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Abstract

Planning trajectories of multiple unmanned vehicles is a complicated task with a large
amount of possible solutions. In recent research di↵erent types of algorithms are used to
solve these planning issues with mixed results. In this research we use two di↵erent types
of machine learning algorithms and compare these against a baseline greedy method. The
first method is based on reinforcement learning (RL) with features, the second method is
based on multi ant colony systems (MACS). To measure the performance of the algorithms
we created a grid world environment with a task where a number of UAVs need to visit
a number of areas. When testing both the RL and MACS algorithm on this problem, we
found that the MACS algorithm gives the best solution but is computationally intensive
when the problem is scaled. The RL algorithm scales better but is outperformed by
the greedy method, making the MACS algorithm the best performing among the tested
algorithms.
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Chapter 1

Introduction

Unmanned vehicles (UxV) are becoming increasingly popular for a wide variety of tasks.
One of the reasons UxVs became popular lately is due to UxVs being a cheap alternative
to human operated vehicles. UxVs can be used for tasks that are impossible for human
operated vehicles (e.g. inspection of nuclear reactors) [3], or tasks that are simply too
expensive when carried out by human operated vehicles (e.g. making an aerial recording
of amateur sport events).

Interesting commercial and military applications for UxVs are for example surveillance
or reconnaissance of a terrain. UxVs can monitor crops [4], forest fires [5, 6] or a battle
field [7]. The above tasks can be carried out by using a single UxV, but the size of the area
to be monitored is restricted by the range and speed of the UxV. Using a team of multiple
UxVs can overcome this problem, but introduces new challenges. The main challenge for
applying teams of UxVs in these surveillance and reconnaissance missions lies in planning
of the trajectory each UxV travels.

Recently the field of multi-UxV planning became popular, resulting in extensive research
of the subject. A lot of multi-UxV planning research focusses on planning a trajectory to a
single target destination, instead of planning the order of the targets set for the UxVs [8].
Another large research area focusses on interface design for letting operators interact with
a group of UAVs [9]. Some interesting research subjects are found in the area of swarm
robotics, where a large number of robots with only a simple set of rules can result in complex
behaviour. An example of this is the use of formation flights with multiple UAVs [10, 11].
UxVs have technical and practical limits for communicating with each other, the issue of
communication in multi-UxV systems is also addressed in recent research [12, 11].

Centralised o↵-line planning algorithms are used widely to solve planning tasks concerning
a group of agents that need to execute a unified goal [13]. However, centralised o↵-line
planning has the disadvantage that it is not very robust to changes in the environment or
partial observability of the environment. As an alternative, centralised on-line planning
can be used. This has the advantage of being able to handle changes in the environment,
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2 CHAPTER 1. INTRODUCTION

since the planning is constantly adjusted by the detected changes in the environment [13].
Both types of centralised planning have the disadvantage of needing a dedicated central
planner and constant communication between the agents and this planner. E↵orts to
overcome the problems of centralised planning have been made by decentralised planning,
where every agent participates in the planning process and the agents together find the
best trajectory based on all their observations and goals. While this reduces the need for a
dedicated central planner, communication between the agents still proposes a problem. For
each agent to make the best decision, information about goals and observations of other
agents is needed. This information has to be obtained by some form of communication.
Furthermore there can be technical or practical limits to communication because of limits
in range or because of a threat of detection.
Planning of multiple UxV trajectories can be seen as a Markov decision process (MDP),
where the UxVs are in a state and have several actions they can choose which will lead to
a new state. Planning then becomes a matter of sequentially choosing the best possible
action to reach a goal. Reinforcement learning is an area of machine learning that focuses
on exactly this problem: What actions should agents choose in order to maximise the
reward [14].
Another way to look at planning is in the sense of a graph representation, where the nodes
are the states the UxV can be in and the edges are the actions that a UxV can take.
Planning in a graph is choosing edges to visit nodes in an optimal order. Ant system
algorithms [15] are a type of algorithms inspired on the foraging behaviour of ants. These
algorithms are proven to be e�cient and give high quality solutions for planning of optimal
routes in a graph [16].

1.1 Research Question

In this thesis we will continue on research for the UAV surveillance task, by researching
algorithms already proven to be e↵ective in comparable problems. We will implement
MACS and RL algorithms for autonomous multi-UxV trajectory planning in surveillance
and reconnaissance missions.
The main research question is:

• What is the best machine learning technique for autonomous planning in a group of
UxVs?

Sub questions that will be answered, to help answering the main research question are:

• How will a proposed solution deal with a di↵erent number of unmanned vehicles?

• How will a proposed solution deal with scaling of the problem?

• Is the proposed solution usable as a general solution for the autonomous planning
problem as a whole?
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1.2 Outline

In this thesis, we will first review research about di↵erent machine learning techniques
that are relevant for answering our research questions. This is done in the Theoretical
Framework, Chapter 2.
Then in Chapter 3, we will introduce the UAV planning task we use to compare the
di↵erent machine learning techniques. We also introduce three di↵erent algorithms based
on di↵erent machine learning techniques to solve this planning task.
The experiments and their results are given in Chapter 4, which explains the experiments
that are used to determine how the algorithms deal with a di↵erent number of unmanned
vehicles and how they deal with scaling of the UAV planning task.
The final chapter of this thesis, Chapter 5, discusses the results of the experiments and
answers our research questions.
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Chapter 2

Theoretical Framework

In this thesis, di↵erent forms of machine learning will be compared to one another. We
chose to research branches of machine learning which are very di↵erent in the way they
solve the problem.
As a first machine learning technique we look at reinforcement learning [17]. This learning
technique shows great results for generating universal solutions for a problem, furthermore
it has the ability to be used as a decentralised planner.
As a second machine learning technique we look at ant colony inspired machine learn-
ing [15]. These algorithms are known for their excellent solutions on di�cult planning
problems. However, as opposed to reinforcement learning, ant inspired algorithms are a
form of o↵-line centralised planning that generate problem-specific solutions.
In this chapter we will summarise those techniques and emphasise relevant research used
to construct our methods.

2.1 Reinforcement Learning

A very broad definition of reinforcement learning is found in [1]: Dynamic programming
(DP) and reinforcement learning (RL) are algorithmic methods for solving problems in
which actions (decisions) are applied to a system over an extended period of time, in order
to achieve a desired goal.
The basic principles of RL can be found in the psychology on behavioural conditioning.
An early example of the psychological basis of RL is Thorndike’s Law of e↵ect: “responses
that produce a satisfying e↵ect in a particular situation become more likely to occur again
in that situation, and responses that produce a discomforting e↵ect become less likely to
occur again in that situation.” [18]. Thorndike explains the general idea of RL as it is
used today. The RL agent receives negative rewards for unwanted behaviour and positive
rewards for correct behaviour. With the rewards it learns to maximise its performance and
thus maximise its rewards.
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6 CHAPTER 2. THEORETICAL FRAMEWORK

One of the first researchers that researched this law of e↵ect as a way to create artificial
intelligence was Turing. He developed his idea of a pleasure-pain system [19], which is
basically an RL agent as we know it today. In his research he defines how a pleasure-pain
system should be designed and under what conditions it should perform.
RL di↵ers from supervised learning methods as neural networks and unsupervised learning
methods as clustering. While an RL agent receives feedback of its performance, as in
supervised learning methods, the agent does not receive examples of optimal actions in a
situation. All information about the performance is given in a single reward, which is a
measure of how good or bad an RL agent performs.
The type of problems suitable for unsupervised learning and RL di↵er. In for example a
clustering task, the outcome should be a number of clusters and the data points inside each
cluster. In RL, the agent has a continuous decision task, where at every time step there
are several actions to be chosen from.

