

iNewsReader: Personal Netnews
recommendation using Naïve Bayes

& Support Vector Machines
Managing the problem of information overflow
by combining adaptive user models in a multi-

agent perspective

H.T. de Groot
February 2011

Master Thesis
Artificial Intelligence

University of Groningen, The Netherlands

Internal supervisor:
Dr. M.A. Wiering (Artificial Intelligence, University of Groningen)

Second Internal supervisor:
Dr. H.B. Verheij (Artificial Intelligence, University of Groningen)

II

Abstract

The Internet: Web sites; twitter; personal messages; blogs; RSS feeds...
Continuously, an overwhelming growing amount of information reaches our
human brain. Mostly only a small part of this information is of true personal
interest and therefore tracking the interesting part becomes harder every day.
This is referred to as the problem of information overflow. Approaches to tackle
this problem are the usage of news summaries, community interests and
collaborative intelligence algorithms. In this research a solution is sought by
developing a personalized adaptive netnews recommender system:
iNewsReader. In general, recommender systems try to deliver personalized
items or information of interest based on a profile of the user. In this research
an advanced framework design is proposed based on multi-agent technologies
and known working technologies from literature. As a proof of concept the main
modules (web crawler, data storage, portal & recommenders) and the crucial
parts (agents) of this framework are implemented for research. The focus of this
recommender system lies on the content-based recommendation methods,
which are mainly based on Support Vector Machine and Naive Bayes machine
learning algorithms for text classification. The implemented recommender
system is accessible through a web-portal and the performance is tested in a
small experiment on continuous real time data from the internet. During this
experiment multiple pre-configured agents try to collect articles of personal
interest by creating user models from the users' feedback and browsing history.
Using these personal user models, agents collect news article data from a
growing multi-dimensional data storage. Next, the selected articles are
presented to the above classification algorithms to form the final personal
recommendation. The results of the conducted experiment show a positive
effect on learning and recommendation performance, but additions and
improvements on many parts of the system can probably elevate this result
enormously.

III

Acknowledgements

First I would thank dr. Marco Wiering for his support and assistance during the
whole period of this project. The successful completion is the result of his trust.
Also thanks to dr. Bart Verheij for his collaboration and Marieke van Vugt for
her insights on the analytical and statistical part of the project.

Special thanks go to my brother for his graphical design, testing and the many
project suggestions. Also thanks to Pim Lubberdink for the many substantive
discussions on the subject-matter.

Finally I would like to thank my girlfriend Alies, family, colleagues and friends
for their patience and support through all my years of study.

IV

Contents

ABSTRACT .. II

ACKNOWLEDGEMENTS ... III

CONTENTS .. IV

1 INTRODUCTION .. 1
 Information overflow .. 1 1.1
1.1.1 Problem ...1
1.1.2 Filter vs. recommendation ...1
1.1.3 Research ..1
 Netnews .. 1 1.2
1.2.1 News ..1
1.2.2 Online news representations ...2
1.2.3 Online news sources ..2
1.2.4 News collections ..2
 Recommender systems ... 3 1.3
1.3.1 Personalization...3
1.3.2 Currently available recommender systems ..3
1.3.3 Recommender systems for netnews ..3
 Research questions ... 3 1.4
 Overview ... 4 1.5

2 THEORETICAL FRAMEWORK .. 5
 Recommender systems ... 5 2.1
2.1.1 Item-profiles ..5
2.1.2 User profiles ...5
2.1.3 Filter techniques ..5
2.1.4 Cold start issues ...6
2.1.5 Hybrid techniques ..6
2.1.6 Multi-dimensional filtering ..7
2.1.7 Clustering ...7
 Data mining .. 7 2.2
2.2.1 Data collection ...7
2.2.2 Pre-processing ...8
2.2.3 Feature extraction ..9
2.2.4 Normalization ..10
 Text classification .. 10 2.3
2.3.1 Machine learning ...11
2.3.2 Cosine similarity ...11
2.3.3 Naïve Bayes ..12
2.3.4 k-Nearest Neighbors ..13
2.3.5 Support Vector Machines ..13
 Agent models .. 16 2.4
2.4.1 Multi-agent systems...16
2.4.2 Agent based recommender systems ..16
 Related work ... 17 2.5

3 METHODS... 18
 Information sources .. 18 3.1
 General system setup ... 19 3.2
 Framework implementation ... 20 3.3
 Data storage ... 21 3.4
 Harvesting .. 22 3.5
 Portal .. 25 3.6
3.6.1 Web server ...25
3.6.2 User accounts ..25
3.6.3 User interface ..25
 Recommendation.. 28 3.7
3.7.1 Process overview ...29
3.7.2 Naïve Bayes recommender ..30

V

3.7.3 Support Vector Machine recommender ..30
3.7.4 Recommender agent configurations ..30
 Additional agents ... 31 3.8
3.8.1 Search agent ..31
3.8.2 RSS feed agent ...31
3.8.3 Random agent..32
3.8.4 Order agent ..32
 Shortcomings .. 32 3.9
3.9.1 Scaling ..32
3.9.2 Stacking agents ..33

 Resources ... 33 3.10
4 EXPERIMENT & RESULTS .. 34

 Experiment.. 34 4.1
4.1.1 Setup ..34
4.1.2 Data ...34
4.1.3 Measurements ...34
 Results .. 35 4.2
4.2.1 Framework ...35
4.2.2 Data ...35
4.2.3 Article selection ...36
4.2.4 Voting strategies ..37
4.2.5 Agent configurations ..38
4.2.6 Naïve Bayes vs. Support Vector Machine ...48
4.2.7 Implicit vs. explicit ...48
4.2.8 Short-time vs. long-time ..48
4.2.9 Specific interests ..50
4.2.10 Summary ..50

5 CONCLUSION ... 51
 Conclusion .. 51 5.1
 Discussion ... 51 5.2
5.2.1 Crawler implementation ..51
5.2.2 Performance ..52
5.2.3 Multiple interests ...53
5.2.4 Privacy..53
5.2.5 Future of RSS..53
 Future Work .. 54 5.3
5.3.1 Advanced Agent Framework ..54
5.3.2 Other agents ..54
5.3.2.1 Collaborative agent ...54
5.3.2.2 Additional recommender agents ..55
5.3.2.3 Known agent ...55
5.3.2.4 Tagging & categories agents ...55
5.3.2.5 User-defined interests agent ..56
5.3.2.6 3

rd
 party agents...56

5.3.3 Clustering & dimensionality reduction ..56
5.3.4 Feed priorities ..56
5.3.5 Implicit feedback..57

6 REFERENCES .. 58
7 APPENDIX ... 61

 Original system proposals... 61 7.1
 Usage instructions .. 63 7.2
 Naïve Bayes Classifier implementation... 64 7.3

1

1 Introduction

 Information overflow 1.1

1.1.1 Problem

Nowadays we are living in the era called the information age. An enormous,
rapidly growing amount of information is accessible at any time and from
anywhere. Of course, the largest source of this continuous and rapid flow of
information is the internet. Digital information in the form of personal
messages (e-mail, Facebook, etc.), news articles (netnews), discussions
(community forums) and many other sources, are accessed by millions of people
at a daily basis all around the world. But mostly only a small part of this massive
amount of information is of real interest to the final user. Therefore it becomes
almost impossible for us humans to keep track of the interesting part, without
investing many hours of filtering time. This is referred as the problem of
information overflow.

1.1.2 Filter vs. recommendation

One possible solution to this problem of information overflow is to
automatically filter out the uninteresting part by using advanced intelligent
filters. A well-known and also widely used example of such a filter is the spam-
filter. A spam-filter is used to filter out unwanted e-mail from the personal e-
mail inbox; thereby reducing time spent reading unwanted messages. In
addition to only filtering the unwanted information, also personalized
recommendation of probably interesting items can further tackle the problem.
An example of such system is the product recommendation service used by
many large web shops (i.e. amazon.com [7]). These web shop recommendation
services try to recommend products based on previous bought or viewed items
and use information from other buyers to present similar products probably of
interest to the user.

1.1.3 Research

In this research a personalized adaptive netnews recommender system is
implemented for managing the above described problem of information
overflow. To handle the rapid flow of worldwide news articles, a framework
based on multi-agent technologies is proposed, tested and analyzed using
multiple agent configurations. All research is based on real time data and
experiments are conducted in a large real world continuous and unpredictable
environment; the World Wide Web.

 Netnews 1.2

1.2.1 News

The term news is generally described as the communication of information of
recent events to some audience. In this research a less „strict‟ representation of
the term „news‟ is used. Because the internet contains articles with information
of any kind and about any moment in time, the information targeted doesn‟t
necessarily represent a „recent event‟. Information in all its forms and from any
moment is accepted as „news‟ source for the recommendation process as
described in this thesis. Because the final recommendation is mainly based on
the most recently available information, this information can be interpreted as

2

being news and therefore, in this research, the terms news and information are
used ambiguously.

1.2.2 Online news representations

There are many ways the news is represented on the internet. News or
information in general is mainly represented as written articles in textual form,
sometimes illustrated with additional media (i.e. images or video). But also raw
images, audio, video or other media forms aren‟t uncommon item
representations around the web. In this research, the mainly targeted resources
are articles in the textual form, although articles consisting only of images,
audio, video or other media are not omitted. Recommendation of these types of
information will be based solely on the available textual data (title, description,
etc.) for these sources.

1.2.3 Online news sources

Also the online channels to access the news are widespread. First most of the
printed newspapers also have an online version of the paper nowadays. These
websites of classic news sources are often nicely ordered, articles are categorized
and the most important news, selected by an editor, is displayed on top. The
content at these news websites is mainly created and selected by professionals
(reporters) and therefore an important source of information. Of course there
also are lots of valuable online news sites which don‟t have a printed version of
its contents anymore. Current examples of these „newspaper websites‟ are the
news portals of the BBC [11] and CNN [15]. On the other side there is the widely
available user generated content. The blogging platform is probably the mainly
used channel to express oneself on the internet. Blogs are small websites
containing articles mainly written by nonprofessional individuals on any subject
available. The information on these blogs is semi-structured (mainly by using
tags) and can be very interesting but sometimes hard to find. Another highly
popular medium to keep tracking the news nowadays is twitter. Twitter is an
online social network of connected people posting small messages to each other
or towards a larger audience. The popularity of this medium is probably because
it‟s fast and it can be accessed from anywhere on a widespread of devices
(mobile phones, pda, laptop, etc.). The news value of the „tweets‟ (twitter
messages) is highly unpredictable and the larger part of the messages are
unstructured and dubious. Therefore twitter isn‟t targeted as a primary news
source in this research, although it could be used.

1.2.4 News collections

Subsequently the above sources are used by websites to create collections and
overviews of the available news and information on the internet. Google‟s news
service [29], for example, uses a large amount of news sources to summarize
the ongoing worldwide events. Other sites (i.e. reddit [51] or digg [21]) are
based on user delivered content. On these sites anybody can submit links to
articles from anywhere on the web to the community. By using a voting system,
automatically the articles of interest to the users of the community will bubble
to the top of the pages. Many more similar services are available, summarizing
in some sort of way the available content on the internet.

3

 Recommender systems 1.3

1.3.1 Personalization

Al the sources of information as described before are based on generated
content for a larger (not personal) audience. Furthermore the performed
filtering and ranking at the described „collection‟ websites (paragraph 1.2.4) is
based on community interests. The content of interest to the largest part of the
users will be on top of those pages. To personalize the information flow,
recommender systems come into view. Recommender systems try to deliver
personalized items or information of interest based on a profile of the user.

1.3.2 Currently available recommender systems

Personalized recommender systems are already in use in some areas. For
example, there are websites recommending movies (i.e. imdb [33]), music (i.e.
last.fm [41]), television shows (i.e. showfilter [57]) or products (i.e. amazon
[7]). These recommender systems are mainly based on collaborative
intelligence algorithms. Collaborative systems try to find users with similar
interest by matching user profiles. If a match is found, their items of interest
(i.e. bought products or watched television shows) are recommended to the
current user of the system. In this way not the articles of interest for the
community in general, but those from specific users within the community with
similar interests are displayed.

1.3.3 Recommender systems for netnews

Also personalized news recommendation systems are already in use. One of the
larger systems is implemented by Google‟s newsreader [19], [30]. This
important work describes a massive user, massive item collaborative filtering
algorithm, serving millions of articles to millions of users. In more detail, this
news recommendation system is based on an advanced modified k-Nearest
Neighbor algorithm (k-NN; see also paragraph 2.3.4). The Google newsreader
solely uses binary user click data (article opened or not?) as a user profile for
this collaborative news recommendation system.
Another example of a netnews recommendation system is Genieo [27]. This
system is based on a desktop application that creates a magazine style
personalized homepage. All kind of information (browsing history, top news,
personal interests, etc.) is used to match articles of interest to the users from all
around the web.

 Research questions 1.4

The main goal of this research is to find a solution for the problem of
information overflow. The target is to reduce the time needed for filtering out
unwanted information and increase the time actually consuming articles of
personal interest. A solution is sought in the field of recommender systems by
developing and implementing an intelligent personal netnews filter based on
multi-agent technologies. Therefore the main research question is:

“In what way can a recommender system alleviate the problem of information
overflow?”

4

To answer this main question, the following sub-questions need to be answered:

1. Which techniques can be used to reduce human filtering time given a
selection of articles?

2. How can a recommender system increase the time actually spent on
reading the articles of personal interest?

The first question is related to the number of interesting articles selected by the
system and questions the effectiveness of the information selection method(s)
related to the subjects‟ interests in the content of the selected articles. If more
articles of personal interest are selected, the user will most likely open a higher
percentage for reading.

If an article is opened for reading, the time spent will be an implicit indicator for
the subjects‟ interest for the content. Increasing reading times (relative to
earlier usage of the system) together with positive user votes can indicate the
success of the profiling and feedback handling techniques. This is covered by the
second research question.

The development and implementation of the netnews recommender is based on
a mash up of modern (AI) technologies. The question of successfulness of each
individual technique within the system is of interest for its overall performance.
By using an agent based approach, it is possible to add/remove specific agents
and measure the influence and performance of the single agents within the main
system. So for each of the individual techniques the following questions are of
interest:

1. “What is the influence of this technique or agent towards the outcome
of the system?”

2. “What is the performance of this technique?”

These questions will help answering the main research question and can
possibly indicate a synergy of the system.

 Overview 1.5

In the next chapter, first a detailed description is given about the current
available techniques and ongoing research within the field of recommender
systems. The next section continues with the theory on data mining and text
classification methods. Finally an overview of multi-agent systems is given.
Chapter 3 describes the methods used to implement the personal recommender
system. The results of a small experiment on the recommendation performance
of this system are analyzed in chapter 4. Finally a conclusion is drawn in the last
chapter, which also includes a discussion about the shortcomings and points to
future work for further improvements.

5

2 Theoretical framework

 Recommender systems 2.1

Originally recommender systems are defined as systems in which people
provide recommendations as inputs, which the system then aggregates and
directs to appropriate recipients [53]. Nowadays a broader view is appropriate
where recommender systems can be described as personalized information
agents that can provide recommendations: suggestions for items likely to be
useful for a user [14]. Overviews of currently used techniques, shortcomings
and possible extensions of recommender systems are given in [14] , [5] and
[13].

2.1.1 Item-profiles

To be able to recommend (news) items to a user, a recommender application
needs to gather and exploit some information about both the individual and the
available items. Generally item-profiles are kept relatively simple. Usually a
small description, information about where to find the item and some semantic
representation (i.e. a feature vector representing word counts for a news article)
are being stored for each item. For detailed information on item-representation
and feature vectors, see paragraph 2.2.3. The process of automatically gathering
information to be stored within an item-profile is called data mining and is
described in section 2.2.

