top.location.href = document.location.href; 

</script> 
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web page and prevents the busting out. The trick is to load a 204 non-
displayable error page before the page unloads to stop the browser from acting.  
 

 

Figure 19: Anti frame bust script 

 
To prevent endless loops and crashing of the browser, an empty page is 
displayed with a message and a link to open the article in a new window. This 
way the article can still be read and also voting functionality is preserved. 
 
At the moment the user activates (i.e. open browser tab) the reading interface 
containing the article, a timer starts running to measure the time spent reading. 
Both the start and ending (close window) timestamps are sent to the profile 
server to account for implicit feedback. 
 
Additional pages available to the user within the portal are an „about‟ page, 
containing information about the project and the usage of the system. See also 
appendix 7.2 for the provided usage instructions to the user. Furthermore a 
„history‟ page is available with links to personal recommendations from the past 
and a „charts‟ page with statistics about the system usage and recommendation 
performance. 

 Recommendation 3.7

The recommendation component of the framework contains the methods to 
estimate the user interest for a set of articles. These methods are based on 
machine learning algorithms for text classification as described in section 2.3. 
The final implementation of the system is equipped with two of these 
algorithms, Naïve Bayes (paragraph 2.3.3) and SVM (paragraph 2.3.5). Also 
additional recommendation functionality (i.e. k-NN, collaborative algorithms or 
artificial neural networks) could be added here. Recommender agents called 
from the portal use these algorithms to present a personalized list of articles. 

<script type="text/javascript"> 

  var prevent_bust = 0; 

  window.onbeforeunload = function () { prevent_bust++; } 

  var interval = setInterval(function () { 

    if (prevent_bust > 0) { 

      prevent_bust -= 2; 

      top.location = 'http://clients1.google.com/generate_204'; 

       

      articleFrame.location = ""; 

      articleFrame.document.write(" 

This page does not allow to be framed. 

Click <a href=’url’>this link</a> to open the article 

in an external window. 

For voting, use the above buttons on top of this page. 

"); 

    } 

  }, 1); 

</script> 
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Figure 20: Recommendation class diagram 

3.7.1 Process overview 

The structure of the modules utilized for recommendation is given in Figure 20. 
The diagram displays three communication layers: On top the AMS, at the 
center the individual agents and at the bottom the recommender component. 
These layers equal the elements of the framework as described in section 3.3, 
illustrated in Figure 8. The AMS is responsible for the activation of the 
requested recommender agents and their configurations. This layer is also 
equipped with a Logger to store information about the recommendation process 
provided by the agents. The second layer displays two models for the individual 
agents. Each agent extends a base class and implements an agent interface 
(IRecommenderAgent). The interface contains the general agent model used by 
the AMS. The RecommenderAgent base class contains basic information (i.e. 
UserId) and functionality (i.e. load a set of articles) for the recommendation 
process. The specific agent implementations (BayesRecommenderAgent and 
SVMRecommenderAgent) are responsible for the execution and communication 
with the recommender algorithms within the recommendation module. 
 
The whole recommendation process is executed offline and can be activated in 
two ways. First, for testing purposes, the Program is able to run standalone 
when executed from the command line. This way all system users are iterated 
and all known recommender agents are called to provide a recommendation. 
Second, the Recommendation (AMS) is called to run as a background service 
when a user logs in through the portal. Then only specific agents are executed to 
provide personal recommendation for the authenticated user. Finally, the 
collected recommended articles by the agents are stored in the 
„recommendation table‟ at the profile server (Figure 10). This recommendation 
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table is queried (online) every time a user calls (refresh) for a new set of 
recommended articles at the portal. If a new recommendation is available, it will 
be displayed; otherwise a random set of articles is returned (see also „random 
agent‟; paragraph 3.8.3). 

3.7.2 Naïve Bayes recommender 

The Naïve Bayes recommender (RecommenderBayes in Figure 20) is based on 
the theory from paragraph 2.3.3. The exact implementation is a modified 
version of the open source C# Naïve Bayes classifier provided by Joel Martinez 
[43]. For reference, the source code of the Naïve Bayes classifier is attached 
(appendix 7.3).  
 
Furthermore, the theory from paragraph 2.3.3 is extended with a log-likelihood 
calculation. As a consequence of the huge dimensionality of the data, chances 
can become extremely small and therefore buffer underflows are likely to occur. 
These buffer underflows can be prevented by using the logarithmic values of the 
individual term probabilities. The classification targets two mutually exclusive 
alternatives („like‟ and „dislike‟); therefore the usage of log-likelihood ratios does 
not influence the outcome of the final recommendation. 

3.7.3 Support Vector Machine recommender 

The Support Vector Machine recommender (RecommenderSVM in Figure 20) is 
based on the theory from paragraph 2.3.5. The implementation is based on the 
open source LIBSVM [16], ported to SVM.NET by Matthew Johnson [38]. 
 
The SVM recommender is equipped with functionality for three stages of 
processing: Loading, training and testing. First a recommender agent loads the 
training data to the SVM recommender. This training data contains the article 
feature vectors with tf-idf term values (paragraph 2.2.3) linked to a class label 
obtained from the user feedback (implicit or explicit). From this data a new 
classification problem is created which includes information about the 
dimensionality of the data-space (number of known terms). Next, during 
training, a model is trained using the problem and a parameter selection based 
on 5-fold grid search optimization. Because the number of features is large 
[32], the model is trained using a LINEAR kernel: K(𝑥, 𝑦) = 𝑥 ∙ 𝑦, to improve 
performance. For this reason the parameter selection is reduced to only search 
for the optimal C value (cost constant; penalty parameter of the error term) to 
prevent for the overfitting problem. Once the model is trained, new articles are 
classified and class label probabilities are calculated at the last stage during 
testing. The outcome of this classification is then used by the recommender 
agents to create the final SVM based recommendation. 

3.7.4 Recommender agent configurations 

The recommender component is interfaced by configurations of recommender 
agents. These agents are responsible for the communication with the portal. The 
configurations are a combination of settings on recommender type, feedback 
model and memory model. In this research eight agents are configured: 

 

 

 

 

Table 1: Recommender configurations 

 

Recommender type Support Vector Machine Naïve Bayes 

Memory model long-term short-term long-term short-term 

Explicit feedback 1 2 3 4 

Implicit feedback 5 6 7 8 
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Depending on the recommender type, first one of the implemented agents is 
initialized (SVMRecommenderAgent or BayesRecommenderAgent in Figure 
20). These agents collect and format the training data to be sent to the 
corresponding recommender in the recommenders module. The short-term 
agents thereby collect articles displayed within 24 hours. Long-term agents use 
all available (limited to 365 days) articles displayed to the user during system 
usage. Furthermore, explicit agents only collect articles the user explicitly voted 
for using the toolbar vote buttons at the portal reading interface. Implicit 
feedback is calculated using reading times. Therefore the mean reading time (in 
seconds) of voted liked (L) and disliked (D) articles is used to calculate the 
implicit feedback, given by the following formula: 
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Formula 14: Implicit feedback 

 
Where n indicates the available liked and m the number of disliked articles. 
 
The final implicit feedback label is obtained by comparing the reading duration 
of displayed but non voted articles to the value obtained from Formula 14. A 
„like‟ label (1) is attached when the reading time is longer, lower values get a 
„dislike‟ (-1).  

 Additional agents 3.8

Lots of different agents can be thought of performing some kind of action at the 
RSS input of articles. A few example agents (see also Figure 7) are: static feed, 
collaborative, content-based, ranking and search agents. For this research a 
pre-configured set of agents is implemented. Descriptions of the main content-
based classification agents are already given above. For a discussion on more 
potential non-implemented agents see also paragraph 5.3.2. This section 
concentrates on the implemented additional agents indirectly contributing to 
the recommendation process. 