2.1.1 Markov Decision Process

A Markov decision process (MDP) is a theoretical framework that can be used for decision
making in environments that are fully observable [14]. MDPs are at the basis of Rein-
forcement Learning. An MDP contains all states a world can be in and all the transitions
between these states.
An MDP is written as a quintuple of hS,A

s

, T
a

(s, s0), R
a

(s, s0), �i. Where S is a set of all
states (s 2 S) the MDP can be in. A

s

is the set of actions the agent can choose when in
state s (a 2 A

s

). The transition T
a

(s, s0) is the probability of getting to state s0 when the
agent is in state s and chooses action a. The reward function R

a

(s, s0) is the corresponding
reward when action a in state s leads to state s0. � is the discount factor, if � = 0 only the
immediate reward is deemed to be of any importance, if � = 1 the future reward (i.e. the
sum of all rewards) is of most importance.
An example of an MDP would be a game of tic-tac-toe. All the possible states the game
can be in would form the states of the MDP. Transitions between those worlds would be
the addition of a cross or a circle, resulting in another state of the MDP. These transitions
would be the possible transitions between the states of the MDP.
For the notion of this project, it is easier to look at RL as an agent interacting with an
environment through actions, and receiving the state of the environment through sensory
input, as seen in figure 2.1. The dashed arrows in the schematic show the reward function.
The agent receives a reward for the interaction with the environment. This reward is based
on the action of the agent and the state of the environment.

2.1.2 Reward Function

RL is learning to take the correct action by trial and error, based on the received reward
over time. This type of learning has similarities with human learning, where a negative
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Agent Environment

Reward Function

State

Action

Reward

Figure 2.1: Control loop of Reinforcement Learning [1]. The reward function is depicted
with dashed arrows.

reward is pain and a positive reward is pleasure. The goal of the RL problem is expressed
to the agent in the form of a reward. This reward is mostly given at once if a certain goal
is reached, although other types of reward function are possible.

Defining the rewards an agent receives is for a large part depending on the problem the
agent needs to solve. When the agent is trained to solve a game, most rewards are already
defined by the rules of the game. But when transforming an arbitrary problem to an MDP
for solving by RL, the reward function is not quite as straightforward and it may require
some trial and error to find a reward function that satisfies the goal.

The agent can receive rewards at any time step. If the agent receives a reward for winning
a game of chess, there is a whole sequence of actions that led to this reward. In the game
of chess, the first move is of particular importance for the rest of the game. However, how
should an agent without any particular knowledge of chess give credit for the good moves
within a sequence and blame the bad moves within a sequence? This problem is known as
the credit assignment problem: what action or actions within a sequence of actions led to
the received reward. This problem was introduced in a paper by Minsky [20]. RL agents
are constantly trying to solve this problem in order to maximise their rewards.

2.1.3 Value Functions and Function Approximation

RL tries to find a value function to predict how good or bad a state is. A value function
predicts the return of a state by estimating the sum of future rewards resulting from the
state. With this value function, it is easy to estimate the best action amongst all possible
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actions at any time. At any given time, the agent knows its own state and the possible
actions. For our small tic-tac-toe example, the number of states is manageable. When an
agent is learning the game, the easiest and most understandable way to store the value of
each state, is to simply create a table with the same size as the number of states. Each
row in this table represents the value of the corresponding state. This is a perfectly fine
solution for small state-space problems. But imagine a game of Go, the state-space of Go
is huge [21]. A look-up table for Go would be equally large. These huge look-up tables are
unmanageably large, since each state needs to be visited at least once to calculate a value.
For an accurate value, a state needs to be visited multiple times, hence look-up tables are
a bad idea for large state-space problems.
An alternative to look-up tables are function approximators. Instead of constructing a
table of the values, the agent tries to find a function that predicts the value of a state.
This reduces the need to visit every state several times, but introduces new complexity
in the form of choosing the correct function approximator for the problem. Examples of
function approximation will be given in Section 2.1.8.

2.1.4 Exploration-Exploitation Dilemma

Other than in supervised learning or unsupervised learning, in RL there is a constant
dilemma between exploring better solutions and exploiting the knowledge the agent already
has. This is known as the exploration-exploitation dilemma.
Agents are faced with di↵erent actions resulting in di↵erent states if chosen. Through
experience, agents know which action has the highest value. But the action with the
current highest value is not necessarily the best action. An agent can explore other actions
that may not seem attractive given their current values, but are possibly better than the
best known action. However, this may also have an impact on the overall performance
of the agent. The key to the solution is finding an equilibrium between exploring enough
actions to increase overall performance by overcoming local optima and exploiting the
current knowledge of the agent. Although attempts have been made to set boundaries
for finding an optimal ratio, some of these methods make assumptions about the problem
being solved [17]. These exploration strategies are further explained in Section 2.1.7.

2.1.5 Partial Observability

In the real world, very few problems are fully observable and thus fulfil the prerequisites of
an MDP. In order to still be able to solve these problems through RL, Partial Observable
MDPs (POMDPs) have been introduced. The di↵erence between an MDP and a POMDP
lie in how the state-space is defined. A POMDP works with belief states, this can be seen
as an estimation of the real state. As in any MDP, the agent makes transitions from one
state to another. The belief state is chosen as a probability of the agent being in each
possible state. These probabilities are calculated by observation of the real-world state
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through sensory input.

2.1.6 Temporal Di↵erence Learning

Temporal Di↵erence (TD) learning uses the idea of bootstrapping to estimate the value of
a state: using estimates of other values to estimate a value [14]. The set of algorithms that
use TD-learning are specific to RL.

Q-Learning

One of the TD-based algorithms that is often used is Q-learning [22]. Q-learning is an
o↵-policy, or policy independent, algorithm. This means it tries to find an optimal policy
for the problem, which is di↵erent from the policy the agent is using.
In equation 2.1 we see the update step of Q-learning. Q(s

t

, a
t

) is the value of acting by
performing action a

t

in state s
t

at time t. ! is the learning rate. � is the discount factor
as explained in the MDP paragraph. r

t

is the reward at time t.
Q-learning updates the value using the value of the greedy action a in state s

t+1 and the
obtained reward r

t

.