2.1.2 User profiles

Most current research on recommender systems is directed to user-profiling.
All kinds of information about the individual and its actions are being collected
and stored to create accurate User Models. The two main types of information
stored in a user-model are users’ preferences (i.e. interests) and a history of
system interaction (i.e. viewed articles). Thereby, both explicit (i.e. name, birth
date, item ratings or a list of interests) and implicit (i.e. opened articles, reading
times or visited links) information is used for mapping these user interests [17]
and [25]. In addition different user memory models are presented to represent,
long- and short-term interests of users. In [9] for example a framework is
presented for adaptive news access built on a hybrid user-model consisting of a
short-term memory (k-NN; see also paragraph 2.3.4) and a long-term memory
(Naïve Bayes; described in 2.3.3), using both implicit and explicit user
feedback. With this advanced hybrid User Model the system tries to recommend
a set of interesting news items where the information which a user already
„knows‟ is filtered out.

2.1.3 Filter techniques

After data mining and profiling, the next step in the recommendation process is
the filtering of relevant items. The main four techniques used, described and
compared in the papers are: content-based, collaborative, knowledge-based
and demographic filtering techniques. In [13] also a fifth technique: utility-
based filtering is described and compared to the others. Short descriptions of
these techniques are given below:

Content-based (CN): A Content-based recommendation system [48]
recommends an item to a user based upon a description of the item and a profile
of the user‟s interests. Content-based recommenders treat recommendation as a

6

user-specific classification problem and learn a classifier from the user‟s likes
and dislikes based on product features.

Collaborative (CF): Collaborative recommendation systems aggregate ratings or
recommendations of objects, recognize commonalities between users on the
basis of their rating, and generate new recommendations based on inter-user
comparison. In [42] two types of CF techniques are described and combined in
a hybrid system: CF based on user (CF-U) and CF based on item (CF-I)
comparison.

Knowledge-based (KB): A knowledge-based recommender suggests products
based on inferences about a user‟s needs and preferences. This knowledge will
sometimes contain explicit functional knowledge about how certain product
features meet user needs.

Demographic (DM): A demographic recommender provides recommendations
based on a demographic profile of the user. Recommended products can be
produced for different demographic niches, by combining the ratings of users in
those niches.

Utility-based (UT): Utility-based recommenders make suggestions based on a
computation of the utility of each object for the user. The main problem here is
how to create such a utility function for each user, which is a domain specific
task.

In this research most attention is dedicated to Content-based recommendation.

2.1.4 Cold start issues

The learning-based systems (CF, CN & DM) suffer from the so called
“cold start” problems in one way or another. These problems indicate a decrease
in performance due to an initial lack of information. The main two scenarios
are:

1) New User: When a new user is added to the system, no profile is
present. So it is unknown what items to recommend to this person based
on his or her interests alone. Possible solutions are explicitly asking for a
users‟ interest information or the use of global popular items. Also
demographic information could be used.

2) New Item: When a new item is added to the system, it has not been
rated yet, so it will not be recommended. This is a big problem for single
CF systems, particularly when there exists a high item turn over (i.e. a
news recommender). A solution is to gather initial ratings from other
sources or to recommend new items randomly to some users initially.
Another solution is to use non-CF techniques in this case.

2.1.5 Hybrid techniques

To provide a general solution to overcome the cold start problems from the
previous paragraph, researchers have combined these filtering techniques to
create better performing systems. Multiple strategies for combining the
techniques are compared in [13]. Seven different combination types are
described: weighted, switching, mixed, feature combination, feature
augmentation, cascade and meta-level combinations. The results show the
largest synergy for cascade and feature augmented systems.

7

2.1.6 Multi-dimensional filtering

In [4] and [3] Adomavicius et al. try to lift the recommendation process to an
even higher level. Opposed to the „traditional‟ two dimensional user/item
systems previously described, this system uses a multi-dimensional approach by
incorporating contextual information (i.e. multiple ratings, demographic
information, time, etc.). The system described in this paper is based on multi-
dimensional feature vectors and supports data warehouse capabilities.

2.1.7 Clustering

Recommendation can become a time consuming process if the item space, the
user space or both becomes large. One way to reduce computation time is to use
clustering methods. By putting similar users and/or items into a single cluster,
calculations of similarities between these clusters, instead of single users and
items, can reduce computation time enormously. This clustering process itself
can be executed offline. Recent research on clustering for recommendation
systems [56] describes such an effective clustering method for collaborative
tagging systems. In this research a framework based on hierarchical
agglomerative clustering of tags is evaluated to bridge the gap between users
and resources.

 Data mining 2.2

Before being able to recommend articles to a user, a list of articles and more
detailed information about these articles (item-profile) needs to be available
first. The process of collecting and extracting patterns of information from large
sources of data is called data mining. A typical data mining cycle (Figure 1)
exists of four phases [23]. These phases include collecting data, pre-processing
the data, feature extraction and evaluation or classification. The final phase is a
key part of the recommendation process and will therefore be described
separately in the subsequent section (2.3). The current section will focus on the
harvesting part (collection, pre-processing and feature extraction processes) of
the data mining cycle.

2.2.1 Data collection

The process of collecting data and harvesting information from the internet is
called web crawling or web spidering. A computer program (called a bot,
spider or agent) automatically searches the web for usable data. Early research
on citation analyses by Garfield in the 1950s is the foundation of two well-
known popular hyper textual crawling processes HITS [39] and PageRank [47]
(Foundation of the Google Company; Figure 2). These two classic hyper textual
algorithms are both designed to crawl and index the internet for search engine
web-search activities. Hyper textual links are extracted from page-sources and
article references are counted for ranking purposes.

Figure 1: Data mining cycle

Collecting data

• Web crawling

• Revisit policy

• Read document

Pre-processing

• Noise reduction

• Segmentation

• Common words
filtering

• Stemming

Vector
representation

• Feature
extraction

• Normalization

• Data storage

Classification

• Machine Learning

• Recommendation

• Ranking

8

The core techniques from these HITS
and PageRank algorithms still form the
basis for many modern web spiders.

A web crawler starts searching by
inspecting sources from a Queue of
known web-addresses. This queue will
continuously grow by adding new
addresses extracted from the inspected
page sources. Because of the dynamic
structure of the web, the content of the
visited sources changes over time.
Therefore a revisit policy is used to
rescan the sources in the queue. The
most used policies are based on data
accuracy (freshness) and age (latest
update) [18]. Finally, the data
extracted by crawlers is stored in large
databases for further processing.

2.2.2 Pre-processing

Once the raw data is collected during the crawling process, it needs to be
preprocessed before the data can be used for further analysis. To structure the
raw data and remove clutter, the following pre-processing steps are generally
executed: noise reduction, segmentation, common words filtering and
stemming.

First the data is cleared from unwanted information during the noise reduction
process. In the case of web crawling for text classification, html tags and other
obscured unnecessary information is therefore removed from the source.
Thereafter, during the segmentation phase, the noise filtered data is split into
usable chunks or segments of data. For text processing this generally means the
data is split into sets of words, sentences or phases. In the next step each
segment is validated against a list of common words. It is known at forehand
commonly used words (i.e. “the”, “and”, etc.) don‟t contribute to the actual
meaning and classification of the content; therefore these words are filtered out.
Because the final goal is to create a unique profile for each item, these common
words can be omitted without losing information. The next and final step during
pre-processing for text classification is stemming.

Stemming is the process of reducing the words to their stem, root or base form.
A stemming algorithm reduces the words “walking”, “walked”, “walk” and
“walker” all to the word “walk”. By using word stems, the system is able to
classify five different articles, each containing at least one of the above words,
into the same category and not into five separate categories. Another advantage
of using the stem form is the reduction of the length of the overall word lexicon.
This furthermore results in a reduction of the size of the feature vectors
(paragraph 2.2.3) and therefore increases the speed of the recommendation by
reducing the dimensions of the data space used by the classification algorithms.
A disadvantage of using stemming algorithms is the loss of word meaning.
There are multiple implementations for stemming algorithms, ranging from
using lookup tables to n-gram algorithms. Stemming is language specific,
related to syntax of the languages‟ grammar. The de-facto standard and widely
used stemmer for English is written by Martin Porter [49].

Figure 2: PageRank architecture, from the original

paper [47]. Foundation of the Google Company.

9

2.2.3 Feature extraction

To be able to perform calculations on the data, a textual representation is of no
direct use. A text needs to be represented as a list of numerical values called a
feature vector to be usable for the recommendation algorithms. These features
can be anything related to the text, ranging from publish date, text length,
category index or community rating to individual word counts or other
advanced structural values from language processing techniques. The goal of a
feature vector is to create a unique representation of the article displaying (a
measurement of) its contents.

Since different terms have different importance in texts, an importance
indicator, the term weight, can be associated with each term instead of a regular
word count. Three main components that affect the importance of a term in a
text are the term frequency (tf), the inverse document frequency (idf) and the
document length normalization.

The first indicator (tf) measures the occurrences of a term ti within a document
dj, defined as follows.

𝑡𝑓𝑖,𝑗 =
𝑛𝑖,𝑗

∑ 𝑛𝑘,𝑗𝑘

Formula 1: Term frequency (tf)

Where ni,j indicates the number of occurrences of the term ti in the document dj.

The second measurement (idf) is a measure of general importance of the term in
relation to the availability in the corpus (all documents). The inverse document
frequency is calculated by taking the logarithm of the total number of
documents D in the corpus divided by the number of documents d containing
the term ti, given by the following formula.

𝑖𝑑𝑓𝑖 = log
𝐷

|*𝑑: 𝑡𝑖 ∈ 𝑑+|

Formula 2: Inverse document frequency (idf)

Where |*𝑑: 𝑡𝑖 ∈ 𝑑+| indicates the number of documents the term ti appears,
division-by-zero must be prevented.

These first two factors (tf & idf) can be used to calculate the so called tf-idf
measurement for each term. This commonly used measurement indicates the
importance of a word within a document, where the importance increases
proportionally to the number of occurrences in the document, but is offset by
the frequency of the word in the corpus. This is defined as

(𝑡𝑓-𝑖𝑑𝑓)𝑖,𝑗 = 𝑡𝑓𝑖,𝑗 × 𝑖𝑑𝑓𝑖,𝑗

This tf-idf measurement can be used as term weight in the final feature vector.
Finally, before the feature vector is stored in the database and ready for usage in
the classification and recommendation processes, the values should be
normalized to account for variations in document length. Normalization is
explained in the next paragraph (2.2.4).

10

2.2.4 Normalization

Document length normalization of term weights is used to remove the
advantage that long documents have in retrieval over short documents.
The main reasons to normalize the term weights are:

1) Higher term frequencies: Long documents usually use the same
terms repeatedly. As a result, the term frequency factors may be large for
long documents, increasing the average contribution of its terms
towards the term frequency counts within the corpus.

2) More terms: Longer documents logically also have more distinct

terms. This increases the influence and chances of retrieval for longer
documents over shorter texts during the recommendation process.

Document length normalization is therefore used to penalize the term weights
for a document in accordance with its length. The most commonly used
normalization technique is the Cosine Normalization (CN). The Cosine Normal
factor is computed as

√𝑤1
2 + 𝑤2

2 +⋯+ 𝑤𝑡
2

 Formula 3: Cosine normalization

Where wi is the calculated tf-idf term weight (paragraph 2.2.3).

Each wi is finally divided by this normalization factor. This way the Cosine
Normalization attacks both normalization reasons above (higher tf and more
terms) in one step. Higher individual term frequencies increase individual wi
values, thereby increasing the penalty on the term weights. Also, if a document
has more terms, a higher normalization factor is returned. More advanced
research on normalization is given by [58].

This final normalized feature vector will be the stored article content
representation within the item-profile in the database and can be accessed by
the classification algorithms to generate recommendations.

 Text classification 2.3

The goal of text classification is to automatically categorize a set of articles into
two or more categories. Targeting netnews recommendation, this can be
translated to labeling articles into at least the categories „like‟ or „dislike‟ to
indicate a user‟s interest for the articles content. More categories could be
thought of, for example a category „known‟ to filter out articles of subjects
already known, but this research will concentrate on the binary classification
task. Besides a label, a likelihood parameter on how likely the article belongs to
its category should be calculated. This likelihood parameter or „degree of
interest‟ is used for ranking and therewith presents the most interesting article
to the user first (i.e. display on top of the page). The next paragraphs review a
number of machine learning techniques [44] commonly used for this text
classification task.

11

2.3.1 Machine learning

Because they try to learn a function that models each user‟s interests,
classification algorithms based on machine learning techniques are the key
component of content-based recommendation systems. Given a new item and a
user model, the function predicts whether the user would be interested in the
item. This is a supervised learning task. In the case of netnews personalization,
the learning task is to create a model to categorize new articles from the web
based on the users‟ feedback on already displayed articles in the past. This
feedback can be both explicit (i.e. votes) or implicit (i.e. system interactions)
and is read from the user profile (paragraph 2.1.2). An overview of machine
learning techniques used for automated text categorization is given by [55].

The main difficulties with machine learning for text classification are high
dimensionality and noise. Because of the huge set of possible terms in the
corpus, the chances of over fitting increase. Especially when a classifier is
trained with a small data set the chances of distributing articles over unique
dimensions are higher (no referencing terms). The use of normalization
techniques (paragraph 2.2.4) partly tackles this problem. Furthermore, text is
unstructured and noisy data. The input noise is reduced by pre-processing the
data (paragraph 2.2.2) and by the use of feature vectors with tf-idf values
(paragraph 2.2.3). But especially output noise can reduce classification
performance. When a classifier is trained with data pointing to the wrong
classes, such a classifier can never predict accurately.

For personal recommendation these can be difficult problems to tackle. Because
user feedback is scarce and hard to gather, the training sets are often small.
Also, when using implicit feedback (system interactions) the output noise can
become a large negative factor.

2.3.2 Cosine similarity

Although generally not documented as „machine learning algorithm‟ on its own,
the cosine similarity is a widely used measurement to compare and classify
documents for content based recommendation. This measurement searches for
the cosine of the angle between two vectors. The cosine similarity is defined as
follows:

cos(𝛼) =
𝐴 ∙ 𝐵

‖𝐴‖ × ‖𝐵‖

Formula 4: Cosine similarity

Where A and B are the document feature vectors containing tf-idf values
(paragraph 2.2.3).

The results of this cosine similarity range from 0 to 1 (tf-idf values cannot be
negative) and can be interpreted as an inverted distance measurement between
two documents. Therefore the cosine similarity can be used as a likelihood
estimate for an articles‟ category by combining similarities of all documents in a
category. Categorization itself is based on threshold values. For example values
< .5 = “dislike”, > .9 = “known” and articles in-between are labeled “like”.

12

2.3.3 Naïve Bayes

Because of simplicity and effectiveness, also Naïve Bayes classifiers are often
used in text classification applications and experiments. However its
performance is often degraded because it does not model text well. These
classifiers are mostly implemented for the long-term memory models.

Naïve Bayes models are a probabilistic approach to text classification. These
models are based on the Bayesian theorem, given by

𝑃(|𝐷) =
𝑃(𝐷|)𝑃()

𝑃(𝐷)

 Formula 5: Bayes theorem: Given a hypothesis (h) and data (D), calculate the chance of h given D.

Generally the most probable hypothesis h ∈ H, called the maximum a posteriori

hypothesis (hMAP), is used for classification and is given by

𝑀𝐴𝑃 = arg max
ℎ∈𝐻

 𝑃(|𝐷) = arg max
ℎ∈𝐻

 𝑃(𝐷|)𝑃()

Formula 6: Maximum a posteriori hypothesis

Where P(D) is dropped because it is a constant independent of h.

