

Using GPS and Accelerometer Data
for Rowing Race Tracking

Harm Hermsen

October 2013

Master Thesis

Artificial Intelligence

Dept of Artificial Intelligence,

University of Groningen, The Netherlands

First supervisor:
Dr. Marco Wiering (Artificial Intelligence, University of Groningen)

Second supervisor:
Prof. Marco Aiello (Distributed Systems, University of Groningen)

Abstract

Rowing is one of the oldest Olympic Sports and still internationally
popular, especially among students. Races are often held side by side on
a track over a distance of 2000 meters in six lanes, where spectators are
positioned near the finish line. Due to the length of the track only the last
30 seconds of the race can be physically seen and the preceding battle is
lost. In this thesis a solution is presented which uses small, cheap and eas-
ily available commercial electronic components to be able to present a live
tracker of the full race to the audience along the track and at home. The
solution consist of an onboard device with GPS and accelerometer sensors,
a microcontroller and a ZigBee communication module, and a land based
receiver which interacts with the data processing and visualization soft-
ware. Communication over 2000 meters distance is achieved using mesh
networking, which allows for roving nodes. To minimize network traffic
and save on battery capacity, a computationally cheap algorithm is pre-
sented which can be executed on the onboard microprocessor and applies
knowledge about the anatomy of the rowing stroke to obtain orientation
invariant accelerometer measurements. Because of this the onboard de-
vice can be placed on the boat regardless of the orientation, making the
solution as unobtrusive to the athletes as possible. Two types of peak de-
tection methods are compared to perform stroke detection in real-time on
the microcontroller. Furthermore sensor fusion methods are examined to
improve GPS location accuracy by incorporating data from a static GPS
receiver and the onboard accelerometer. It is shown that an onboard de-
vice can be made for under e 100,- and can report location, speed and
stroke rate in real-time.

1

Contents

1 Introduction 3

2 Background and Related Work 7
2.1 Background . 7
2.2 Localization & Sensor Fusion . 8
2.3 Stroke Rate . 9
2.4 Communication . 10
2.5 Commercial Products . 10

3 Hardware 12
3.1 Controller Board . 12
3.2 Accelerometer . 13

3.2.1 Accelerometer Measurements 14
3.2.2 Static Error . 15

3.3 GPS . 15
3.3.1 GPS Measurements . 15

3.4 Data Storage . 16
3.4.1 Data Logging . 17

3.5 Communication . 18
3.6 Power . 22

4 Stroke Rate Tracking 24
4.1 Anatomy of a Rowing Stroke . 24
4.2 Related Work . 25
4.3 Orientation Invariant Measurements 25

4.3.1 In Theory: Orientation Invariant Measurements 25
4.3.2 In Practice: Orientation Invariant Measurements 26
4.3.3 Results . 27

4.4 Stroke Detection . 29
4.4.1 Simple Peak Detection with Static Threshold 29
4.4.2 Averaged Peak Detection with Dynamic Threshold 29
4.4.3 Results . 30

4.5 Tracking . 33

5 Position Tracking 34
5.1 Along-track Distance . 34

5.1.1 Haversine and Vincenty 34
5.1.2 Implementation . 35
5.1.3 Results . 36

5.2 Sensor Fusion . 38
5.2.1 Simple Differential GPS 38
5.2.2 Kalman Filter . 40

6 Discussion & Future Work 47
6.1 Hardware . 49
6.2 False Start Detection . 50

2

1 Introduction

Rowing is one of the oldest Olympic Sports and still internationally popu-
lar. The combination of synchronism, wonderful scenery and fierce competition
makes it a good sport to watch. Races usually take place side by side on a canal
or lake over a distance of 2000 meters in six lanes, although head races are also
held from fall to early spring. During the Olympic Games and World Cups, the
spectators that are positioned near the finish-line, are provided with live video
footage of the race from start to finish. Because of the length of the track, it is
impossible to watch the full race by eye and from the grandstand only the last
250 meters of these races can be seen physically. During the somewhat smaller
national regattas, live video coverage is out of budget. Spectators then only
see the last 30 seconds of the race and are only informed about what happened
up to the final battle by intermediate timing results from the 500 meter, 1000
meter and 1500 meter marks.

This thesis discusses the usage of easily available consumer sensors and elec-
tronics for live visualization of rowing matches to home and live spectators.
This project is set up as part of the service expansion program of Time-Team
Regatta Systems. Time-Team is a company that provides regatta management
and timing services for all Dutch national regattas and some smaller competi-
tive rowing regattas which do not comply with the strict KNRB regulations of
the national regattas [1]. Time-Team currently provides intermediate (500m,
1000m, 1500m) and finish time results but wants to extend the information
provision to include live race tracking. This way, spectators can be provided
with more race information and therefore it would be more attractive to watch
the races (either live from the finish-line or on the Internet). Live race tracking
as such could include additional data, like speed and stroke rates, besides the
necessary distance-travelled information.

The objective is to achieve live race tracking using small, cheap and easy to
acquire electronic parts. The price of the onboard devices should be kept as low
as possible since 80–100 of these devices need to be at hand to provide all boats
that are concurrently on the water with live tracking. The monitoring equipment
should be essentially unobtrusive such that the athletes are virtually unaware of
it being present. Only this way they can fully focus on their effort for the race. A
GPS sensor is used for the absolute localization and an accelerometer is used for
stroke detection and potentially improving distance-travelled data when fusing
the information with the GPS. The data gathered by GPS and accelerometer
need to be processed by an onboard microcontroller and wireless sent to the
shore. At the central data collector an algorithm determines the progression
of the race (the distance to the start position of the boat) and shows the race
details on an interface. The information contains details about the progression
of the full race including speed and strokes per minute. Additionally, the speed
information could also be used to show boats catching up on each other or to
augment real time video footage.

Since a live rowing tracker has to deal with communication, knowledge ex-
traction from the available data and in this case also data fusion, the following
research questions are formulated, which each attempts to answer a specific part
of the problem. By combining these individual solutions a full race tracker could
be achieved.

3

1. How can data be reliably transferred by roving nodes over a distance of two
kilometers using easy available and cheap ZigBee radio modules? What is
the performance of many-to-one mesh networking using roving XBees?

2. Which algorithm is simple enough to run on easy available and cheap hard-
ware and is still reliable in the detection of rowing strokes in accelerometer
data? Can this algorithm be extended in a way that accelerometer orien-
tation will not influence the algorithm’s outcome?

3. How can the relative distance from the starting position be calculated
from GPS recordings? What is the accuracy of this data? What are
the improvements when using a cheap static reference receiver to reduce
omnipresent noise?

4. How can the accuracy of the distance-travelled data be improved by fusing
GPS and accelerometer data streams?

The first research question stipulates the problem with the length of the track
and the necessary limited size of the onboard devices and thereby the commu-
nication module. While wireless communication ranges of over two kilometers
can be obtained using large antennas, this is not an option for the live tracking
devices because of the size requirements. The communication modules need to
be cheap and easily available but still have a high reliability for its transmis-
sions over this long range. The ZigBee standard looks promising since it makes
use of mesh networking techniques: a network in which longer distances can be
overcome by passing data through intermediate devices. Therefore there is no
need for a high-power module which could reach all of the devices by itself. The
fact that the boats are moving, needs some further attention since this could
influence the way the mesh networking protocol works and establishes its data
routes. The XBee is an easily available specific ZigBee implementation for a
relative low price. It has the capabilities of using many-to-one mesh routing
for wireless sensor networks in which there is a data collector. It needs to be
assessed if these modules perform well and reliably in rowing conditions. First
the range of a normal routing network has to be obtained as a base line measure-
ment. Then movement changes need to be made to one of the nodes in order
to test the ability of re-establishing routes to the data collector. It needs to be
examined if packets will be lost during movement and what the distance ranges
are. Tests could be done similar to [2] in which the performance of ZigBee PRO
modules is tested for point-to-point and multi-hop transmissions.

The stroke rate shows the number of strokes executed per minute by a crew.
This is an important measurement in rowing since it gives information about
the speed a crew is rowing, but also if the crew is accelerating, decelerating or
keeping a similar speed. Since it would be valuable to show the stroke rate in a
live tracking application, it is investigated if this number could be detected from
the acceleration of the boat. During the rowing stroke specific body movements
are made by all the crew members to drive the boat forward. These movements
result in a characteristic pattern of acceleration. This pattern can be used
to detect the rowing stroke in the accelerometer data. Specifically, peaks can
be detected in the acceleration which correlate to a certain part of the rowing
stroke, by which the stroke rate can be calculated. In [3] a number of simple peak
detection algorithms for time-series are described. Although these algorithms

4

are simple enough to be programmed onto cheap microprocessors, they work on
full data sets and not in online detection. Therefore a peak detection algorithm
should be designed which performs well on rowing accelerometer data with the
limited processing resources in mind.

To take the stroke detection a step further, it could be investigated if it is
possible to design a simple algorithm which preprocesses the accelerometer data
in such a way that orientation of the onboard device is not affecting the filter’s
output. Artificial intelligence (hereafter AI) feature extraction algorithms can
be tested for the extraction of orientation of the sensor. Using the extracted ori-
entation, the data needs to be rotated and simplified to acquire the moving axis
with only accelerometer data, which then could be fed into the peak detection
algorithm. However since most AI feature extraction methods use vast amounts
of data and perform many calculations, these methods might not be suitable
out-of-the-box for the application on a microprocessor. The possibilities of these
algorithms are explored and an algorithm should be designed specifically for the
use in rowing with limited computational power.

To answer research question three, the knowledge about the curvature of the
Earth needs to be taken into account. Post-processing algorithms need to be
found for relative distance calculation between recorded latitude and longitude
points. There are two well known formulas that are both used in navigation to
calculate the distance between two points given their latitudes and longitudes [4].
The Haversine formula calculates the distance assuming a spherical Earth and
its counterpart, Vincenty’s indirect formula, has the assumption that the Earth
is an oblate spheroid, which more closely matches the Earth’s real shape. The
implementation and pros and cons of both algorithms need to be investigated.
A comparison can be made between conventional timing results and timing
results acquired by using GPS data and the calculated distance, for recorded
two kilometer races.

As a data fusion improvement, measurements could be made with an ad-
ditional GPS receiver at a static point. Since the GPS error is influenced by
several atmospheric and satellite specific effects, the measured error on a static
point can be used to correct the measurements of a moving GPS receiver. Mea-
surements over a certain long time interval from this static point can be used to
get the averaged actual latitude and longitude of the receiver. Later, the offsets
of the static receiver can be applied in post-processing mode to the data of the
roving receiver, achieving a system which is similar to differential GPS (here-
after D-GPS) [5]. The accuracy of this data fusion technique has to be assessed
to determine how much improvement this D-GPS like technique entails.

Finally a fusion algorithm needs to be found which integrates the GPS and
accelerometer data streams into a single more accurate distance-travelled mea-
surement. A Kalman filter [6] is proposed for estimating the current boat’s
state using information of both sensors. The accelerometer data can be used
to estimate the current speed of the boat, and by integration also the trav-
elled distance. However, the noise on this data would yield a growing error
over time, since only relative measurements are made. The GPS data can be
used to correct the estimation since it makes absolute measurements for both
speed and position. Due to the complementary error behaviour of the sensors,
the estimated state should be more accurate. To test the improvement over
GPS-only results, again a comparison can be made between conventional tim-
ing results and timing results acquired by using the Kalman filter state estimate,

5

for recorded two kilometer races.
This thesis starts by giving an introduction into the background and related

work in chapter 2. In chapter 3 the assessment of the different hardware compo-
nents is done while also some functional descriptions and theories behind these
components are given. The way raw accelerometer data is transformed into
orientation invariant measurements and how strokes are detected from these
measurements is explained in chapter 4. Chapter 5 elaborates on the boat’s
position tracking and proposes two different sensor fusion methods to obtain
higher accuracy. Finally, in chapter 6 a discussion is presented on the work
done in this thesis and some future work is suggested.

6

2 Background and Related Work

This chapter gives background information and an overview of related work
on specific parts of the use of sensors, communication details and rowing live
tracking. First in section 2.1 a wide view is given on the application of different
tracking techniques in different types of sports. Then in section 2.2 previous
work on GPS localization, tracking and sensor fusion is discussed. Section 2.3
elaborates on previous work in stroke rate detection. The work on communi-
cation networks with moving nodes is discussed in section 2.4 and currently
available commercial products are presented in section 2.5.

2.1 Background

During the last years there has been a growing interest in automatic systems for
detecting, tracking and identifying participants in different types of sports. The
goals of these solutions differ: some of them are used for improving the partic-
ipant’s performance, some of them are used for obtaining metrics and analysis
for coaches, some are used for timing races and others are used for statistical
match analysis. The main two categories of technologies used for automatic
detection and tracking are intrusive solutions and non-intrusive solutions. With
intrusive solutions, special sensors or tags need to be placed on the sportsman.
In contrary with non-intrusive solutions, no additional objects are needed in the
sport environment.

During indoor sports, non-intrusive systems can often be used. Using a
single or several normal or infrared cameras, the field of play can be recorded
and analyzed using image processing techniques. The advantage of these types
of systems is that they are completely unobtrusive to the sportsmen. Systems
like these are used for the tracking of football players on the field, speed of a
tennis ball served, basketball statistics and the number of rounds skated by ice
skaters. Since many indoor sports only require a limited space, this technique
can easily be applied. For outdoor sports that generally cover larger areas,
other detection and tracking systems are used. Most of the outdoor detection
and tracking systems make use of an intrusive sensor or tag. The sensor or tag
has to be placed on the sportsman or on the vehicle used, and therefore the
sportsman is aware of the tracking solution being present and sometimes the
sportsman is even obstructed a little by the tracking solution.

The intrusive systems can be divided into two categories: passive tags and
active sensors. Passive tags are generally cheap and can be used when there
is the possibility to place a gate with sensors, through which all competing
participants have to go. RFID is used for the detection and when tracking needs
to happen at multiple points along the track, multiple sensor-gates are placed.
This type of participant detection is often used in cycling and running. The
accuracy of these solutions is very high: RFID sensors have a limited detection
range and when a tag is detected, it is sure that the tag was within range of the
sensor and therefore its location is known. Active sensors make use of battery
powered components to transmit data to a main processing unit. In outdoor
usage these sensors often contain a GPS for positional data. Applications can
again be seen in cycling (for constant tracking) but also in skiing and sailing.
The accuracy of GPS is not very high, so in general this data can not be used
for sports timing. It can however be used for visualization and possible data

7

logging purposes.
Since recently people also started using their smartphones for training and

tracking sports. Most smartphones contain a GPS sensor and an accelerometer
and are therefore well suited for simple tracking. Various apps are available
to assist training and compete in running and cycling. Although the usage of
smartphones for personal use can be beneficial, it has not yet been applied for
large sport events.