Q(s
t

, a
t

) Q(s
t

, a
t

) + ![r
t

+ �max
a

Q(s
t+1, a)�Q(s

t

, a
t

)] (2.1)

SARSA

SARSA stands for State-Action-Reward-State-Action [14]. SARSA is an on-policy TD
algorithm [23, 17]. In equation 2.2 we see the update step of SARSA. This update step is
almost the same as the Q-learning update step in equation 2.1, but di↵ers in omitting the
greedy action selection and using an on-policy approach.

Q(s
t

, a
t

) Q(s
t

, a
t

) + ![r
t

+ �Q(s
t+1, at+1)�Q(s

t

, a
t

)] (2.2)

SARSA updates the value using the reward r
t

and the value of the next state s
t+1 and

the policy action a
t+1. One of the benefits of SARSA is that it is useful when function

approximation is used, because of the on-policy approach [14]. SARSA is also proven to
converge to the optimal solution, under the assumption that all actions are chosen infinitely
in every state [14].

2.1.7 Action Selection Methods

At any time step, the agent finds itself in a state and must select an action to perform.
The agent can choose to either exploit or explore. There are several methods to determine
how to divide exploration and exploitation.
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E-Greedy

The "-greedy method is one of the easiest and simple to understand methods for dividing
between exploration and exploitation. By default the greedy action is chosen, as defined
in equation 2.3.

a
t

= argmax
a

Q
t

(s
t

, a) (2.3)

However, to accommodate exploration, a random action is chosen with a probability of ".

Boltzmann Exploration

Taking random actions for exploration is not always desired behaviour, because this means
that it is equally likely that the worst possible action is chosen as that the second best
possible action is chosen. Especially if the worst possible action is very bad for the agent,
it would be better to use a probability an action is chosen instead.
One example of an action selection method that uses the probability that an action is chosen
is the Boltzmann exploration method [17, 1]. This method can be seen in Equation 2.4,
which determines the probability an action a is selected in state s

t

.

P (a|s
t

) =
eQt(st,a)/⌧t

P
b

eQt(st,b)/⌧t
(2.4)

Boltzmann exploration uses a temperature ⌧
t

to determine the randomness of the explo-
ration, where ⌧

t

! 0 equals greedy action selection and ⌧
t

! 1 equals random action
selection. The temperature is usually diminished over the number of steps, so a lot of
random exploration takes place in the first steps, but as knowledge about the world is
gathered the exploration becomes more guided by the Q-function.

2.1.8 Function Approximation

One of the largest challenges in RL is what is called the curse of dimensionality. This
means that when the number of dimensions of a problem increases, so does the number of
possible solutions for the problem. In RL this is particularly problematical for the number
of the state-action pairs. For algorithms as Q-learning and SARSA, all state-action pairs
should be tried infinitely many times in order for the algorithms to converge. In practice
this is of course impossible, but the larger the number of state-action pairs becomes, the
harder it becomes to make an accurate estimate of the state-action value function.
One way to handle this problem is by trying to reduce the number of trainable parameters
by generalising in some way. In RL it is common practise to make use of what is called
function approximation (FA) [1]. In FA, the number of trainable parameters is reduced in
order to reduce the number of possible solutions. This can be done by converting the state
into a number of features, thus resulting in fewer dimensions and fewer possible solutions.
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Tiling

A popular and easy to understand method is tiling. In tiling, features are created by divid-
ing the state-space in small areas, called tiles. These tiles do not need to be symmetrically
shaped or square, but can have any arbitrary form and amount. The result is a collection of
features that are binary: high or “1” if the current state is inside the tile, low or “0” when
the current state is not inside the tile. Multiple features can be active at the same time,
tiles may also overlap each other. The coarser the tiling, the more generalisation takes
place. The finer the tiling, the more accurate the solution, but the more computational
intensive the process.

Features

One straightforward approach for FA is using a linear combination of features to estimate
the value of a state [24]. This can be seen in equation 2.5, where the features of a state �

s

are multiplied by the weights of the features ✓
t

at time t.

V
t

(s) = ~✓
t

|~�
s

=
nX

i=1

✓
t

(i)�
s

(i) (2.5)

This method has successfully been used to create a reinforcement learning agent using
features for playing the Tetris game [24, 25]. Examples of the features that are used in
these agents are the maximum and minimum height of the stacked blocks, the sum of the
depth of wells between the stacked blocks and the number of these wells.

These approaches are successful for creating an agent for playing the Tetris game, while
using relatively few resources.

2.2 Ant Colony Algorithms

Ant Colony algorithms [15, 16] are based upon the behaviour of real world ants. Goss et
al. [2] ran experiments with living ants, using an experiment setup where the ants had two
ways of reaching their food. The ant colony was situated on one side of the setup and
the food was situated on the other side of the setup. There were two links between the
colony and the food, two bridges that di↵er in total length of the path from the food to
the colony, as seen in Figure 2.2. The experiment showed that the ants prefer the shortest
path (i.e.: the short bridge) above the longer path (i.e.: the long bridge). It was also shown
that the larger the di↵erence in total length between the two paths, the more ants chose
the shorter path over time. This research showed that ants converge to the shortest path
to food over time. The larger the di↵erence in path length, the faster the ants converge.
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Colony Food

Figure 2.2: Ant colony experiment setup with two bridges to reach food that di↵er by total
path length. Over time ants preferred the shorter path over the longer path. [2]

2.2.1 Ant System

The first ant colony optimisation (ACO) algorithm was inspired on the results of the
research of Goss et al. [2]. This ACO algorithm is the Ant System (AS) [15]. The idea
of AS is to represent problems as a weighted graph with nodes that are interconnected
by edges. As with every weighted graph, each edge has a cost �(r, s). On top of this, AS
introduces a new variable for each edge: desirability ⌧(r, s). This desirability represents
pheromone in the ant analogy. Pheromone levels are constantly updated by all artificial
ants (ants) in the AS.
In the travelling salesman problem (TSP), there are i cities that are all connected to one
or more cities, with the distance between cities as cost of travelling. This forms a weighted
graph. The goal is to visit all cities in such an order that the total cost of the tour through
all the cities is minimal. The paper by Dorigo [15] solves a TSP by use of AS, so all
formulae are to be interpreted in this context.

Random-Proportional Rule

In equation 2.6 we see the state transition rule used by AS. In this rule, the probability of
an Ant k moving from node r to node s is given.

p
k

(r, s) =

8
>>><

>>>:

[⌧(r, s)] · [⌘(r, s)]�X

u2jk(r)

[⌧(r, u)] · [⌘(r, u)]�
if s 2 J

k

(r)

0 else

(2.6)

The ant uses the pheromone between two nodes ⌧ and the inverse of the distance ⌘(r, s) =
1/�(r, s) to determine how attractive an edge is to visit. Only edges that are not visited
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yet are considered, these are contained in J
k

(r). The parameter � is used to create a bias
for either distance or pheromone in the decision.