3.8.1 Search agent 

A search agent is implemented to increase the functionality to faster train the 
recommendation system with articles of known interest. This agent is activated 
by providing a search query in the search field at the portal home page. By 
pressing the search button, a search agent is executed to query the items-server 
for the provided keywords. Therefore a default text search is used on the „title‟ 
and „description‟ fields in the database. These fields are populated by the raw 
data as provided by the RSS feed. A list of max n articles is returned and 
displayed back at the portal to be read and voted for next using the reading 
interface. During the experiment, n is set to 10 articles. Additionally, the articles 
are ordered by date (order agent), where newer articles are displayed on top. 

3.8.2 RSS feed agent 

As mentioned in paragraph 3.6.3, see Figure 16, users are able to provide a list 
of RSS feeds of personal interest. Again these feeds increase the learning speed 
of the system, by providing feedback on articles of known interest. On page load 
of the portal home page, each of these configured feeds starts its own RSS feed 
agent. In the first place this agent calls a crawler to harvest the contents of the 
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RSS feed. Because an article identifier (ArticleId) from the item-server is needed 
to register votes to an article, first the non-registered articles are added to the 
data storage. The article ids are returned immediately and together with the 
already available information from the RSS feed, a list of n articles is displayed 
at the user interface. The activated crawler continues with the full article 
processing routine as a background service, so each article can be used for 
future recommendations. This way, only a small delay, caused by the 
registration of the new articles at the item-server, is noticeable to the user. The 
full (slower) processing of the articles is executed offline and the users are still 
already able to provide feedback (vote) for the new articles not yet fully 
processed. 

3.8.3 Random agent 

For research purposes also a random articles agent is implemented. This agent 
uses the last n articles from the item-server to collect a list of i articles. During 
research, i is set to 10 and n to 10.000. The data is limited by the newest n 
articles to prevent the identification of the random agent by examination of the 
articles release dates. 

3.8.4 Order agent 

Finally a basic ordering agent is provided to sort the provided list of articles. If 
possible, the list is ordered by using the likelihood parameter or „degree of 
interest‟ as provided by the text classification algorithms from the 
recommendation module. If this parameter is not available, the list is ordered 
by release date of the articles. Alternatively, if even the release date is unknown, 
the ordering is based on harvest date. 

 Shortcomings 3.9

Due to choices made at the implementation stage of the framework, the system 
also has some shortcomings affecting the flexibility of the experimental setup. 
The main weakness as already mentioned before is speed. Also the reduced 
functionality of the Agent Management System (AMS) forces the behavior of the 
agents into a single direction. These and other shortcomings caused by the 
methods as described above are discussed in the next paragraphs. For an 
additional discussion about missing components and future work, see also 
section 5.2. 

3.9.1 Scaling 

Initially the system is built for running on a single testing machine (section 
3.10). All framework modules are running simultaneously on this single 
development server. The possibility for up-scaling to larger server clusters or 
cloud computing services is kept in mind during implementation. All modules 
and services are built independently and use Object Oriented Programming 
(OOP) for structuring and decoupling of the components. Another bottleneck is 
the usage of the relational databases. Because the system is both read and write 
heavy, large disk seek times are the consequence. The usage of fast key-value 
stores (NoSQL; i.e. Google BigTables, Membase or Microsoft FlashStore) 
combined with memory caching models (i.e. MemCache) can possibly increase 
data transits enormously. Rerouting data can be achieved by rewriting the data 
access layers handling all database manipulations.  
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The speed and capacity of the system certainly needs to be kept in mind. 
Because of these limited system resources, the experiment is setup to measure 
the system usage and performance of the components using only a small user 
base. This also immediately excludes experiments using collaborative 
algorithms. 

3.9.2 Stacking agents 

Although the core experiment of testing multiple recommender agent 
configurations isn‟t influenced, also the reduced functionality of the Agent 
Management System (AMS) has some drawbacks. The functionality of the AMS 
is reduced to activating of, and communicating with single agents. Therefore 
stacking of agents is excluded. So it is not possible to refine or combine the 
results of multiple agents into a single recommendation. The stacking of agents 
is known to result in more refined recommendations (see also paragraph 2.1.5); 
this functionality is left for future research. Also communication between agents 
is left out of the system. This way the interesting property of self-organization 
within multi-agent systems is excluded. The usage of multi-agent frameworks 
(see FIPA [24]) can possibly overcome these shortcomings. See also paragraph 
5.3.1 for a discussion on possible future work on advanced agent frameworks. 
 
The main influence of the above on the experiment is the queue for the agent 
recommendations. The recommendations of the unique agent configurations 
are calculated offline and stored at the user-server. Each time a user requests a 
new recommendation the oldest available recommendation from the queue is 
returned and displayed at the portal. Therefore it takes n „rounds‟ before an 
article vote is included into a new recommendation, where n is the amount of 
available recommendations in the queue. By combining the results, this 
problem could be resolved, but then performance measurements for the 
individual agent configurations become much harder and can be dubious. 

 Resources 3.10

The implementation of the recommender system is completely based on the C# 
programming language combined with ASP.NET for web development. Using 
the Microsoft Visual Studio Express 2010 edition, a prototyping environment is 
available for free. The main advantage is that all sub-parts of the system are 
written using the same programming language. Furthermore a set of open 
source code libraries is directly available for use. The main development and 
testing systems have the following specifications: 
 
Development Server (Desktop PC): 
Processor: Intel Core i7 930 at 2.8 GHz 
Memory: 6 GB DDR3 
OS: Microsoft Windows 7 (64 bit) 
 
Testing System (Notebook): 
Type: Acer Aspire 6935G 
Processor: Intel Core 2 DUO T9400 at 2.53 Ghz 
Memory: 4 GB DDR3 
OS: Microsoft Windows 7 (64 bit) 
  
Both systems interact using a 1 GB LAN network. This network is accessible 
from the internet through a 20000/1024 Mbps line.  
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4 Experiment & results 

To answer the research questions from section 1.4, a small experiment is 
conducted using the implemented iNewsReader framework described in the 
previous chapter. In this experiment a limited set of subjects use the system to 
train their interests for some longer period of time. During this period the 
measurements described below are gathered for the different agent 
configurations and system usage in general. A controlled experiment is 
conducted by comparing the performance of the recommender agents against 
the data from the lists of random articles. The results of the experiment are 
described in section 4.2. 

 Experiment 4.1

The experimental setup of the iNewsReader framework is biased to test the 
final recommendation performance of the system. Although it is known the user 
interface and crawler are of great influence, as explained, no explicit 
experiments are conducted on these and the other components. 

4.1.1 Setup 

To test the final recommendation performance, users are given access to the 
system and asked to use it for personal news aggregation spread over multiple 
days for some longer period of time. At the introduction, these subjects are 
pointed to the instructions and notifications from appendix 7.2. During usage of 
the system, the recommendations from the eight recommender agent 
configurations are displayed one at a time. Besides, also a forced ten percent of 
the recommendations are given by a random selection of articles, gathered by 
the „random agent‟. If a recommendation is gathered by an advanced agent or is 
just a random selection of articles, is unnoticeable to the user. This way the 
random selections represent the control samples to test against. Each 
recommendation contains ten articles, with the exception when an agent cannot 
classify this amount. 
  
Finally, also some accounts are created to train the recommender system using 
only articles on a pre-defined subject. The difference in performance on both 
wide (multiple) and narrow interest areas can be compared this way. 

4.1.2 Data 

The news article data available for the experiment is gathered by approximately 
one month of (ongoing) harvesting. The continuously growing queue of RSS 
feeds contains above 50.000 news sources from all around the web. From these 
feeds, above a million articles are parsed and stored at the item-server. 