2.2 Localization & Sensor Fusion

Exact localization is the most important criteria which a rowing live tracker
should satisfy. The timing resolution used in finish photos is one hundreds of
a second, although rowing umpires normally adhere the bow ball rule: a small,
soft ball no smaller than 4 cm diameter securely attached to a boat’s bow can
be used to distinguish the winner [1]. At a top speed of 6.3 m/s (world record)
this would result in a resolution of about 6 milliseconds.

The travelled distance from the start needs to be extracted from GPS data
acquired from sensors on the boats. This can be done using mathematical
formulas but since no constraints are placed on the placement of the sensors on
the boat, an algorithm needs to be designed to cope with this differentiation in
placement on the boats. A mere distance calculation algorithm will not suffice,
but start-timing data have to be incorporated into the calculation to compare
data against the detected location during the start. It might even be possible
to do false-start detection using this data.

Non augmented GPS data can reach a absolute point positioning resolution
of 6.8 meters [7]. This error is too large for a proper rowing race tracking system
and therefore it needs to be investigated if the accuracy could be improved
by combining location and speed data from a GPS sensor with data from an
accelerometer. Double integration over time for the acceleration data yields the
travelled distance [8]. However the data are suspect to noise and the accuracy
deteriorates with time due to the integration. This drift accumulates and for
long duration tracking this solution would prove inaccurate. Nevertheless the
accelerometer data could be used for short term distance measurements and
could possibly be used in excluding high offset GPS data. In this thesis it is
examined if the fusion of data streams will result in more accurate location
measurements.

The position tracking problem can be dealt with by using the initially known
location (the start) and an algorithm to account for the travelled pathway to
determine the new location. Local data can in this case be used to determine the
boat’s location. Since boats never move backward during a race, this a-priori
knowledge could be used as input for the tracking task, since erroneous readings
can be excluded if they would imply a backward movement. A Kalman Filter
can be used to solve the tracking problem [6]. Such a filter takes Gaussian noise
assumptions and propagates the belief about position and speed through time
and incorporates information from measurements. The belief is a probability
density over all possible locations. The location that has the highest probability
is the location at which the boat is most likely to be. Since the Kalman Filter
can make use of noisy relative and absolute measurements, both accelerometer
and GPS data can be incorporated to improve the estimated location state and
thereby the distance-travelled parameter.

8

This combination of both relative and absolute position measurements guar-
antees a higher accuracy on both sides. Combining the data into a single lo-
cation measurement, while including a-priori knowledge, could be beneficial for
the position determination in rowing.

Rule based sensor fusion between GPS, odometer and accelerometer data
has previously been used in overcoming GPS-dark areas in localization tasks
in which there was a need for robust and constant localization [9]. The results
show that short duration GPS outages can be overcome by using this technique.

In [10] the possibility of fault detection using sensor fusion is shown. This
paper describes a method in which data of multiple similar sensors are combined
and the combined output is verified against the output of the single sensors.
When one of the sensors is deviating more than normal from the combined
signal, a possible fault is marked.

Sensor fusion touches the foundations of artificial intelligence: how to com-
bine data from multiple sensors into a fully contextual understanding of a situ-
ation. By fusing data of multiple low-cost and simple sensors one could achieve
a performance which is higher than the sum of the single sensor performances.
In this case one could achieve a system that uses sensor fusion and conveniently
integrates data provided by the GPS and accelerometer to estimate the correct
distance travelled by the system. This fusion is useful because of the ability to
acquire increased performance using low-cost sensors.

Fault detection can robustly be done with the fusion of data from multiple
sensors. In situations where artificial intelligence is applied, like autonomous
robotics, it is not unlikely that some of the sensors fail sooner or later. By giving
the agent the possibility of doing such fault detections one could achieve an
integrated system that checks its own inner workings. When a fault is detected
the agent could take actions and alert the user of the faulty sensor. In the
meanwhile the agent could restrain from using that sensor’s data.

2.3 Stroke Rate

The stroke rate during rowing is of significant importance. In [11] it is explained
that the stroke rate has a high correlation with the boat’s efficiency. In normal
race situations a power 10 push, to overtake another crew, is accompanied with
a higher stroke rate. This number therefore gives an indication of what a crew
is up to.

The accelerometer data contains the acceleration of the boat and can there-
fore be analyzed to output the stroke rate to the viewers. If this analysis is
performed within the onboard devices, not all sensed data have to be sent over
the network. This will save energy resources since the amount of communica-
tion can be reduced. Work has been done on the detection of rowing strokes in
accelerometer data [12], but this generally has been done on an offline collection
of data. Offline data is easier to analyze since peaks can be found more easily,
since there is a possibility of looking ahead. Online detection of strokes gener-
ally happens with specific sensors attached to the oars or seats [12], although
accelerometer based detection has been done in commercial products [13] and
open-source software [14]. These solutions generally are quite computationally
expensive and require fast hardware to run on. The developed rowing tracking
system will use off the shelf, cheap and easy to acquire hardware and therefore
can not rely on high performance hardware. A simple online data analysis al-

9

gorithm needs to be designed to detect strokes using the cheap hardware. This
algorithm needs to be robust in the sense that a different orientation of the
sensor should still yield the same results.

Pattern recognition has to be done on the accelerometer data to detect the
correct strokes. As the orientation of the sensor should not matter, first feature
extraction has to be performed to obtain the correct (virtual) axis on which
the strokes can most easily be detected. Then an algorithm has to be designed
which does online recognition of rowing strokes. The total detection algorithm
therefore has to be intelligent in extracting and analyzing the accelerometer
data in order to make the onboard devices as unobtrusive for the athletes as
possible.

2.4 Communication

In [2] mesh networking with moving nodes is discussed. This paper gives a clear
overview of the functionality and inner workings of these types of networks.
Since the nodes/boats in our rowing race tracking system will generally move,
the choice for a ZigBee mesh network is made since it will help in the ad-
hoc generation of message paths to the data collector. This way many-to-one
communication is relatively easy to setup. This setup can be seen as a Wireless
Sensor Network [15] in which the boats have the data gathering sensors and the
data processing collector is positioned at the finish-tower. Research on many-to-
one multi-hop routing with moving nodes could not be found. Since the interest
lies in the performance of ZigBee networks in rowing boats over long distances
using many-to-one routing, this type of routing is researched upon.

In artificial intelligence autonomous robots or unmanned aerial vehicles some-
times have the task of roving around and gathering data. Using the proposed
many-to-one mesh networking setup one could retrieve the data from these
robots to a central database without spending significant amounts of money
and power on transceivers. Especially due to the mesh properties of the net-
work it is easy to gather data even from very big swarms. As long as every single
node is in range of any other node all data can be gathered. This way one could
even choose to equip one ’leader’ of the swarm with bigger range communication
equipment like a cellular antenna and make him the data collector which relays
data to a base station.

2.5 Commercial Products

The commercial SpeedCoach GPS presented by Nielsen Kellerman is an in-boat
performance measurement device that displays and logs distance & speed using
a 5 Hz GPS receiver and stroke rates using an accelerometer. In-home developed
algorithms are used to detect stroke rate and speed. The device is sold for $ 399
and does not seem to be using any fusion techniques on the sensor data.

Swiss Timing is another commercial service provider that live-tracks rowing
races with GPS devices. They are detecting speed and stroke rates, but of-
ten these measurements are off and do not line up with the intermediate timing
measurements. The sensors and algorithms used in these devices are not known,
since this information is kept confidential. They manage to track multiple races
after each other but only show updates of the measurements approximately

10

every 25-50 meters or 10 seconds, which makes the tracking feel sluggish. Pre-
sumably averaging algorithms are used to get higher accuracy and stroke rates
might be detected from the GPS data.

Talos Rowing is an open-source Android application that shows speed, stroke
rate, distance and some other metrics about the rowing technique based on the
mobile device’s GPS and accelerometer sensors. It can be used to view the
different parameters live in the boat, but the data can also be recorded for later
offline processing.

Rowing in Motion is an iOS application similar to Talos Rowing, but with the
focus on analysis of the rowing technique. The boat’s acceleration is displayed
together with an average stroke acceleration pattern. The initial orientation of
the device is used for calibrating the 0–90 degrees vertical tilt. The smartphone
does have to be aligned horizontally, not allowing to tilt sideways, to be able to
detect the boat’s movement direction.

All these solutions are shortly mentioned in table 1, which also states the
price, if applicable.

Table 1: Products for Rowing

Name Features Price

SpeedCoach GPS commercial product $ 399
displays distance, speed & stroke rate
logs 200-data points, with fixed 100
meter interval
GPS & accelerometer data

Swiss Timing regatta timing service provider unknown
live tracks distance, speed & stroke rate
every 25 meters
logs speed & stroke rate every 50 meters
GPS & possibly accelerometer data

Talos Rowing Android app open-source
displays and logs distance, speed &
stroke rate
GPS & accelerometer data

Rowing in Motion iOS app e 90
displays and logs boat acceleration &
stroke rate
logs GPS position
GPS & accelerometer data

11

3 Hardware

The success of the usage of sensors in rowing is mainly dependent on the price of
the individual onboard devices. At least 80 devices will be needed to track a full
rowing regatta. Therefore the price per device needs to be as low as possible.
The aim is to use easily available consumer electronics in order to keep the price
low.

The selection of hardware is mainly based on the price of the components.
Furthermore the ease of use is taken into account and therefore only completely
functional modules are selected. These modules consist of the actual sensor or
processing chip and the supporting circuitry in order to enable communication
and a reliable noise free power supply. By using complete modules only jumper
wires need to be attached to the correct pins to get a working system. It can
even be chosen to put the full system on a breadboard for easy development
and testing.

This chapter is divided into sections which describe the selection and avail-
able function of each of the hardware components of the onboard device. The
main processing controller board is discussed in section 3.1. In section 3.2 the
accelerometer details and its communication work-flow is presented. The GPS
module and the way GPS measurements are made are examined in section 3.3.
Additional data storage and the process of logging rowing data is outlined in
section 3.4. Section 3.5 discusses the communication module and the network
routing and communication that is involved, and finally in section 3.6 the power
supply and the power consumption of all components is shortly presented.

3.1 Controller Board

Probably the most important part in every embedded system is the micro-
controller. This component handles the communication between the different
modules, processes incoming sensor data and acts accordingly. The microcon-
troller has to be programmed to be able to communicate on the different device
busses, but also needs a general program which decides when to perform what
actions.

The Arduino platform [16] has been selected for the development of the
onboard devices. Arduino is an open-source electronics prototyping platform
based on flexible, easy-to-use hardware and software. Preassembled boards with
many in- and outputs can be purchased for a low price (< e 20,-) and many
accompanying and third party software libraries are available for functions like
software serial [17], I2C [18] and SPI communication [19], GPS NMEA data
parsing [20] and SD card interfacing [21].

The Arduino Fio, as shown in figure 1, has been chosen as the appropriate
controller board for this scenario since it is specifically intended for wireless
applications. It contains an XBee socket, for wireless communication, and a
connection for a lithium polymer battery, which can be charged over USB using
the included charge circuit. The ATmega328P microprocessor on the Arduino
Fio runs at 8 MHz and has 2 KB of SRAM. 30 KB is available for programming
and because of its memory limitations additional external memory is needed for
data storage in the case of data logging. The microprocessor software is written
in the Arduino programming language, which can be edited in the Arduino
integrated development environment, and is heavily based on C or C++. When

12

Figure 1: Arduino Fio Controller Board

uploading the program to the board, the software is compiled using AVR Libc
and uploaded using avrdude.

3.2 Accelerometer

To measure the boat’s acceleration an accelerometer is used. Most cheap ac-
celerometers available today are capacitive micromachined accelerometers that
use the spring mass principle. This principle states that due to the moment
of inertia a mass can be used to convert acceleration to spring displacement.
A small mass is attached to the end of a spring and when the whole body is
moved, the spring is stretched from its equilibrium position for a certain dis-
tance. This distance can be measured and from this it can be calculated what
acceleration was applied to the sensor. In capacitive micromachined accelerom-
eters this happens using an elastically suspended plate [22] which follows the
acceleration with a delay. The distance between the fixed and elastic parts of
the accelerometer changes due to the acceleration and this difference can be
detected and used to calculate the acceleration.

The Freescale MMA7361 and the Freescale MMA8452Q accelerometers were
compared because of their low price and availability on a breakout board. Both
accelerometers are available for under e 10 and have a selectable measurement
range (±1.5g/±6g and ±2g/±4g/±8g respectively) which is applicable for row-
ing (mostly below 1g, with outliers around 1.5g). The MMA7361 is an analog
device, having the necessity to sample the acceleration at regular intervals by
the microprocessor. The quality of the microprocessors ADC (10-bit for the Ar-
duino Fio) determines the resolution of the measurements. This device is very
easy to use, since no additional communication protocols are required. The
MMA8452Q, as shown in figure 2, is a digital accelerometer capable of com-
municating over I2C. It samples the acceleration at an internal rate of 1600 Hz
and provides a selectable output data range with averaged values. The inter-
nal 12-bit ADC takes care of the digitalization of the signal and interrupts can
be used to signal when new data is ready. The latter accelerometer is chosen
based on the internal processing abilities and the relaxed timing conditions for
the microprocessor. Even when setting the output data rate to 1 Hz, the full
acceleration during that second is taken into account. This accelerometer also
has a higher resolution while consuming less power.

13

Figure 2: MMA8452Q Accelerometer

3.2.1 Accelerometer Measurements

When the MMA8452Q accelerometer’s full-scale is set to 2g and resolution to
12-bits, the measurement range is -2g to +1.999g, and each count corresponds to
1g/1024=1 mg. Absolute peaks during rowing rarely exceed 1.5g so this range
closely fits the purpose.

To improve the output of the accelerometer, the high resolution output mode
is used which reduces noise. Oversampling is done at a ratio of 32, in which
case the internal 1600 Hz rate is used to sample the acceleration and the output
is averaged to give 50 Hz updates.