Pheromone Update Rule

Equation 2.7 gives the pheromone update rule. The pheromone levels ⌧(r, s) of all edges
are updated at the end of a tour. Parameter ↵ controls pheromone decay, this means that
the pheromone intensity of an edge is decreased according to ↵ every end of a tour. If
↵ = 0 there is no decay, if 0 < ↵  1 pheromone decay takes place. The next part of the
rule sums �⌧

k

(r, s) for all m ants.

⌧(r, s) (1� ↵) · ⌧(r, s) +
mX

k=1

�⌧
k

(r, s) (2.7)

The definition for �⌧
k

(r, s) is given in equation 2.8, where L
k

is the length of the tour of
ant k. This means that ants that found a short tour leave relatively more pheromone on
an edge, thus the colony as a whole will converge to a minimal cost solution over time.
This method has similarities with RL as explained in Section 2.1. The pheromone update
step reinforces the best solutions and by pheromone decay the other edges are made less
attractive for the ants.

�⌧
k

(r, s) =

(
1
Lk

if (r, s) 2 tour done by ant k

0 else
(2.8)

The pheromone in an AS serves the function of memory and indirect communication, ants
deposit pheromone to memorise the best tours. Ants also are attracted to high pheromone
edges when deciding to choose an edge at a node, this form of communication is known as
stigmergy [26, 27].

2.2.2 Ant Colony System

The Ant Colony System (ACS) is an improved and optimised version of AS, created by
Dorigo et al. [16]. The goals of ACS were to improve AS on three aspects [16]:

• Improve the state transition rule by incorporating exploitation and guided explo-
ration.

• Only apply global pheromone updates for the best tour instead of all tours.

• Use a local pheromone update when ants are constructing their tour.



14 CHAPTER 2. THEORETICAL FRAMEWORK

State-Transition Rule

ACS uses a pseudo-random-proportional rule. This is a combination of Equation 2.9 and
Equation 2.6. Equation 2.9 is used to balance between exploitation of the knowledge within
the system and guided exploration. q is a random variable (0  q  1), q0 is a parameter
that controls the exploration-exploitation ratio, S is a city selected by Equation 2.6 [16].

s =

8
<

:
arg max

u2Jk(r)
{[⌧(r, u)] · [⌘(r, u)]�} if q  q0

S else
(2.9)

In all cases where q  q0, the knowledge of the system is exploited. The most attractive
known edge is chosen in this case.
In all other cases, guided exploration takes place according to the random-proportional
rule (Equation 2.6). This means an edge is chosen by using the distribution of the random-
proportional rule.

Global Update Rule

The second improvement over AS is the new global update rule as seen in Equation 2.10.
The global update rule only uses information of the best tour to update the pheromone
deposits on the edges.

⌧(r, s) (1� ↵) · ⌧(r, s) + ↵ ·�⌧(r, s) (2.10)

As opposed to AS, in ACS only the best ant deposits pheromone on edges. The amount
of pheromone deposit �⌧(r, s) is determined in Equation 2.11. The decay of pheromones
over time is regulated by ↵.

�⌧(r, s) =

(
(L

gb

)�1 if (r, s) 2 global best tour

0 else
(2.11)

Local Update Rule

ACS also implements a local update rule, given in Equation 2.12. In this rule �⌧(r, s) = ⌧0.
⌧0 is a parameter that contains the default level of pheromone used at initialisation time
t = 0. The parameter ⇢ is used to control the relative importance of the local update.

⌧(r, s) (1� ⇢) · ⌧(r, s) + ⇢ ·�⌧(r, s) (2.12)

The goal of local updating is to encourage diversification while constructing a tour. If there
is no local updating, all ants are likely to construct a tour near the then optimal tour. This
diversification is realised by reducing pheromone levels on an edge if an ant has passed that
edge, this will encourage the next ant passing the same node constructing its tour using
another edge, thus encouraging exploration.
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2.2.3 Multiple Ant Colony Systems

Multiple ant colony systems (MACS) are a combination of 2 or more ACSs. MACS have
the advantage that they can cope with more than one goal, as opposed to ACS.
The TSP solved by AS and ACS, is a problem with a single agent making a choice based
on a single cost measure. However, a lot of planning problems do not consist of a single
agent or a single cost measure. Take for example the bus stop allocation problem (BAP)
of de Jong and Wiering, as described in [28]. In the BAP there are n bus lines and m bus
stops that need to be visited by at least one bus line. Bus stops have a supply of passengers
that need to be transferred from one bus stop to another bus stop. In order to solve this
problem with an ACS, the authors use MACS, where each ACS constructs a bus line. All
ACSs cooperate to solve the problem of constructing bus lines to find a set of bus lines
that has the lowest total costs.
This idea of using MACS to deal with problems where there are either multiple agents
or multiple goals is also used in other types of research. Notable usage is in the vehicle
routing problem with time windows (VRPTW) [29] or the vehicle routing problem with
back hauls (VRPB) [30].
Vermeulen [31] used MACS as a way to solve issues in the planning of train drivers and
conductors that occur after a disruption. In his research, all the train drivers and con-
ductors were represented by an ACS. The MACS algorithm gives solutions in the form of
employee shifts between trains.
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Chapter 3

Methods

Our main research question is: “what is the best machine learning technique for au-
tonomous planning in a group of UxVs?”. From this section on, we will discuss the issue of
UAV planning, making the assumption that promising high level UAV planning algorithms
also gain good results for UxV planning.
To answer the research question we first made an artificial framework for testing the per-
formance of a planning algorithm. This is explained in Section 3.1.
We then created three algorithms that solve the planning problem in a di↵erent way.
The first algorithm being a baseline approach where we use a greedy planner based on
A* search for the shortest path, this is further explained in Section 3.2. The second
algorithm being a reinforcement learning approach, where we use a feature-based linear
function approximation in combination with Q-learning, explained in Section 3.3. The
last algorithm uses a multi ant colony system in combination with A* for path planning,
explained in Section 3.4. The performance of the algorithms is then compared by using
research techniques explained in Section 3.5.

3.1 UAV Grid World

To compare di↵erent algorithms on a task, we first created a framework and a task where
a fleet of UAVs needs to visit a number of areas. The UAV framework is based on a grid
world, where each square in a grid resembles an area in the real world. This can be seen
in the same way as a grid on a map, where each square in the grid represents an area of
the world.
The grid world consists of a grid with X and Y coordinates, each X and Y coordinate
corresponding to a square in the grid. The grid also has layers, which can be seen as a Z
coordinate, but do not represent height. The layers are implemented to be able to let a
grid contain di↵erent agents at the same X and Y coordinates.
In this research we focus on the high level planning. This means we write algorithms that

17
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plan paths for the group of UAVs. Paths are to be interpreted as a list of neighbouring
squares, where �x 2 {�1, 0, 1}, �y 2 {�1, 0, 1} and |�x| + |�y|  1 for each next
neighbour. The low level planning, e.g. obstacle avoidance when travelling between two
neighbouring squares, is left as further research.