By interpreting an article as a bag of unrelated words instead of a structured
article, the „naïve‟ assumption applies. This assumption can be used to define
the Naïve Bayes classifier for inductive learning. This is defined as modeling a
concept function 𝑓: 𝑋 → 𝐶, where 𝑐 ∈ 𝐶 represents a class label and 𝑥 ∈ 𝑋
models a feature described by a feature vector 〈𝑥𝑖, … , 𝑥𝑛〉:

𝐶𝑀𝐴𝑃 = arg max
𝑐∈𝐶

 𝑃(𝑐|𝑥𝑖 , … , 𝑥𝑛) = arg max
𝑐∈𝐶

 𝑃(𝑥𝑖, … , 𝑥𝑛|𝑐)𝑃(𝑐)

Formula 7: Bayesian learning

Finally, by using the Naïve Bayes assumption of independent features, the Naïve
Bayes classifier is derived:

𝐶𝑁𝐵 = arg max
𝑐∈𝐶

 𝑃(𝑐)∏𝑃(𝑥𝑛|𝑐)

𝑛

Formula 8: Naive Bayes classifier

Therefore to classify a new article a with a feature vector 〈𝑥𝑖, … , 𝑥𝑛〉 by using a
Naïve Bayes classifier trained on a dataset D with known feedback c:

- Training: Calculate the individual term probabilities 𝑃(𝑥𝑛|𝑐) from
each 𝑑 ∈ 𝐷 (articles) with known classification c (feedback).

- Testing: Score each c using CNB (Formula 8) on 〈𝑥𝑖, … , 𝑥𝑛〉 in article a.
Return c with the highest probability.

13

2.3.4 k-Nearest Neighbors

Another widely used machine learning algorithm is k-Nearest Neighbors
(k-NN). The nearest neighbor algorithm simply stores all its training data in
memory. Therefore it‟s also called a lazy algorithm belonging to the category of
instance based learning algorithms. For text classification, each article feature
vector 〈𝑥𝑖, … , 𝑥𝑛〉 with a known class (feedback) is therefore stored as a data
point in a multi-dimensional data space ℝ𝑛, where n is the variety of terms in
the corpus. Because of the high demand on memory, this algorithm is mostly
used for smaller datasets and therefore in the case of personal recommendation
it is mainly implemented for short-term user models.

In order to classify a new unlabeled item, the algorithm compares it to all stored
items using a similarity function and determines the “nearest neighbor” or k
nearest neighbors. The default similarity measurement is the Euclidian
distance. This distance d measurement between the current, unseen, article ac
and all other articles ai in ℝ𝑛, is calculated by

𝑑(𝑎𝑐 , 𝑎𝑖) = √∑(𝑥𝑟,𝑖 − 𝑥𝑟,𝑐)
2

𝑁

𝑟=1

Formula 9: Euclidian distance

Where xr,i represents a feature (term value) r from article i.

Another distance measurement often used within k-NN, especially for text
classification, is the cosine distance as explained in a previous paragraph
(2.3.2). Finally, the class label and/or numeric score for a previously unseen
item can be derived from the class labels of the calculated k nearest neighbors.
Thereby, the most widely used selection method is majority voting.

2.3.5 Support Vector Machines

Support Vector Machines (SVM), introduced by V. Vapnik et al [61], are
becoming increasingly popular as machine learning algorithm for text
classification [36]. The main reasons of the success of SVMs in this field are: (1)
SVMs are universal learners, (2) independence of dimensionality of feature
space and (3) heuristics exist for automatic parameter selection [35].

First SVMs are universal learners. In their basic form, SVMs learn a linear
threshold function. Nevertheless, by a simple “plug-in" of an appropriate kernel
function, they can be used to learn polynomial classifiers, radial basis function
(RBF) networks and three-layer sigmoid neural nets.

The second property of SVMs is the ability to learn independent of the
dimensionality of the feature space. SVMs measure the complexity of
hypotheses based on the margin with which they separate the data, not the
number of features. This means that, unlike k-NN, SVMs can generalize even in
the presence of very many features, if the data is separable with a wide margin
using functions from the hypothesis space.

The same margin argument also suggests a heuristic for selecting good
parameter settings for the learner. Usually a grid search combined with cross-
validation is used to optimize the classification parameters.

14

Figure 3: Support Vector Machine; 2-dimensional example

A Support Vector Machine performs classification by constructing an
N-dimensional hyperplane that optimally separates the data into categories.
To illustrate this, an idealized example in a 2-dimensional data space ℝ2 is given
in Figure 3. Each dot in the picture represents a feature vector xi. Class labels
y𝑖 ∈ *−1, 1+ are indicated by color. The basic idea is to find a hyperplane
optimally separating the data by maximizing the margin between support
vectors. A hyperplane can be described as a set of points x satisfying
𝒘 ∙ 𝒙 − 𝑏 = 0, where 𝒘 denotes the normal vector perpendicular to the
hyperplane. The distance of the hyperplane to the origin is given by the

value
𝒃

‖𝒘‖
. The goal is to maximize the distance

2

‖𝒘‖
 between the canonical

hyperplanes connecting the support vectors (dotted lines in Figure 3), these
hyperplanes are described by the equations 𝒘 ∙ 𝒙 − 𝑏 = 1 and
𝒘 ∙ 𝒙 − 𝑏 = −1. Therefore the final goal becomes to minimize ‖𝒘‖, described as

Φ(𝑥) = min
𝑤,𝑏

 ‖𝒘‖ = min
𝑤,𝑏

1

2
(𝒘 ∙ 𝒘) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) ≥ 1, for 𝑖 = 1,… , 𝑛

Formula 10: SVM optimization problem

This equation is subject to constraints to prevent data points within the margin.

In Figure 3, one (green) data point is deflected from the group and is situated on
the opposite of the separating hyperplane and will therefore be misclassified. To
allow such mislabeled data a soft margin is introduced to split the examples as
clearly as possible. The optimization problem from Formula 10 is therefore
extended with slack variables ξi indicating the error of the margin as follows:

Φ(𝑥) = min
𝑤,𝑏

{
1

2
(𝒘 ∙ 𝒘) + 𝐶∑𝜉𝑖

𝑛

𝑖=1

} 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) ≥ 1 − 𝜉𝑖 , for 𝑖 = 1,… , 𝑛

Formula 11: SVM optimization problem with soft margin

15

To solve this optimization problem, it can be rewritten to a Lagrangian
formulation:

𝐿𝑃 ≡ min
𝒘,𝑏

max
 ∝

 {
1

2
‖𝒘‖2 −∑𝛼𝑖 ,𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) − 1 + 𝜉𝑖-

𝑛

𝑖=1

}

Formula 12: Lagrangian formulation

Where ‖𝒘‖ is replaced by
1

2
‖𝒘‖2 and positive Lagrange multipliers αi, i = 1, …, l,

are introduced.

The solution can now be calculated using quadratic programming techniques
(QP). QP is a well-studied class of optimization algorithms to maximize a
quadratic function of some real-valued variables subject to linear constraints.
The subject of quadratic programming lies outside the scope of this research
and therefore the exact formulation of the solution [12] is omitted. The result
should be a vector w with a linear combination of relatively small percentage of
points xi (the support vectors) expressed by:

𝒘 =∑𝛼𝑖𝑦𝑖𝒙𝑖

𝑁

𝑖=1

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝒘 ∙ 𝒙𝑖 − 𝑏) ≥ 1, for 𝑖 = 1,… , 𝑛

Formula 13: Solution to optimization problem

The problem of classifying a new data point x is now simply solved by looking at
the sign of: 𝑠𝑖𝑔𝑛(𝒘 ∙ 𝒙 − 𝑏).

Furthermore, the above simplified linear example in 2d space can be extended
to higher (possibly infinite) feature spaces ℝ𝑛: Φ(𝑥) = *Φ1(𝑥),Φ2(𝑥),… ,Φ𝑛(𝑥))+
to solve non-linear classification problems by preprocessing the data 𝑥 → Φ(𝑥)

using a kernel function K(𝑥𝑖, 𝑥𝑗) = Φ(𝑥𝑖) ∙ Φ(𝑥𝑗). Examples of such kernels are

K(𝑥, 𝑦) = (𝑥 ∙ 𝑦 + 1)𝑃 (Polynomial) and K(𝑥, 𝑦) = 𝑒−𝛽|𝑥−𝑦|

 (Guassian RBF).

This process is illustrated in Figure 4.

Figure 4: SVM; Mapping to higher dimension(s) by using a kernel function

16

 Agent models 2.4

Much less attention has been gained by recommender systems based on multi-
agent architectures [45]. An overview of this field of research is given by [62].
In the next two paragraphs a short introduction to agent based models and
some examples of research on agent based recommender systems are given.

2.4.1 Multi-agent systems

Multi-agent systems (MAS) are systems
composed of multiple interacting software
agents. These systems can be used to solve
problems of higher complexity which are difficult
or impossible to solve for an individual agent. A
general definition of an agent [62] is as follows:

An agent is a computer system that is situated in
some environment, and is capable of
autonomous action in this environment in order
to meet its design objectives.

An abstract view of this agent model from the above definition is illustrated in
Figure 5. An important aspect of this model is the decoupling of the
environment and the agent. Generally the environment is assumed to be non-
deterministic and non-predictable. Agents can interact with the environment
and influence it, but they do not have full control over it.

In a multi-agent architecture agents often share knowledge by communication,
using a language available from a pre-specified communication protocol.
Two important characteristics of many multi-agent systems are
decentralization and self-organization. Decentralization is obtained by the
absence of a central designated control agent. All agents act on their own based
on their internal properties and the environmental influences. Mostly, the result
is self-organization, whereby a (non-planned) pattern of agent behavior
emerges from the system interactions.

2.4.2 Agent based recommender systems

An early and experimental agent based recommender system METIOREW is
given by [20]. In this work a framework is proposed which combines a set of
agents with specific goals and information sharing capabilities. It‟s a promising
setup, but no experiments are conducted, so no results can be presented from
this work. One of the first (positive) results using a collection of information
filtering agents is found in [28]. These filterbots are capable of reducing noise
in collaborative filtering results using content information. The conclusion in
this research is that better results are obtained by using multiple simple agents
instead of using a single complex agent. Another research [10] also shows an
increase in performance of an agent based recommendation system. In this
research a system supporting communities of people searching the web is
proposed. Agents share their knowledge about users‟ behavior gained from data
mining techniques. More recent work of [2] describes an agent based approach
where personalized content models and missing data models are combined to
produce item-based predictions of user ratings. These scores are combined in a
stacked agent model, where the agents are trained using an SVM (paragraph
2.3.5) to produce recommendations. This research shows positive results
compared to single content-based models.

Agent
action

 output

Environment

sensor

input

Figure 5: Abstract agent model

17

 Related work 2.5

Some classic influential papers for the field of recommender systems are:
[52] One of the first collaborative filters for netnews articles; [8] Content-based
and collaborative filtering using agents and [37] A tour guide software agent for
the web capable of suggesting hyperlinks. Main research (groups) are
GROUPLens research group [31] and work by Pazzani et al. The newest
techniques are presented yearly at the international conference for the subject:
RecSys [1]. Public commercial systems using recommender techniques are i.e.
[22] a system filtering, scanning and collating stories from the web, based on
user interests and [50] a party providing a search engine for news articles
(Postrank; technique based on Google‟s pagerank for web pages). Furthermore
this last service also includes a collaborative filtering technique.

18

3 Methods

The theory above is combined and tested by implementing a personalized
adaptive netnews recommender system: iNewsReader. A conceptual multi-
agent driven framework will be described in the next paragraphs. This
framework is largely implemented, some parts are left out or „short wired‟ to
reduce workload and enable more precise measurements of the individual
components. Finally, an experiment is conducted, whereby the system is tested
and analyzed on real-world live data. This experiment is described in the next
chapter.

 Information sources 3.1

The recommender system as an intelligent filter for netnews articles uses Really
Simple Syndication (RSS) feeds as primary data source. RSS feeds are dynamic
lists of web content in a pre-specified XML format (Figure 6). These feeds are
generally accepted and implemented all around the web to publish frequently
updated information. This way a huge amount of structured articles is available
for automatic processing.

Figure 6: RSS source

By using RSS as a main data source, instead of plain HTML-documents, the
clutter of html markup (not contributing to the meaning of an article) is partly
omitted. Furthermore semantic information about the articles (i.e. author, title,
tags, category, etc.) is directly available from within the RSS feed.

The initial implementation of iNewsReader was solely based on the contents of
these RSS feeds, omitting the source of the full article referred to. During
processing it turned out this information is often sparse and incomplete.
Therefore the implemented crawler is extended by also inspecting the referred
full article source. Information from the RSS feed is thereby used to extract the
article body from the page and remove all other information (section 3.5).

19

 General system setup 3.2

The concept of the iNewsReader recommender system is built around four
main components (Figure 7): data storage, web crawler, recommender(s) and
a web portal / user interface (For reference, see also appendix 7.1 for the
original and initial system proposals). All system actions, communication and
data transfers between these main components are executed by small software
agents. So no direct communication takes place between the components. On
the contrary, the agents themselves should be able to communicate and interact
with each other. A central organ manages these agents (AMS) and provides the
communication and transport layers for this agent interaction.

Agent

Management

System (AMS)

Crawler

Portal

Recommender(s)

Data storage

Item Server Profile Server

Figure 7: General system setup

The process starts with an agent asking for the next RSS feed to harvest; this
feed is read from a queue stored at the item server in the data storage. The feed
is presented to the crawler, which collects the data and returns item-profiles for
each article in the feed (section 2.2). These item-profiles contain article
information including pre-processed feature vectors to be stored into the item
server.

When a user logs in to the system via the portal (web) interface, multiple user
centered agents are activated to retrieve personal information for the user.
Some agents directly return information by providing a list of articles from
online RSS feeds (i.e. personal static feed agents or 3th party agents). Other
agents contact the item server to retrieve the information (i.e. search or
popularity agents). The more advanced agents use the recommender
components to estimate the rate of user interest for a set of articles. These
recommender components on their behalf use agents to retrieve user
information and history from the profile server to train the classification
algorithms (section 2.3). Finally intermediate agents can filter or sort the
retrieved list of articles before it‟s presented to the user. Of course multiple
alternative routes and non-described agents could contribute to the final
personalized recommendation.

Legend

Agent

RSS feed (static)

Popular articles

(common interests)

Web service (3th party)

Collaborative intelligence

Content-based

Long-term interests

(based on history)

Short-term interests

(based on current readings)

Explicit (feedback)

Implicit (feedback)

Search (keyword)

Filter

Order

Custom

20

 Framework implementation 3.3

As a proof of concept a large part of the above system is implemented. In the
first place, all four main components (data storage, crawler, recommenders and
portal) are built. No personalized netnews recommendation is possible if one of
these components is missing. To reduce implementation costs (time), only a
basic version of the agent management system (AMS) is constructed. By „short
wiring‟ the communication with the data storage, the functionality of the AMS
can be reduced to only handle the recommendation agents and provide the
primal communication between the portal and the recommender components.
This way the core experiment of testing multiple recommender agent
configurations isn‟t influenced and all information displayed to the user is still
gathered by calling the responsible agents. The final reduced implementation of
the framework is illustrated in Figure 8. The main disadvantage of this
approach is the reduced flexibility in distributed processing. This „short wiring‟
requires multiple processes to be executed on the same machine; therefore this
approach causes a decreased performance of the testing environment. For a
detailed discussion about additional shortcomings, see also section 3.9 and
paragraph 5.2.1 .