Communication with the accelerometer happens over I2C. I2C is a digital
communication protocol invented by Philips using a multi-master serial single-
ended bus. A lot of low-speed peripherals use this protocol to communicate.
The advantage of this protocol is that it only needs two wires to communicate,
but therefore communication can only be half-duplex.

In the rowing tracking application it is critical to handle the data of the
accelerometer in time. When other parts of the software spend as long as one
accelerometer reading (0.02 sec at 50 Hz), the samples are discarded and over-
written. Although it can be verified if a sample is overwritten, it is not possible
to know how many samples are overwritten. This puts extra difficulty in the
usage of accelerometer data, since missing samples will result in skewed timing
and crippled acceleration sums.

The MMA8452Q stores its 12-bit accelerometer data in six registers: an LSB
and MSB register for all of the three axes. An additional register is used to signal
data readiness and data overwrites. These registers are placed conveniently so
that a sequential read of seven registers can read all this data at once.

The Wire library [18] used in Arduino for I2C communication runs at 100
KHz by default. By changing the speed in the source-code of the library to 400
KHz, a speed improvement on seven sequential register reads could by achieved
of almost 100% (1400 microsecond vs. 715 microseconds for a single sample
read).

The usage of the Wire library for I2C communication in an interrupt service
routine (hereafter ISR) is difficult because of the blocking nature of the I2C
library. One could opt for bit-banging the I2C communication to be able to
use this within an ISR, but for this project a lower output data rate (hereafter
ODR) is used. The lower ODR would not negatively affect the accuracy since
the oversampling capabilities of this chip are being used.

14

3.2.2 Static Error

During initial testing it was found that the accelerometer, while laying still, gave
readings which account for more than 1g of gravity. Since the accelerometer was
put in the middle of the breadboard, many wires pass the accelerometer closely
and could cause electrostatic interference. A test was done to determine if the
error on the measurement was caused by the interference or if there was another
source for the error. The accelerometer was put at a distance apart from all the
other components and jumper wires, using long and straight wires directly to
the accelerometer’s breakout board. Data was logged for at least ten minutes.

During the recorded period the standard deviation of the measurements
was very low and there was almost no deviation from the average, giving no
sign for electrostatic charges or interference. When such interference is present,
high peak noise on the readings is expected. This specific accelerometer gives
an averaged >1g reading over the ten minute period. To see if this specific
accelerometer was off, another test was done with another accelerometer of the
same brand and type. This second accelerometer gave almost the same results,
although the averaged readings were just below 1g. It can be concluded that
the error could be caused by an incorrect calibration of the accelerometer. This
offset has to be taken into account when using the accelerometer data. A long-
term average over every axis can be used, which can be subtracted from the
measurements to overcome this offset.

3.3 GPS

For absolute positioning the Global Positioning System (hereafter GPS) is used.
This system consists of space-based satellites that provide location and time
information to receivers anywhere where there is a line of sight to four or more
GPS satellites. The EM-406a and the Parallax PMB-648 GPS receiver modules
are compared for use as they are both available for just under e 40. Both
modules use the SiRF StarIII chipset and a built-in patch antenna and therefore
have very similar specifications. They both have a built-in rechargeable battery
for memory and RTC backup so that a quick cold start time can be achieved.
Communication with the modules can be done over both TTL and RS-232 serial
with NMEA commands. The EM-406a is a bit more expensive, but provides a
PPS timing signal and has a slightly lower power consumption. The PMB-648
however operates on 3.3–5V, while the EM-406a operates on 4.5–6.5V, which
makes the PMB-648 easier to use with the 3.3V Arduino Fio. Because of the
similar performance, the lower price and the applicable voltage levels, the PMB-
648, as shown in figure 3, is selected for the onboard device.

3.3.1 GPS Measurements

The Global Positioning System is a space-based satellite navigation system that
has about 30 active satellites orbit the earth. Each satellite is constantly sending
out signals telling the sending satellite’s ID, the position of the satellite and
the time the data were sent. A GPS sensor receives these transmissions from
multiple satellites which are at that point visible to the receiver. For each of
these received signals the sensor calculates the difference in time of the reception
of the signal and the time the satellite sent the signal. Using the speed of light,

15

Figure 3: PMB-648 GPS Module

the distance to each of the transmitting satellites can then be calculated. To
determine the actual sensor’s location, the distances are used to draw a sphere
around each satellite. The receiver should be located on the surface of each of
these spheres, so the point where all the calculated spheres intersect, is the exact
location of the sensor. Due to various error sources the location can usually be
determined to within 15 meters, and with more sophisticated GPS receivers and
during low noise situations to about 6.8 meters [7].

The PMB-648 GPS module is configurable to output several types of data
and has many settings. It uses the marine NMEA-0183 protocol to communicate
over a RS-232 interface. At the initialization of the controller board program
the GPS module is set to 38400 baud to speed up communication, which is by
default at 4800 baud. Most commercial GPS sensors have a feature called ’static
navigation’. This feature is designed for motor vehicles and freezes the position
and fixes the speed to zero at very low speeds. Hereby it cancels the drift at
low speeds which are a result from the natural inaccuracy of GPS. Since for the
rowing tracking application the output needs to be as exact and raw as possible,
static navigation is disabled. The GPS module defaults in outputting many
NMEA messages which not only give information about the time, position, speed
and course of the sensor, but also provide information about which satellites
are in view, what their received signal strengths are and many other types of
information. For the tracking application only the RMC NMEA message is
enabled which contains position, velocity and time information and no other
superfluous data.

The Arduino Fio has only one hardware serial port, which is always in use
by the XBee communication module. Since the GPS module also communicates
over a serial line, a software serial library is used. Such a library operates on any
of the digital pins of the Arduino and replicates serial functionality. Instead of
the natively supported SoftwareSerial library [17] the AltSoftSerial library [23]
is used. This library improves the performance by using a hardware timer to
overcome blocking transactions, a type of transaction which is in use by the
native SoftwareSerial library. Performance improvement is mostly seen on low
baud rates, but is not negatively impacting at higher data rates.

3.4 Data Storage

For the purpose of data logging additional storage memory must be used, since
the microcontroller only has 2 KB of SRAM, 1 KB of EEPROM and 30 KB

16

Figure 4: MicroSD Breakout Board

of flash memory, which is far too little for logging purposes. Storage memory
can be added in the way of EEPROM, RAM or flash memory. The latter is
non-volatile memory and easily available in the form of SD cards. Cards are
available at every electronics shop and pack gigabytes of data storage for a low
price. Every modern day SD card can communicate in a low power SPI mode,
which is easy for the microprocessor to use. In this case the Adafruit MicroSD
card breakout board+, as shown in figure 4, is used as an SD card socket with
SPI connections breakout. The additional features of the breakout board are
not used.

3.4.1 Data Logging

Communication with the SD card happens over the Serial Peripheral Interface
bus (hereafter SPI). SPI is a synchronous serial data link between two or more
devices that operates in full duplex mode. The master on the bus (in this case
the microcontroller) initiates the data frame and possibly uses a slave select
line in the case that more than two devices operate on the same bus. For data
logging purposes a single file on the SD card is made. Every time new data
arrives this data is appended to the log file. However any bytes written to a
file on the SD are not physically saved until the flush command is given. A
flush causes the current data block to be written, the directory block to be
read, updated and written again. Since this many steps need to be made, a
flush command is slow. When the microprocessor was constantly writing the
‘number of milliseconds since the board began running the current program’
at its maximum speed, and directly flushing after every write, only 89 writes
per second could be achieved. When other tasks need to be performed by
the processor as well, this speed could even drop further. Another test was
performed to see how the performance would benefit of postponing the data
flush. Tests were done in which a flush was performed every 5, 10, 30 and 60
seconds. Writing speeds of 2500 Hz were now easily obtained.

For logging purposes the received data from the GPS sensor and the ac-
celerometer are written to the SD card as soon as new measurements become
available. The highest possible ODR for the accelerometer is determined by
testing the amount of data overwrites that happen in the accelerometer. A data
overwrite occurs when the measured data by the accelerometer is not read by
the microcontroller before a new measurement is made. Since only one set of
registers is reserved for a single data sample, the accelerometer overwrites old

17

data as soon as it is measured. The highest possible ODR therefore depends
on the available processor time for reading the accelerometer data. Any block-
ing methods, such as the SD flush, could cause the processor to stall and miss
acceleration data. It was found that when flushing the SD card data every 30
seconds, a 50 Hz accelerometer ODR could be reliably written to the tested SD
card. However, even in this case overwrites rarely happen (0.01% of the time).
It could not be determined what the cause for these sporadic overwrites were,
but it is thought that the wear levelling algorithms present on most SD cards
could have caused these unpredictable effects.

During the last national regatta of 2013 several races were measured using
the onboard data logging device. Three of the same onboard devices were built,
which have a microcontroller board, a GPS module, an accelerometer, an SD
card and a battery for power. The device was put in a waterproof enclosure
and duct taped at a convenient free space on the boat’s deck. A total of 14
races in different experience classes were recorded: men’s coxless four, men’s
coxed four, men’s eight, men’s lightweight single scull, men’s lightweight coxed
four, woman’s single scull, woman’s coxless pair, woman’s coxless four, woman’s
lightweight coxless pair, woman’s lightweight double scull. The aim was to get
as much variety as possible, to acquire a dataset that represents the full scale
of rowing. Data was recorded from the moment the enclosure was closed till
the moment the device was taken from the boat and opened again. This raw
data would therefore match data acquired in real-time when the onboard device
would have been sending the data to the shore wirelessly.

Unfortunately one of the onboard devices, which had been used to record four
individual races, had problems with data logging. When analyzing the obtained
data, it was seen that many accelerometer data overwrites had happened. This
specific device contained a rather old SD card, which apparently had slower
writing speeds than the other cards used. Because of the slower writing speed,
the processor could not maintain the fast interval for reading the accelerometer
data. Since the overwrites happened randomly through the collected data, and
the actual data could not been retrieved, the accelerometer datasets measured
with this onboard device had to be discarded. The device did not experience
problems with recording the GPS data, so for GPS measurement analysis these
datasets could be used.

3.5 Communication

To achieve a useful rowing tracker, the sensed data from the boat need to be
sent to the data collector on the shore in real-time. There are not many wireless
communication solutions available that are able to directly bridge the 2000 me-
ter that rowing tracks are long. One of these solutions makes use of the cellular
network. Due to the rise of the smartphone, Internet is available almost every-
where in the form of GPRS, 3G and since recently also 4G. In embedded systems
a GSM module can be used to utilize these networks. Simple GPRS modules
are available for prices ranging from e 50 to e 115. Although these modules
would all have a direct communication line with the data collector through the
Internet, the downside is that these modules usually consume a lot of battery
power and therefore need an additional battery and thus weight more. Further-
more GPRS modules do not natively support any higher level communication
and security methods, since they operate as simple modems. Network proto-

18

cols like TCP/IP need to be implemented and since the modules are connected
to the Internet, they are easily accessible for outsiders, so additional security
measurements should be taken. The physical sizes of the GPRS modules found
are very similar: all modules are about three times the size of the Arduino Fio
controller board, making them rather big. Finally, for each of these modules
a SIM card with a data subscription from a local telecom provider is needed.
Using these GSM modules would not only mean a high startup cost, but also
results in a large onboard device and difficulties for the implementation and
security.

Since the usage of GPRS modules contradicts the goals set for the onboard
device, other communication solutions are considered. ZigBee is the specifica-
tion of a set of high level wireless communication protocols that uses small,
low-power digital radios to achieve a personal area network. In several indus-
trial and research projects, ZigBee modules have been used because of their
ease of use, price and transmission range [24, 25, 26]. ZigBee is based on the
IEEE 802.15.4 standard and adds the network layer and application layer, and
most important the ZigBee device objects. The latter are responsible for the
keeping of device network roles, requests to join a network, device discovery
and security. In terms of networking capabilities, ZigBee can deal with several
types of topologies. A point-to-point network can be used in the most simple
case, but star and mesh topologies can be used when many nodes need to be
connected. In a mesh network each node is not only responsible for the sending
and collection of its own data, but the node also serves as a relay for data of
other nodes. By collaboration between the nodes, data can propagate through
the network by hopping from node to node until the final destination is reached.
Route discovery is normally done as soon as a data packet is put in the trans-
mission queue. If the route is not already known, a route request is propagated
through the network and using a smart algorithm the shortest and cheapest
(in the sense of route quality) route is found [27]. Since this type of routing
reconfigures around broken or blocked paths, it is also called self-healing. Mesh
networks are very suitable for dynamic networks spanning a large area, since
nodes that are too far away for direct communication, can use multi-hopping
for their transmissions. Since most of the times the crews will be rowing, the
boats will continuously change their position. Due to the self-healing properties
of a mesh network, moving nodes will generally not be a problem.

A ZigBee network can consist of coordinators, routers and end-devices. A
coordinator forms the root of the network and always has to be accessible. The
coordinator manages access to the network and has a repository for security
keys, and is a specialized type of router. Both the coordinator and routers can
form connections in a mesh topology and accept connections from other nodes
in order to create a network. Router nodes can also inject data packets into
the network and are therefore a specialized end-device. End-devices are the
simplest type of nodes and can only directly communicate with their parent
node, a router. They can communicate with any other node on the network
using multi-hop, but can also go into sleep mode to preserve power and thereby
achieving a longer battery life. Because of the possibility of end-devices going
into sleep, ZigBee radios are often used in Wireless Sensor Networks (hereafter
WSN). A WSN is a network of data sensing nodes which collect all data at a
certain node which stores and processes the data from all the nodes [15]. The
rowing tracking application can be seen as a WSN since all boats have their own

19

Figure 5: XBee ZB PRO 63 mW RF Module

sensors, collect data and send the data ashore to be processed and displayed.
In June 2005, the ZigBee specification has been released and products are

widely available on the market ever since. Many of the available solutions are
for domestic usage and therefore have a limited range to about 100 meters.
Probably the most well known implementation of ZigBee has been in the XBee
ZB modules. XBee ZB modules are easily available ZigBee-compliant chips
that are manufactured by Digi International. There are two models: a low
cost 1 mW XBee, available at e 20 and a high power 63 mW XBee-PRO,
available at e 35. The 1 mW XBee is intended for home usage and has a small
range of 100 meters due to its low power. The XBee-PRO in contrast has an
advertised range of about 3.2 kilometers and is therefore very suitable in the
case of rowing tracking. Specifically the XBee-PRO ZB PRO S2B module, as
shown in figure 5, is selected because of the high transmission range and the
ZigBee mesh networking support.