3.1.1 Agents

Each {X,Y, Z} may contain one agent. We implemented di↵erent types of agents, being:

• Area of interest: a static agent representing an area that needs to be visited once by
a UAV. The areas carry a one-time reward of 1.

• No-fly area: a static agent representing an area that needs to be avoided. The areas
carry a negative reward of -0.1, given to a UAV each time the area is passed.

• UAV: A dynamic agent that represents a UAV and can move in three directions,
forward, left-forward and right-forward.

3.1.2 Path and Costs

Each area of interest and no-fly zone carries a reward, but to account for the cost of
movement we also implemented a cost function. This resembles the total cost of travelling
along a path. A path consists of a sequence of neighbouring squares, where each transition
to a neighbouring square is limited to the square in the forward direction of the UAV, the
square in the left-forward direction and the square in the right-forward direction. This
restriction is implemented to make the simulation more natural for non-helicopter UAVs.
These restrictions can be left out for simulating helicopter type UAVs. The cost function is
implemented as the sum of euclidean distances between a sequence of neighbouring squares,
deducted by a possible reward, as can be seen in Equation 3.1.

Cost =

i=lpath�1X

i=0

(
p
(X

i

�X
i+1)2 + (Y

i

� Y
i+1)2 �R

i+1) (3.1)

3.2 Greedy Algorithm

An easy to implement and sometimes very e↵ective method for solving a planning problem
is a greedy algorithm. The Greedy algorithm is trivial in the sense that it chooses the
shortest possible route to an unvisited area of interest at every time step. It does not
consider the total reward at the end to be of any interest, but only focusses on the highest
reward it can get immediately at every step. This makes a greedy algorithm a very good
baseline method, to compare against our other algorithms.
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Figure 3.1: The grid world framework as created for visualisation and testing of the di↵erent
algorithms. Green squares represent the areas of interest that are unvisited and thus
contain a reward, grey areas represent the areas of interest that have already been visited,
the coloured planes represent the UAVs, the red squares represent the no-fly areas which
contain a negative reward.
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For the greedy algorithm, we assume full observability of the environment, except for the
location of other agents. Furthermore, we assume that there is communication at the point
an agent visits an area of interest.

3.2.1 Grid to Graph

To be able to find the highest reward using the Greedy algorithm, we need to have some
kind of measure between two points of interest that need to be visited. We do this by
creating a weighted directed graph from our grid world environment. The nodes of the
graph are all areas of interest and the edges are routes between the nodes that are planned
using A* [32]. Since movement actions of UAVs are restricted for more realistic planning,
we also included the direction of the UAV in a graph node. This means that a path between
two areas of interest is translated to eight di↵erent edges in the graph, corresponding to the
eight possible directions of a UAV (i.e. d 2 {0�, 45�, 90�, 135�, 180�, 225�, 270�, 315�}).
By including information about the direction we can find an accurate cost of a transition
between two nodes. It is notable to point out that when a UAV is on a node, only three
edges are visible for that UAV. Namely, the edge corresponding to the direction of the
UAV and the edges corresponding to the UAV direction minus 45� and plus 45�. The other
edges are not relevant for the planning with that particular UAV at that particular time
step, since they are not reachable given the movement restrictions of the UAV.

3.2.2 Greedy Algorithm

The Greedy algorithm can be seen in Algorithm 1. At any point in time, it checks the A*
distance from the current position of the UAV to all areas of interest that are not visited.
These distances are retrieved from the edges of the graph we discussed in the previous
paragraph.

3.3 Feature Reinforcement Learning

Because of the size of our grid world, a simple tabular reinforcement learning approach
with Q-learning or SARSA would take an incredibly large amount of time to converge. A
relatively simple non-tabular reinforcement learning approach is to make an abstraction of
the world by a number of features and then use reinforcement learning to learn from those
features. We used this technique to create our Feature-Q algorithm.

For the Feature-Q algorithm we assume full observability of the environment, except for
the location of other agents. Furthermore, we assume that there is communication at the
point an agent visits an area of interest.
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Algorithm 1 Greedy algorithm

1: while not all areas of interest visited do

2: distance = 1
3: next = null
4: for areas of interest do
5: if not visited then

6: AStar = A-star distance to area of interest
7: if AStar < distance then

8: distance = AStar
9: next = area of interest

10: end if

11: end if

12: end for

13: if next = null then
14: break while
15: else

16: Move to next
17: end if

18: end while

3.3.1 Grid to Features

A very important part of the Feature-Q algorithm are the features that are extracted
from the state of the grid world at every time step. To make the path planning of UAVs
as realistic as possible, we restrict the actions a UAV can take at every time step to:
forward, left-forward and right-forward. This imposes an issue when we want to measure
the distance between two points. A simple Euclidean or Manhattan distance measure will
not give an accurate measure, because of these restrictions in actions. To overcome the
issues imposed by action restrictions, we first used the same A* planner we use for the
Greedy algorithm to calculate the distance between the agent and all unvisited areas of
interest. While this was a valid solution to the problem of determining distance, speed and
scalability remained a concern.

When analysing the distances given the restrictions of actions, we found that there were
patterns which could be translated to a simple set of formulae, thus reducing the need
for a searching method like A*. The patterns we found are denoted as coloured areas in
Figure 3.2.

The set of formulae all have a set of criteria that define the area in which they are valid.
Please note that the formulae are only valid for UAVs that have a north (or 0�) direction.
The distances in the green area can be calculated by Equation 3.2. In the blue area by
equation 3.3. In the yellow area by Equation 3.4. In the red area by equation 3.5 and in
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Figure 3.2: The patterns found when analysing the lowest cost to reach an area. The UAV
is located at the white square in the middle, with cost 0. The direction of the UAV is
north (0�), facing the green coloured area. Formulae corresponding to the coloured areas
are found in Section 3.3.
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the grey area by Equation 3.6.

Criteria : �y > 0

distance = min (|�y| , |�x|) ⇤
p
2

+ max (|�y| , |�x|)�min (|�y| , |�x|)
(3.2)

Criteria : �y  0, |�x| > 2

distance = (min (|�y| , |�x|� 3) + 2) ⇤
p
2

+ max (|�y| , |�x|� 3)�min (|�y| , |�x|� 3) + 1

(3.3)

Criteria : �y  0, |�x|  �2, (|�y|+ |�x|) � 4

distance = (min (|�y| , |�x|� 3) + 2) ⇤
p
2

+ max (|�y| , |�x|� 3)�min (|�y| , |�x|� 3) + 1

(3.4)

Criteria : �y  0, (|�y|+ |�x|) = 1 or �y = -3, �x = 0

distance = 4 ⇤
p
2

+ 3

(3.5)

Criteria : �y < 0, 2  (|�y|+ |�x|)  3

distance = 4 ⇤
p
2

+ 6� (|�y|+ |�x|)
(3.6)

A UAV can have 8 directions in our grid world. Three of these directions (90�, 180�, 270�),
are e↵ectively the same as the solution for 0�, but rotated. To not have to go through the
whole process of finding the patterns and formulae again, we came up with a solution that
e↵ectively rotates both the UAV and area to which the distance needs to be calculated.
This way we can reuse the same set of formulae as used for the 0� solution.