4.1.3 Measurements 

Multiple measurements can be taken to answer the research question. Many 
possible measurements regarding the performance of recommender systems are 
described in [26]. To answer the first sub research question, recommendations 
and the included articles are registered and counted. Also the items opened 
from a recommended list of articles are registered. For each article timestamps 
are automatically recorded at the opening and closing actions to register reading 
time. These measurements are already available for implicit interest indication 
and can also be used to answer the second research question. The performance 
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of the recommendation can finally be analyzed by combining the above with the 
results of the explicit user feedback (votes). 

 Results 4.2

4.2.1 Framework 

As mentioned before, no explicit experiments are conducted to test the 
performance and behavior of the framework itself. For the framework in general 
can be stated the implemented system worked as expected. All components 
described, behaved as designed. The main remark is the execution time. During 
implementation „function‟ was stated above „speed‟, meaning a lot of individual 
processes can be optimized. 

4.2.2 Data 

During the experiment a total of six subjects used the system for personal news 
aggregation. From these users, three are „normal users‟ (users 1 - 3) and three 
are forced to vote positive for all articles on a single pre-defined subject: „apple‟, 
„dutch‟ and „sports‟. The collected data exists of data points representing a single 
recommendation with a set of articles. For each data point the values from  
Table 2 are available for analyzing. 
 

Data Range Description 

id 
type 
date 
User 
TotalArticles 
OpenedArticles  
Likes  
Dislikes  
Unvoted  
ReadingSeconds  
ReadingLikeSeconds 
ReadingDislikeSeconds 

1 … N 
0; 1 – 8 
dd-mm-yyyy 
1 – 6 
1 – 10 
0 – 10 
0 – 10 
0 – 10 
0 – 10 
0 … N 
0 … N 
0 … N 

Recommendation identifier in the data storage 
Type recommendation / agent configuration (See Table 1); 0 = random 
Storage date the agent completed the recommendation  
The user recommended to 
Number of presented articles within this recommendation 
Number of articles opened by the user 
Number of like votes 
Number of dislike votes 
Number of articles opened (read) but not voted for 
Total time spend reading opened articles (in seconds) 
Time spend reading articles voted like (in seconds) 
Time spend reading articles voted dislike (in seconds) 

Calculated Range Formula Description 

LikesDislikes 
% Likes  
% Dislikes  
% LikesDislikes  
TotalVotes  
CumSumVotes 

-10 – 10 
0 – 100% 
0 – 100% 
-100% - 100% 
0 – 10 
0 … N 

Likes – Dislikes 
Likes / TotalArticles 
Dislikes / TotalArticles 
LikesDislikes / TotalArt. 
Likes + Dislikes 
SUM(TotalVotes; 0 … id) 

Likes votes minus dislike votes 
Percentage of like votes 
Percentage of dislike votes 
Percentage of like minus dislike votes 
Likes plus dislike votes 
Cumulative sum over votes 

Table 2: Data structure for the results of the experiment 

 
Starting with a global indication of the data, in Table 3 the distribution of the 
number of recommendations over users and agent configurations (see Table 1) 
is displayed. This data is graphically displayed in Figure 21. 
 

Agent: random 1 2 3 4 5 6 7 8 Total 

 

apple 6 2 1 3 1 2 2 2 1 20 

dutch 13 5 4 14 12 4 3 11 11 77 

sports 14 4 5 7 6 5 5 6 5 57 

user 1 11 6 7 4 4 5 4 3 3 47 

user 2 238 41 29 30 24 39 28 25 21 475 

user 3 68 9 18 15 11 11 12 15 10 169 

Total 350 67 64 73 58 66 54 62 51 845 

Table 3: Number of recommendations Figure 21: Distribution of recommendations 



 

36 

 

So during the experiment 845 recommendations are presented to the users, 
form which 350 are „random‟ and the remaining 495 are based on one of the 
agent configurations. Within these recommendations, a total of 7722 articles are 
displayed, from which 2312 are opened. 3371 articles were random  
(701 displayed) the other 4351 where recommended by one of the agents, from 
which finally 1611 are opened. Also can be seen the second user (user 2) has 
processed a lot more recommendations as the other users, but also half of these 
recommendations are random. Finally it needs to be mentioned that the data 
contains a sampling bias, caused by the low number of users. 

4.2.3 Article selection 

The first sub- research question from section 1.4 assumes: “If more articles of 
personal interest are selected, the user will most likely open a higher percentage 
for reading”. To verify this assumption, the percentage of opened articles over 
time is displayed for each user in the figure below. 
 

apple  dutch  sports  

user 1 user 2 user 3 

Figure 22: Percentage opened articles per user over time 
 

From these graphs in Figure 22 the following can be observed: 
1. For the specific subjects (top row): Mostly all and sometimes none of the 

recommended articles are opened for reading. 
2. For the normal users (bottom row): Diverse opening patterns are 

displayed; showing all three possible trends (increase; decrease; steady). 
3. There is no clear noticeable increase in opening of articles over time.  
4. Both at the beginning and at the end of the trials many 100% openings 

are observed. 
 
At the start of the training, the recommendation results cannot be optimal. But 
a close to 100% openings at start of the trials for multiple users can be clearly 
noticed. A possible explanation can be the selection of non-interesting articles 
for penalty votes (dislikes). So, presumably the number of articles selected for 
reading does not solely depend on the amount of presented articles of interest. 
More affects need to be considered (i.e. voting strategies or psychological effects 
on both positive and negative voting). Finally, the consequence of the above is 
that the stated assumption of the correlation between the article selection and 
openings needs to be reconsidered. Therefore the corresponding sub- research 
question cannot be answered adequately to support the main research question 
and will be omitted in the remaining analysis. Nevertheless the first part of this 
question: “Which techniques can be used …” rephrased to netnews 
recommendation in general, is already mainly answered from literature and by 
the proposed agent framework in the previous chapters. 
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4.2.4 Voting strategies 

After approximately one week of usage, one of the subjects (user 2) was 
disappointed with the results so far. Therefore this user was given some extra 
instructions about the basic workings of the internal system and hinted on how 
to train the system more effectively. Basically the user was told to vote more, 
both positive and negative. The effect is clearly visible in the graph below, which 
displays this user‟s voting (likes & dislikes) over time. 
 

 

Figure 23: Explicit feedback user 2 
 

As expected, the graph displays almost no positive result. To compare the effect 
of minimal voting vs extensive voting, the graph is split in two parts, the first 
part representing the first 190 recommendations and the last part including the 
final 45. In Figure 24 the effect is displayed by using the substraction of dislikes 
from the likes. Notice there is no learning effect visible in the first part (top-left) 
and a small positive trend in the second part (top-right). Finally, also the 
reading time is plotted for the final 45 recommendations (bottom-right). There 
can be seen the total time spent reading articles voted  „like‟ does slightly 
increase over time and the articles voted „dislike‟ decrease. From this can be 
concluded the voting strategy (number of votes over time; both positive and 
negative) influences the outcome of the system and also voting has at least some 
effect on the final recommendation performance. 
 

  
 

 

 

 

Figure 24: Splitted plots for user 2 (top-left: first part LikesDislikes; top-right: final part LikesDislikes;  

Bottom-left: Feedback final part; bottom-right: Reading time final part) 
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Another approach to overcome this problem of less vs. intensive voting is to plot 
against the number of votes instead of time (number of recommendations). The 
graph below displays the same data plotted against the cumulative number of 
votes (CumSumVotes from Table 2). 
 

 

Figure 25: Explicit feedback user 2 plotted against number of votes 

 
This way, the effect of voting is much clearer. But unfortunately nothing useful 
can be said about the performance of the recommender system or its 
components based on the presented data and plots for this single user, other 
than a slightly positive trend is noticeable. Furthermore, this trend is only 
visible after the given instructions to the user. Thus at daily usage under default 
conditions users probably would provide less votes as the users in this 
experiment and therefore their learning effect will probably be less visible. 