Crawler

Portal

Recommender(s)Data storage

Item Server Profile Server

AMS

Figure 8: Implemented recommender framework (legend of Figure 7 applies)

Finally, a choice needed to be made what kind of recommenders, and related
agents, to implement (theoretically, an infinite amount of agents can be
attached to the system). Because it‟s hard to generate a large reliable user base
for a project this size, this research is more directed toward content based
recommendation. Furthermore, lately a lot of research has been conducted
towards collaborative algorithms and these techniques are already widely
implemented in production systems. Therefore two content based recommender
algorithms are implemented providing Naïve Bayes and Support Vector
Machine classification. These algorithms are interfaced with eight unique
configurations of recommender agents, based on recommender type, feedback
(implicit/explicit) and memory model (short- / long-term).

21

 Data storage 3.4

The data storage is split into two database servers, an item storage and a (user)
profile storage. Both databases are relational storages hosted by MS SQL Server
2008 instances. The item server (Figure 9) is responsible for storage of all item
related information. The n-dimensional data warehouse capability for storage
of article information and related term feature vectors is implemented by using
a cross table („ArticleTerm‟ table in Figure 9), linking article information
(„Article‟ table) with term feature values („Term‟ table).

Figure 9: Item-server

The profile-server (Figure 10) contains all user information and their
preferences. Information about user system interaction, user feedback and
other user related information are also stored here. Furthermore, offline pre-
calculated personal recommendations are stored at the profile server.

Figure 10: Profile-server

The data access layers providing the interfaces to both database servers are
implemented using the ADO.NET Entity framework. This entity framework
creates a data-oriented object to SQL Query translation. The Language-
integrated query (LINQ) technology is thereby used to query the databases and
return pre-defined data objects. This way the application is free from data
(model) dependencies and data can be accessed using an object-oriented
approach supporting compile-time syntax validation for queries against a
conceptual model.

22

 Harvesting 3.5

The crawler module for harvesting information from the internet is
implemented using the techniques described in section 2.2. The crawler is
responsible for the first three phases, collecting data, pre-processing the data
and feature extraction, of the data mining cycle (Figure 1). This entire
harvesting procedure is executed offline in a separate process, so it has no
influence on the speed of the recommendation process itself and is therefore
unnoticeable for the user of the system.

For reasons described in section 3.1, the crawler inspects both the provided RSS
feeds as the html source of the articles referred to. But before the data is
collected from the internet, first a few basic checks are executed. The feed and
article urls are checked on format and parse dates. Already parsed articles and
also black listed urls are skipped from processing. After these checks, the
available article information from the RSS feed is stored into the item-server.

The next stage is the processing of the html page source of each article referred
to from the RSS feed. Webpages contain lots of uninteresting information (i.e.
headers, menu, footer, advertisements, etc.). The tree structured html source
(Document Object Model) of each page is traversed to filter out the information
referred to by the RSS feed. The general idea is illustrated in Figure 11 below.

Figure 11: HTML Document structure (DOM tree)

In the figure, the code block between the red lines (<div class=’article’> …
</div>) contains the actual information referred to from the RSS feed, the
additional code above and below clutters this information and needs to be
filtered out. To find this block of code, first the crawler tries to match the title
and description provided by the RSS feed with the information at the html page
and registers their DOM nodes (<h2>Article title</h2> and <p>Article

<html>

 <head>

 <!— document info -->

 </head>

 <body>

 <div class=’header’>…</div>

 <div class=’menu’>…</div>

 …

 <div class=’article’>

 <h2>Article title</h2>

 publish date: 01-01-2010

 <p>Article Description</p>

 <p>Article body</p>

</div>

…

<div class=’advertisements’>…</div>

<div class=’footer’>…</div>

 </body>

</html>

23

Description</p> in the example source). Next the first parent node, traveling
backward on the DOM tree using XPath, enclosing both title and description
nodes (<div class=’article’>) is registered as final „article‟ node and
returned for further processing.

Of course the example above is over simplified and real world data is much less
structured, but the process still applies. A random example of a parsed
TechCrunch [59] news article is given in Figure 12. The matched DOM nodes
are bordered (CSS) using the same colors as in Figure 11.

Figure 12: Crawler output

Two algorithms are implemented for matching strings of text. These algorithms
are used for matching the title and description from the RSS feed with the text
at the page source. First, a faster but less reliable algorithm calculates the
percentage of words present in both strings by counting occurrences. If no
reliable match is found (using a threshold constant T = .9, or < 90%), a second
algorithm takes over, calculating the Levenshtein distance. The Levenshtein
distance is obtained by calculating the cheapest way to transform one string into
another by using insertions, deletions and/or substitutions, the process is
illustrated in the example below (Figure 13).

24

 Two shortest distances (‘=’ math; ‘o’ substitution; ‘+’ insertion and ‘-’ deletion):

Figure 13: Levenshtein distance

An implementation of the algorithm is given by

 Figure 14: Levenshtein algorithm

Alternatively, if neither of these algorithms finds a reliable match for the title or
description within the article source, the „article DOM node‟ can‟t be located and
the full page body is returned.

Next, the returned page source is stripped from its html elements, so only the
inner text remains. The result is combined with the RSS data and further pre-
processed as explained in section 2.2, continuing from 2.2.2. At the end, the
page source is also inspected for references to new RSS feeds. These feeds are
added to the feeds queue at the item-server to be harvested in future processing.

25

 Portal 3.6

The main user interface (UI) and access point for the recommendation services
is a public web portal. Users are able to subscribe and set preferences for their
system usage. Prior to this registration the portal displays a random set of
articles. After registration the interface shows articles of personal interest to the
user. During reading of these articles, users are able to provide feedback for
each article (voting). This explicit user feedback and additional implicit interest
indicators are stored in the profile-server at the data storage. This feedback is
thereafter accessed by the system to refine the list of interesting articles over
time for future recommendations.

3.6.1 Web server

A Microsoft Internet Information Services v7.5 (IIS 7.5) web server is configured
to run the public web portal. The portal itself is written in the ASP.NET (C#)
web language and structured using the Model View Controller (MVC 2.0)
pattern, provided by Microsoft. To prevent page refreshes Asynchronous
JavaScript and XML (AJAX) Services are used to call special purpose web
services. Examples of these services are the voting and search services. The
server side framework for these web services is based on the Windows
Communication Foundation (WCF), a service oriented architecture supporting
distributed computing.

3.6.2 User accounts

To be able to identify users and provide personal recommendation, users need
to register themselves first. The registration process is kept as simple as possible
and only asks for a username, password and e-mail address. During registration
a user account with a unique identifier (User ID) is created and stored at the
profile server. This unique identifier is used for all further references and
database couplings to the user profile. For authentication, the built-in
authentication services from the MVC 2.0 framework are used. On every next
visit the user can directly login using the created credentials.

3.6.3 User interface

It is known the user interface (UI) is of great influence for the successfulness of
the overall system. A bad interface won‟t attract users, which are on their turn
necessary for collaborative techniques. Also, a less attractive interface influences
the reading „pleasure‟, this probably results in a negative effect on system usage.
There is also a huge diversity in web browsers and screen resolutions to account
for accessibility. Again, to reduce the overall size of the project, these collaborate
techniques were already omitted in the first place and also the UI gains less
attention as it deserves. The focus in this project lies on the techniques „under
the hood‟. So the usability, attractiveness and accessibility of the system are
beforehand left open for future research.

The first impression of the interface, the home-page, is shown in Figure 15.
At the top of the page a header includes the logo, menu and authentication
components. The logo identifies the portal and can be clicked to return to the
home page at all times. For navigation the menu provides the buttons to access
all functionality on the site. This menu is extended at user login with additional
buttons to restricted pages. Users can login and register using the login form on
the top right of the page.

26

Figure 15: User Interface (Portal - Home)

Underneath the header the actual content is presented. On the left side, the
main recommendation view is displayed. In the screenshot above a set of
random articles is shown, after authentication, this list will be replaced by a set
of articles from the recommendation agents. A refresh button can be used to call
for a new set of articles. The right side displays a search box and two random
static personal RSS feeds. The search box can be used to call a „search agent‟ to
query the item-server for articles on a specific subject. The static feeds can be
configured (if logged in) using the configuration icon. Each user can add a
(theoretically) unlimited amount of their personal favorite RSS feeds to occupy
the home page (Figure 16).

Figure 16: Manage personal RSS feeds

The portal is built using a scalable 100% screen width layout. This way higher
screen resolutions also display more information. The layout of the page is
constructed using Cascading Style Sheets (CSS) to decouple the page html
source from the graphical interface and thereby increase the flexibility and
control of the interface. The portal is furthermore optimized and tested for the
Firefox and Google Chrome web browsers.

27

Figure 17: User Interface (article + voting)

If the user has selected an article for reading, the reading interface (Figure 17) is
shown. Again this interface is split in two layers. On top the iNewsReader
toolbar, providing functionality for voting, authentication and main navigation
buttons (home and close buttons). Below the requested article is displayed.

Technically the screen is split using three html frames, a main frame handling
all communication and two inner frames, one loading the toolbar and another
displaying the article. This way an external web page can be displayed without
leaving the iNewsReader domain and thereby preserve all inner database
communication possibilities. The external source is automatically loaded into its
own security sandbox, so no direct communication is possible between the split
domains. Disadvantages of this setup are the outdated and discouraged
technology of using frames and some sites don‟t allow to be displayed inside a
frame. These websites use a so called frame bust script (Figure 18), causing the
toolbar to be removed and thereby disable the possibility to vote for the article.

Figure 18: Frame bust script

To overcome the problem of frame busting scripts, the main frame includes an
anti frame bust script (Figure 19). This script detects the unloading of the inner

<script type="text/javascript">

 if (top.location != location)

 top.location.href = document.location.href;

</script>

28

web page and prevents the busting out. The trick is to load a 204 non-
displayable error page before the page unloads to stop the browser from acting.

Figure 19: Anti frame bust script

To prevent endless loops and crashing of the browser, an empty page is
displayed with a message and a link to open the article in a new window. This
way the article can still be read and also voting functionality is preserved.

At the moment the user activates (i.e. open browser tab) the reading interface
containing the article, a timer starts running to measure the time spent reading.
Both the start and ending (close window) timestamps are sent to the profile
server to account for implicit feedback.

Additional pages available to the user within the portal are an „about‟ page,
containing information about the project and the usage of the system. See also
appendix 7.2 for the provided usage instructions to the user. Furthermore a
„history‟ page is available with links to personal recommendations from the past
and a „charts‟ page with statistics about the system usage and recommendation
performance.

 Recommendation 3.7

The recommendation component of the framework contains the methods to
estimate the user interest for a set of articles. These methods are based on
machine learning algorithms for text classification as described in section 2.3.
The final implementation of the system is equipped with two of these
algorithms, Naïve Bayes (paragraph 2.3.3) and SVM (paragraph 2.3.5). Also
additional recommendation functionality (i.e. k-NN, collaborative algorithms or
artificial neural networks) could be added here. Recommender agents called
from the portal use these algorithms to present a personalized list of articles.

<script type="text/javascript">

 var prevent_bust = 0;

 window.onbeforeunload = function () { prevent_bust++; }

 var interval = setInterval(function () {

 if (prevent_bust > 0) {

 prevent_bust -= 2;

 top.location = 'http://clients1.google.com/generate_204';

 articleFrame.location = "";

 articleFrame.document.write("

This page does not allow to be framed.

Click this link to open the article

in an external window.

For voting, use the above buttons on top of this page.

");

 }

 }, 1);

</script>

29

Figure 20: Recommendation class diagram

3.7.1 Process overview

The structure of the modules utilized for recommendation is given in Figure 20.
The diagram displays three communication layers: On top the AMS, at the
center the individual agents and at the bottom the recommender component.
These layers equal the elements of the framework as described in section 3.3,
illustrated in Figure 8. The AMS is responsible for the activation of the
requested recommender agents and their configurations. This layer is also
equipped with a Logger to store information about the recommendation process
provided by the agents. The second layer displays two models for the individual
agents. Each agent extends a base class and implements an agent interface
(IRecommenderAgent). The interface contains the general agent model used by
the AMS. The RecommenderAgent base class contains basic information (i.e.
UserId) and functionality (i.e. load a set of articles) for the recommendation
process. The specific agent implementations (BayesRecommenderAgent and
SVMRecommenderAgent) are responsible for the execution and communication
with the recommender algorithms within the recommendation module.

The whole recommendation process is executed offline and can be activated in
two ways. First, for testing purposes, the Program is able to run standalone
when executed from the command line. This way all system users are iterated
and all known recommender agents are called to provide a recommendation.
Second, the Recommendation (AMS) is called to run as a background service
when a user logs in through the portal. Then only specific agents are executed to
provide personal recommendation for the authenticated user. Finally, the
collected recommended articles by the agents are stored in the
„recommendation table‟ at the profile server (Figure 10). This recommendation

30

table is queried (online) every time a user calls (refresh) for a new set of
recommended articles at the portal. If a new recommendation is available, it will
be displayed; otherwise a random set of articles is returned (see also „random
agent‟; paragraph 3.8.3).

3.7.2 Naïve Bayes recommender

The Naïve Bayes recommender (RecommenderBayes in Figure 20) is based on
the theory from paragraph 2.3.3. The exact implementation is a modified
version of the open source C# Naïve Bayes classifier provided by Joel Martinez
[43]. For reference, the source code of the Naïve Bayes classifier is attached
(appendix 7.3).

Furthermore, the theory from paragraph 2.3.3 is extended with a log-likelihood
calculation. As a consequence of the huge dimensionality of the data, chances
can become extremely small and therefore buffer underflows are likely to occur.
These buffer underflows can be prevented by using the logarithmic values of the
individual term probabilities. The classification targets two mutually exclusive
alternatives („like‟ and „dislike‟); therefore the usage of log-likelihood ratios does
not influence the outcome of the final recommendation.

3.7.3 Support Vector Machine recommender

The Support Vector Machine recommender (RecommenderSVM in Figure 20) is
based on the theory from paragraph 2.3.5. The implementation is based on the
open source LIBSVM [16], ported to SVM.NET by Matthew Johnson [38].

The SVM recommender is equipped with functionality for three stages of
processing: Loading, training and testing. First a recommender agent loads the
training data to the SVM recommender. This training data contains the article
feature vectors with tf-idf term values (paragraph 2.2.3) linked to a class label
obtained from the user feedback (implicit or explicit). From this data a new
classification problem is created which includes information about the
dimensionality of the data-space (number of known terms). Next, during
training, a model is trained using the problem and a parameter selection based
on 5-fold grid search optimization. Because the number of features is large
[32], the model is trained using a LINEAR kernel: K(𝑥, 𝑦) = 𝑥 ∙ 𝑦, to improve
performance. For this reason the parameter selection is reduced to only search
for the optimal C value (cost constant; penalty parameter of the error term) to
prevent for the overfitting problem. Once the model is trained, new articles are
classified and class label probabilities are calculated at the last stage during
testing. The outcome of this classification is then used by the recommender
agents to create the final SVM based recommendation.

3.7.4 Recommender agent configurations

The recommender component is interfaced by configurations of recommender
agents. These agents are responsible for the communication with the portal. The
configurations are a combination of settings on recommender type, feedback
model and memory model. In this research eight agents are configured:

Table 1: Recommender configurations

Recommender type Support Vector Machine Naïve Bayes

Memory model long-term short-term long-term short-term

Explicit feedback 1 2 3 4

Implicit feedback 5 6 7 8

31

Depending on the recommender type, first one of the implemented agents is
initialized (SVMRecommenderAgent or BayesRecommenderAgent in Figure
20). These agents collect and format the training data to be sent to the
corresponding recommender in the recommenders module. The short-term
agents thereby collect articles displayed within 24 hours. Long-term agents use
all available (limited to 365 days) articles displayed to the user during system
usage. Furthermore, explicit agents only collect articles the user explicitly voted
for using the toolbar vote buttons at the portal reading interface. Implicit
feedback is calculated using reading times. Therefore the mean reading time (in
seconds) of voted liked (L) and disliked (D) articles is used to calculate the
implicit feedback, given by the following formula:

1

2
(�̅� + �̅�) =

1
𝑛
∑ 𝐿𝑖
𝑛
𝑖=1 +

1
𝑚
∑ 𝐷𝑗
𝑚
𝑗=1

2

Formula 14: Implicit feedback

Where n indicates the available liked and m the number of disliked articles.