Our grid world uses rows and columns with an origin in the upper left corner of the grid,
while the formulae for determining distances are designed for an origin at the point of the
UAV. To overcome this matter of convention we came with a set of formulae for converting
from rows and columns to a �x and �y. These formulae are shown in Equation 3.7.
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(3.7)

The formulae for calculating the distances for the other 4 directions (45�, 135�, 225�, 315�)
were found using the same procedure. We first found patterns for distances in the 315�

directions and created formulae the same way as we did for the 0� solution. Next, we
convert the rows and columns to a �x and �y as by Equation 3.8, then we simply use the
formulae for the 315� direction which we determined and can be found in Equations 3.9,
3.10, 3.11, 3.12 and 3.13.
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(3.8)

Criteria : �y � 0, �x  0

distance = min (|�y| , |�x|) ⇤
p
2+

+max (|�y| , |�x|)�min (|�y| , |�x|)
(3.9)

Criteria : �y  �1, �x  �2
distance = (min (|�y|� 1, |�x|� 2) + 1) ⇤

p
2

+ max (|�y|� 1, |�x|� 2)�min (|�y|� 1, |�x|� 2) + 1

(3.10)

Criteria : �y = �2, �x = 2

distance = 3 ⇤
p
2 + 3

(3.11)
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Criteria : �2  �y  �1, �1  �x  2

distance = 3 ⇤
p
2

+ 6� (|�y|+ |�x|)
(3.12)

Criteria : �y +�x  0

distance = (min (|�y|� 3, |�x|+ 1) + 2) ⇤
p
2

+ max (|�y|� 3, |�x|+ 1)�min (|�y|� 3, |�x|+ 1) + 1

(3.13)

When combining the distance formulae and Equations 3.7 & 3.8, we created a heat map
to visualise the costs of reaching a square in all eight directions a UAV can be in. These
heat maps can be found in Figure 3.3. When observing the heat maps, we see that the
formulae are a correct interpretation of the distance with restricted actions, we found by
using A*. This can be seen if we compare Figure 3.2 and Figure 3.3. Furthermore, we see
that the rotation function is also behaving as expected.
The restricted distance is calculated by Algorithm 2. Please note that this function is only
valid for the assumption we made about the movement restriction of a UAV. If a UAV has
no movement restrictions (e.g. helicopter-type UAVs), a simple euclidean distance would
be equal to our restricted distance.
Apart from the complex restricted distance function, we also implemented a simple binary
feature that indicates if an area is of a certain sort. We use both the restricted distance and
the area indication to construct a vector of a total of 4 features. The features are calculated
given a state, which contains all areas and the location of the UAV. These features being:

• Restricted distance from the UAV location to the nearest area of interest.

• Restricted distance from the UAV location to the nearest no-fly area.

• Is the UAV location an area of interest.

• Is the UAV location a no-fly zone.

3.3.2 Feature-Q Algorithm

The features of the previous paragraph are used in combination with an adapted Q-learning
algorithm, called Feature-Q. This can be seen in Algorithm 3. This algorithm can be seen
as non-tabular Q-learning, where a set of weights are updated instead of a value. The
features and weight vectors are multiplied and summed, resulting in a value for a state.
Based on the reward received, weights are updated according to how active the features
are.
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(a) Cost at 0� (b) Cost at 45�

(c) Cost at 90� (d) Cost at 135�

(e) Cost at 180� (f) Cost at 225�

(g) Cost at 270� (h) Cost at 315�

Figure 3.3: Heat map of the restricted cost function for di↵erent angles. The position of
the agent is in the middle of these heat maps. This is used as a feature in the Feature-Q
learner.
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Algorithm 2 Restricted distance

1: direction UAV direction
2: �x by Equation 3.7 & 3.8
3: �y  by Equation 3.7 & 3.8
4: if (direction MOD 45 = 0) then
5: if (�y � 0 AND �x  0) then
6: return  by Equation 3.9
7: else if (�y  �1 AND �x  �2) then
8: return  by Equation 3.10
9: else if (�y = �2 AND �x = 2) then

10: return  by Equation 3.11
11: else if �2  �y  �1 AND �1  �x  2 then

12: return  by Equation 3.12
13: else if (�y +�x  0) then
14: return  by Equation 3.13
15: end if

16: else

17: if (�y > 0) then
18: return  by Equation 3.2
19: else if (�y  0 AND |�x| > 2) then
20: return  by Equation 3.3
21: else if (�y  0 AND |�x|  �2 AND (|�y|+ |�x|) � 4) then
22: return  by Equation 3.4
23: else if (�y  0 AND (|�y|+ |�x|) = 1) OR (�y = -3 AND �x = 0) then
24: return  by Equation 3.5
25: else if (�y < 0 AND 2  (|�y|+ |�x|)  3) then
26: return  by Equation 3.6
27: end if

28: end if
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Algorithm 3 Feature-Q algorithm

1: function main

2: weights {0, 0, 0, 0}
3: while (not all areas of interest visited) do
4: bestAction null
5: value 0
6: for (action 2 actions) do
7: s = current state
8: features getFeatures(s, action)
9: if value < (weights ⇤ features) then

10: value = (weights ⇤ features)
11: bestAction = action
12: end if

13: end for

14: if randomDouble() < ↵ then

15: Act randomAction
16: else

17: Act bestAction
18: end if

19: s0 = current state
20: updateQ(s, bestAction, reward, s0)
21: end while

22: end function

23:

24: function getFeatures(State s, Action a)
25: features {0, 0, 0, 0}
26: features(1) = nearest unvisited area of interest after a by Algorithm 2
27: features(2) = nearest no-fly area after a by Algorithm 2
28: features(3) = UAV is on area of interest after a.
29: features(4) = UAV is on a no-fly area after a.
30: return features
31: end function

32:

33: function updateQ(State s, Action a, Reward r, State s
t+1)

34: delta ! · (r
t+1 + �max

a

Q
t

(s
t+1, a)�Q

t

(s
t

, a
t

))
35: weights weights+ delta ⇤ features
36: end function
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3.4 Multi Ant Colony System

For the third approach we implemented a Multi Ant Colony System (MACS) [16, 28]. This
method has been proven to be an e↵ective search algorithm for multiple vehicle routing,
as can be read in the Theoretical Framework of this thesis. When we implement a way to
transform the grid to a graph representation, the UAV routing problem we are solving can
be seen as a multi vehicle routing problem.
For the MACS algorithm, we assume full observability of the environment. Furthermore,
we assume that there is full communication about the location of the agents.