4.2.5 Agent configurations 

Multiple measurements (Likes, LikesDislikes, ReadingSeconds, etc.) from  
Table 2 can account for the recommendations performance indicator. To be able 
to compare the performance of the different agent configurations a single 
measurement is chosen. At first thought, the difference between like and dislike 
votes (LikesDislikes) would be most accurate, because thereby all explicit user 
feedback is used to test against. But the importance and continuity of the dislike 
vote value can be argued against. In general, those negative votes indicate a 
„penalty‟ for the system, as in “This is not what I want” or “Skip these articles the 
next time” or “I‟ve already seen this subject enough”. Many other reasons can be 
thought of. On the other hand, the like votes only indicate: “I like this, select 
similar articles in the future”. Also assumedly users more likely vote for articles 
of interest as for non-interesting subjects. This concludes the value of the like 
and dislike votes is not equally distributed and also the like votes probably are a 
more accurate performance indicator. For that reason finally solely the explicit 
like votes are chosen to indicate for the recommendation performance in the 
following analysis.  
 
To answer the final research questions about the influences of the individual 
system components, the performance of the agent configurations is next 
examined by combining the results of all users. A first global indication is given 
in Table 4; displaying the default descriptive statistics and corresponding box 
plots for the like votes per agent configuration. The agent numbers in this and 
all following statistics and graphs represent the configurations from Table 1;  
Zero (0) represents the random selection. 
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0 1 2 3 4 5 6 7 8 box plots 

Count 350 67 64 73 58 66 54 62 51 

 

Minimum 0 0 0 0 0 0 0 0 0 

Maximum 4 10 9 10 10 10 8 10 10 

1st Quartile 0 0 0 0 0 0 0 0 0 

Median 0 0 0 0 0 0 0 0 0 

3rd Quartile 0 1 1 2 2 1 2 2 3 

Sum 82 66 46 126 95 76 73 114 95 

Mean 0,234 0,985 0,719 1,726 1,638 1,152 1,352 1,839 1,863 

Variance 0,260 4,560 2,364 7,896 7,533 4,900 4,912 9,908 8,441 

Std. dev. 0,510 2,136 1,538 2,810 2,745 2,214 2,216 3,148 2,905 

Table 4: Descriptive like vote statistics per agent configuration over all users 

 
From these statistics (Table 4) can be noticed: 

1. These statistics do not include time. 
2. The mean, variance & standard deviations of the agent configurations 

are generally much higher as the values for the random selections. This 
indicates better performance and more divergence in article votes. 

3. Most agents received a score of 10 like votes at some moment in time; 
the random selections received a maximum of 4. 

4. All medians are zero. Showing most of the time, no positive feedback is 
given. 

5. Configuration 8 (Implicit short-term Naïve Bayes) has the highest mean 
and 3rd quartile among the agents. So relatively, this agent received the 
most positive votes. Differences with other configurations are minimal. 

6. The SVM agents (1, 2 & 5) received less positive feedback. 
 
This data can be further analyzed by using a statistical hypothesis test with: 
 
H0: The samples come from the same population.     
Ha: The samples do not come from the same population.    
 
Many of the default (parametric) statistical tests (T, F, Z, CH2, ANOVA, 
ANCOVA, etc.) have all or most of the following assumptions: 

1. The scale on which the dependent variable is measured has the 
properties of an equal interval scale 

2. The k samples are independently and randomly drawn from the source 
population 

3. The source population can be reasonably supposed to have a normal 
distribution 

4. The k samples have approximately equal variances. 
 
Within this research none of the above assumptions apply and a more advanced 
non-parametric test needs to be selected to further compare the agent 
configurations. Therefore a Kruskal-Wallis analysis is chosen to test the equality 
of population medians among groups. This analysis leaves assumptions 1, 3 & 4, 
but still assumes independent and random samples and thereby still omits time. 
The results of the test on the data from Table 4 are given in the table below. 
  

http://en.wikipedia.org/wiki/Median
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K (Observed value) 57,719 
K (Critical value) 15,507 
DF 8 
p-value (Two-tailed) < 0,0001 
alpha 0,05 

Table 5: Kruskal-Wallis test over all users 

 
The computed p-value is much lower than the significance level (a=0,05) and 
therefore the null hypothesis H0 is rejected, and the alternative hypothesis Ha is 
accepted with a risk of 0,01% (type I error). Rephrased; within this 
measurement the samples do not come from the same population, which 
concludes there is a difference in agent performance. By applying a pairwise 
comparison on the data, more can be said about the individual differences 
between the agent configurations and the random samples. This comparison is 
displayed in Table 6 by using a Dunn's procedure / Two-tailed test. 
 

Sample Frequency Sum of ranks Mean of ranks Groups 

0 350 129394,500 369,699 A   
1 67 27441,000 409,567 A B 
2 64 27115,500 423,680 A B 
5 66 28850,000 437,121 A B 
6 54 24733,500 458,028 A B 
7 62 29361,000 473,565   B 
4 58 28271,000 487,431   B 
3 73 36455,000 499,384   B 
8 51 25813,500 506,147   B 

Table 6: Multiple pairwise comparisons using the Dunn's procedure / Two-tailed test 
 

From this comparison two groups are formed, group A and B. The first group 
(A) displays the unwanted result of the similarity between the random samples 
and the SVM configurations (1, 2, 5 & 6). The other group (B) displays the 
expected result of the boundary between the agent configurations and the 
random samples. To go one step further, these groups are drawn from the 
following reciprocal distribution of p-values (bold values are significant): 
 

  0 1 2 3 4 5 6 7 8 

0 1         
1 0,131 1        
2 0,045 0,683 1       
3 < 0,0001 0,007 0,026 1      
4 < 0,0001 0,028 0,076 0,732 1     
5 0,011 0,422 0,699 0,064 0,158 1    
6 0,002 0,181 0,348 0,245 0,432 0,565 1   
7 0,000 0,067 0,157 0,450 0,701 0,298 0,673 1 

 8 < 0,0001 0,009 0,027 0,852 0,622 0,062 0,213 0,384 1 

Table 7: Distribution of p-values among agent configurations like votes for all users 

 

Additional notable less significant values (c < 0.01) from Table 7 are the 
relations between configurations 1 and 3 (0.007; two long-term explicit agents) 
and 1 and 8 (0.009; no similarities). This last observation is inexplicable. 
Another configuration performing close to random is the implicit short-term 
SVM configuration (6) with significance 0.002.  
 
Next the influence of the users on the above findings is explored. 
Therefore first the full distribution of the positive votes among the users is 
displayed in Figure 26 below. From this graph can be seen the users dedicated 
to specific subjects (first three) have in total provided more positive votes 
compared to the other users.
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Figure 26: Like votes distribution for each user per agent; Numbers represent agent configurations 

 
If the results from these user groups are combined, the following pie charts can 
be constructed (Figure 27): 
 

 

Figure 27: Voting distributions per user group (excl. random) 
 

The remarkable observation in the above pie charts is the difference between 
groups in voting for Support Vector Machine configurations (1, 2, 5 & 6) and 
Naïve Bayes (3, 4, 7 & 8). When adding the numbers for the specific subjects, 
the result is: Bayes (75%) > SVM (25%); and for the normal users the other way 
around: SVM (60%) > Bayes (40%). This could indicate the Naïve Bayes 
recommenders perform better at narrow subject interests and SVM outperforms 
when wider and multiple interest areas are included. However, by means of the 
many relations, high abstraction and exclusion of time, a lot more causes needs 
to be considered. The final conclusion is that all configurations display some 
positive results and none of them outperforms them all in one or both groups 
given this data. But probably the most important observation is the difference in 
voting between the user groups, this need to be included in further analysis. 
Therefore first the Table 4 data is split for both user groups next: 
 

 
0 1 2 3 4 5 6 7 8 box plots 

Count 27 11 10 24 17 11 10 17 16 

 