The final implicit feedback label is obtained by comparing the reading duration
of displayed but non voted articles to the value obtained from Formula 14. A
„like‟ label (1) is attached when the reading time is longer, lower values get a
„dislike‟ (-1).

 Additional agents 3.8

Lots of different agents can be thought of performing some kind of action at the
RSS input of articles. A few example agents (see also Figure 7) are: static feed,
collaborative, content-based, ranking and search agents. For this research a
pre-configured set of agents is implemented. Descriptions of the main content-
based classification agents are already given above. For a discussion on more
potential non-implemented agents see also paragraph 5.3.2. This section
concentrates on the implemented additional agents indirectly contributing to
the recommendation process.

3.8.1 Search agent

A search agent is implemented to increase the functionality to faster train the
recommendation system with articles of known interest. This agent is activated
by providing a search query in the search field at the portal home page. By
pressing the search button, a search agent is executed to query the items-server
for the provided keywords. Therefore a default text search is used on the „title‟
and „description‟ fields in the database. These fields are populated by the raw
data as provided by the RSS feed. A list of max n articles is returned and
displayed back at the portal to be read and voted for next using the reading
interface. During the experiment, n is set to 10 articles. Additionally, the articles
are ordered by date (order agent), where newer articles are displayed on top.

3.8.2 RSS feed agent

As mentioned in paragraph 3.6.3, see Figure 16, users are able to provide a list
of RSS feeds of personal interest. Again these feeds increase the learning speed
of the system, by providing feedback on articles of known interest. On page load
of the portal home page, each of these configured feeds starts its own RSS feed
agent. In the first place this agent calls a crawler to harvest the contents of the

32

RSS feed. Because an article identifier (ArticleId) from the item-server is needed
to register votes to an article, first the non-registered articles are added to the
data storage. The article ids are returned immediately and together with the
already available information from the RSS feed, a list of n articles is displayed
at the user interface. The activated crawler continues with the full article
processing routine as a background service, so each article can be used for
future recommendations. This way, only a small delay, caused by the
registration of the new articles at the item-server, is noticeable to the user. The
full (slower) processing of the articles is executed offline and the users are still
already able to provide feedback (vote) for the new articles not yet fully
processed.

3.8.3 Random agent

For research purposes also a random articles agent is implemented. This agent
uses the last n articles from the item-server to collect a list of i articles. During
research, i is set to 10 and n to 10.000. The data is limited by the newest n
articles to prevent the identification of the random agent by examination of the
articles release dates.

3.8.4 Order agent

Finally a basic ordering agent is provided to sort the provided list of articles. If
possible, the list is ordered by using the likelihood parameter or „degree of
interest‟ as provided by the text classification algorithms from the
recommendation module. If this parameter is not available, the list is ordered
by release date of the articles. Alternatively, if even the release date is unknown,
the ordering is based on harvest date.

 Shortcomings 3.9

Due to choices made at the implementation stage of the framework, the system
also has some shortcomings affecting the flexibility of the experimental setup.
The main weakness as already mentioned before is speed. Also the reduced
functionality of the Agent Management System (AMS) forces the behavior of the
agents into a single direction. These and other shortcomings caused by the
methods as described above are discussed in the next paragraphs. For an
additional discussion about missing components and future work, see also
section 5.2.

3.9.1 Scaling

Initially the system is built for running on a single testing machine (section
3.10). All framework modules are running simultaneously on this single
development server. The possibility for up-scaling to larger server clusters or
cloud computing services is kept in mind during implementation. All modules
and services are built independently and use Object Oriented Programming
(OOP) for structuring and decoupling of the components. Another bottleneck is
the usage of the relational databases. Because the system is both read and write
heavy, large disk seek times are the consequence. The usage of fast key-value
stores (NoSQL; i.e. Google BigTables, Membase or Microsoft FlashStore)
combined with memory caching models (i.e. MemCache) can possibly increase
data transits enormously. Rerouting data can be achieved by rewriting the data
access layers handling all database manipulations.

33

The speed and capacity of the system certainly needs to be kept in mind.
Because of these limited system resources, the experiment is setup to measure
the system usage and performance of the components using only a small user
base. This also immediately excludes experiments using collaborative
algorithms.

3.9.2 Stacking agents

Although the core experiment of testing multiple recommender agent
configurations isn‟t influenced, also the reduced functionality of the Agent
Management System (AMS) has some drawbacks. The functionality of the AMS
is reduced to activating of, and communicating with single agents. Therefore
stacking of agents is excluded. So it is not possible to refine or combine the
results of multiple agents into a single recommendation. The stacking of agents
is known to result in more refined recommendations (see also paragraph 2.1.5);
this functionality is left for future research. Also communication between agents
is left out of the system. This way the interesting property of self-organization
within multi-agent systems is excluded. The usage of multi-agent frameworks
(see FIPA [24]) can possibly overcome these shortcomings. See also paragraph
5.3.1 for a discussion on possible future work on advanced agent frameworks.

The main influence of the above on the experiment is the queue for the agent
recommendations. The recommendations of the unique agent configurations
are calculated offline and stored at the user-server. Each time a user requests a
new recommendation the oldest available recommendation from the queue is
returned and displayed at the portal. Therefore it takes n „rounds‟ before an
article vote is included into a new recommendation, where n is the amount of
available recommendations in the queue. By combining the results, this
problem could be resolved, but then performance measurements for the
individual agent configurations become much harder and can be dubious.

 Resources 3.10

The implementation of the recommender system is completely based on the C#
programming language combined with ASP.NET for web development. Using
the Microsoft Visual Studio Express 2010 edition, a prototyping environment is
available for free. The main advantage is that all sub-parts of the system are
written using the same programming language. Furthermore a set of open
source code libraries is directly available for use. The main development and
testing systems have the following specifications:

Development Server (Desktop PC):
Processor: Intel Core i7 930 at 2.8 GHz
Memory: 6 GB DDR3
OS: Microsoft Windows 7 (64 bit)

Testing System (Notebook):
Type: Acer Aspire 6935G
Processor: Intel Core 2 DUO T9400 at 2.53 Ghz
Memory: 4 GB DDR3
OS: Microsoft Windows 7 (64 bit)

Both systems interact using a 1 GB LAN network. This network is accessible
from the internet through a 20000/1024 Mbps line.

34

4 Experiment & results

To answer the research questions from section 1.4, a small experiment is
conducted using the implemented iNewsReader framework described in the
previous chapter. In this experiment a limited set of subjects use the system to
train their interests for some longer period of time. During this period the
measurements described below are gathered for the different agent
configurations and system usage in general. A controlled experiment is
conducted by comparing the performance of the recommender agents against
the data from the lists of random articles. The results of the experiment are
described in section 4.2.

 Experiment 4.1

The experimental setup of the iNewsReader framework is biased to test the
final recommendation performance of the system. Although it is known the user
interface and crawler are of great influence, as explained, no explicit
experiments are conducted on these and the other components.

4.1.1 Setup

To test the final recommendation performance, users are given access to the
system and asked to use it for personal news aggregation spread over multiple
days for some longer period of time. At the introduction, these subjects are
pointed to the instructions and notifications from appendix 7.2. During usage of
the system, the recommendations from the eight recommender agent
configurations are displayed one at a time. Besides, also a forced ten percent of
the recommendations are given by a random selection of articles, gathered by
the „random agent‟. If a recommendation is gathered by an advanced agent or is
just a random selection of articles, is unnoticeable to the user. This way the
random selections represent the control samples to test against. Each
recommendation contains ten articles, with the exception when an agent cannot
classify this amount.

Finally, also some accounts are created to train the recommender system using
only articles on a pre-defined subject. The difference in performance on both
wide (multiple) and narrow interest areas can be compared this way.

4.1.2 Data

The news article data available for the experiment is gathered by approximately
one month of (ongoing) harvesting. The continuously growing queue of RSS
feeds contains above 50.000 news sources from all around the web. From these
feeds, above a million articles are parsed and stored at the item-server.

4.1.3 Measurements

Multiple measurements can be taken to answer the research question. Many
possible measurements regarding the performance of recommender systems are
described in [26]. To answer the first sub research question, recommendations
and the included articles are registered and counted. Also the items opened
from a recommended list of articles are registered. For each article timestamps
are automatically recorded at the opening and closing actions to register reading
time. These measurements are already available for implicit interest indication
and can also be used to answer the second research question. The performance

35

of the recommendation can finally be analyzed by combining the above with the
results of the explicit user feedback (votes).

 Results 4.2

4.2.1 Framework

As mentioned before, no explicit experiments are conducted to test the
performance and behavior of the framework itself. For the framework in general
can be stated the implemented system worked as expected. All components
described, behaved as designed. The main remark is the execution time. During
implementation „function‟ was stated above „speed‟, meaning a lot of individual
processes can be optimized.

4.2.2 Data

During the experiment a total of six subjects used the system for personal news
aggregation. From these users, three are „normal users‟ (users 1 - 3) and three
are forced to vote positive for all articles on a single pre-defined subject: „apple‟,
„dutch‟ and „sports‟. The collected data exists of data points representing a single
recommendation with a set of articles. For each data point the values from
Table 2 are available for analyzing.

Data Range Description

id
type
date
User
TotalArticles
OpenedArticles
Likes
Dislikes
Unvoted
ReadingSeconds
ReadingLikeSeconds
ReadingDislikeSeconds

1 … N
0; 1 – 8
dd-mm-yyyy
1 – 6
1 – 10
0 – 10
0 – 10
0 – 10
0 – 10
0 … N
0 … N
0 … N

Recommendation identifier in the data storage
Type recommendation / agent configuration (See Table 1); 0 = random
Storage date the agent completed the recommendation
The user recommended to
Number of presented articles within this recommendation
Number of articles opened by the user
Number of like votes
Number of dislike votes
Number of articles opened (read) but not voted for
Total time spend reading opened articles (in seconds)
Time spend reading articles voted like (in seconds)
Time spend reading articles voted dislike (in seconds)

Calculated Range Formula Description

LikesDislikes
% Likes
% Dislikes
% LikesDislikes
TotalVotes
CumSumVotes

-10 – 10
0 – 100%
0 – 100%
-100% - 100%
0 – 10
0 … N

Likes – Dislikes
Likes / TotalArticles
Dislikes / TotalArticles
LikesDislikes / TotalArt.
Likes + Dislikes
SUM(TotalVotes; 0 … id)

Likes votes minus dislike votes
Percentage of like votes
Percentage of dislike votes
Percentage of like minus dislike votes
Likes plus dislike votes
Cumulative sum over votes

Table 2: Data structure for the results of the experiment

Starting with a global indication of the data, in Table 3 the distribution of the
number of recommendations over users and agent configurations (see Table 1)
is displayed. This data is graphically displayed in Figure 21.

Agent: random 1 2 3 4 5 6 7 8 Total

apple 6 2 1 3 1 2 2 2 1 20

dutch 13 5 4 14 12 4 3 11 11 77

sports 14 4 5 7 6 5 5 6 5 57

user 1 11 6 7 4 4 5 4 3 3 47

user 2 238 41 29 30 24 39 28 25 21 475

user 3 68 9 18 15 11 11 12 15 10 169

Total 350 67 64 73 58 66 54 62 51 845

Table 3: Number of recommendations Figure 21: Distribution of recommendations

36

So during the experiment 845 recommendations are presented to the users,
form which 350 are „random‟ and the remaining 495 are based on one of the
agent configurations. Within these recommendations, a total of 7722 articles are
displayed, from which 2312 are opened. 3371 articles were random
(701 displayed) the other 4351 where recommended by one of the agents, from
which finally 1611 are opened. Also can be seen the second user (user 2) has
processed a lot more recommendations as the other users, but also half of these
recommendations are random. Finally it needs to be mentioned that the data
contains a sampling bias, caused by the low number of users.

4.2.3 Article selection

The first sub- research question from section 1.4 assumes: “If more articles of
personal interest are selected, the user will most likely open a higher percentage
for reading”. To verify this assumption, the percentage of opened articles over
time is displayed for each user in the figure below.

apple dutch sports

user 1 user 2 user 3

Figure 22: Percentage opened articles per user over time

From these graphs in Figure 22 the following can be observed:
1. For the specific subjects (top row): Mostly all and sometimes none of the

recommended articles are opened for reading.
2. For the normal users (bottom row): Diverse opening patterns are

displayed; showing all three possible trends (increase; decrease; steady).
3. There is no clear noticeable increase in opening of articles over time.
4. Both at the beginning and at the end of the trials many 100% openings

are observed.

At the start of the training, the recommendation results cannot be optimal. But
a close to 100% openings at start of the trials for multiple users can be clearly
noticed. A possible explanation can be the selection of non-interesting articles
for penalty votes (dislikes). So, presumably the number of articles selected for
reading does not solely depend on the amount of presented articles of interest.
More affects need to be considered (i.e. voting strategies or psychological effects
on both positive and negative voting). Finally, the consequence of the above is
that the stated assumption of the correlation between the article selection and
openings needs to be reconsidered. Therefore the corresponding sub- research
question cannot be answered adequately to support the main research question
and will be omitted in the remaining analysis. Nevertheless the first part of this
question: “Which techniques can be used …” rephrased to netnews
recommendation in general, is already mainly answered from literature and by
the proposed agent framework in the previous chapters.

37

4.2.4 Voting strategies

After approximately one week of usage, one of the subjects (user 2) was
disappointed with the results so far. Therefore this user was given some extra
instructions about the basic workings of the internal system and hinted on how
to train the system more effectively. Basically the user was told to vote more,
both positive and negative. The effect is clearly visible in the graph below, which
displays this user‟s voting (likes & dislikes) over time.

Figure 23: Explicit feedback user 2

As expected, the graph displays almost no positive result. To compare the effect
of minimal voting vs extensive voting, the graph is split in two parts, the first
part representing the first 190 recommendations and the last part including the
final 45. In Figure 24 the effect is displayed by using the substraction of dislikes
from the likes. Notice there is no learning effect visible in the first part (top-left)
and a small positive trend in the second part (top-right). Finally, also the
reading time is plotted for the final 45 recommendations (bottom-right). There
can be seen the total time spent reading articles voted „like‟ does slightly
increase over time and the articles voted „dislike‟ decrease. From this can be
concluded the voting strategy (number of votes over time; both positive and
negative) influences the outcome of the system and also voting has at least some
effect on the final recommendation performance.

Figure 24: Splitted plots for user 2 (top-left: first part LikesDislikes; top-right: final part LikesDislikes;

Bottom-left: Feedback final part; bottom-right: Reading time final part)

38

Another approach to overcome this problem of less vs. intensive voting is to plot
against the number of votes instead of time (number of recommendations). The
graph below displays the same data plotted against the cumulative number of
votes (CumSumVotes from Table 2).

Figure 25: Explicit feedback user 2 plotted against number of votes

This way, the effect of voting is much clearer. But unfortunately nothing useful
can be said about the performance of the recommender system or its
components based on the presented data and plots for this single user, other
than a slightly positive trend is noticeable. Furthermore, this trend is only
visible after the given instructions to the user. Thus at daily usage under default
conditions users probably would provide less votes as the users in this
experiment and therefore their learning effect will probably be less visible.