The XBee-PRO ZB S2B module provides mesh networking according to the
ZigBee standards, with additional buffer methods and fault tolerance. Security
can be enabled and the unit tightly integrates with the Arduino system, making
it easy to operate. The module can operate either in AT command mode,
in which the module acts as a physical serial communication line, or in API
mode, which provides more control over messaging, network diagnostics and
the possibility to extract the sender’s ID. The advertised outdoor line-of-sight
range is 3.2 kilometers and data throughput can be achieved up to 1 Mbps.
Even when not having intermediate nodes available this range should well suit
its purpose. The indoor/urban range is advertised as only 90 meters, which
indicates that obstructions limit the range extensively.

Some simple tests were done to determine the real range of the XBee module.
A microprocessor was programmed to sent the current GPS reading via an
XBee radio to a static receiver XBee every second. The receiver records the
transmitted location of the beacon device to later plot distances. The beacon
was then moved away from the receiver by walking till the receiver lost the signal
for more than ten seconds. It was found that in a line of sight, a distance of more
than 1500 meters could be achieved, although not always reliable. Obstructions

20

clearly block the signal and to achieve a more reliable communication network
over the same range shorter distance intermediate routers should be used.

To test the mesh network capabilities along the 2 kilometer track, the same
beacon test was performed again but this time with router nodes located ev-
ery 500 meters between the start and the finish-tower, similar to [2] in which
ZigBee PRO performance is tested for point-to-point and multi-hop transmis-
sions. During this test it was possible to transmit data along the full length of
the track, although sometimes packets were lost and sometimes multiple packets
were delayed and received later all at once. Both these issues could be attributed
to the loss of a route to the receiver node. The beacon node starts within range
of the coordinator and therefore has a high chance of creating a direct route.
The further the beacon gets, the poorer the signal strength becomes. At some
point the beacon moves out of the coordinators range and has to discover a new
route to the receiver, via a router node. Since in normal network discovery,
link status messages are only sent 3–4 times a minute [27], there is a possible
time span of 20 seconds in which there is no valid route to the receiver. Since
the XBee module has a serial buffer and a retry scheme, in which the module
re-transmits data up to four times until an acknowledgment is received, a small
amount of time without a valid route can be overcome, but when the buffer is
full, data is lost. The latter case accounts for the missing packets during the
test and the former case where there is still data in the buffer and some data is
being re-transmitted, accounts for the case where multiple packets are delayed
and later are all received at once.

The solution to the issues of passive route discovery (only perform route
discovery when there is no response to a link status message) was found in
many-to-one routing, which applies active route discovery for a route to a data
collector. In networks where many devices must send data to a central collector,
the normal routing scheme requires significant overhead: every device which
wants to send data has to perform its own route discovery. Instead in many-
to-one routing, a single many-to-one broadcast transmission is sent from the
data collector to establish reverse routes on all devices [27]. When a device
wants to send data to a data collector and finds a many-to-one route in its
routing table, it will not perform route discovery but starts transmitting along
the known route. The many-to-one route request is sent periodically by the
data collector to update and refresh the reverse routes in the network, based
on the current link signal strength. This way, when a roving node moves away
from the coordinator in the direction of a router, the link signal strength to the
coordinator will at some point be less than the signal strength to the router,
while still in range of both devices. When a many-to-one route request is then
sent, the reverse route is updated to make use of the router instead of keeping
the direct route to the coordinator. Therefore many-to-one routing will make
sure that a valid route to the data collector is available at all times. When
performing the beacon test again, with many-to-one routing turned on, no data
was lost when moving along the track with the same speed as a rowing boat at
average racing speed.

In wireless applications security is always an important consideration. Unau-
thorized access to the network could lead to injection of malicious data or worse,
data manipulation or loss. The ZigBee specifications also consider secure com-
munications. The security architecture is implemented into different layers of
the communication protocol in order to ensure message integrity, confidential-

21

ity, and authentication. Security can be applied to the network layer and to the
application support sublayer (hereafter APS) [27]. In the network layer packets
are encrypted and authenticated using 128-bit AES encryption with the network
key and devices can only communicate in a network when they share the same
key. A frame counter is used against replay attacks. On the APS layer, security
can be used to encrypt data between source and destination. This provides
end-to-end security, which for the application of a rowing tracker is not neces-
sary, since the whole network is considered secure. A link key is preconfigured
into all XBee devices so that the network key does not have to be exchanged
unencrypted. Furthermore the coordinator is configured to only allow nodes to
join to the network that share the same link key.

3.6 Power

To enable all the components to work well, a reliable power source needs to
be used. Various rechargeable batteries have been compared, but the cheapest
available battery had the correct plug and performed well with the Arduino Fio.
The battery used is a brand-less polymer lithium ion battery with a capacity
of 1400 mAh at 3.7V. The battery shown in figure 6, has overcharge and short
circuit protection and a cut-off voltage of 3.0V. According to the Arduino Fio
specifications the input voltage cannot be lower than 3.35V although in practice
no problems have been experienced on low power levels. The Arduino Fio
provides a built in charge circuit for charging the battery over USB.

The power consumption and the price per module are shown in table 2. In
the worst case scenario the onboard device can run for almost four hours on one
battery load. This probably is a little more, since the XBee will not constantly
be transmitting and the SD card will not be constantly writing. This duration
is more then enough for the usage during rowing regattas, since boats will be
on the water for less than two hours consecutively.

Figure 6: 1400 mAh 3.7V polymer lithium ion battery

22

Table 2: Power consumption & price per module

Module Power consumption Price

Arduino Fio 50 mA e 16.50
Accelerometer 0.165 mA e 7.90
GPS 100 mA e 27.96
SD card idle 1 mA

e 10.56
SD card transfer 100 mA
XBee idle 15 mA

e 33.00XBee receive 47 mA
XBee transmit 205 mA

23

4 Stroke Rate Tracking

In rowing the number of strokes per minute always has been an important
parameter. From this number it can be inferred if a crew is accelerating or if
they are tired and just keep the same pace. Because this number gives so much
information, the inclusion of the stroke rate in the live tracker would have a
great advantage.

This chapter explains how the stroke rate is extracted from the acceleration
data. Section 4.1 explains how the anatomy of a rowing stroke results in a typical
acceleration pattern. Related work on stroke detection is treated in section 4.2.
A solution to the problem of the unknown orientation of the accelerometer is
given in section 4.3 and finally two actual stroke detection algorithms and their
results are discussed in section 4.4.

Figure 7: Stages of the Rowing Movement

4.1 Anatomy of a Rowing Stroke

The rowing stroke by itself is a repeated movement in which legs, back and
arms work together to move the blade of the oar in the water and propel the
boat forward. It is typically divided into two parts: the drive and the recovery.
The drive happens immediately after the catch and consist of the leg push, then
a back swing and finally the arm movement as shown in figure 7 from left to
right. After the finish of the drive and the blade removal from the water it is
time for the recovery. The recovery is similar to the drive, but then backwards:
first move the arms away, then bend the back and finally pull-in the legs. This
results in a typical boat acceleration as depicted in figure 8 [28].

The graph starts with a part of the recovery: the pull-in of the legs. The
movement of the body weight leads to a deceleration till the rower reaches the
front position. The catch is made which slightly decelerates more till the legs
are pushed down which results in the acceleration becoming positive, depicted
in figure 8 just after the dotted line marked ’catch’. Swinging the back still
results in some acceleration but it is not possible to keep the high level of the
leg push so it results in a small dip. Finally the arm pull is made which further
accelerates the boat till the final swing and the finish. At this point the boat’s
mass takes over and accelerates further during the recovery with the arms and
back. Then the cycle is started over again.

24

0

Recovery

Catch Finish

Drive Recovery

Figure 8: Typical Pattern of Boat Acceleration during the Stroke Cycle [28]

4.2 Related Work

The Talos Rowing Android application [14] algorithm uses the acceleration along
two axes of an Android mobile phone to determine the amount of strokes per
minute. Because of this, it is only possible to use this app if the orientation
is known (rower facing or cox facing, portrait mode or landscape mode) and
the tilt of the phone is between 90 and 180 degrees. Measurements are taken
with a speed of around 50 Hz (depending on the phone’s accelerometer and
capabilities). A low-pass filter is used to compensate for the force of gravity. By
subtracting the long-term average over one axis from the measured value, only
the dynamic component of the acceleration is taken into account. The formula
of Pythagoras is applied to the dynamic components along the two axes to
obtain the magnitude of acceleration.

Stroke detection is done using a model of half a sine wave. To detect a
stroke the algorithm uses a number of checks. First the negative acceleration
during the catch has to pass a certain threshold to exclude noise. Second the
negative acceleration has to have at least half the amplitude of a low-pass filtered
average over the last negative peaks. This dynamic threshold makes sure that
other decelerating factors, like the dip just before the finish are not recognized as
a stroke. When the negative acceleration becomes a positive acceleration again,
and the peak passed all checks, a stroke is detected and the time is recorded.
Two sequential time stamps are then used to determine the stroke rate.

4.3 Orientation Invariant Measurements

Since the onboard device has to be as unobtrusive as possible, the decision
was made that there should be no constraints on the placement of the onboard
device. This yields that the accelerometer data cannot be directly used for
analysis. First the axis parallel to the boat’s movement needs to be inferred
from the accelerometer data.

4.3.1 In Theory: Orientation Invariant Measurements

In [29] a method is proposed which uses gravity to estimate the accelerometer
orientation. Accelerometers measure gravitational (‘static’) acceleration as well
as ‘dynamic’ accelerations caused by the propulsion of the boat to which the
sensor is attached. Gravity pulls downward along a single (virtual) axis of the
accelerometer and this results in an acceleration output in the opposite direction

25

along that same axis. Since the sensor is fixed to the boat, the sensor’s orienta-
tion is linked to the orientation of the boat. The force of gravity can therefore
be used to estimate the vertical component. The dynamic part of the acceler-
ation is zero on average, so over a chosen sampling interval all readings along
an axis are averaged. This average is an estimate of the vertical acceleration
corresponding to gravity and is called v. The dynamic part of the acceleration
d, caused by the propulsion of the boat, is then calculated by subtracting v
from the raw measurements a:

d = a− v.

Using vector dot products, the projection of d upon the vertical axis is com-
puted:

p =

(
d · v
v · v

)
v.

Next, this dynamic vertical component p is subtracted from the dynamic accel-
eration d which results in the dynamic horizontal acceleration h:

h = d− p.

Principal component analysis (PCA) is done on the acquired horizontal plane
as in [30], to infer the axis of movement along the axis of which the acceleration
variation is greatest, usually the rowing direction. It is then still unknown
what the forward direction of movement is since during rowing the average
acceleration will almost always be 0. The knowledge about the anatomy of the
rowing stroke is used to find the forward direction. In [28] it can be seen that
the negative peak during the catch is almost always greater in magnitude than
the positive peaks during the drive. Therefore the minimum and the maximum
in the data is recorded over a chosen sampling interval, typically a couple of
minutes. If the magnitude of the maximum is greater than the magnitude of
the minimum, the direction of the movement along the axis is backwards.

The achieved vector represents the boat’s acceleration along the axis of move-
ment. This vector can be used for further analysis and stroke detection.

4.3.2 In Practice: Orientation Invariant Measurements

Unfortunately the usage of vector dot products, matrix multiplication, principal
component analysis and large amounts of data is not possible on the chosen
microprocessor due to the limitations in memory and processing power. A
method needed to be found which achieves the same goal while also outputting
roughly the same resulting data. Inspiration was found in [14] which uses only a
couple of variables and simple calculations to obtain an acceleration magnitude
from two axes data.

Using a low-pass filter, the long-term average ā over each of the three axes
is subtracted from the measurements a = (ax, ay, az) in order to obtain the
dynamic component of the acceleration d = (dx, dy, dz):

d = a− ā.

The axis with the highest amplitude during a certain sampling interval amax

is chosen to assess the direction of acceleration. Since the only propulsion of

26

the boat is mainly done in the direction of the boat’s movement, Pythagoras’
theorem can be applied on all the three axes of d to obtain the magnitude of
the acceleration vector ~a:

~a =
√
d2x + d2y + d2z.

The direction of acceleration in amax is then determined and applied to the
acceleration vector ~a

~a =

{
~a, if amax ≥ 0

−~a, otherwise

to turn the acceleration in the correct relative direction. The acquired value now
corresponds to the acceleration of the boat along the axis of movement although
the absolute direction is still unknown because the sum of accelerations will be
zero on average. Again the knowledge of the rowing stroke is used to find this
direction. A certain sampling interval is used to find the minimum and the
maximum of the acceleration and the lowest magnitude is used as being the
absolute direction of movement.

4.3.3 Results

To verify our practical method for obtaining orientation invariant measurements,
the output data of the theoretical method is compared to that of the practical
method. First the raw data of one of the races was analyzed using both methods.
In figure 9a a fragment of the raw accelerometer data is shown. First look at the
z axis; this axis has a constant offset of about 1g and almost no variance. This
can be explained as a result of the gravity force pulling downwards. Second,
the data on the y axis of the sensor has an average of zero and again almost
no variance. This axis was sideways to the boats movement and therefore has
almost no acceleration whatsoever. Then lastly, the x axis of the sensor has a
high variance and shows the typical pattern of a rowing stroke, although it is
displayed upside down. From this it can be concluded that the x axis of the
sensor was almost completely aligned with the direction of movement of the
boat, and that the sensor was not tilted.

Figure 9b shows the output of the theoretical and practical orientation in-
variant measurement filters. The stroke pattern is clearly visible in both the
outputs. Apart from the initial stroke, the outputs of both filters are very alike.
It can be seen that all negative peaks caused by the catch are at exactly the same
places. During the drive, the practical filter results in some noise, especially at
the point where the back swing starts (dip around 0g). This is probably caused
by sideway movement which is incorporated by the practical filter as part of
the acceleration. These movements along the up and down and sideways axis
of the boat result in fluctuations of the resulting acceleration value. However,
in rowing these movements tend to be small and average out over time. This
would mean that the resulting magnitude of the acceleration obtained by the
practical filter will be a little higher than the magnitude obtained using the
theoretical based filter.