Minimum 0 0 0 0 0 0 0 0 0 
Maximum 3 10 9 10 10 10 8 10 10 
1st Quartile 0 0 0 1 0 0 0 2 1 
Median 0 0 1 4 2 2 1 7 3 
3rd Quartile 1 6 3 7 7 6 4 9 8 
Sum 14 28 20 99 63 35 24 96 66 
Mean 0,519 2,545 2,000 4,125 3,706 3,182 2,400 5,647 4,125 
Variance 0,567 14,273 8,889 13,679 15,846 11,764 9,378 14,368 15,050 

Std. dev. 0,753 3,778 2,981 3,699 3,981 3,430 3,062 3,790 3,879 

Table 8: Descriptive like vote statistics per agent configuration over specific subject users 
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  0 1 2 3 4 5 6 7 8 box  plots 

Count 129 48 46 41 35 47 42 35 31 

 

Minimum 0 0 0 0 0 0 0 0 0 

Maximum 4 6 5 4 5 7 7 4 5 

1st Quartile 0 0 0 0 0 0 0 0 0 

Median 0 0 0 0 0 0 0 0 0 

3rd Quartile 1 0 1 1 2 1 2 1 1 

Sum 68 38 26 27 32 41 49 18 29 

Mean 0,527 0,792 0,565 0,659 0,914 0,872 1,167 0,514 0,935 

Variance 0,407 2,722 1,051 1,130 2,022 3,201 3,898 0,963 2,462 

Std. Dev. 0,638 1,650 1,025 1,063 1,422 1,789 1,974 0,981 1,569 

Table 9: Descriptive like vote statistics per agent configuration over normal users 

 
Again the large differences in voting between the groups are clearly visible.  
Additional noticeable differences are the larger median and mean values for the 
specific subject users (Table 8), indicating a more positive usage of the system. 
Also the lower maximum values of the normal users (Table 9) stand out. This 
indicates no close to perfect recommendations are received by them. 
  
Also for this split user group data the same non-parametric hypothesis tests and 
pairwise comparisons are applied, the results are displayed below. 
 

 specific subjects normal users 

K (Observed value) 26,626 5,195 
K (Critical value) 15,507 15,507 
DF 8 8 
p-value (Two-tailed) 0,001 0,737 
alpha 0,05 0,05 

Table 10: Kruskal-Wallis tests per user group 

 
Sample Groups 

0 A   

1 A B 

2 A B 

6 A B 

5 A B 

4 A B 

8 A B 

3   B 

7   B 

 Table 11: Comparison specific interest users; left: Group comparison; right: p-values 

 
Sample Groups 

0 A 

1 A 

2 A 

3 A 

4 A 

5 A 

6 A 

7 A 

8 A 

 Table 12: Comparison normal users; left: Group comparison; right: p-values 

 
 

  0 1 2 3 4 5 6 7 8 

0 1         

1 0,295 1        

2 0,297 0,979 1       

3 0,000 0,077 0,093 1      

4 0,008 0,249 0,275 0,535 1     

5 0,042 0,406 0,433 0,428 0,812 1    

6 0,205 0,828 0,852 0,145 0,378 0,553 1   

7 < 0,0001 0,014 0,018 0,332 0,142 0,123 0,032 1 
 8 0,002 0,111 0,128 0,954 0,609 0,490 0,189 0,350 1 

 
0 1 2 3 4 5 6 7 8 

0 1         

1 0,118 1        

2 0,298 0,677 1       

3 0,602 0,421 0,692 1      

4 0,875 0,185 0,353 0,592 1     

5 0,228 0,774 0,896 0,600 0,291 1    

6 0,835 0,282 0,507 0,797 0,770 0,427 1   

7 0,185 0,957 0,741 0,489 0,237 0,833 0,346 1 
 8 0,942 0,278 0,480 0,740 0,857 0,409 0,924 0,334 1 
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 From these tables can be noticed: 
1. From Table 10: The data from the normal users is not significantly 

different. Meaning H0 can be accepted and thus for normal users the 
differences in performance are minimal (incl. random). 

2. Table 11 displays that only the long term Bayes recommenders (3 & 7) 
distinguish themselves from the others for the specific interest data. 

3. No statistical difference is measured for the like votes from the normal 
users between the agents, as displayed in Table 12. All samples are as 
close to random (group A) as to each other, with no significant p-values. 

 
As mentioned multiple times before, the above statistics don‟t include time and 
assume the samples are independent. Time is an important factor because of the 
learning model and also ideally every next sample should outperform the 
previous so they are not independent. But it is much harder to evaluate the 
recommendation performance over time using the data from multiple subjects. 
Absolute time (in days) is not useful because the subjects used the system over 
multiple and different days. Furthermore, they did not spend an equal amount 
of time on news aggregation. Also the number of provided recommendations, as 
explained in the previous paragraph, does not always explain the results well 
and also cannot be combined for multiple users. Therefore the variable „total 
number of votes‟ (incl. negative) is used as a time indication to be able to 
evaluate the agents‟ performance over time for the combined results from 
multiple users.  
 
To evaluate the performance over time, for each agent configuration and for the 
different user groups a linear regression analysis is performed. The figures on 
the following pages display the linear trend lines, based on mean squares 
analysis. First all graphs will be displayed, an interpretation is given at the end. 
Each next page displays two figures; the top figure summarizes the trend lines 
over all agents, the bottom figure displays small graphs for all individual 
configurations. In these graphs, the data points (active) and three lines are 
displayed. The main line (model) indicates the linear regression, whereby agent 
performance is roughly represented by the slope of this line. The other two lines 
indicate the 95% confidence intervals. First the inner line represents the 
confidence interval on mean of the prediction for a given value. The outer line is 
the confidence interval on a single prediction for a given value. The title of each 
graph contains the configuration number and also displays the r-squared 
correlation coefficient (R2), which indicate a goodness of fit (the closer to 1, the 
better the fit). Finally, for all graphs, the horizontal axes represent time (by 
number of votes) and the vertical axes the positive feedback. 
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Figure 28: Overview of linear trend lines for each agent configuration over all user data 

 

 

Figure 29: Individual linear regression graphs over all user data; incl. 95% confidence intervals 
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Figure 30: Overview of linear trend lines for each agent configuration over specific subject user data 

 

 

Figure 31: Individual linear regression graphs over specific subject user data; incl. 95% confidence intervals 
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Figure 32: Overview of linear trend lines for each agent configuration over normal user data 

 

 

Figure 33: Individual linear regression graphs over normal user data; incl. 95% confidence intervals 
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From the above regression graphs on the previous pages can be observed: 
1. Lots of linear models are based on extremely low R2 values  

(close to zero). Worst values are observed for the regresion on the 
normal users data (Figure 33). 

2. The „best‟ configurations over all users (Figure 28) are: 
1. 7 - implicit long-term Bayes (R2=.360) 
2. 4 - explicit short-term Bayes (R2=.182) 
3. 3 - explicit long-term Bayes (R2=.159) 

3. The „best‟ configurations over specific subject user data (Figure 30) are: 
1. 7 - implicit long-term Bayes (R2=.269) 
2. 4 - explicit short-term Bayes (R2=.485) 
3. 8 - implicit short-term Bayes (R2=.180) 
4. 3 - explicit long-term Bayes (R2=.143) 

4. The „best‟ configurations over the normal user data (Figure 32) are: 
1. 8 - implicit short-term Bayes (R2=.180) 
2. 6 - implicit short-term SVM (R2=.057) 

5. The 95% confidence intervals of normal users (Figure 33) are relatively 
small compared to the large intervals for specific subject user data 
(Figure 31). 

6. One extreme negative trend is noticed for configuration 1: Explicit long-
term SVM in Figure 31. (R2=.092; 11 data points) 

7. In Figure 33 a few final data points perhaps have a huge effect on the 
trend lines for each agent config (±3 points at 500-700 votes range). 