3.4.1 Grid to Graph

We use the same conversion from a grid world to a graph representation as we use with
the Greedy algorithm that is explained in Section 3.2. The conversion algorithm calculates
all distances between all areas. The distance is calculated for every of the eight possible
directions. This ensures that for every direction of the UAV, there is a correct distance
measure between the area the UAV is on and the direction of the UAV, to all other areas.
The algorithm to create the graph can be found in Algorithm 4. Every distance is calculated
using A*, where the path formed during the search is limited by the possible actions at every
time step. The UAVs are only allowed to move forward (current direction), left-forward
(current direction � 45�), right-forward (current direction + 45�).

Algorithm 4 Grid to graph algorithm

1: function main

2: distances[ ][ ][ ]
3: for areaFrom 2 areas do

4: for areaTo 2 (areas \ areaFrom) do
5: for direction 2 directions do

6: distances[areaFrom][areaTo][direction]
7: = AStar(areaFrom, areaTo, direction)
8: end for

9: end for

10: end for return distances[ ][ ][ ]
11: end function

3.4.2 MACS Algorithm

The MACS algorithm is implemented as n ACSs, with m ants. The number of UAVs equals
n. We also included a heuristic to determine the number of ants per colony, this is called
the ant factor and it is implemented as a factor m multiplied by the number of areas of
interest that need to be visited, as can be seen in Equation 3.14
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Figure 3.4: Ants at the same index of an ACS form a solution to the problem together.

m = antFactor ⇤ length(areasOfInterest) (3.14)

The MACS algorithm is shown in Algorithm 5. Each ACS in the MACS is initialised with
the same number of ants. Ants with the same index within an ACS, form groups of size
equal to the number of UAVs. Ants with the same index form a solution for the problem,
where each ant represents a UAV. A schematic overview of this can be seen in Figure 3.4.

3.5 Research

The goal of this thesis is to determine which of the proposed algorithms is the best for
routing multiple UAVs. To determine this, we created a research method that is explained
in this section.

3.5.1 Parameter Influence

Both the MACS and Feature-Q algorithms have a number of parameters that can be
adjusted. For example, the learning rate, or the chance of choosing a random area of
interest as a next destination. We will first run a series of experiments to determine
the influence of the most important parameters on the performance of the algorithms. To
measure this we will create a grid world of 30x30 and initialise a number of areas of interest
and no-fly areas at random positions. We will run the same algorithm on the same grid
world, while adjusting a parameter to see its influence on the performance.
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Algorithm 5 MACS algorithm

1: function main

2: n length(UAVs)
3: m by Equation 3.14
4: bestTour[ ][ ] null
5: bestTourLength 1
6: for (iterations) do
7: initialise all ants at the UAV location area
8: for (antIdx = 0 : m) do
9: while (!8 areas visited) do

10: for (acsIdx : n) do
11: nextArea selectNextArea(acsIdx,antIdx)
12: visitTown(nextArea)
13: addToTour(acsIdx, antIdx, nextArea)
14: localUpdate(currentArea, nextArea) by Equation 2.12
15: end for

16: end while

17: tourLength tourLength(antIdx)
18: currentTour  getTour(antIdx)
19: if (tourLength < bestTourLength) then
20: bestTour  currentTour
21: bestTourLength tourLength
22: end if

23: end for

24: globalUpdate(bestTour) by Equation 2.10
25: end for

26: end function
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3.5.2 Baseline Performance

As a baseline, we create a grid world where we initialise areas of interest and no-fly areas
at random squares in the grid world. After the random initialisation we run all three our
proposed methods on that same grid world. The total cost of the solutions is the sum of
costs of all individual UAVs. The cost of a single UAV is calculated by Equation 3.1.

3.5.3 Grid World Influence

To determine the influence of scaling up the problem, we will use the same method as
described in the baseline section and run that for grid worlds of di↵erent sizes.

3.5.4 UAV Influence

We will also investigate the influence of scaling the number of UAVs on the performance
by again using the same method as described in the baseline section and running that for
di↵erent numbers of UAVs.



Chapter 4

Experiments and Results

For all research, we used a 30 by 30 grid world, except when stated otherwise. The grid
world contains 5 UAVs, 50 no fly areas, 26 areas of interest. All of these UAVs, no fly areas
and areas of interest are randomised at the end of a run. The randomisation process makes
sure our results are valid for the problem as a whole and not only for a specific world. We
first did a parameter sweep for both the Feature-Q algorithm and the MACS algorithm.
Using the results of the parameter sweep, we will compare all three algorithms.

4.1 Feature-Q Parameters

Our Feature-Q algorithm has three main parameters that can be changed and have a
possible influence on the quality of the solution. All parameters are tested using a fixed
number of 50.000 learning iterations. Each UAV has its own learner, so with 5 UAVs there
are 5 Feature-Q algorithms active in parallel. After the learning phase, a testing phase
of 50.000 iterations takes place. During this testing phase, both the learning rate and
exploration are set to zero. This is done to be able to see the quality of the solution after
50.000 learning iterations, without changing the solution while testing it.
The parameters we tested are:

• Learning rate (!): the influence of a single input on the adjustment of the weights,
default value: 0.05
The measurements can be seen in Figure 4.1a.

• Greedy preference (↵): the chance of choosing a totally random action as opposed to
the best action, default value: 0.05
The measurements can be seen in Figure 4.1b.

• Discount factor (�): the preference for a short term reward as opposed to possible
future rewards, default value: 0.01
The measurements can be seen in Figure 4.1c.

33
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In all figures we use the cost of the solution as measure of quality. The cost is defined in
Equation 3.1 as the sum of Euclidean distances of the path of the UAV deducted by the
sum of all collected rewards, the possible rewards being: 1 for an area of interest and -0.1
for a no-fly area.
The plots contain box plots, where the bold line in the middle is the median, the lower
line of the box is the lower quartile (i.e. 1st quartile or 25th percentile) and the upper line
is the upper quartile (i.e. 3rd quartile or 75th percentile). From the plots we see that the
algorithm performs best at a learning rate of ! = 0.1 and a greedy preference of ↵ = 0.01.
The discount factor seems to be of little influence, but best performance is seen at � = 0.1.

4.2 MACS Parameters

Our MACS algorithm has six main parameters that can be adjusted and have a possible
influence on the quality of the solution. The results are gathered by running the MACS
algorithm at a randomised grid world. For every random grid world, the MACS algorithm
is run with the di↵erent values of the parameter we test. This is done to minimise the
influence of the randomisation on the parameter we want to investigate.
The parameters we tested are:

• Number of iterations: The number of iterations of the MACS algorithm before giving
a solution, default value: 500
The measurements can be seen in Figure 4.2a.

• Local update strength (⇢): The strength of the local update of an ant, default value:
0.05
The measurements can be seen in Figure 4.2b

• Greedy preference (�): the preference of ants for a low cost edge as opposed to a
high pheromone edge, default value: 5
The measurements can be seen in Figure 4.2c.

• Ant factor: The number of ants as opposed to the number of areas of interest, default
value: 5
The measurements can be seen in Figure 4.2d.

• Evaporation rate (↵): The rate at which the pheromones decay, default value: 0.1
The measurements can be seen in Figure 4.2e.