4.2.5 Agent configurations

Multiple measurements (Likes, LikesDislikes, ReadingSeconds, etc.) from
Table 2 can account for the recommendations performance indicator. To be able
to compare the performance of the different agent configurations a single
measurement is chosen. At first thought, the difference between like and dislike
votes (LikesDislikes) would be most accurate, because thereby all explicit user
feedback is used to test against. But the importance and continuity of the dislike
vote value can be argued against. In general, those negative votes indicate a
„penalty‟ for the system, as in “This is not what I want” or “Skip these articles the
next time” or “I‟ve already seen this subject enough”. Many other reasons can be
thought of. On the other hand, the like votes only indicate: “I like this, select
similar articles in the future”. Also assumedly users more likely vote for articles
of interest as for non-interesting subjects. This concludes the value of the like
and dislike votes is not equally distributed and also the like votes probably are a
more accurate performance indicator. For that reason finally solely the explicit
like votes are chosen to indicate for the recommendation performance in the
following analysis.

To answer the final research questions about the influences of the individual
system components, the performance of the agent configurations is next
examined by combining the results of all users. A first global indication is given
in Table 4; displaying the default descriptive statistics and corresponding box
plots for the like votes per agent configuration. The agent numbers in this and
all following statistics and graphs represent the configurations from Table 1;
Zero (0) represents the random selection.

39

0 1 2 3 4 5 6 7 8 box plots

Count 350 67 64 73 58 66 54 62 51

Minimum 0 0 0 0 0 0 0 0 0

Maximum 4 10 9 10 10 10 8 10 10

1st Quartile 0 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0 0

3rd Quartile 0 1 1 2 2 1 2 2 3

Sum 82 66 46 126 95 76 73 114 95

Mean 0,234 0,985 0,719 1,726 1,638 1,152 1,352 1,839 1,863

Variance 0,260 4,560 2,364 7,896 7,533 4,900 4,912 9,908 8,441

Std. dev. 0,510 2,136 1,538 2,810 2,745 2,214 2,216 3,148 2,905

Table 4: Descriptive like vote statistics per agent configuration over all users

From these statistics (Table 4) can be noticed:

1. These statistics do not include time.
2. The mean, variance & standard deviations of the agent configurations

are generally much higher as the values for the random selections. This
indicates better performance and more divergence in article votes.

3. Most agents received a score of 10 like votes at some moment in time;
the random selections received a maximum of 4.

4. All medians are zero. Showing most of the time, no positive feedback is
given.

5. Configuration 8 (Implicit short-term Naïve Bayes) has the highest mean
and 3rd quartile among the agents. So relatively, this agent received the
most positive votes. Differences with other configurations are minimal.

6. The SVM agents (1, 2 & 5) received less positive feedback.

This data can be further analyzed by using a statistical hypothesis test with:

H0: The samples come from the same population.
Ha: The samples do not come from the same population.

Many of the default (parametric) statistical tests (T, F, Z, CH2, ANOVA,
ANCOVA, etc.) have all or most of the following assumptions:

1. The scale on which the dependent variable is measured has the
properties of an equal interval scale

2. The k samples are independently and randomly drawn from the source
population

3. The source population can be reasonably supposed to have a normal
distribution

4. The k samples have approximately equal variances.

Within this research none of the above assumptions apply and a more advanced
non-parametric test needs to be selected to further compare the agent
configurations. Therefore a Kruskal-Wallis analysis is chosen to test the equality
of population medians among groups. This analysis leaves assumptions 1, 3 & 4,
but still assumes independent and random samples and thereby still omits time.
The results of the test on the data from Table 4 are given in the table below.

http://en.wikipedia.org/wiki/Median

40

K (Observed value) 57,719
K (Critical value) 15,507
DF 8
p-value (Two-tailed) < 0,0001
alpha 0,05

Table 5: Kruskal-Wallis test over all users

The computed p-value is much lower than the significance level (a=0,05) and
therefore the null hypothesis H0 is rejected, and the alternative hypothesis Ha is
accepted with a risk of 0,01% (type I error). Rephrased; within this
measurement the samples do not come from the same population, which
concludes there is a difference in agent performance. By applying a pairwise
comparison on the data, more can be said about the individual differences
between the agent configurations and the random samples. This comparison is
displayed in Table 6 by using a Dunn's procedure / Two-tailed test.

Sample Frequency Sum of ranks Mean of ranks Groups

0 350 129394,500 369,699 A
1 67 27441,000 409,567 A B
2 64 27115,500 423,680 A B
5 66 28850,000 437,121 A B
6 54 24733,500 458,028 A B
7 62 29361,000 473,565 B
4 58 28271,000 487,431 B
3 73 36455,000 499,384 B
8 51 25813,500 506,147 B

Table 6: Multiple pairwise comparisons using the Dunn's procedure / Two-tailed test

From this comparison two groups are formed, group A and B. The first group
(A) displays the unwanted result of the similarity between the random samples
and the SVM configurations (1, 2, 5 & 6). The other group (B) displays the
expected result of the boundary between the agent configurations and the
random samples. To go one step further, these groups are drawn from the
following reciprocal distribution of p-values (bold values are significant):

 0 1 2 3 4 5 6 7 8

0 1
1 0,131 1
2 0,045 0,683 1
3 < 0,0001 0,007 0,026 1
4 < 0,0001 0,028 0,076 0,732 1
5 0,011 0,422 0,699 0,064 0,158 1
6 0,002 0,181 0,348 0,245 0,432 0,565 1
7 0,000 0,067 0,157 0,450 0,701 0,298 0,673 1

 8 < 0,0001 0,009 0,027 0,852 0,622 0,062 0,213 0,384 1

Table 7: Distribution of p-values among agent configurations like votes for all users

Additional notable less significant values (c < 0.01) from Table 7 are the
relations between configurations 1 and 3 (0.007; two long-term explicit agents)
and 1 and 8 (0.009; no similarities). This last observation is inexplicable.
Another configuration performing close to random is the implicit short-term
SVM configuration (6) with significance 0.002.

Next the influence of the users on the above findings is explored.
Therefore first the full distribution of the positive votes among the users is
displayed in Figure 26 below. From this graph can be seen the users dedicated
to specific subjects (first three) have in total provided more positive votes
compared to the other users.

41

Figure 26: Like votes distribution for each user per agent; Numbers represent agent configurations

If the results from these user groups are combined, the following pie charts can
be constructed (Figure 27):

Figure 27: Voting distributions per user group (excl. random)

The remarkable observation in the above pie charts is the difference between
groups in voting for Support Vector Machine configurations (1, 2, 5 & 6) and
Naïve Bayes (3, 4, 7 & 8). When adding the numbers for the specific subjects,
the result is: Bayes (75%) > SVM (25%); and for the normal users the other way
around: SVM (60%) > Bayes (40%). This could indicate the Naïve Bayes
recommenders perform better at narrow subject interests and SVM outperforms
when wider and multiple interest areas are included. However, by means of the
many relations, high abstraction and exclusion of time, a lot more causes needs
to be considered. The final conclusion is that all configurations display some
positive results and none of them outperforms them all in one or both groups
given this data. But probably the most important observation is the difference in
voting between the user groups, this need to be included in further analysis.
Therefore first the Table 4 data is split for both user groups next:

0 1 2 3 4 5 6 7 8 box plots

Count 27 11 10 24 17 11 10 17 16

Minimum 0 0 0 0 0 0 0 0 0
Maximum 3 10 9 10 10 10 8 10 10
1st Quartile 0 0 0 1 0 0 0 2 1
Median 0 0 1 4 2 2 1 7 3
3rd Quartile 1 6 3 7 7 6 4 9 8
Sum 14 28 20 99 63 35 24 96 66
Mean 0,519 2,545 2,000 4,125 3,706 3,182 2,400 5,647 4,125
Variance 0,567 14,273 8,889 13,679 15,846 11,764 9,378 14,368 15,050

Std. dev. 0,753 3,778 2,981 3,699 3,981 3,430 3,062 3,790 3,879

Table 8: Descriptive like vote statistics per agent configuration over specific subject users

42

 0 1 2 3 4 5 6 7 8 box plots

Count 129 48 46 41 35 47 42 35 31

Minimum 0 0 0 0 0 0 0 0 0

Maximum 4 6 5 4 5 7 7 4 5

1st Quartile 0 0 0 0 0 0 0 0 0

Median 0 0 0 0 0 0 0 0 0

3rd Quartile 1 0 1 1 2 1 2 1 1

Sum 68 38 26 27 32 41 49 18 29

Mean 0,527 0,792 0,565 0,659 0,914 0,872 1,167 0,514 0,935

Variance 0,407 2,722 1,051 1,130 2,022 3,201 3,898 0,963 2,462

Std. Dev. 0,638 1,650 1,025 1,063 1,422 1,789 1,974 0,981 1,569

Table 9: Descriptive like vote statistics per agent configuration over normal users

Again the large differences in voting between the groups are clearly visible.
Additional noticeable differences are the larger median and mean values for the
specific subject users (Table 8), indicating a more positive usage of the system.
Also the lower maximum values of the normal users (Table 9) stand out. This
indicates no close to perfect recommendations are received by them.

Also for this split user group data the same non-parametric hypothesis tests and
pairwise comparisons are applied, the results are displayed below.

 specific subjects normal users

K (Observed value) 26,626 5,195
K (Critical value) 15,507 15,507
DF 8 8
p-value (Two-tailed) 0,001 0,737
alpha 0,05 0,05

Table 10: Kruskal-Wallis tests per user group

Sample Groups

0 A

1 A B

2 A B

6 A B

5 A B

4 A B

8 A B

3 B

7 B

 Table 11: Comparison specific interest users; left: Group comparison; right: p-values

Sample Groups

0 A

1 A

2 A

3 A

4 A

5 A

6 A

7 A

8 A

 Table 12: Comparison normal users; left: Group comparison; right: p-values

 0 1 2 3 4 5 6 7 8

0 1

1 0,295 1

2 0,297 0,979 1

3 0,000 0,077 0,093 1

4 0,008 0,249 0,275 0,535 1

5 0,042 0,406 0,433 0,428 0,812 1

6 0,205 0,828 0,852 0,145 0,378 0,553 1

7 < 0,0001 0,014 0,018 0,332 0,142 0,123 0,032 1
 8 0,002 0,111 0,128 0,954 0,609 0,490 0,189 0,350 1

0 1 2 3 4 5 6 7 8

0 1

1 0,118 1

2 0,298 0,677 1

3 0,602 0,421 0,692 1

4 0,875 0,185 0,353 0,592 1

5 0,228 0,774 0,896 0,600 0,291 1

6 0,835 0,282 0,507 0,797 0,770 0,427 1

7 0,185 0,957 0,741 0,489 0,237 0,833 0,346 1
 8 0,942 0,278 0,480 0,740 0,857 0,409 0,924 0,334 1

43

 From these tables can be noticed:
1. From Table 10: The data from the normal users is not significantly

different. Meaning H0 can be accepted and thus for normal users the
differences in performance are minimal (incl. random).

2. Table 11 displays that only the long term Bayes recommenders (3 & 7)
distinguish themselves from the others for the specific interest data.

3. No statistical difference is measured for the like votes from the normal
users between the agents, as displayed in Table 12. All samples are as
close to random (group A) as to each other, with no significant p-values.

As mentioned multiple times before, the above statistics don‟t include time and
assume the samples are independent. Time is an important factor because of the
learning model and also ideally every next sample should outperform the
previous so they are not independent. But it is much harder to evaluate the
recommendation performance over time using the data from multiple subjects.
Absolute time (in days) is not useful because the subjects used the system over
multiple and different days. Furthermore, they did not spend an equal amount
of time on news aggregation. Also the number of provided recommendations, as
explained in the previous paragraph, does not always explain the results well
and also cannot be combined for multiple users. Therefore the variable „total
number of votes‟ (incl. negative) is used as a time indication to be able to
evaluate the agents‟ performance over time for the combined results from
multiple users.

To evaluate the performance over time, for each agent configuration and for the
different user groups a linear regression analysis is performed. The figures on
the following pages display the linear trend lines, based on mean squares
analysis. First all graphs will be displayed, an interpretation is given at the end.
Each next page displays two figures; the top figure summarizes the trend lines
over all agents, the bottom figure displays small graphs for all individual
configurations. In these graphs, the data points (active) and three lines are
displayed. The main line (model) indicates the linear regression, whereby agent
performance is roughly represented by the slope of this line. The other two lines
indicate the 95% confidence intervals. First the inner line represents the
confidence interval on mean of the prediction for a given value. The outer line is
the confidence interval on a single prediction for a given value. The title of each
graph contains the configuration number and also displays the r-squared
correlation coefficient (R2), which indicate a goodness of fit (the closer to 1, the
better the fit). Finally, for all graphs, the horizontal axes represent time (by
number of votes) and the vertical axes the positive feedback.

44

Figure 28: Overview of linear trend lines for each agent configuration over all user data

Figure 29: Individual linear regression graphs over all user data; incl. 95% confidence intervals

45

Figure 30: Overview of linear trend lines for each agent configuration over specific subject user data

Figure 31: Individual linear regression graphs over specific subject user data; incl. 95% confidence intervals

46

Figure 32: Overview of linear trend lines for each agent configuration over normal user data

Figure 33: Individual linear regression graphs over normal user data; incl. 95% confidence intervals

47

From the above regression graphs on the previous pages can be observed:
1. Lots of linear models are based on extremely low R2 values

(close to zero). Worst values are observed for the regresion on the
normal users data (Figure 33).

2. The „best‟ configurations over all users (Figure 28) are:
1. 7 - implicit long-term Bayes (R2=.360)
2. 4 - explicit short-term Bayes (R2=.182)
3. 3 - explicit long-term Bayes (R2=.159)

3. The „best‟ configurations over specific subject user data (Figure 30) are:
1. 7 - implicit long-term Bayes (R2=.269)
2. 4 - explicit short-term Bayes (R2=.485)
3. 8 - implicit short-term Bayes (R2=.180)
4. 3 - explicit long-term Bayes (R2=.143)

4. The „best‟ configurations over the normal user data (Figure 32) are:
1. 8 - implicit short-term Bayes (R2=.180)
2. 6 - implicit short-term SVM (R2=.057)

5. The 95% confidence intervals of normal users (Figure 33) are relatively
small compared to the large intervals for specific subject user data
(Figure 31).

6. One extreme negative trend is noticed for configuration 1: Explicit long-
term SVM in Figure 31. (R2=.092; 11 data points)

7. In Figure 33 a few final data points perhaps have a huge effect on the
trend lines for each agent config (±3 points at 500-700 votes range).

8. The time effect of short-term agents (2, 4, 6 & 8) is not visible. Larger
fluctuations are expected over time (different days), because of the small
feedback timespan. This will be furter analysed in paragraph 4.2.8.

From points 2-4 can be concluded the Bayes agents finally outperformed the
SVM configurations, thereby nothing can be said about the influence of the
memory and feedback models from this analysis.

For each agent configuration also a default ANOVA F-test is performed to
validate the significance of the linear regression model on the data. The exact
results are not displayed, but most (except some random) are not significant.
This means statistically most of the data cannot be explained by the linear
regression models. This, together with many of the above observations, raises
the question if the linear least squares model is the best possible reflection of
the data. Maybe more advanced models (i.e. higher order, logaritmic, Theil‟s
regression, etc.) can improve analysis. These tests are left for future research.

Another point for discussion is the total absence of measurements for the effect
of voting on personal RSS feeds, which is completely omitted so far. This can
probably explain the negative trend from point 6 above. Especially if a user
votes positively for a lot of personal feeds at the beginning of a trial. Then a
trained classifier can start with interesting recommendations and perform
worse over time because of less consistent votes. This effect can also have
significant influence on all given trend lines.