8. The time effect of short-term agents (2, 4, 6 & 8) is not visible. Larger 
fluctuations are expected over time (different days), because of the small 
feedback timespan. This will be furter analysed in paragraph 4.2.8. 

 
From points 2-4 can be concluded the Bayes agents finally outperformed the 
SVM configurations, thereby nothing can be said about the influence of the 
memory and feedback models from this analysis. 
 
For each agent configuration also a default ANOVA F-test is performed to 
validate the significance of the linear regression model on the data. The exact 
results are not displayed, but most (except some random) are not significant. 
This means statistically most of the data cannot be explained by the linear 
regression models. This, together with many of the above observations, raises 
the question if the linear least squares model is the best possible reflection of 
the data. Maybe more advanced models (i.e. higher order, logaritmic, Theil‟s 
regression, etc.) can improve analysis. These tests are left for future research. 
 
Another point for discussion is the total absence of measurements for the effect 
of voting on personal RSS feeds, which is completely omitted so far. This can 
probably explain the negative trend from point 6 above. Especially if a user 
votes positively for a lot of personal feeds at the beginning of a trial. Then a 
trained classifier can start with interesting recommendations and perform 
worse over time because of less consistent votes. This effect can also have 
significant influence on all given trend lines. 
 
So, this raises the question: Is the experimental setup valid? The answer to this 
question is twofold. When the whole system is analyzed and only a global 
indication of performance is needed, the answer is „yes‟. But a more advanced 
experiment (i.e. equal time spans, less variables, etc.) needs to be conducted 
when trying to explain the exact performance and influence of individual system 
components over multiple users. 
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4.2.6 Naïve Bayes vs. Support Vector Machine 

The above analysis on combined user data cannot explain the influences on 
performance for each variable in the agent configurations. Therefore the 
following paragraphs also include selective results from individual users, to 
analyze some of the relations and differences between the configurations. 
 
The difference in performance between Bayes (3, 4, 7 & 8) and SVM (1, 2, 5 & 6) 
configurations is the only measured effect from the results in the previous 
paragraph. The general observation is Bayes outperforms SVM. Furthermore 
voting distributions between user groups (Figure 27) suggested the opposite for 
normal users. The voting graphs for one of the users (user 1) are displayed 
below. From this can be seen the Bayes recommenders received much less votes 
(both positive and negative); this could explain the suggested difference.  
 

  

Figure 34: Voting graphs for user 1; left: SVM; right: Bayes 

4.2.7 Implicit vs. explicit 

Much less attention is given to the difference between recommendation based 
on implicit (5-8; including reading time) and explicit (1-4; votes only) feedback.  
In the graphs below, this difference is displayed for user 3. 
 

 

Figure 35: Voting graphs user 3; left: explicit; right: implicit 

 
No clear difference can be noticed between these graphs and this is the same for 
the other users. The reason is the extensive voting. In the first place the users 
for the specific subjects vote on almost all articles, so there is no difference 
between implicit and explicit recommendations. Therefore these users are 
omitted for this case. Also the normal users were hinted to vote a lot. So from 
this experiment, nothing can be said about the difference between implicit and 
explicit votes. To overcome this shortcoming, some future work is proposed in 
paragraph 5.3.5. 

4.2.8 Short-time vs. long-time 

Also differences between short-term (even; 24h feedback) and long-term (odd; 
365 days feedback) are not clearly observed from the extensive analysis in 
paragraph 4.2.5. The graphs below show the voting difference on short- and 
long-term recommendations for user 3. 
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Figure 36: Voting graphs user 3; left: short-term; right: long-term 

 
The expected effect of a drop in performance for the short-term memory agents, 
when reusing the system another day, is displayed in the left graph. Each bold 
(blue) line estimates the short-term performance for a single day. Most blue 
lines show a positive trend, which cannot be seen from the global linear model 
(dotted green). On the other hand, unfortunately for this user the long-term 
model (right) does not show an increasing trend as expected. This short-term 
effect can also be observed when analyzing the data of the other users. 
 
To further analyze if the recommender type has an effect on the above, the same 
data can be split into Bayes and SVM recommender data. The corresponding 
graphs are displayed below: 
 

 

Figure 37: Voting graphs user 3; left: SVM short-term; right: SVM long-term 

 

 

Figure 38: Voting graphs user 3; left: Bayes short-term; right: Bayes long-term 

 
Nothing extra can be observed from the long-term models (right). But also no 
noticeable difference in performance exists between the SVM and Bayes short-
term models within the data of this individual (left).  
 
If the same depth of analysis is performed for the other users, the sampling bias 
becomes a problem. The above graphs all contain 20+ recommendations, but 
data for the other users at this level of detail mostly contain much less 
measurements, or each day contains just one or none of the data points. 
Therefore also no conclusions can be drawn from the other users at this level.  
 
So finally, a positive effect of the short-term memory models is clearly made 
visible, which is not observed from the measurements in paragraph 4.2.5. But 
the effect of the classification algorithms on these memory models is unknown. 
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4.2.9 Specific interests 

To test the system performance on single interest training, some users only 
voted for one pre-defined specific subject. The best results are found for the 
„sports‟ user, who voted „like‟ for all sport subjects and „dislike‟ for everything 
else. The final performance graphs of this user are displayed in Figure 39. 
 

 

Figure 39: 'Sports' user graphs; left: voting over time (excl. random); right: corresponding article reading time 

 

 
These above graphs present the close to perfect performance models. The 
positive votes steadily increase over time and the opposite goes for the negative 
votes. Also the increase in positive reading time for this user is clearly visible, 
even when taken into account most of the time this user probably barely actually 
read the articles because of the assignment. Finally some illustrations are given 
of the actual working of the system, displayed by the screenshots of some 
successful recommendations: 
  

  

Figure 40: Apple user recommendation example Figure 41: Dutch user recommendation example 

4.2.10 Summary 

The first observation was the existence of a sampling bias due the small amount 
of subjects. Next was shown that the amount of opened articles over time is not 
related to the success of the articles selection methods. Thereafter the positive 
effect of voting on the recommendation performance was shown. But in normal 
conditions this effect will be less visible because of the influence of the extensive 
voting instruction. The combined results over multiple users and user groups 
for each agent configuration were analyzed next. The disappointing outcome 
was that no significant results were found and the data model was questioned. 
Finally the results showed better performance of the Bayes compared to the 
SVM agents. Further analysis on individual users gave more positive results. 
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5 Conclusion 

 Conclusion  5.1

The goal of this research is to handle the problem of information overflow by 
implementing a personalized adaptive netnews recommender system. The main 
research question asks how to achieve this goal. The answer from literature is to 
combine multiple techniques to achieve a successful result. Therefore a 
recommender framework based on multi-agent technologies is developed. From 
an implementation of this system is concluded it is a working and promising 
setup. Not all individual framework components are fully optimized and tested 
on performance, but a small experiment on the final system output showed an 
overall positive effect on learning and recommendation performance. 
  
By measuring both explicit user feedback and implicit reading time, a more 
detailed answer was sought for the influences and performance of the individual 
recommender components and agent configurations. The main conclusion is 
that the Naïve Bayes agents outperformed the Support Vector machine 
configurations. Also large differences were found between individual users and 
user groups. Unfortunately no significant conclusions could be formed from the 
extensive analysis of the combined results of these users for each configuration. 
By analyzing results of individual users, a positive influence of the short-term 
memory is shown. A sampling bias prevented a further in depth analysis of 
inter-related influences. Also nothing can be concluded for the difference 
between implicit and explicit feedback from the fact that users were instructed 
to vote extensively. 
  
The final conclusion is the overall results are positive, but there are some 
remarks on the conducted experiment. More advanced research is needed to 
form significant conclusions about the influences of the individual system 
components. Furthermore additions and improvements on many parts of the 
implemented system can probably elevate the recommendation performance 
enormously. This will be discussed in the next sections. 