27

2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.7 2.71

x 10
4

−2

0

2
A

c
c
e
le

ra
ti
o
n
 (

g
)

x axis

2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.7 2.71

x 10
4

−2

0

2

A
c
c
e
le

ra
ti
o
n
 (

g
)

y axis

2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.7 2.71

x 10
4

−2

0

2

A
c
c
e
le

ra
ti
o
n
 (

g
)

Time (samples 50Hz)

z axis

(a) Fragment of Raw data

2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.7 2.71

x 10
4

−1.5

−1

−0.5

0

0.5

Time (samples 50Hz)

A
c
c
e
le

ra
ti
o
n
 (

g
)

Theory

Practice

(b) Theory vs Practice on Raw data

2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.7 2.71

x 10
4

−2

0

2

A
c
c
e
le

ra
ti
o
n
 (

g
)

x axis

2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.7 2.71

x 10
4

−2

0

2

A
c
c
e
le

ra
ti
o
n
 (

g
)

y axis

2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.7 2.71

x 10
4

−2

0

2

A
c
c
e
le

ra
ti
o
n
 (

g
)

Time (samples 50Hz)

z axis

(c) Fragment of Rotated data

2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.7 2.71

x 10
4

−1.5

−1

−0.5

0

0.5

Time (samples 50Hz)

A
c
c
e
le

ra
ti
o
n
 (

g
)

Theory

Practice

(d) Theory vs Practice on Rotated data

Figure 9: Orientation Invariant Output

Since the raw data of the accelerometer was very nicely aligned with the
rowing direction of the boat, a second evaluation has been performed on a
transformed dataset. The raw data has been multiplied with a random rotation
matrix to mimic a random oriented placement of the sensor on the boat. The
rotated data is shown in figure 9c. In this figure it is visible that the accelerom-
eter sensors along both the x and y axis measure parts of the static component
caused by gravity, indicated by the offset on these axes. All three x, y and z
axes measure parts of the dynamic acceleration caused by the rowers’ propul-
sion, visible as negative peaks on the x axis and positive peaks on the y and
z axis.

In figure 9d the output is shown of the theoretical and practical orientation
invariant measurement filters applied to the rotated dataset. Again the stroke
pattern is clearly visible in both the outputs. The output of the filters on
the rotated data is by eye not distinguishable from the output of the filters
on the raw data. The peaks are again at exactly the same place and also the
noise during the drive is present. From this evaluation it can be concluded
that both the theoretical and practical filters will perform correct in real-life
situations. For easy stroke detection the negative peak at the catch should
easily be recognized in the output data and this is the case for both filters.

28

4.4 Stroke Detection

To be able to show the stroke rate of a crew, it is necessary first to detect a
single stroke. According to [28] the negative peak of the catch has the highest
correlation with the stroke rate and can therefore be perfectly used in stroke
detection. The interval between two strokes can then be used to determine the
amount of strokes per minute.

4.4.1 Simple Peak Detection with Static Threshold

First simple peak detection has been applied to the accelerometer’s orientation
invariant measurements. The negative peak of the catch is searched for below a
certain threshold. When the signal becomes higher than zero again, the detected
peak is stored. The time between the last two peaks detected is used to calculate
the stroke rate.

As seen in the top graph of figure 10, the peaks are detected well. However,
this computational inexpensive algorithm sometimes misses a starting or faulty
stroke. Besides the threshold needs to be adjusted for each type of boat, since
the negative peak at the catch in for example a single skiff is less deep than in
an eight. This makes the algorithm harder to use in a real-life situation.

The peaks found by this algorithm are the absolute peaks in the signal. Since
the deceleration caused by the rowing stroke is a combination of leg, back and
arm movement, the absolute peak is not always exactly at the same position
during the stroke. Due to small variations these peaks shift a little in time. This
difference in time is then propagated to the calculation of the amount of strokes
per minute (hereafter SPM). As can be seen in figure 11 the outcome of this
algorithm is very erratic. When a peak is slightly shifted, two SPM readings are
effected, namely the one given with that peak and the one after, since both use
the same time stamp, which has the shifted peak. The output therefore wags
around the actual value and is not very consistent.

4.4.2 Averaged Peak Detection with Dynamic Threshold

To overcome the shortcomings of the simple peak detection algorithm the spe-
cific problems in this algorithm were targeted. First the static threshold is
made dynamic. During a certain sampling interval the minimum acceleration is
recorded. Five of these minima are stored. When a new minimum is processed,
the lowest value (the highest negative peak) of these five minima is multiplied
by 0.6 and set as the new threshold. The threshold also has a set minimum
so that during rest, the threshold will not become too small and cause noise to
trigger a false stroke detection. The threshold is initialized at a value of −0.25.
Specific initialization is needed since the algorithm needs to detect peaks to
start updating its threshold. The value is deliberately chosen close to zero, so
that for all types of boats at peaks are detected. During the time of rowing
up to the start, the algorithm will adjust the dynamic threshold so that it will
match the crews minimum acceleration.

The second improvement is made on the absolute peak detection. After
careful inspection of the acceleration data it was found that the peak itself
is not very time constant, but the threshold passing points are. When only
taking into account the moment in time when the acceleration drops below the
threshold, a change of the dynamic threshold could cause a shift in time again.

29

2000 2500 3000 3500 4000 4500

−1

−0.5

0

0.5

A
c
c
e

le
ra

ti
o

n
 (

g
)

Simple peak with static threshold

2000 2500 3000 3500 4000 4500

−1

−0.5

0

0.5

Time (samples 50Hz)

A
c
c
e

le
ra

ti
o

n
 (

g
)

Averaged peak with dynamic threshold

Figure 10: Peak Detection Methods

Therefore the averaged time between dropping below the threshold and rising
above the threshold is taken as the peak of the signal. In the bottom graph of
figure 10 the peak positions are visualized. It might not be visible to the naked
eye, but the peaks are spaced more equal in time which is confirmed in figure
11 by the less erratic movement of the output of this algorithm.

4.4.3 Results

A validation of the SPM rates has been done using an onboard commercial
device from Nielsen Kellerman, the StrokeCoach [13]. This device uses input
from a three-axis accelerometer to display stroke rates in the range 10-115 SPM
with a 1/2 SPM resolution. Furthermore it stores the stroke rate and count
automatically every 10 seconds.

In figure 11 the results of the simple peak detection with static threshold,
the averaged peak detection with dynamic threshold and the StrokeCoach SPM
data are displayed. The averaged peak detection algorithm closely matches
the StrokeCoach data during the first 50 seconds. Then the StrokeCoach data
starts to fluctuate quite a bit, but the averaged peak algorithm matches the
StrokeCoach data always within 2 SPM.

Unfortunately it turns out that the data from the StrokeCoach is not always
as accurate as is advertised. After questioning various coaches and rowers, it
seems that the data always has the tendency to fluctuate around the actual value
with about 2 SPM variation. To verify this, a simple combined movement test
has been done. In figure 12 three StrokeCoaches with Surge Rate Technology
are attached to a single piece of cardboard and moved all at once. It can be

30

0 50 100 150 200 250 300 350 400 450
28

30

32

34

36

38

40

42

44

Time (s)

S
P

M

Simple peak with static threshold

Averaged peak with dynamic threshold

NK StrokeCoach®

Figure 11: Comparison of Peak Detecting Algorithms on Accelerometer Race
Data against StrokeCoach SPM data

seen that all three devices give a different SPM reading varying up to 1 SPM
between devices.

Since the StrokeCoach data was not having enough accuracy, another source
for validation needed to be found. A video recording was made of a training
session while the onboard device was storing its accelerometer data for post-
processing. The video-footage was aligned in time using filmed footage of a
GPS clock on a mobile phone and the GPS recordings of the onboard device.
The footage was manually annotated for strokes. The footage was taken at 24
frames per second so every stroke was measured with a 0.04 second accuracy.
Figure 13 shows the calculated SPM values from the video footage in red and
the result of the dynamic threshold detection with averaged peak in blue.

Two segments of race rate rowing are included in the graph, as well as a
segment of low tempo rowing. Unfortunately the video footage was interrupted
after the power 20 push at around 90 seconds. At this very same moment,
the switch between race tempo and low tempo rowing, the dynamic threshold
detection with averaged peak algorithm misses two strokes. This is caused by
the fact that during race tempo the negative peak at the catch is deeper than
during low tempo rowing. The dynamic threshold needs some time to adjust
to this and thereby misses these two first strokes of the low tempo. Since the
tempo thereby drops below 10 SPM, a 0 SPM value is given as explained in
section 4.5.

It can be seen that during these 150 seconds of data, the detection algorithm
shows a close match to the video footage data. The data in the footage actually

31

Figure 12: Three StrokeCoaches with Surge Rate Technology displaying differ-
ent SPM while moved together

40 60 80 100 120 140 160 180 200
16

18

20

22

24

26

28

30

32

Time (s)

S
P

M

Averaged peak with dynamic threshold

Video footage

Figure 13: SPM Extracted from Video Footage Compared to the Averaged Peak
Detection with Dynamic Threshold Algorithm

32

have a higher variance during the low rate rowing. It can thereby be concluded
that the orientation invariant filter and the stroke detection algorithm perform
at least as good as the state of the art commercial solutions and might even
perform better.

4.5 Tracking

Every time a new stroke is detected, the microcontroller sends a message through
the XBee network to the shore’s data collector with the peak’s device time in
milliseconds. The server can use two subsequent messages to calculate the cur-
rent SPM and display this on the live tracking application. When the detected
interval between two peaks is larger than 6 seconds, the value is ignored since
in that case the stroke rate is lower than 10 SPM. Furthermore, every time a
peak message arrives, a 6 second timer is set for that specific node which results
in a 0 SPM rate when no new message arrives before the timer expires. This is
needed since when no strokes are made, no peaks are detected and therefore no
new SPM rate is calculated. In that case, when a crew is resting, the tracker
would keep showing their last stroke rate.

33

5 Position Tracking

For live tracking purposes the position data is the most important parameter.
If this value is available for all crews it can be used to show the crew’s current
ranking, the distance between crews and the distance to the finish line. This
gives the opportunity to fully assess the current race situation and make well-
founded predictions of the final score.

In this chapter some methods are proposed to obtain an accurate along-
track position of a boat. Section 5.1 explains the algorithms used to calculate
along-track positions and the along-track distance travelled by a boat. Further-
more baseline measurement results for rowing races are obtained from GPS data
only and compared to the conventional timed results. Section 5.2 proposes two
methods to improve the along-track distance measurements. First the use of
a cheap static reference GPS receiver for the reduction of omnipresent noise is
examined in section 5.2.1, and second the implementation and optimization of
a Kalman filter is proposed in section 5.2.2 which combines information from
the GPS and accelerometer to improve the measurement accuracy.

5.1 Along-track Distance

Side by side rowing regattas are usually held over a distance of 2000 meters.
The six competing crews all start in their own lane next to each other. During
the race however, it is not necessary to stay in your own lane. As long as a crew
is not bothering other crews, it is perfectly within regulations to zigzag across
the track.

For the live tracking purpose it is not necessary to show the absolute location
of a boat on the track. Actually this could be confusing to the viewers, since
multiple crews of the same club could be racing against each other and when
some of them might swap lanes, people might interchange the crews. Another
possibility is to display the distance travelled by a crew, since the start of
the race. Unfortunately this is also not a usable parameter since the possible
zigzagging could cause a higher value than the distance moved along the track
since the start of the race.

The along-track distance is the only possible parameter to use in the case of
rowing tracking. The absolute positional data therefore needs to be projected
onto an along-track distance measurement scale. Several mathematical formulas
are used to transform the data and get a position along the rowing track. The
along-track position is then recorded every second. The position at the full
second before the start signal is given, is used as an offset to correct all further
measurements and get the relative displacement along the track.

In section 5.1.1 an evaluation is made of two possible formulas that calculate
distances along the globe. Implementation of the translation method from ab-
solute positions to relative distance is described in section 5.1.2 and the results
of a comparison between timed race results and GPS measured race results is
made in section 5.1.3.

5.1.1 Haversine and Vincenty

As Pythagoras found out in the 6th century BC, the Earth is not a flat disk,
but actually has a spherical shape. When calculating distances between two

34

locations this needs to be taken into account. A line along a sphere has a longer
length than a straight line between two points crossing the sphere.

For great-circle distance calculations between two points on a sphere, the
Haversine formula is used [31]. This formula is an equation used in navigation
which calculates the great-circle distances between two points on a sphere from
their latitudes and longitudes. It is a simple formula that can be applied in a
fixed number of calculation steps and could easily be performed on the selected
microcontroller. However, the Haversine formula is only an approximation when
applied to the Earth. The Earth’s radius varies from 6356.752 km at the poles
to 6378.137 km at the equator [32]. Furthermore, the radius of curvature of
a north-south line on the Earth’s surface is greater at the poles than at the
equator. Therefore the Haversine formula introduces small errors because of
the spherical geometry and can not give more accurate results than 0.5%. On
a 2000 meter rowing track this could result in errors up to 10 meters.

Since a 10 meter accuracy is way too low for proper rowing tracking, other
formulas for geographical distance are considered. In 1975, Thaddeus Vincenty
developed two iterative methods to calculate the distance between two points on
the surface of a spheroid. These methods take into account that the Earth is a
oblate spheroid and are therefore more accurate than Haversine’s formula. The
inverse Vincenty method computes the distance between two points given their
latitude and longitude. This formula has widely been used in geodesy because
of its accuracy to within 0.5 mm on the Earth ellipsoid WGS-84, which is in use
by the Global Positioning System. When comparing Haversine’s and Vincenty’s
formulas on the 2000 meter distance from the start (52.323567, 4.82255) to the
finish (52.327808, 4.85106) of rowing track the Bosbaan in Amsterdam, the
formulas have an outcome of 1994 meters and 2000 meters respectively. For the
application of rowing tracking, the high accuracy of Vincenty’s formula would
be perfect. However, because of the number of iterations needed to achieve
this high accuracy, the computation might not be feasible to implement on the
microcontroller.

5.1.2 Implementation

Because of the heavy recursive computations used in Vincenty’s formula, it is
decided to offload the computations to the receiving server onshore. The GPS
measurements are encapsulated in the NMEA-0183 protocol. These messages
are time stamped by their nature and it is therefore not a problem that the
communication overhead introduces an extra delay in data delivery as long as
the data remains FIFO. The offloading also has the advantage that the onboard
devices do not need to know on which rowing track they are being used, since
this could be setup at the main processing server.