So, this raises the question: Is the experimental setup valid? The answer to this
question is twofold. When the whole system is analyzed and only a global
indication of performance is needed, the answer is „yes‟. But a more advanced
experiment (i.e. equal time spans, less variables, etc.) needs to be conducted
when trying to explain the exact performance and influence of individual system
components over multiple users.

48

4.2.6 Naïve Bayes vs. Support Vector Machine

The above analysis on combined user data cannot explain the influences on
performance for each variable in the agent configurations. Therefore the
following paragraphs also include selective results from individual users, to
analyze some of the relations and differences between the configurations.

The difference in performance between Bayes (3, 4, 7 & 8) and SVM (1, 2, 5 & 6)
configurations is the only measured effect from the results in the previous
paragraph. The general observation is Bayes outperforms SVM. Furthermore
voting distributions between user groups (Figure 27) suggested the opposite for
normal users. The voting graphs for one of the users (user 1) are displayed
below. From this can be seen the Bayes recommenders received much less votes
(both positive and negative); this could explain the suggested difference.

Figure 34: Voting graphs for user 1; left: SVM; right: Bayes

4.2.7 Implicit vs. explicit

Much less attention is given to the difference between recommendation based
on implicit (5-8; including reading time) and explicit (1-4; votes only) feedback.
In the graphs below, this difference is displayed for user 3.

Figure 35: Voting graphs user 3; left: explicit; right: implicit

No clear difference can be noticed between these graphs and this is the same for
the other users. The reason is the extensive voting. In the first place the users
for the specific subjects vote on almost all articles, so there is no difference
between implicit and explicit recommendations. Therefore these users are
omitted for this case. Also the normal users were hinted to vote a lot. So from
this experiment, nothing can be said about the difference between implicit and
explicit votes. To overcome this shortcoming, some future work is proposed in
paragraph 5.3.5.

4.2.8 Short-time vs. long-time

Also differences between short-term (even; 24h feedback) and long-term (odd;
365 days feedback) are not clearly observed from the extensive analysis in
paragraph 4.2.5. The graphs below show the voting difference on short- and
long-term recommendations for user 3.

49

Figure 36: Voting graphs user 3; left: short-term; right: long-term

The expected effect of a drop in performance for the short-term memory agents,
when reusing the system another day, is displayed in the left graph. Each bold
(blue) line estimates the short-term performance for a single day. Most blue
lines show a positive trend, which cannot be seen from the global linear model
(dotted green). On the other hand, unfortunately for this user the long-term
model (right) does not show an increasing trend as expected. This short-term
effect can also be observed when analyzing the data of the other users.

To further analyze if the recommender type has an effect on the above, the same
data can be split into Bayes and SVM recommender data. The corresponding
graphs are displayed below:

Figure 37: Voting graphs user 3; left: SVM short-term; right: SVM long-term

Figure 38: Voting graphs user 3; left: Bayes short-term; right: Bayes long-term

Nothing extra can be observed from the long-term models (right). But also no
noticeable difference in performance exists between the SVM and Bayes short-
term models within the data of this individual (left).

If the same depth of analysis is performed for the other users, the sampling bias
becomes a problem. The above graphs all contain 20+ recommendations, but
data for the other users at this level of detail mostly contain much less
measurements, or each day contains just one or none of the data points.
Therefore also no conclusions can be drawn from the other users at this level.

So finally, a positive effect of the short-term memory models is clearly made
visible, which is not observed from the measurements in paragraph 4.2.5. But
the effect of the classification algorithms on these memory models is unknown.

50

4.2.9 Specific interests

To test the system performance on single interest training, some users only
voted for one pre-defined specific subject. The best results are found for the
„sports‟ user, who voted „like‟ for all sport subjects and „dislike‟ for everything
else. The final performance graphs of this user are displayed in Figure 39.

Figure 39: 'Sports' user graphs; left: voting over time (excl. random); right: corresponding article reading time

These above graphs present the close to perfect performance models. The
positive votes steadily increase over time and the opposite goes for the negative
votes. Also the increase in positive reading time for this user is clearly visible,
even when taken into account most of the time this user probably barely actually
read the articles because of the assignment. Finally some illustrations are given
of the actual working of the system, displayed by the screenshots of some
successful recommendations:

Figure 40: Apple user recommendation example Figure 41: Dutch user recommendation example

4.2.10 Summary

The first observation was the existence of a sampling bias due the small amount
of subjects. Next was shown that the amount of opened articles over time is not
related to the success of the articles selection methods. Thereafter the positive
effect of voting on the recommendation performance was shown. But in normal
conditions this effect will be less visible because of the influence of the extensive
voting instruction. The combined results over multiple users and user groups
for each agent configuration were analyzed next. The disappointing outcome
was that no significant results were found and the data model was questioned.
Finally the results showed better performance of the Bayes compared to the
SVM agents. Further analysis on individual users gave more positive results.

51

5 Conclusion

 Conclusion 5.1

The goal of this research is to handle the problem of information overflow by
implementing a personalized adaptive netnews recommender system. The main
research question asks how to achieve this goal. The answer from literature is to
combine multiple techniques to achieve a successful result. Therefore a
recommender framework based on multi-agent technologies is developed. From
an implementation of this system is concluded it is a working and promising
setup. Not all individual framework components are fully optimized and tested
on performance, but a small experiment on the final system output showed an
overall positive effect on learning and recommendation performance.

By measuring both explicit user feedback and implicit reading time, a more
detailed answer was sought for the influences and performance of the individual
recommender components and agent configurations. The main conclusion is
that the Naïve Bayes agents outperformed the Support Vector machine
configurations. Also large differences were found between individual users and
user groups. Unfortunately no significant conclusions could be formed from the
extensive analysis of the combined results of these users for each configuration.
By analyzing results of individual users, a positive influence of the short-term
memory is shown. A sampling bias prevented a further in depth analysis of
inter-related influences. Also nothing can be concluded for the difference
between implicit and explicit feedback from the fact that users were instructed
to vote extensively.

The final conclusion is the overall results are positive, but there are some
remarks on the conducted experiment. More advanced research is needed to
form significant conclusions about the influences of the individual system
components. Furthermore additions and improvements on many parts of the
implemented system can probably elevate the recommendation performance
enormously. This will be discussed in the next sections.

 Discussion 5.2

5.2.1 Crawler implementation

The initial version of the crawler was built to only harvest information from the
RSS feeds and apply default and widely used pre-processing techniques to
extract the features. As mentioned before, the RSS data was often incomplete
and t0o limited for the recommendation process. Therefore the crawler has
been extended during research to include the articles‟ web content.

At forehand no extended experiments were planned to test the crawling
performance, because it would be a default component using known working
procedures and pre structured RSS data. Therefore influence of the crawler is
underestimated from the beginning. More extended research should be
conducted on the crawling methods, the crawling performance itself and the
influence on the recommendation algorithms.

52

The implemented crawling procedure is internally tested using a small graphical
user interface (Figure 42). The results of the full parsing of an article are
displayed in a web interface as given in Figure 12. CSS borders are used to
display the selected DOM nodes. These results are subject to user
interpretation.

Figure 42: Crawling test interface

5.2.2 Performance

Because of the limited system resources, the experiment only measured the
system usage and performance of the components using a small user base.
To get more reliable results, be able t0 generalize and to exactly measure the
influences of each component, more advanced research on a large user group is
needed. Handling a massive user base is a challenge on its own, both in getting
the users as providing the system resources.

The reason behind this resource problem is the simultaneous execution of many
agents. For each system user at each home-page refresh two types of agents are
executed: Crawler agents to harvest the contents of the personal RSS feeds and
recommender agents to check for available recommendations. So far this only
takes milliseconds. But processing power is requested when the crawler (one for
each rss feed) finds new articles and needs to start harvesting and processing
(feature extraction). This can be optimized in many ways, for instance by
executing one agent working on a queue of rss feeds eventual on an external
machine. But most resources are consumed when a recommender agent starts
classifying. First the classifier (Naïve Bayes or SVM) is trained. When a large
amount of feedback articles is available this process can take up to some
minutes of full processing power. Thereafter approximately 100-1000 articles
per agent per second are processed for classification. Some agents needed
>100.000 articles for a single recommendation. A possible optimization is to
use incremental training algorithms for the classifiers.

53

5.2.3 Multiple interests

The current version of the recommender framework only trains the
recommenders by using user feedback data of all user displayed articles.
Therefore the final recommendation contains articles on all areas of interest.
Users mostly are interested in multiple topics, but during system usage, they
often only want to read articles from one topic at a time. The results from the
conducted experiment thereby also indicated a better system performance when
trained on a specific pre-defined subject. Therefore the introduction of a topic
selection or some kind of „mood‟ filter agent probably improves the usage and
final recommendation of the system vastly. More research on this subject is
advised.

5.2.4 Privacy

During usage of the system, a lot of information of each subject is stored in the
user profile. Within this project, this information is only used for research
purposes and kept anonymous. But for commercial recommender systems,
these profiles can be valuable and profitable for web vendors. Personalized
content is highly valued by online users, but not against all prizes. Examples of
misusage of this personal information are spamming and advertising purposes.
Many computer users are concerned about their privacy on the internet and
therefore this subject is a hot topic in recent debates. The collection of personal
data is also subject to legal regulations in many countries and states.
Approaches to reconcile both privacy and personalization are presented in [40].

5.2.5 Future of RSS

The structure of the internet is evolving continuously and thereby the question
arises: Will RSS survive? By introduction of the term „semantic web‟ or „web 3.0‟
a few years ago, some argue the usage of RSS will become superfluous. If the
web itself contains semantic structure, RSS won‟t necessarily add any valuable
information. The introduction of the corresponding techniques (i.e. HTML5,
RDF, Scheme, OML, etc.) prosecutes gradually; at moment of writing the first
internet browsers supporting HTML5 are already introduced.

On the other side, the popularity and usage of RSS feeds for personal news
aggregation is still increasing. The figure below (Figure 43) displays two graphs
with usage information from an online popular RSS reader (Google News
Reader [30]). The source and content of the graphs are questionable, but the
usage trend is still clearly visible.

Figure 43: Left: RSS reader usage; Right: Number of items read daily;

Source: http://googlereader.blogspot.com/2010/09/welcome-and-look-back.html

http://googlereader.blogspot.com/2010/09/welcome-and-look-back.html

54

 Future Work 5.3

The methods as proposed in this paper are not optimally developed and far from
complete. Also the conducted experiment could be extended to gather more
reliable data. To improve recommendation and further study this subject, the
following paragraphs propose multiple directions for improvement of the
system.

5.3.1 Advanced Agent Framework

As mentioned before (section 3.3), the most influencing design choice on the
implementation of the proposed recommender framework (section 3.2) is the
reduced agent management module (AMS). Thereby one of the most interesting
properties of multi-agent systems is excluded; the property of self-organization.
By implementing an advanced agent framework (i.e. JADE [34] or AgentService
[6], see also FIPA [24]), the advantages of multi-agent technology can be
exploited. In Figure 44 the framework model from AgentService [6] is given.
This model includes components
equal to the described modules
in the proposed recommender
framework (i.e. AMS,
Messaging, Logging, etc.). Other
components (i.e. White/Yellow
pages, Mobility, Load balancing,
etc.) can possibly greatly
improve system performance by
taking advantage of distributed
system control. The details of
these frameworks are left for the
reader, but this example model
demonstrates the possibilities of
extension towards such a multi-
agent architecture and therefore
further research on this subject
is greatly advised.

5.3.2 Other agents

For this research a small amount of agents, targeting content-based
recommendation, are implemented (sections 3.7 and 3.8). A lot more agents
could be added to the system and contribute to the final recommended list of
articles. The following paragraphs describe additional examples of possible
agents. Of course even a lot more agents can be thought of.

5.3.2.1 Collaborative agent

The current research in this paper is mainly targeted towards content-based
recommendation for reasons described. As explained in paragraph 2.1.5,
improved results can be obtained by including collaborative algorithms in the
recommendation process. Therefore a collaborative agent could be added to the
system. The details of these collaborative models are outside the scope of this
project, but some brief information is given below.

A collaborative agent recommends articles based on items marked interesting
from users (j) with similar behavior. Generally a user-item (xjn) similarity matrix
A based on a Pearson correlation coefficient (Formula 15) is used to predict the
active (a) users‟ interests I for an article n using Formula 16.

Figure 44: AgentService [6] framework model

55

Formula 15: Pearson correlation coefficient

Formula 16: Active user a interest indicator for article n

In [63] Xia et al. present a model for collaborative filtering using Support
Vector Machines. Missing elements within the similarity matrix will be
iteratively updated using trained SVM classifiers for each unknown user-item

pair xan ∊ A. The input for each SVM at training will be the set of feature vectors

from all neighbor users‟ rated items xjn. The final recommendation is based on a
list of top n rated items not in Ia.

5.3.2.2 Additional recommender agents

Besides Naïve Bayes and Support Vector Machines, more machine learning
techniques are suitable for the classification task of text recommendation. Some
are already mentioned (i.e. k-NN; paragraph 2.3.4) other examples are Artificial
Neural Networks (ANN), Rocchio classifiers or decision tree learning models
(i.e. ID3). Recommendation can probably be improved by adding more of these
techniques to the recommendation module and combine them with the methods
described in this paper. Also additional filter techniques (i.e. demographic;
paragraph 2.1.3) possibly increase recommendation performance by including
more data in the recommendation process.

5.3.2.3 Known agent

News generally spreads fast over multiple news sources in a very short period of
time. If an article is voted interesting, this often results in the displaying of the
exact same „news‟ just from another source. Therefore a filter of already „known‟
articles could increase the usability of the system by excluding these articles
from further recommendations. This could for example be accomplished by
excluding articles with a high cosine similarity towards liked articles (see also
paragraph 2.3.2).

5.3.2.4 Tagging & categories agents

Many RSS feeds also include a list of categories the feed and articles belong to.
The current recommenders only make use of the word counts and feature
vectors with tf-idf values from the articles content within their recommendation
algorithms. Including these pre assigned categories can probably also improve
recommendation. Going one step further, users could be given the possibility to
tag articles within the system (provide their own categories). This way the users‟
idea about the content is registered (what they think is interesting about an
article) and thereby these articles can next be used to train for directed
recommendation.

56

5.3.2.5 User-defined interests agent

The current recommenders automatically create a user model based on their
implicit and explicit system behavior. Another way of creating this model is by
just asking the user. Users could for example be asked to select their interest
from a predefined list of categories or to provide a list of tags indicating their
interests. Next a static interest agent can use the top n features (i.e. tf-idf
weights) from the sum of word vectors from the articles stored in each category
of interest for recommendation. This furthermore can be extended be including
a weight (i.e. a slider in the interface) for each category, which can be adjusted
by the user to increase/decrease the level of interest for a specific subject.

5.3.2.6 3rd party agents

Some online 3rd party services in the field of RSS feeds and personal
recommendation are already available (i.e. PostRank [50]). Some of these
services also provide an Application Programming Interface (API). This API can
be used to interact with these services and use their „knowledge‟ within the
recommendation process. By interacting with 3rd party services, large tested and
globally accepted sources can be accessed for news aggregation and
recommendation purposes.

5.3.3 Clustering & dimensionality reduction

Most of the above proposed future work is targeted to the final tasks of the
recommendation process; the article classification and filtering methods. But
improving recommendation probably starts with improving and structuring
resources. The general saying “garbage in garbage out” also applies to the field
of recommender systems. In document classification tasks, the dimensionality
of the data can explode to extremely high dimensions (the size of 104 and

larger). Therefore structuring the input space (item-server) can improve both
recommendation speed (computational costs) and accuracy enormously.