 Discussion 5.2

5.2.1 Crawler implementation 

The initial version of the crawler was built to only harvest information from the 
RSS feeds and apply default and widely used pre-processing techniques to 
extract the features. As mentioned before, the RSS data was often incomplete 
and t0o limited for the recommendation process. Therefore the crawler has 
been extended during research to include the articles‟ web content. 
 
At forehand no extended experiments were planned to test the crawling 
performance, because it would be a default component using known working 
procedures and pre structured RSS data. Therefore influence of the crawler is 
underestimated from the beginning. More extended research should be 
conducted on the crawling methods, the crawling performance itself and the 
influence on the recommendation algorithms. 
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The implemented crawling procedure is internally tested using a small graphical 
user interface (Figure 42). The results of the full parsing of an article are 
displayed in a web interface as given in Figure 12. CSS borders are used to 
display the selected DOM nodes. These results are subject to user 
interpretation. 
 

 

Figure 42: Crawling test interface 

5.2.2 Performance  

Because of the limited system resources, the experiment only measured the 
system usage and performance of the components using a small user base.  
To get more reliable results, be able t0 generalize and to exactly measure the 
influences of each component, more advanced research on a large user group is 
needed. Handling a massive user base is a challenge on its own, both in getting 
the users as providing the system resources. 
 
The reason behind this resource problem is the simultaneous execution of many 
agents. For each system user at each home-page refresh two types of agents are 
executed: Crawler agents to harvest the contents of the personal RSS feeds and 
recommender agents to check for available recommendations. So far this only 
takes milliseconds. But processing power is requested when the crawler (one for 
each rss feed) finds new articles and needs to start harvesting and processing 
(feature extraction). This can be optimized in many ways, for instance by 
executing one agent working on a queue of rss feeds eventual on an external 
machine. But most resources are consumed when a recommender agent starts 
classifying. First the classifier (Naïve Bayes or SVM) is trained. When a large 
amount of feedback articles is available this process can take up to some 
minutes of full processing power. Thereafter approximately 100-1000 articles 
per agent per second are processed for classification. Some agents needed 
>100.000 articles for a single recommendation. A possible optimization is to 
use incremental training algorithms for the classifiers. 
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5.2.3 Multiple interests  

The current version of the recommender framework only trains the 
recommenders by using user feedback data of all user displayed articles.  
Therefore the final recommendation contains articles on all areas of interest. 
Users mostly are interested in multiple topics, but during system usage, they 
often only want to read articles from one topic at a time. The results from the 
conducted experiment thereby also indicated a better system performance when 
trained on a specific pre-defined subject. Therefore the introduction of a topic 
selection or some kind of „mood‟ filter agent probably improves the usage and 
final recommendation of the system vastly. More research on this subject is 
advised. 

5.2.4 Privacy 

During usage of the system, a lot of information of each subject is stored in the 
user profile. Within this project, this information is only used for research 
purposes and kept anonymous. But for commercial recommender systems, 
these profiles can be valuable and profitable for web vendors. Personalized 
content is highly valued by online users, but not against all prizes. Examples of 
misusage of this personal information are spamming and advertising purposes. 
Many computer users are concerned about their privacy on the internet and 
therefore this subject is a hot topic in recent debates. The collection of personal 
data is also subject to legal regulations in many countries and states. 
Approaches to reconcile both privacy and personalization are presented in [40]. 

5.2.5 Future of RSS  

The structure of the internet is evolving continuously and thereby the question 
arises: Will RSS survive? By introduction of the term „semantic web‟ or „web 3.0‟ 
a few years ago, some argue the usage of RSS will become superfluous. If the 
web itself contains semantic structure, RSS won‟t necessarily add any valuable 
information. The introduction of the corresponding techniques (i.e. HTML5, 
RDF, Scheme, OML, etc.) prosecutes gradually; at moment of writing the first 
internet browsers supporting HTML5 are already introduced.  
 
On the other side, the popularity and usage of RSS feeds for personal news 
aggregation is still increasing. The figure below (Figure 43) displays two graphs 
with usage information from an online popular RSS reader (Google News 
Reader [30]). The source and content of the graphs are questionable, but the 
usage trend is still clearly visible. 
 

 

Figure 43: Left: RSS reader usage; Right: Number of items read daily;  

Source:  http://googlereader.blogspot.com/2010/09/welcome-and-look-back.html 

http://googlereader.blogspot.com/2010/09/welcome-and-look-back.html
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 Future Work 5.3

The methods as proposed in this paper are not optimally developed and far from 
complete. Also the conducted experiment could be extended to gather more 
reliable data. To improve recommendation and further study this subject, the 
following paragraphs propose multiple directions for improvement of the 
system. 

5.3.1 Advanced Agent Framework 

As mentioned before (section 3.3), the most influencing design choice on the 
implementation of the proposed recommender framework (section 3.2) is the 
reduced agent management module (AMS). Thereby one of the most interesting 
properties of multi-agent systems is excluded; the property of self-organization. 
By implementing an advanced agent framework (i.e. JADE [34] or AgentService 
[6], see also FIPA [24]), the advantages of multi-agent technology can be 
exploited. In Figure 44 the framework model from AgentService [6] is given. 
This model includes components 
equal to the described modules 
in the proposed recommender 
framework (i.e. AMS, 
Messaging, Logging, etc.). Other 
components (i.e. White/Yellow 
pages, Mobility, Load balancing, 
etc.) can possibly greatly 
improve system performance by 
taking advantage of distributed 
system control. The details of 
these frameworks are left for the 
reader, but this example model 
demonstrates the possibilities of 
extension towards such a multi-
agent architecture and therefore 
further research on this subject 
is greatly advised.  

5.3.2 Other agents  

For this research a small amount of agents, targeting content-based 
recommendation, are implemented (sections 3.7 and 3.8). A lot more agents 
could be added to the system and contribute to the final recommended list of 
articles. The following paragraphs describe additional examples of possible 
agents. Of course even a lot more agents can be thought of.  

5.3.2.1 Collaborative agent 

The current research in this paper is mainly targeted towards content-based 
recommendation for reasons described. As explained in paragraph 2.1.5, 
improved results can be obtained by including collaborative algorithms in the 
recommendation process. Therefore a collaborative agent could be added to the 
system. The details of these collaborative models are outside the scope of this 
project, but some brief information is given below. 
 
A collaborative agent recommends articles based on items marked interesting 
from users (j) with similar behavior. Generally a user-item (xjn) similarity matrix 
A based on a Pearson correlation coefficient (Formula 15) is used to predict the 
active (a) users‟ interests I for an article n using Formula 16.  

Figure 44: AgentService [6] framework model 
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Formula 15: Pearson correlation coefficient 

 

 

Formula 16: Active user a interest indicator for article n 

 
In [63] Xia et al. present a model for collaborative filtering using Support 
Vector Machines. Missing elements within the similarity matrix will be 
iteratively updated using trained SVM classifiers for each unknown user-item 

pair xan ∊ A. The input for each SVM at training will be the set of feature vectors 

from all neighbor users‟ rated items xjn. The final recommendation is based on a 
list of top n rated items not in Ia. 

5.3.2.2 Additional recommender agents 

Besides Naïve Bayes and Support Vector Machines, more machine learning 
techniques are suitable for the classification task of text recommendation. Some 
are already mentioned (i.e. k-NN; paragraph 2.3.4) other examples are Artificial 
Neural Networks (ANN), Rocchio classifiers or decision tree learning models 
(i.e. ID3). Recommendation can probably be improved by adding more of these 
techniques to the recommendation module and combine them with the methods 
described in this paper. Also additional filter techniques (i.e. demographic; 
paragraph 2.1.3) possibly increase recommendation performance by including 
more data in the recommendation process. 