On the server a state for each of the nodes is kept identified by the source
address of the data. When a data packet arrives at the server, the GPS mea-
surement time, latitude and longitude are extracted from the data packet and
stored in the database. The extracted data is also directly used for computation
of the along-track distance from the sending boat. When a race is started, the
state of the competing boats are updated with the starting time. Since GPS
data is only outputted once every second, the location data from the full second
before the start time is used as the boat’s initial position. For distance calcu-
lations it should not matter that this is not the location at the exact starting

35

start

along-track distance

boat b’

track t’track t

φ

finish

boat b

tb tb’ct ct’
φ’

Figure 14: Along-track distance determination using Vincenty’s formula

time, since boats are kept at the same spot during the starting procedure. This
procedure involves a roll call, and usually takes about ten seconds, which is
lengthy enough for a single GPS measurement.

Before the regatta, the orientation of the track is programmed into the server
application, by entering a start point t and finish point t′, identifying the great-
circle path 7−→ with the orientation of the track. This data is used to calculate
the along-track position.

The along-track position is a parameter which indicates in meters how far
on the track a point is positioned. The along-track position of a given point
is determined using the following method as depicted in figure 14. First the
bearing from the start point of the track t to the end point of the track t′ is
calculated using Vincenty’s formula. Then the Vincenty’s distance tb between
the start of the track t and the point b is calculated. This calculation also gives
the bearing φ from the start point t to the measured point b. The distance ct
of the point b to the great-circle path 7−→ is then determined using the cross-
track distance formula which needs φ, tb and the bearing from t to t′. Finally
the distance tb, the distance ct and the bearing φ are used to determine the
along-track position.

When both starting time and the GPS data from the full second before the
starting time are present in the node’s state, the along-track position during
that second is calculated and stored. When new GPS readings are received,
the along-track position for these points are calculated as well. The along-track
distance can then be calculated by subtracting the along-track position at the
start time from the current along-track position. This obtained distance can
then be used in the live tracker.

5.1.3 Results

This section displays the results of the Vincenty’s along-track distance algorithm
using GPS data only to determine finish timing results for 2 kilometer races.
Evaluation was done based on race times measured by the conventional timing
systems of Time-Team. A very accurate clock is used to time stamp the start
during the starting procedure. When boats pass the finish line an umpire presses
the finish button giving another time stamp. The delta time is used as the race
result-time for a boat.

A GPS clock is synchronized to the conventional timing system clock to

36

be able to cross-reference time stamps. To evaluate the along-track travelled
distance, the start time stamp is used and the associated along-track position
is used. This is applied as an offset to all subsequent measurements and it can
then be calculated what time it took according to the GPS data to travel an
exact 2000 meters. Since GPS measurements are only taken every full second,
interpolation between the last measurement before the 2000 meter travelled
distance and the one after, is used to get the exact sub-second time. From this
race-time the sub-second part from the start time stamp is subtracted, since it
is clear that no movement was made during that period.

Table 3: GPS Along-track Distance Results of 14 Independent Races

Conventional Timed GPS Timed Difference
06:13,74 06:12,91 -00:00,83
06:13,74 06:13,54 -00:00,20
07:00,00 07:01,12 00:01,12
07:17,09 07:17,34 00:00,25
07:27,19 07:28,02 00:00,83
07:28,41 07:29,01 00:00,60
07:30,86 07:30,91 00:00,05
07:35,66 07:36,04 00:00,38
07:38,84 07:39,29 00:00,45
07:53,84 07:54,48 00:00,64
08:25,91 08:26,13 00:00,22
08:28,68 08:28,21 -00:00,47
08:36,52 08:37,35 00:00,83
08:38,13 08:37,57 -00:00,56

A total of fourteen boats were tracked during the last national regatta of
2013 and the algorithm results are compared to the conventional timing system
results and shown in table 3. It can be seen that GPS timed race results are very
close to the conventional timed results. All differences are below one second,
bearing one. The average error is only 00:00,53 seconds and has a standard
deviation of 00:00,30 seconds. It can be concluded that the GPS along-track
distance is very close to the actual time spent rowing over the 2000 meters.
These results are far better than what was expected since non-augmented GPS
point positioning has an average error of at least 6.8 meter [7]. While having
this error during two individual measurements (start and finish) the possible
error is twice the normal error and therefore 13.6 meter. At an average boat
speed of five meters per second this would result in a 2.72 second error.

The high performance of the GPS timing could be explained by the fact
that not absolute point positioning is used but a derived along-track position is
used, which could minimize the error. The error on an absolute point could be
directed in 360 degrees. The along-track position only depends on the position
along the track and thus along one (virtual) axis. Only when the error is in
completely the forward or backward direction of the track, it fully effects the
along-track position. Say for example that the error is perpendicular to the
track, the along-track position would not be affected by the error. In the case
of a 45 degree error only about 70% of the error would make it into the along-
track position. Actually in 358 out of 360 cases the absolute positioning error is

37

minimized when using the along-track position. On average this minimization
would account for 36% of error reduction, namely 1 minus the absolute cosine
integrated over 0–2π. When projecting this error reduction onto the expected
error in seconds, this would result in a 1.73 second error at an average boat
speed of five meters per second. This value more closely resembles the error
seen in the GPS timed results.

Furthermore, some error sources of GPS positioning like satellite ephemeris
error, satellite clock bias and atmospheric effects could well give the same or at
least similar errors during the complete race. Although in the normal case this
would result in an error because one is interested in absolute point positioning,
in the case of the rowing tracking this error would be cancelled out because
the same error is used in two measurements and is therefore cancelled in the
difference calculation.

Finally it can be concluded that the results obtained by using GPS timed
races are usable for live tracking rowing races. Although the error is still half
a second on average, this is far better than what was expected. This can be
explained by the usage of derived positional parameters instead of absolute point
positioning.

5.2 Sensor Fusion

For rowing, race timing is done with a precision of one hundreds of a second. For
very equally skilled rowing teams, the difference on the finish line is sometimes
merely a couple of hundreds, but most often the difference is bigger than half a
second and can easily be seen by eye.

The GPS timing results found in section 5.1 already have this sub-second
precision but in order to be able to show even the smallest differences between
crews, an additional step is needed. Two methods are researched upon to im-
prove precision. The first is the use of an additional GPS receiver at a static
point, which is explained in section 5.2.1. The second is the combination of the
accelerometer data for short term and the GPS data for long term precision,
using a Kalman filter, as is explained in section 5.2.2.

5.2.1 Simple Differential GPS

The accuracy of GPS single point positioning has always been limited by many
errors, including satellite ephemeris error, satellite clock bias, atmospheric ef-
fects, receiver noise, multi-path and before May 2, 2000, selective availability
[7]. A general method to correct for these errors is differential GPS (hereafter
D-GPS). In D-GPS a fixed ground-based reference station is used to receive the
difference between the positions indicated by GPS and the known fixed position.
These differences are then applied to the roving GPS receiver’s data in order to
correct for the reception noise. These implementations can enhance the GPS
point positioning accuracy from the 15-meter nominal GPS accuracy to about
10 cm in case of the best implementations.

Normally reference stations broadcast the corrections that need to be ap-
plied to the roving GPS receivers data. This implies that a GPS receiver needs
an additional antenna to receive the broadcasted data. Since one of the require-
ments of our onboard devices is to keep them as cheap as possible, the addition

38

of components needs to be avoided. Besides, reception of publicly available D-
GPS signals is often only available along the coastline and harder in domestic
areas. The further away the reference station is, the less useful the corrections
are, since the atmospheric effects are very local.

It is therefore opted to use a local GPS receiver to obtain correction data. A
test is done in which two GPS sensors have obtained twelve hours of data after
an initial hour of warmup time, in order to smooth out its location details. The
first half of the data is averaged to obtain the actual location of both receivers.
Then the offset to this actual location was calculated for every sample in the
second half of the data. In figure 15a and 15b the delta offset from the actual
location is plotted. It is clear that GPS detected locations wander around the
actual location. This is expected, but it is furthermore expected that both
receivers wander in sync, due to the same atmospherical conditions. A D-GPS
calculation is then applied by subtracting the offsets of the first sensor from the
values of the second sensor. In figure 15c the resulting deltas are shown. It is
clear that the output values still wander around the actual GPS location.

−4 −3 −2 −1 0 1 2 3 4

x 10
−4

−4

−3

−2

−1

0

1

2

3

4
x 10

−4

Delta latitude

D
e
lt
a
 l
o
n
g
it
u
d
e

(a) Delta GPS Sensor 1

−4 −3 −2 −1 0 1 2 3 4

x 10
−4

−4

−3

−2

−1

0

1

2

3

4
x 10

−4

Delta latitude

D
e
lt
a
 l
o
n
g
it
u
d
e

(b) Delta GPS Sensor 2

−4 −3 −2 −1 0 1 2 3 4

x 10
−4

−4

−3

−2

−1

0

1

2

3

4
x 10

−4

Delta latitude

D
e
lt
a
 l
o
n
g
it
u
d
e

(c) Delta D-GPS

Figure 15: Delta GPS Readings

Table 4: Standard Deviation Delta GPS Readings

Latitude Longitude
Sensor 1 4.075×10−5 5.219×10−5

Sensor 2 3.761×10−5 4.210×10−5

D-GPS 5.250×10−5 6.688×10−5

39

When comparing the standard deviations shown in table 4, it can be seen
that the variance in the D-GPS corrected measurements actually is higher than
those of the single sensor readings. This means that it is not possible to use con-
sumer electronics GPS sensors in a D-GPS application. Upon further research
it was found that the used satellites in the calculation of the location determine
the noise. Since typical receivers switch among satellites fairly frequently based
on proprietary criteria that vary from one manufacturer to another, one model
of unit to another, and probably even one software release to another, it is not
known which satellites are used. If two receivers are only 15 centimeters apart
they might already use different satellites in their calculations and therefore
have different noise values. This is further explained by figure 16 in which both
delta latitude and delta longitude of the two sensors is compared over time. The
values of two receivers never seem to synchronize and usage of simple D-GPS
using cheap consumer electronics therefore has to be excluded as a possibility
in the rowing tracking application.

0 0.5 1 1.5 2

x 10
4

−2

0

2

x 10
−4

D
e

lt
a

 l
a

ti
tu

d
e

Sensor 1

Sensor 2

0 0.5 1 1.5 2

x 10
4

−2

0

2

x 10
−4

Time (s)

D
e

lt
a

 l
o

n
g

it
u

d
e

Sensor 1

Sensor 2

Figure 16: Comparison of delta GPS values over time

5.2.2 Kalman Filter

The output of the GPS receiver is a position relative to the WGS-84 coordinate
system. Noise upon the reception of the GPS signals and other noise factors
like clock offset cause the output of the GPS to fluctuate around the actual
position. The accelerometer measures the acceleration of the boat over three
axes and using the orientation invariant filter as proposed in section 4.3 a vec-
tor is obtained of the acceleration along the rowing direction of the boat. This
acceleration vector can be applied to the speed measured by the GPS receiver

40

to obtain the actual speed of the boat. By integration the speed value can fur-
thermore be translated into a distance. The accelerometer however is sensitive
to sideways and up and down acceleration which is taken into account when
determining the acceleration magnitude, introducing an error. Fortunately this
error is zero on average so it will only affect temporary measurements and not
the overall integration.

GPS has a bounded error since it is measuring absolute positions and the
noise factors can be determined. The maximum location accuracy that can be
determined using high scale GPS receivers is 6.8 meters according to [7]. The
accelerometer on the other hand, has a very high resolution and can thereby
measure very small changes in speed. However, when integrating the accelerom-
eter data to obtain a distance, the noise causes the error to grow in time without
any bounds. Due to the complementary error behaviour a combination of the
data of these sensors should give a higher accuracy output. Sensor fusion is ap-
plied to combine the measurements made by both sensors into an output state
which describes the boat’s along-track position and velocity.

The term fusion refers to the process of combining the two datasets to
produce a better output. The accelerometer is sampled at 50 Hz while GPS
measurements are received at 1 Hz. The fusion algorithm needs to take this
multi-rate input into account. To overcome this problem the GPS data could
be extrapolated at 100 Hz using previous GPS readings. Another possibility is
to apply the accelerometer data to the current speed and use the outcome value
whenever a new GPS reading is received. This latter option is chosen due to
its simplicity and no need for higher data rates than 1 Hz. This lower rate also
simplifies network communication and decreases the load on the processor.

In general there are two types of architectures of data fusion: tightly coupled
and loosely coupled systems [33]. In a tightly coupled integration a specially
designed Kalman filter, that models the GPS geometry and the accelerometer
error, could be used to directly correct the accelerometer error with the data
from the GPS measurements. This architecture uses the often only internally
available pseudorange measurements which represent a distance estimate from
the GPS receiver to one satellite before being error corrected. Pseudoranges
are almost always also preprocessed by a Kalman filter in the GPS receiver to
output a geographic position and velocity. A loosely coupled integration tech-
nique uses these internally preprocessed pseudorange measurements together
with integrated accelerometer measurements to estimate the actual position
and velocity. In this case two independent solutions for position and velocity
are combined into an output. This latter form of coupling is used in the case
of the rowing tracker since cheaply available GPS sensors only output derived
position and velocity and not its internal pseudoranges. Pseudorange reporting
GPS sensors are available, but for at least five times the price of the GPS sensor
used here.

A Kalman filter is a recursive data processing algorithm that can estimate
the variables of a system. The algorithm uses series of measurements taken over
time, containing noise and measurement inaccuracies to produce a statistically
optimal estimate of the underlying system state. It can be theoretically shown
that the filter minimizes the variance of the estimation error. Because of the
low number of variables and simple calculations, Kalman filters are often imple-
mented in embedded control systems, where an accurate estimate of the process
variables is important. In this case a Linear Kalman filter (hereafter LKF) is

41

used to produce the optimal state estimate of the boat. This state estimate
contains the along-track position and the speed of the boat, given the set of
GPS and accelerometer measurements and the relationships between the mea-
surements and the state vector. The state of the system is described by vector
x consisting of two variables: directional speed in meters per second ~v and the
along-track position in meters tb.

The Kalman filter works on a prediction-correction basis [6]. First a prior
belief in a certain state estimate is computed by making a prediction based on
the dynamics of the system. Using measurements of the system, the prediction is
corrected and a posterior belief is calculated. The prior belief is the probability
of being at state xk given all the measurements z up to step k. The posterior
belief is the probability of being at state xk given all the measurements z up to
and including step k. For an extensive explanation about Kalman filters [6] can
be consulted.