One method of structuring is clustering of the data (see also paragraph 2.1.7).
Thereby the Open Directory Project (ODP) [46], a data structure for relational
information, can possibly provide a central role. Another approach is term
reduction. As the dimensions of the data (number of terms) grow, also the risk
of overfitting increases. The consequences of overfitting are learners
overweighting features which are of less significance for the class of the data.
See [55] for an extensive comparison of multiple approaches to term space
reduction.

5.3.4 Feed priorities

In the current system, all feeds and articles are handled with equal priorities.
During harvesting the selection of the next feed to harvest is solely based on the
latest harvesting date. At recommendation, articles most recently added to the
item-server are selected first. When both articles and feeds are given priorities
(i.e. by using PostRank [50] or popularity metrics within the community; [21]
or [51]), these selection procedures can be improved by returning high quality
and popular content first. Also many RSS feeds contain a skipDays or skipHours
element to hint for the next moment to visit the feed for new content. Using
these values and by using more advanced revisit policies the system resources
used for harvesting can be distributed more accurately. This way the overall
quality of the recommender system can increase by providing more recent and
high quality content.

57

5.3.5 Implicit feedback

The implemented implicit feedback model used by the recommender agents for
article selection, as described in paragraph 3.7.4, is solely based on the time
spent reading an article. From [17] and [25], many more implicit feedback
indicators can be used to create an accurate model of the user‟s interests (see
also paragraph 2.1.2). By using more advanced measurements, probably the
effort users need to put into the training of the recommender can be minimized.
One of these measurements to be considered is the negative effect of not
opening a recommended article. In the current research this information is
omitted, but the recommender system probably can much more automatically
adapt to the user and much less rely on the users‟ voting strategies if these more
advanced implicit feedback indicators are included.

58

6 References

[1] ACM Conferences on Recommender Systems. [Online]. http://recsys.acm.org/

[2] J.M. Adams, P.N. Bennet, and A. Tomasic, "Combining Personalized Agents to Improve

Content-Based Recommendations," Language Technologies Institute, Carnegie Mellon

University, Pittsburgh, CMU-LTI-07-015, 2007.

[3] G. Adomavicius, R. Sankaranarayanan, R. Sen, and A. Tuzhilin, "Incorporating contextual

information in recommender systems using a multidimensional approach," ACM

Transactions on Information Systems (TOIS), vol. 23, no. 1, pp. 103-145, January 2005.

[4] G. Adomavicius and A. Tuzhilin, "Extending Recommender Systems: A Multidimensional

Approach," in International Joint Conference on Artificial Intelligence (IJCAI-01), 2001.

[25] G. Adomavicius and A. Tuzhilin, "Personalization Technologies: A Process-Oriented

Perspective," Communications of the ACM, vol. 48, no. 10, October 2005.

[5] G. Adomavicius and A. Tuzhilin, "Toward the Next Generation of Recommender Systems:

A Survey of the State-of-the-Art and Possible Extensions," Transactions on knowledge

and data engineering, vol. 17, no. 6, June 2005.

[6] AgentService Framework. [Online]. http://www.agentservice.it

[7] Amazon. [Online]. http://www.amazon.com

[8] M. Balabanovic and Y. Shoham, "FAB: Content-Based, Collaborative Recommendation,"

Communications of the ACM, vol. 40, no. 3, March 1997.

[9] D. Billsus and M.J. Pazzani, "User Modeling for Adaptive News Access," User Modeling

and User-Adapted Interaction, vol. 10, no. 2-3, June 2000.

[10] A. Birukov, E. Blanzieri, and P. Giorgini, "Implicit: An Agent-Based Recommendation

System for Web Search," in Autonomous agents and multi-agent systems (AAMAS '05),

Utrecht, Netherlands, July, 2005, pp. 25-29.

[11] British Broadcasting Corporation (BBC). [Online]. http://www.bbc.com

[12] Christopher J.C. Burges, "A Tutorial on Support Vector Machines for Pattern

Recognition," Data mining and knowledge discovery, vol. 2, no. 2, pp. 121-167, 1998.

[13] R. Burke, "Hybrid Recommender Systems: Survey and Experiments," User Modeling and

User-Adapted Interaction, no. 12, pp. 331-370, 2002.

[14] R. Burke, "Hybrid Web Recommender Systems," in The Adaptive Web. Berlin,

Heidelberg: Springer-Verlag, 2007, ch. 12, pp. 377-408.

[15] Cable News Network (CNN). [Online]. http://www.cnn.com

[16] C.-C. Chang and V. Vapnik. (1992) LIBSVM: a library for support vector machines.

[Online]. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[17] M. Claypool, P. Le, M. Wased, and D. Brown, "Implicit Interest Indicators," in Intelligent

User Interfaces (UIU '01), Santa Fe, New Mexico, USA, Januari 14-17, 2001.

[18] Viv Cothey, "Web-crawling reliability," Journal of the American Society for Information

Science and Technology, vol. 55, no. 14, pp. 1228-1238, December 2004.

[19] A. Das, M. Datar, and A. Garg, "Google News Personalization: Scalable Online

Collaborative Filtering," in World Wide Web (IW3C2), Banff, Alberta, Canada, 2007.

[20] B. David, R. Conejo, and A.A. David, "METIOREW: An Object Oriented Content Based

and Collaborative Recommending System," Lecture Notes in Computer Science, vol.

2266, p. 310, 2002.

http://recsys.acm.org/
http://www.agentservice.it/
http://www.amazon.com/
http://www.bbc.com/
http://www.cnn.com/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

59

[21] DIGG. [Online]. http://www.digg.com

[22] Ensembli. [Online]. http://ensembli.com/

[23] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "From Data Mining to Knowledge

Discovery in Databases," AI Magazine, vol. 17, pp. 37-54, 1996.

[24] (1999) Foundation for Intelligent Physical Agents (FIPA). Specifications. [Online].

http://www.fipa.org

[26] C. Gena and S. Wiebelzahl, "Usability Engineering for the Adaptive Web," in The

Adaptive Web., 2007, ch. 24, pp. 720-762.

[27] Genio. [Online]. http://www.genio.com

[28] N. Good, J.B. Schafer, J. Konstan, A. Borchers, and B. Sarwar, "Combining Collaborative

Filtering with Personal Agents for Better Recommendations," in Proceedings of Sixteenth

National Conference on Artificial Intelligence (AAAI), 1999, http://www-

users.cs.umn.edu/~herlocke/aaai-99.pdf.

[29] Google news. [Online]. http://news.google.com

[30] Google reader. [Online]. http://reader.google.com

[31] GROUPLens research group. [Online]. http://www.grouplens.org

[32] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin, "A Practical Guide to Support

Vector Classification," Department of Computer Sience, National Taiwan Univesity,

Taipei, 2009.

[33] Internet Movie Database (IMDB). [Online]. http://www.imdb.com

[34] Jave Agent DEvelopment Framework (JADE). [Online]. http://jade.tilab.com/

[35] T. Joachims, "Text Categorization with Support Vector Machines: Learning with Many

Relevant Features," in Proceedings of the European Conference on Machine Learning,

Berlin, 1998, pp. 137-142.

[36] T. Joachims, "Transductive Inference for Text Classification using Support Vector

Machines," in Proceedings of ICML-99, 16th International Conference on Machine

Learning, 1999, pp. 200-209.

[37] T. Joachims, D. Freitag, and T. Mitchell, "WebWatcher: A Tour Guide for the World Wide

Web," in International Joint Conference on Artificial Intelligence (IJCAI), 1997.

[38] M. A. Johnson. (2009, September) SVM.NET. [Online].

http://www.matthewajohnson.org/software/svm.html

[39] J. M. Kleinberg, "Authoritative sources in a hyperlinked environment," Journal of the

ACM (JACM), vol. 46, no. 5, pp. 604-632, Sept 1999.

[40] A. Kobsa, "Privacy-Enhanced Web Personalization," in The adaptive web. Berlin:

Springer, 2007, ch. 21, pp. 628-670.

[41] last.fm. [Online]. http://www.last.fm

[42] Y. Li, L. Lu, and L. Xuefeng, "A hybrid collaborative filtering method for multiple-

interests and multiple-content recommendation in E-Commerce," Expert Systems with

Applications, vol. 28, no. 1, pp. 67-77, January 2005.

[43] J. Martinez. (2010, Feb 16) nBayes. [Online]. http://nbayes.codeplex.com/

[44] T. Mitchell, Machine Learning. New York, NY: McGraw-Hill, inc., 1997.

[45] H. Nwana, "Software Agents: An Overview," Knowledge Engineering Review, vol. 11, no.

3, pp. 1-40, 1996.

[46] Open Directory Project. [Online]. http://www.dmoz.org

http://www.digg.com/
http://ensembli.com/
http://www.fipa.org/
http://www.genio.com/
http://news.google.com/
http://reader.google.com/
http://www.grouplens.org/
http://www.imdb.com/
http://jade.tilab.com/
http://www.matthewajohnson.org/software/svm.html
http://www.last.fm/
http://nbayes.codeplex.com/
http://www.dmoz.org/

60

[47] Larry Page, Sergey Brin, R. Motwani, and T. Winograd, "The PageRank Citation Ranking:

Bringing Order to the Web," Stanford Digital Library Technologies Project, Technical

report, http://dbpubs.stanford.edu/pub/1999-66, 1998.

[48] M. J. Pazzani and D. Billsus, "Content-Based Recommendation Systems," in The Adaptive

Web.: Springer Berlin / Heidelberg, 2007, ch. 10, pp. 325-341.

[49] M.F. Porter, "An algorithm for suffix stripping," Program: electronic library and

information systems, vol. 40, no. 3, pp. 211-218, 2006.

[50] PostRank. [Online]. http://www.postrank.com/

[51] reddit. [Online]. http://www.reddit.com

[52] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, "GroupLens: An Open

Architecture for Collaborative Filtering of Netnews," 1994.

[53] P. Resnick and H.R. Varian, "Recommender Systems," Communications of the ACM, vol.

40, no. 3, March 1997.

[54] G. Salton and M. J. McGill, Introduction to modern information retrieval., 1983.

[55] F. Sebastiani, "Machine Learning in Automated Text Categorization," ACM computing

surveys, vol. 34, no. 1, pp. 1-47, 2002.

[56] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke, "Personalized Recommendation in

Social Tagging Systems Using Hierirchical Clustering," in Recommender Systems 2008

(RecSys '08), Luasanne, Switzerland, October 23-25, 2008.

[57] showfilter. [Online]. http://www.showfilter.com/

[58] A. Singhal, C. Buckley, and M. Mitra, "Pivoted Document Length Normalization," in

ACM SIGIR conference on Research and development in information retrieval, 1996.

[59] TechCrunch. [Online]. http://www.techcrunch.com/

[60] S. Tong and D. Koller, "Support Vector Machine Active Learning with Applications to

Text Classification," Journal of Machine Learning Research, pp. 45-66, November 2001.

[61] V. N. Vapnik, The nature of statistical learning theory. New York: Springer, 1995.

[62] M. Wooldridge, An Introduction to MultiAgent Systems.: Wiley, 2005, ISBN: 0-471-

49691-X.

[63] Z. Xia, Y. Dong, and G. Xing, "Support vector machines for collaborative filtering," in

Proceedings of the 44th annual Southeast regional conference, Melbourne, Florida, 2006,

pp. 169-174.

http://www.postrank.com/
http://www.reddit.com/
http://www.showfilter.com/
http://www.techcrunch.com/

61

7 Appendix

 Original system proposals 7.1

Public API

(Web) Service

RSS feed 1

RSS feed 2

RSS feed n

RSS feed ...

(News) Articles

raw data
Preprocessing

- common words

 filtering

- stemming

- etc...

Feature extraction

- word counts

- meta data

- publish date

- etc...

(Text) Classification

- multi-class

- scaling

- etc...

Data space

(Multi dimensional)

Software agent

Agents trained to

deliver articles based

on pre defined settings

Current level(s) of interest

(What do I want to read?)

ie. Explore movies OR

advanced finance info

Pre-defined

Interests / Settings

Personal agent

Automatic mapping of user

interests over time; i.e. by article

reading times & user feedback

Community OR

Common interests

Popular articles at the

moment

Collective / Collaborative

Intelligence

Similar articles based on

user data

Intelligent filter(s)

- [Transductive] Suport
Vector Machine; [T]SVM
- K-nearest neighbor
- etc...

+

-

Online services

(3th party)

- PostRank (Aide RSS)
- GroupLens
- Yahoo / Reuters
- Other...

Server

Client (back-end) / Web crawler

Client

(front-end)

Filter request using some, all or none of the features below

1 2 3 4

Article selection

labeled

tagged

classified

scaled

Result
Feedback

 Figure 45: First framework proposal

62

Figure 46: Original system setup (prior development)

63

 Usage instructions 7.2

64

 Naïve Bayes Classifier implementation 7.3

1 public class Classifier
2 {
3 private Index first; // WordCounts for first class (Index[token] = count)
4 private Index second; // WordCounts for second class (Index[token] = count)
5 private double priorFirst; // Prior probability for first class
6 private double priorSecond; // Prior probability for second class
7 private double pFirst; // Final (log-)probability for first class
8 private double pSecond; // Final (log-)probability for second class
9 private double firstTotal; // Total terms in first class
10 private double secondTotal; // Total terms in second class
11 private double minimal; // Minimal probability (prevent 0.0 probabilities)
12
13 public double Alpha { get; private set; } // Tuning parameter, influence final probabilities
14 public double Epsilon { get; private set; } // Tuning parameter, influence unknown term probabilities
15 public float Tolerance { get; set; } // Classification tolerance
16
17 public Analyzer(Index first
18 , Index second
19 , double priorFirst = .5d
20 , double priorSecond = .5d
21 , float tolerance = .05f
22 , double alpha = 1.0d
23 , double epsilon = 1.0d
24){ // initialize
25 this.first = first;
26 this.second = second;
27 this.priorFirst = priorFirst;
28 this.priorSecond = priorSecond;
29 this.Alpha = alpha;
30 this.Epsilon = epsilon;
31 this.Tolerance = tolerance;
32 // Global counts
33 this.firstTotal = (double)first.EntryCount;
34 this.secondTotal = (double)second.EntryCount;
35 this.minimal = Epsilon / (firstTotal + secondTotal);
36 }
37 // Categorize Article
38 public CategorizationResult Categorize(Dictionary<string, int> tokens, out double prediction)
39 {
40 // initial probabilities
41 pFirst = Alpha + Math.Log10(priorFirst);
42 pSecond = Alpha + Math.Log10(priorSecond);
43
44 // Calculate Term probabilities
45 foreach (KeyValuePair<string, int> token in tokens)
46 {
47 // Term counts
48 double firstCount = (double)first.GetTokenCount(token.Key);
49 double secondCount = (double)second.GetTokenCount(token.Key);
50
51 // skip unknown terms
52 if (firstCount == 0 && secondCount == 0) { continue; }
53
54 // calculate term probabilities P(W_i|C_first) & P(W_i|C_second)
55 double pTokenFirst = (firstCount == 0) ? minimal : firstCount / firstTotal;
56 double pTokenSecond = (secondCount == 0) ? minimal : secondCount / secondTotal;
57
58 // Update log-probabilities P(First|Article) && P(Second|Artcile);
59 // [SUM probabilities x times termCount]
60 for (int i = 0; i < token.Value; i++)
61 {
62 pFirst += Math.Log10(pTokenFirst);
63 pSecond += Math.Log10(pTokenSecond);
64 }
65 }
66 // Final prediction
67 prediction = (pSecond / pFirst) - 1;
68
69 // Determine class
70 if (prediction <= this.Tolerance) { return CategorizationResult.Second; }
71 if (prediction >= this.Tolerance) { return CategorizationResult.First; }
72 return CategorizationResult.Undetermined;
73 }
74 }