5.3.2.3 Known agent 

News generally spreads fast over multiple news sources in a very short period of 
time. If an article is voted interesting, this often results in the displaying of the 
exact same „news‟ just from another source. Therefore a filter of already „known‟ 
articles could increase the usability of the system by excluding these articles 
from further recommendations. This could for example be accomplished by 
excluding articles with a high cosine similarity towards liked articles (see also 
paragraph 2.3.2). 

5.3.2.4  Tagging & categories agents 

Many RSS feeds also include a list of categories the feed and articles belong to.  
The current recommenders only make use of the word counts and feature 
vectors with tf-idf values from the articles content within their recommendation 
algorithms. Including these pre assigned categories can probably also improve 
recommendation. Going one step further, users could be given the possibility to 
tag articles within the system (provide their own categories). This way the users‟ 
idea about the content is registered (what they think is interesting about an 
article) and thereby these articles can next be used to train for directed 
recommendation. 
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5.3.2.5 User-defined interests agent 

The current recommenders automatically create a user model based on their 
implicit and explicit system behavior. Another way of creating this model is by 
just asking the user. Users could for example be asked to select their interest 
from a predefined list of categories or to provide a list of tags indicating their 
interests. Next a static interest agent can use the top n features (i.e. tf-idf 
weights) from the sum of word vectors from the articles stored in each category 
of interest for recommendation. This furthermore can be extended be including 
a weight (i.e. a slider in the interface) for each category, which can be adjusted 
by the user to increase/decrease the level of interest for a specific subject. 

5.3.2.6 3rd party agents 

Some online 3rd party services in the field of RSS feeds and personal 
recommendation are already available (i.e. PostRank [50]). Some of these 
services also provide an Application Programming Interface (API). This API can 
be used to interact with these services and use their „knowledge‟ within the 
recommendation process. By interacting with 3rd party services, large tested and 
globally accepted sources can be accessed for news aggregation and 
recommendation purposes. 

5.3.3 Clustering & dimensionality reduction 

Most of the above proposed future work is targeted to the final tasks of the 
recommendation process; the article classification and filtering methods. But 
improving recommendation probably starts with improving and structuring 
resources. The general saying “garbage in garbage out” also applies to the field 
of recommender systems. In document classification tasks, the dimensionality 
of the data can explode to extremely high dimensions (the size of 104 and 

larger). Therefore structuring the input space (item-server) can improve both 
recommendation speed (computational costs) and accuracy enormously.  
 
One method of structuring is clustering of the data (see also paragraph 2.1.7). 
Thereby the Open Directory Project (ODP) [46], a data structure for relational 
information, can possibly provide a central role. Another approach is term 
reduction. As the dimensions of the data (number of terms) grow, also the risk 
of overfitting increases. The consequences of overfitting are learners 
overweighting features which are of less significance for the class of the data. 
See [55] for an extensive comparison of multiple approaches to term space 
reduction. 

5.3.4 Feed priorities 

In the current system, all feeds and articles are handled with equal priorities. 
During harvesting the selection of the next feed to harvest is solely based on the 
latest harvesting date. At recommendation, articles most recently added to the 
item-server are selected first. When both articles and feeds are given priorities 
(i.e. by using PostRank [50] or popularity metrics within the community; [21] 
or [51]), these selection procedures can be improved by returning high quality 
and popular content first. Also many RSS feeds contain a skipDays or skipHours 
element to hint for the next moment to visit the feed for new content. Using 
these values and by using more advanced revisit policies the system resources 
used for harvesting can be distributed more accurately. This way the overall 
quality of the recommender system can increase by providing more recent and 
high quality content. 
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5.3.5 Implicit feedback 

The implemented implicit feedback model used by the recommender agents for 
article selection, as described in paragraph 3.7.4, is solely based on the time 
spent reading an article. From [17] and [25], many more implicit feedback 
indicators can be used to create an accurate model of the user‟s interests (see 
also paragraph 2.1.2). By using more advanced measurements, probably the 
effort users need to put into the training of the recommender can be minimized. 
One of these measurements to be considered is the negative effect of not 
opening a recommended article. In the current research this information is 
omitted, but the recommender system probably can much more automatically 
adapt to the user and much less rely on the users‟ voting strategies if these more 
advanced implicit feedback indicators are included.  
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7 Appendix 
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   Figure 45: First framework proposal 
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Figure 46: Original system setup (prior development) 

 



 

63 

 

 Usage instructions 7.2

 
 
  



 

64 

 

 Naïve Bayes Classifier implementation 7.3

1 public class Classifier 
2 { 
3     private Index first;                        // WordCounts for first class  (Index[token] = count) 
4     private Index second;                       // WordCounts for second class (Index[token] = count) 
5     private double priorFirst;                  // Prior probability for first class 
6     private double priorSecond;                 // Prior probability for second class 
7     private double pFirst;                      // Final (log-)probability for first class 
8     private double pSecond;                     // Final (log-)probability for second class 
9     private double firstTotal;                  // Total terms in first class 
10     private double secondTotal;                 // Total terms in second class 
11     private double minimal;                     // Minimal probability (prevent 0.0 probabilities) 
12  
13     public double Alpha { get; private set; }   // Tuning parameter, influence final probabilities  
14     public double Epsilon { get; private set; } // Tuning parameter, influence unknown term probabilities 
15     public float Tolerance { get; set; }        // Classification tolerance 
16          
17     public Analyzer(  Index first 
18                     , Index second 
19                     , double priorFirst = .5d 
20                     , double priorSecond = .5d 
21                     , float tolerance = .05f 
22                     , double alpha = 1.0d 
23                     , double epsilon = 1.0d  
24     ){  // initialize         
25         this.first = first; 
26         this.second = second; 
27         this.priorFirst = priorFirst; 
28         this.priorSecond = priorSecond; 
29         this.Alpha = alpha; 
30         this.Epsilon = epsilon; 
31         this.Tolerance = tolerance; 
32         // Global counts 
33         this.firstTotal  = (double)first.EntryCount; 
34         this.secondTotal = (double)second.EntryCount; 
35         this.minimal     = Epsilon / (firstTotal + secondTotal); 
36     }  
37     // Categorize Article 
38     public CategorizationResult Categorize(Dictionary<string, int> tokens, out double prediction) 
39     { 
40         // initial probabilities 
41         pFirst  = Alpha + Math.Log10(priorFirst); 
42         pSecond = Alpha + Math.Log10(priorSecond); 
43              
44         // Calculate Term probabilities 
45         foreach (KeyValuePair<string, int> token in tokens) 
46         { 
47             // Term counts 
48             double firstCount  = (double)first.GetTokenCount(token.Key); 
49             double secondCount = (double)second.GetTokenCount(token.Key); 
50  
51             // skip unknown terms 
52             if (firstCount == 0 && secondCount == 0) { continue; } 
53  
54             // calculate term probabilities P(W_i|C_first) & P(W_i|C_second) 
55             double pTokenFirst  = (firstCount == 0)  ? minimal : firstCount  / firstTotal; 
56             double pTokenSecond = (secondCount == 0) ? minimal : secondCount / secondTotal;     
57              
58             // Update log-probabilities P(First|Article) && P(Second|Artcile); 
59             // [SUM probabilities x times termCount] 
60             for (int i = 0; i < token.Value; i++) 
61             { 
62                 pFirst  += Math.Log10(pTokenFirst); 
63                 pSecond += Math.Log10(pTokenSecond);    
64             } 
65         } 
66         // Final prediction 
67         prediction = (pSecond / pFirst) - 1;   
68                      
69         // Determine class 
70         if (prediction <= this.Tolerance) { return CategorizationResult.Second; } 
71         if (prediction >= this.Tolerance) { return CategorizationResult.First; } 
72         return CategorizationResult.Undetermined;                       
73     } 
74 } 