Every time step the LKF calculates a new prior belief for the state of the
system, which can be seen as a prediction. Due to noise and measurement
inaccuracies, there may be a prediction error, causing the predicted state to
be different from the true state. New measurements give information about
the true state of the system and are used by the LKF to correct the predicted
state. For the prediction the LKF uses a system model which describes how
the true state of the system evolves over time. Every time step the system uses
propagation to predict the new state of the system, by projecting forward the
most recent belief in the prediction step:

x̂−k = Ax̂+k−1

P−k = AP+
k−1A

T +Qk−1.

Matrix A is an n×n matrix which describes the propagation of the state at time
step k−1 to the current state at time step k. P−k is the prior error covariance at
time step k, which together with the prior state estimate x̂−k characterizes the
Gaussian prior belief. Qk contains the covariance values of the process noise.

During the correction step, measurements are used to update the belief with
information gained from these measurements:

x̂+k = x̂−k +Kk(zk −Hx̂−k)

P+
k = (I −KkH)P−k

in which
Kk = P−k H

T (HP−k H
T +Rk)−1

The first equation describes how the measurement data zk is used to correct
the prior state estimate x̂−k . Matrix H relates the current state xk to the
measurement values, so that the difference between the prior state estimate
and the measurement data can be calculated. Kk is called the Kalman Gain
and determines the factor to which the difference between measurement zk and
the measurement prediction Hx̂−k is taken into account in the posterior state
estimate x̂+k . The posterior error covariance P+

k is calculated from the prior
error covariance P−k by applying the same Kalman Gain Kk. Rk contains the
covariance values of the noise in the measurements.

42

It is assumed in an LKF that all errors are zero-mean random noise which
is Gaussian distributed. On average this type of noise is zero, but at certain
times it can fluctuate around this average.

For the rowing tracking purpose the along-track position of the boat and the
speed are of interest. The GPS output data is first processed according to the
method described in section 5.1 to obtain the along-track position tb. Further-
more the velocity and course data from the GPS measurements are projected
on the track to obtain the speed in the direction of the track:

~v = cos(φ− τ)v,

in which φ describes the course in radians given by the GPS sensor, τ is the
direction of the track in radians, v is the velocity given by the GPS module and
~v is the calculated speed in the direction of the track.

Initialization of the LKF is done with data from the first received GPS
reading. The calculated values of tb and ~v are set in the posterior state estimate
x̂+0 and the initial uncertainty P+

0 is set to 0.5 for both along-track position and
speed.

Every time a new accelerometer measurement is made, this data is incorpo-
rated into the prior state estimate x̂−k . The acceleration data is put through the
invariant orientation filter as described in section 4.3, which results in the accel-
eration in the direction of the boat’s movement ~a. The prior directional speed
is updated using the measured acceleration data using the uniform acceleration
formula:

~v−k = ~v−k−1 + ~akt,

where t is the time that the acceleration is applied, in this case 0.02 second, since
measurements are taken at 50 Hz. The prior along-track position is estimated
using the prior directional speed and the formula for displacement:

tb
−
k = tb

−
k−1 + ~v−k t,

in which t is again 0.02 seconds. The prior state estimate thereby uses the
current accelerometer data to make a prediction of the state of the system,
instead of only using past data.

Since the accelerometer data has some noise in the measurements and the
measurements are relative to each other and have to be applied recursively, the
error of the prediction will grow over time. The GPS module outputs absolute
data that can be used to correct this error. When a new GPS measurement
arrives, the Kalman Gain is determined and the LKF corrective step is applied.
The posterior state estimate x̂+k is calculated in the correction step. This state
estimate now holds information from both the accelerometer, since the prior
state estimate is taken into account, and information from the GPS, since this
is used to correct the prior state estimate. Just after the calculation of the
posterior state estimate, the new prior state estimate x̂−k is set:

x̂−k = x̂+k−1.

The same value is used for the new prior state estimate in order to use the
posterior state estimate and apply the recursive accelerometer update onto the
latest best known state estimate.

43

The LKF is a practical implementation, since in the recursive steps, all the
measured data is incorporated into the state estimate. Nevertheless only a small
number of variables need to be kept, which makes it a memory efficient algo-
rithm. The primary interest now lies with the parameters used that affect the
performance of the filter. Qk contains the process noise covariance at time step
k and Rk the measurement noise covariance at time step k. Since it is assumed
that the noises are independent, only the main diagonal of the covariance ma-
trices Qk and Rk contain the variance in the state and measurement vector
variables respectively, and the off-diagonal elements are zero. A common prob-
lem when designing Kalman filters is the lack of a description of the noises that
affect the states and the measurements [34]. Available recorded data can then
be used to estimate the parameters.

In general there are two types of methods that can be used to construct a
Kalman filter using test data if the covariance matrices Q and R are unknown
[34]. The first type of methods parameterizes the matrices Q and R themselves
and estimates their values using test data. The second type of methods uses
the fact that if corrections are made with a regular interval the Kalman Gain
converges to a single value. These methods therefore estimate the Kalman Gain
K directly from the data. Since Q and R only directly affect K, when the latter
is parameterized, less variables have to be estimated. This disadvantage of this
method is that no information is gained about the covariance in the noise of the
states and measurements.

Because the LKF is processing data for two variables, namely the along-
track position tb and the velocity ~v, K has two values Ktb and K~v respectively.
Because of the way K is calculated, its values always have to be between 0
and 1. The values of K are optimized using a variant of the 2-fold cross-
validation technique. In normal 2-fold cross-validation all data points are split
into two random sets d0 and d1, both of equal size. Training is done on d0
and the trained algorithm is then tested on d1, which is repeated the other way
around so that both sets are used once for training and once for testing. This
is used in machine learning to overcome the problem of over-fitting. It has the
advantage that machine learning can be used when little data is available since
both sets are large and the full set is used for both training and validation. In
this case the algorithm is not really ‘trained’ but merely optimized to use the
correct parameters. If this optimization is done on the full dataset at once, there
is a high chance of over-fitting, in which case the parameters are set exactly so
that the outcome is optimal for this dataset, but might perform very bad on
other datasets. Therefore the optimization is done on two randomly splitted
subsets. If the optimization outcome is the same for both sets, this would yield
an unbiased optimal result which has a high chance of the same performance
on other datasets.

To optimize the values of K the error landscape is plotted for both subsets
with both parameters in K varying between 0–1 with an interval of 0.1. The
value zero actually is chosen to be 0.01, since a value of zero would result in no
propagation of the corrective updating measurement from the GPS. The error
landscapes are shown in figure 17, where the x axis represents the value of Ktb,
the y axis the value of K~v and the z axis shows the average error in seconds of the
Kalman filter timing results on the two subsets of five independent races. It can
be seen that the average error is between 0.35 and 0.7 seconds for almost any K.
Only around the edges where eitherKtb orK~v is 0.01 the error varies a lot. When

44

Figure 17: Two Error Landscapes of Data Subsets, each with Five Independent
Races, with Varying K

Ktb is 0.01 the LKF almost only uses the along-track distance as determined
by the accelerometer. Since noise on the accelerometer measurements causes
a large error after being integrated twice, the error on the value of tb grows,
which results in a big error when only the accelerometer data is used. On the
contrary it seems that the accelerometer data is able to correctly predict the
velocity, since when varying K~v the sum of error does not vary much. In both
landscapes there is a small valley around Ktb = 0.8 (red subset), Ktb = 0.9
(blue subset) and K~v = 0.01. With these values, the along-track position as
determined by the GPS sensor is taken into account with a factor of 0.8 or 0.9
respectively, while the along-track position as determined by the velocity with
incorporated accelerometer information is taken into account with a factor of 0.2
or 0.1 respectively. The velocity is almost only determined by the accelerometer
data and the initial GPS reading. With these values of K an average error can
be obtained which is smaller than the average error when only using GPS data
(Ktb = 1). Since one optimal parameter setting of K is the optimization goal,
the optimal values for K for the two subsets are averaged and taken as the
optimal value: Ktb = 0.85 and K~v = 0.01.

The results of the LKF predicting times for ten independent races with
Ktb = 0.85 and K~v = 0.01 are shown in table 5. Four of the races which
were used for GPS results had to be excluded from the LKF results, since
accelerometer measurements were not correctly logged as explained in section
3.4.1. The evaluation is done in the same manner as evaluation was done for
GPS-only timing results as described in section 5.1.3. It can be seen that all LKF

45

results lie within a one second difference from the conventional timed results.
The average error is 00:00,38 seconds and the standard deviation is 00:00,31
seconds. There is no apparent indication that the LKF timed results are either
always too slow or always too fast.

An improvement over the GPS timed results from section 5.1.3 is made and
shown in the last column of table 5. A total improvement of 00:00,63 seconds is
achieved over ten races using the LKF. In only three out of ten cases the LKF
performs worse, and in seven cases the LKF performs better than the GPS-only
solution. The average improvement is 00:00,06 seconds which in absolute sense
is not much, but yields a 14% improvement over the average error of 00:00,45
seconds which was obtained using GPS only on the same datasets. These results
show that an implementation of an LKF for tracking boat’s position using the
combined information from GPS and accelerometer is beneficial.

Table 5: LKF Distance Results of 10 Independent Races

Conventional Timed LKF Timed Difference Improvement over
GPS Timed

06:13,74 06:13,38 -00:00,36 -00:00,16
07:00,00 07:00,96 00:00,96 00:00,15
07:17,09 07:17,02 -00:00,07 00:00,17
07:28,41 07:28,88 00:00,47 00:00,13
07:30,86 07:30,84 -00:00,02 00:00,04
07:35,66 07:35,84 00:00,18 00:00,20
07:38,84 07:39,01 00:00,17 00:00,27
07:53,84 07:54,40 00:00,56 00:00,07
08:25,91 08:26,15 00:00,24 -00:00,02
08:38,13 08:37,34 -00:00,79 -00:00,23

46

6 Discussion & Future Work

In this thesis different methods are described which can be used to implement
a rowing race tracker using GPS and accelerometer data. The data obtained
by these sensors can be used to extract different features of rowing including
as shown, stroke rate, along-track position and speed. In the introduction the
following research questions were asked which would lead to a rowing tracking
solution:

1. How can data be reliably transferred by roving nodes over a distance of two
kilometers using easy available and cheap ZigBee radio modules? What is
the performance of many-to-one mesh networking using roving XBees?

2. Which algorithm is simple enough to run on easy available and cheap hard-
ware and is still reliable in the detection of rowing strokes in accelerometer
data? Can this algorithm be extended in a way that accelerometer orien-
tation will not influence the algorithm’s outcome?

3. How can the relative distance from the starting position be calculated
from GPS recordings? What is the accuracy of this data? What are
the improvements when using a cheap static reference receiver to reduce
omnipresent noise?

4. How can the accuracy of the distance-travelled data be improved by fusing
GPS and accelerometer data streams?

The tests that were performed and the results found in section 3.5 show
that reliable long-distance communication can be achieved using XBee commu-
nication modules. Although direct transmission of data using these modules
can overcome distances of 1.5 kilometers, small obstructions can cause the con-
nection to drop. A reliable communication was obtained over 500 meters even
while sometimes having an obstruction. While it was not sure if the transmission
power is high enough to pass the obstructions, or the retry and acknowledgment
structure of the ZigBee protocol makes sure that data arrives, no packet loss
was seen when using these distances. In future work this could be examined
by looking at the ZigBee transmit status packet which contains data about the
number of application layer transmission retries that took place.

Many-to-one routing is a very practical solution in wireless sensor networks
which need a single central data collector. Instead of spending significant over-
head on route discovery, a single many-to-one broadcast transmission is sent
from the data collector to all nodes, creating reverse routes on all devices. By
setting the time interval for these many-to-one broadcast transmissions to a
value smaller than the time needed to pass by a new router node along the
track, the transmission route is updated as nodes are moving, which makes sure
that a route to the data collector is always available. Although the tests prove
that this feature works with a single node passing multiple routers, it could be
investigated what the performance is when using 80–100 nodes which are needed
to live track a full regatta. It is thought that especially in the case of this many
end-devices the performance increase of many-to-one routing over normal mesh
routing could be observed.

Two different stroke detection algorithms have been compared in section 4.4.
It is shown that the deceleration peak during the catch can be used to detect

47

a single stroke. The exact pattern of acceleration differs a little from stroke to
stroke and therefore causes this peak to shift a bit in time. When using simple
maximum peak detection this shift causes variations in the calculated stroke
per minute rate. To overcome this, a method is proposed which averages the
times at which the acceleration passed the threshold values. By doing so a more
smoothed value for the SPM is achieved.

The difference in acceleration power between for example a single scull and
an eight results in problems when using a static threshold. In this case a relative
high threshold causes peaks to be missed for a single scull, but a relative low
threshold causes noise in the eight to result in false peak detection. A dynamic
threshold is proposed to solve this problem. It is shown that stroke rates can
be detected with the same accuracy as when manually counting strokes. It
even appears that the proposed algorithm performs better than a commercially
available stroke counting solution which is available for $ 399, at least three
times the price of the solution used here.

The invariant orientation filter as proposed in section 4.3 makes sure that
the data used for stroke detection is not affected by the orientation of the ac-
celerometer. Instead of using a computationally complex algorithm, a simple
solution is presented which achieves similar performance on randomly rotated
datasets. By using this computational simple solution, the full process of stroke
detection from rotated accelerometer data can be performed on cheap and easily
available microprocessors. This results in an inexpensive onboard device that
could be used for live rowing tracking.

In section 5.1 a method is presented which can be used to calculate the along-
track travelled distance since the start of a race, by using GPS coordinates. It
becomes clear that for these calculations the curvature of the Earth need to
be carefully taken into account, since simple calculations based on spheres lead
to errors up to 6 meters on 2000 meter rowing tracks. The accuracy of the
along-track distance data is examined in section 5.1.3 by comparing the results
to a conventional timing system in use during national regattas. The obtained
results prove to be very accurate, which can somewhat be attributed to the use
of the relative along-track position measurement which minimizes the absolute
error.

The use of a cheap static reference receiver to reduce reception noise is inves-
tigated in section 5.2.1. Unfortunately the output limitations of the cheap GPS
receivers raise problems in the extraction of the noise. Since the exact mea-
surements of the distances to each satellite (pseudonumbers) are only available
internally in the receiver, the deviation from the known position of the static
receiver for each of these satellites cannot be calculated. Furthermore every
receiver could potentially be using a different set of satellites to determine its
position, and thereby would receive a different error in the positional output.
For future work it could be investigated if it is possible to have cheap receivers
output these pseudonumbers. If this is possible, it is certainly a promising
method of improvement since the raw GPS output is already capable of pre-
dicting finish times with only a 00:00,53 second error. The question then is
if the higher price for a pseudonumber outputting GPS receivers is worth the
small potential gain.

The Kalman filter used for fusing GPS and accelerometer information into
an accurate state estimate is described in section 5.2.2. The two estimated
parameters are the boat’s along-track position and its speed. Every time step

48

both these parameters are estimated using the data from the accelerometer.
The accelerometer measures the acceleration of the boat. By using the uniform
acceleration formula the acceleration can be used to calculate the current boat
speed from the last known speed and the measured acceleration. Then by
integrating the speed over time the distance travelled since the last measurement
is obtained. Both these values are then good estimations of the current boat’s
state. However, since these estimations are only based on relative measurements,
existing noise on the measurements will cause the error on these estimations to
grow over time. The GPS measurements, in contrary, contain an absolute speed
and position. Although there is also an error in the GPS measurements, this
error does not grow over time. Due to the complementary error behaviour of
the two types of information, it is possible to integrate this in a more accurate
state estimate. The Kalman filter is tuned using the available data and an
improvement of 14% over the GPS-only results is obtained.

Although an improvement of 14% seems good, the absolute improvement on
a single race is on average only 00:00,06 seconds. Since GPS calculations are of-
floaded to the central server because of the computational expensive Vincenty’s
formula, the Kalman filter also has to be calculated on the server. The appli-
cation of a Kalman filter thus yields that the accelerometer data has to be sent
over the network to the data collector. Because accelerometer measurement are
taken at 50Hz, this would result in a major increase of network traffic. Even
if the measurements are stored in a local buffer and sent to the data collector
together with the GPS measurements, this would result in at least twice the
number of data packets, since 50 2-byte values are stored, and the packets can
only contain up to about 80 bytes of data (variable because of the exact route).
It could be investigated if it is possible to either perform Vincenty’s formula
and the Kalman filter on the microprocessor, or if there is a way of compress-
ing the data so that the computations can be completely offloaded. The latter
seems most feasible and in a simple application the accelerometer measurements
could be averaged over time and sent as a single value together with the GPS
data. However for the use in a live rowing race tracker the improvement of
00:00,06 seconds would not be worth the extra computations for the Kalman
filter and the extra network load which also reduces battery life. Even when
using Kalman filter fusion there is still a 00:00,31 second standard deviation and
the improvement would be dwarfed by this variation.

6.1 Hardware

During the final stage of the research, some potential improving hardware parts
were brought to attention. First on September 27 (three days after the collo-
quium), a Kickstarter campaign funded the creation of the Flutter wireless ARM
development board. The Flutter is a board that combines a microcontroller and
a communication module into a single device. It is claimed to have over 1 kilo-
meter range and provides 256-bit AES encryption for security. Flutter will be
published as open source hardware and software, and would therefore be ideal
for the creation of a customized PCB containing an additional accelerometer
and a GPS module. A basic version of Flutter will be available for $ 20 and the
pro version for $ 30. While it can not be deduced conclusively from the present
data if the basic or pro version is needed, a saving of over e 30 can easily be
achieved, since the Arduino Fio and XBee could be discarded.

49

Furthermore another GPS module was found which states to have a higher
sensitivity and more location updates per second for roughly the same price.
This PA6H (MTK3339) GPS module could be tested to see if higher accuracy
results are feasible. Nevertheless this module is smaller in size and has a lower
power consumption, so even while performing the same as the current module
this module would improve the onboard device.

Lastly the accelerometer could be improved upon by using a different chip.
Instead of using the MMA8452 the microprocessor could be relieved in its
time critical task of handling the accelerometer data, by using for example the
MMA8450 (12-bit) or the MMA8451 (14-bit), which have an embedded FIFO
buffer of 32 samples. The number of I2C transactions could be minimized and
this would allow the microprocessor to spend 31 sample-durations (at 50 Hz:
0.62 second) on other tasks while only reading the data once every 32 sam-
ples. The freed processor time could for example be used to perform Vincenty’s
formula and the Kalman filter calculations on the microcontroller. Further-
more both these accelerometers have an embedded orientation detection feature
which could be used for the orientation invariant measurements. The problem
is that both the MMA8450 and the MMA8451 are not available on a breakout
board. When designing a customized PCB this would not matter anymore as
the accelerometer could be placed on the main PCB.

6.2 False Start Detection

An additional feature that could be implemented using the data already avail-
able is false start detection. According to Rule 74 in the FISA’s Rules of Racing
2013 [35], a false start is made when a crew’s rowers begin rowing before the
start command is given. Since rowing will cause an acceleration of the boat, the
moment when the rowing starts should be easily extractable from the accelerom-
eter’s data. The last received GPS measurement can be used to determine the
time in seconds precision of the start of rowing. The number of accelerometer
measurements since this last received GPS measurement can be counted and
multiplied with the sampling interval (0.02 seconds at 50 Hz) to get the sub-
second precision. Then the time of the start of rowing can be compared to the
time stamp made by the start command. When the rowing started before the
time stamp of the start command, a false start can be signalled.

The accelerometer invariant orientation measurements could be used to per-
form the false start detection on. A simple threshold on the magnitude of the
measurement could be used to determine if a boat’s crew is rowing or not. Every
time a crew starts rowing a time stamp signal can be sent to the data collector
which determines if the start command for the race of the specific crew is given
just before or after that start of rowing. If this is so, the signal’s time stamp can
be used to determine a possible false start. It furthermore needs to be taken
into account that during every stroke the magnitude of the invariant orientation
measurements passes zero. When simply signalling ‘the start of rowing’ every
time this threshold is passed, many false detected rowing starts are signalled,
namely during each stroke. This could be overcome by using a well chosen dura-
tion during which the signal has to be below the threshold, to change the boat’s
state from rowing to resting, after which a new start of rowing can be signalled
again.

50

References

[1] Koninklijke Nederlandse Roeibond. 2013. “Reglement voor Roeiwedstrij-
den.” Retrieved from http://www.knrb.nl/content.php/nl/621

[2] Hamilton, C. Sampath, V. 2010. “Performance of ZigBee PRO Mesh Net-
works with Moving Nodes.” Unpublished manuscript, Texas A&M Univer-
sity, Texas, United States.

[3] Palshikar, G. 2009. “Simple Algorithms for Peak Detection in Time-Series.”
In Proc. 1st Int. Conf. Advanced Data Analysis, Business Analytics and
Intelligence.

[4] Rizos, C. 2003. “Trends in GPS Technology & Applications.” In 2nd Inter-
national LBS Workshop.

[5] Kee, C., Parkinson, B., Axelrad, P. 1991. “Wide area differential GPS.”
Navigation, 38(2), 123-146.

[6] Negenborn R. 2003. “Robot localization and kalman filters.”, Master’s the-
sis, Inst. Inf. Comput. Sci., Utrecht Univ., Utrecht, The Netherlands.

[7] Satirapod, C., Rizos, C., Wang, J. 2001. “GPS single point positioning with
SA off: How accurate can we get?” Survey Review, 36(282), 255-262.

[8] Liu, H., Pang, G. 2001. “Accelerometer for mobile robot positioning.” In-
dustry Applications, IEEE Transactions on, 37(3), 812-819.

[9] Mazl, R., Preucil, L. 2003. “Sensor data fusion for inertial navigation of
trains in GPS-dark areas.” In Intelligent Vehicles Symposium, 2003. Pro-
ceedings. IEEE (pp. 345-350). IEEE.

[10] Carminati, M., Ferrari, G., Grassetti, R., Sampietro, M. 2012. “Real-Time
Data Fusion and MEMS Sensors Fault Detection in an Aircraft Emergency
Attitude Unit Based on Kalman Filtering.” Sensors Journal, IEEE, 12(10),
2984-2992.

[11] Kleshnev, V. 1999. “Propulsive efficiency of rowing.” In Proceedings of the
XVII International Symposium on Biomechanics in Sports (pp. 224-228).

[12] Tessendorf, B., Gravenhorst, F., Arnrich, B., Troster, G. 2011. “An IMU-
based sensor network to continuously monitor rowing technique on the wa-
ter.” In Intelligent Sensors, Sensor Networks and Information Processing
(ISSNIP), 2011 Seventh International Conference on (pp. 253-258). IEEE.

[13] Nielsen Kellerman. 2009. “Surge Rate Technology.” Retrieved from http:

//nkhome.com/news/2009/11/surge-rate-technology/

[14] Tshalif. 2011. “Talos Rowing” [android software]. Available from http:

//nargila.org/trac/robostroke/wiki

[15] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., Cayirci, E. 2002. “Wire-
less sensor networks: A survey.” Computer networks, 38(4), 393-422.

[16] Arduino. “Arduino.” Retrieved from http://www.arduino.cc

51

http://www.knrb.nl/content.php/nl/621
http://nkhome.com/news/2009/11/surge-rate-technology/
http://nkhome.com/news/2009/11/surge-rate-technology/
http://nargila.org/trac/robostroke/wiki
http://nargila.org/trac/robostroke/wiki
http://www.arduino.cc

[17] Arduino. “SoftwareSerial Library” Retrieved from http://arduino.cc/

en/Reference/SoftwareSerial

[18] Arduino. “Wire library.” Retrieved from http://arduino.cc/en/

Reference/Wire

[19] Arduino. “SPI library.” Retrieved from http://arduino.cc/en/

Reference/SPI

[20] Hart, M. 2013. “TinyGPS - A Compact Arduino GPS/NMEA Parser.”
Retrieved from http://arduiniana.org/libraries/tinygps/

[21] Arduino. “SD library.” Retrieved from http://arduino.cc/en/

Reference/SD

[22] Gerlach-Meyer, U. E. 1991. “Micromachined capacitive accelerometer.”
Sensors and Actuators A: Physical, 27(1), 555-558.

[23] PJRC. “AltSoftSerial Library” Retrieved from http://www.pjrc.com/

teensy/td_libs_AltSoftSerial.html

[24] Jang, W. S., Skibniewski, M. J. 2008. “A wireless network system for auto-
mated tracking of construction materials on project sites.” Journal of civil
engineering and management, 14(1), 11-19.

[25] Kadar, P. 2009. “ZigBee controls the household appliances.” International
Conference on Intelligent Engineering Systems, 2009, pp. 189-192.

[26] Ruiz-Garcia, L., Barreiro, P., Robla, J. I. 2008. “Performance of ZigBee-
based wireless sensor nodes for real-time monitoring of fruit logistics.” Jour-
nal of Food Engineering, 87(3), 405-415.

[27] Digi International. 2012. “XBee/XBee-PRO ZB RF Modules.” User Man-
ual.

[28] Kleshnev, V. 2010. “Boat acceleration, temporal structure of the stroke cy-
cle, and effectiveness in rowing.” Proceedings of the Institution of Me-
chanical Engineers, Part P: Journal of Sports Engineering and Technology,
224(1), 63-74.

[29] Mizell, D. 2003. “Using Gravity to Estimate Accelerometer Orientation.”.
In Proceedings of the Seventh IEEE International Symposium on Wearable
Computers (ISWC’03) (Vol. 1530, No. 0811/03, pp. 17-00).

[30] Kunze, K., Lukowicz, P., Partridge, K., Begole, B. 2009. “Which Way Am
I Facing: Inferring Horizontal Device Orientation from an Accelerometer
Signal” In Wearable Computers, 2009. ISWC’09. International Symposium
on (pp. 149-150). IEEE.

[31] Veness, C. 2010. “Calculate distance and bearing between two lati-
tude/longitude points using Haversine formula in javascript.” Retrieved
from http://www.movable-type.co.uk/scripts/latlong.html

[32] Boyle, M. J. 1987. “Department of Defense World Geodetic System 1984-
It’s definition and relationship with local geodetic systems.”, DMA Techni-
cal Report 83502.2. Washington, DC

52

http://arduino.cc/en/Reference/SoftwareSerial
http://arduino.cc/en/Reference/SoftwareSerial
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/SPI
http://arduino.cc/en/Reference/SPI
http://arduiniana.org/libraries/tinygps/
http://arduino.cc/en/Reference/SD
http://arduino.cc/en/Reference/SD
http://www.pjrc.com/teensy/td_libs_AltSoftSerial.html
http://www.pjrc.com/teensy/td_libs_AltSoftSerial.html
http://www.movable-type.co.uk/scripts/latlong.html

[33] Mayhew, D. M. 1999. “Multi-rate sensor fusion for GPS navigation us-
ing Kalman Filtering.” PhD Thesis, Department of Electrical Engineering,
Virginia Polytechnic Institute and State University.

[34] Bos, R., Bombois, X., Van den Hof, P. M. J. 2005. “Designing a Kalman
filter when no noise covariance information is available.” In Proceedings
of the 16th IFAC World Congress, Prague, Czech Republic.

[35] Fédération Internationale des Sociétés d’Aviron. 2013. “Rules of Rac-
ing.” Retrieved from http://www.worldrowing.com/fisa/resources/

rule-books

53

http://www.worldrowing.com/fisa/resources/rule-books
http://www.worldrowing.com/fisa/resources/rule-books

	Introduction
	Background and Related Work
	Background
	Localization & Sensor Fusion
	Stroke Rate
	Communication
	Commercial Products

	Hardware
	Controller Board
	Accelerometer
	Accelerometer Measurements
	Static Error

	GPS
	GPS Measurements

	Data Storage
	Data Logging

	Communication
	Power

	Stroke Rate Tracking
	Anatomy of a Rowing Stroke
	Related Work
	Orientation Invariant Measurements
	In Theory: Orientation Invariant Measurements
	In Practice: Orientation Invariant Measurements
	Results

	Stroke Detection
	Simple Peak Detection with Static Threshold
	Averaged Peak Detection with Dynamic Threshold
	Results

	Tracking

	Position Tracking
	Along-track Distance
	Haversine and Vincenty
	Implementation
	Results

	Sensor Fusion
	Simple Differential GPS
	Kalman Filter

	Discussion & Future Work
	Hardware
	False Start Detection