• Random probability (q0): the chance of choosing a totally random action as opposed
to the best action, default value: 0.01
The measurements can be seen in Figure 4.2f.
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Figure 4.1: Parameter sweep of the Feature-Q algorithm
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Figure 4.2: Parameter sweep of the MACS algorithm
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Greedy Feature-Q MACS
Greedy n/a 0.157 0.000

Feature-Q 0.157 n/a 0.000

MACS 0.000 0.000 n/a

Table 4.1: P-values of the algorithmic performances being di↵erent from each other. So-
lutions were created for a randomised 30x30 grid world containing 5 UAVs, 26 areas of
interest, 50 no-fly areas.

Algorithm Cost
Greedy 225.3
Feature-Q 247.9
MACS 124.1

Table 4.2: Mean cost of 100 solutions of the algorithms. Solutions were created for a
randomised 30x30 grid world containing 5 UAVs, 26 areas of interest, 50 no-fly areas.

From the plots we see that the number of iterations settles down at 500 iterations and the
ant factor seems of little influence at values higher than 10. The algorithm performs best
at a local update strength of ⇢ = 0.01, a greedy preference of � = 10 and the evaporation
rate and random probability seem to be of little influence, but best performance is seen at
an evaporation rate of 0.05 and random probability of 0.005.

4.3 Baseline Performance

Using the values for the parameters found by the parameter sweep, we compared the
performance of the di↵erent algorithms on the same randomised grid world. The Feature-
Q algorithm is trained for 50.000 iterations on multiple randomised grid worlds. The
MACS algorithm is trained and then tested on a single randomised grid world. The trained
Feature-Q algorithm is used to solve the same grid world as the MACS algorithm. As a
baseline, we also solve that same grid world with the Greedy algorithm. This procedure is
repeated 100 times, to compare the performance of the algorithms on the UAV planning
problem.
The cost of all solutions are compared using Friedman’s test [33, 34] and p-values are cor-
rected using Finner’s procedure [35, 34]. As we see in Table 4.1 there is no significant
di↵erence between the performance of the Greedy algorithm and the Feature-Q algorithm.
There is however a significant di↵erence between the MACS algorithm and the other al-
gorithms, thus showing the MACS algorithm performs best. In Table 4.2 we see the mean
cost of 100 solutions, showing us that the MACS algorithm has the lowest mean cost for a
solution, followed by the Greedy algorithm.
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Figure 4.3: Influence of the size of the grid world on the total cost of the solution for the
Greedy, Feature-Q and MACS algorithms.

4.4 Grid World Influence

We repeated the same procedure of the baseline performance for six di↵erent sizes of the
grid world 2 {15x15, 20x20, 25x25, 30x30, 45x45, 60x60}. The density of the no-fly zones
and the areas of interest is kept the same throughout the di↵erent grid world sizes (i.e. the
ratio between the number of no-fly zones and number of areas of interest is not changed, but
their total number increases with a larger grid to keep their density the same throughout
the experiment).

We used Friedman’s test and corrected the p-values using Finner’s procedure. The results
per grid world size can be seen in Table 4.3.

The mean cost of 100 runs of all algorithms for di↵erent sizes of the grid world can be
seen in Figure 4.3. From Table 4.3 we see that the Feature-Q and Greedy algorithms are
significantly di↵erent at grid worlds of 15x15. For the other sizes there is no significant
di↵erence. We can also see that for all sizes of the grid world the di↵erence in performance
between the MACS algorithm and the other two algorithms is significant. This means the
MACS algorithm performs significantly better than the other two algorithms, regardless of
the grid world size.
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Greedy Feature-Q MACS
Greedy n/a 3.954e-09 3.331e-14

Feature-Q 3.954e-09 n/a 0.000e+00

MACS 3.331e-14 0.000e+00 n/a

(a) 15x15

Greedy Feature-Q MACS
Greedy n/a 5.716e-01 0.000e+00

Feature-Q 5.716e-01 n/a 0.000e+00

MACS 0.000e+00 0.000e+00 n/a

(b) 20x20

Greedy Feature-Q MACS
Greedy n/a 1.513e-01 0.000e+00

Feature-Q 1.513e-01 n/a 0.000e+00

MACS 0.000e+00 0.000e+00 n/a

(c) 25x25

Greedy Feature-Q MACS
Greedy n/a 2.254e-01 0.000e+00

Feature-Q 2.254e-01 n/a 0.000e+00

MACS 0.000e+00 0.000e+00 n/a

(d) 45x45

Greedy Feature-Q MACS
Greedy n/a 2.757e-01 0.000e+00

Feature-Q 2.757e-01 n/a 0.000e+00

MACS 0.000e+00 0.000e+00 n/a

(e) 60x60

Table 4.3: P-values of the algorithmic performances being di↵erent from each other for
di↵erent sizes of the grid world. Solutions were created for a randomised grid world.
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Figure 4.4: Influence of the number of UAVs on the total cost of the solution for the
Greedy, Feature-Q and MACS algorithms.

4.5 UAV Influence

As a last factor we tested whether the number of UAVs was of influence on the quality of
the solution. We used our standard 30x30 randomised grid world, containing 26 areas of
interest and 50 no-fly areas. For this research we investigated the solutions using all three
algorithms on this grid world containing a di↵erent number of UAVs 2 {1, 2, 3, 4, 5, 6, 8, 10}.

We again used Friedman’s test and corrected the p-values using Finner’s procedure. The
results per number of UAVs can be seen in Table 4.4.

The mean cost of 100 runs of all algorithms for a di↵erent number of UAVs can be seen
in Figure 4.4. From Table 4.4 we can see that the di↵erence between the Feature-Q and
Greedy algorithms is not significant in the case of 3 and 4 UAVs. With all other number
of UAVs there is a significant di↵erence between the algorithms. The MACS algorithm
has a significant di↵erence with the other two algorithms at any number of UAVs. This
means that again the MACS algorithm performs better than the other two algorithms at
any number of UAVs. The second best algorithm depends on the number of UAVs used,
if there is only 1 or 2 UAVs, the second best algorithm would be the Feature-Q algorithm,
and if there are 5 or more UAVs the Greedy algorithm is second best. In the case of 3 or
4 UAVs there is no significant di↵erence between the Feature-Q and Greedy algorithms.
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Greedy Feature-Q MACS
Greedy n/a 1.603e-11 0.000e+00

Feature-Q 1.603e-11 n/a 8.240e-13

MACS 0.000e+00 8.240e-13 n/a

(a) 1 UAV

Greedy Feature-Q MACS
Greedy n/a 2.831e-02 0.000e+00

Feature-Q 2.831e-02 n/a 0.000e+00

MACS 0.000e+00 0.000e+00 n/a

(b) 2 UAVs

Greedy Feature-Q MACS
Greedy n/a 1.299e-01 0.000e+00

Feature-Q 1.299e-01 n/a 0.000e+00

MACS 0.000e+00 0.000e+00 n/a

(c) 3 UAVs

Greedy Feature-Q MACS
Greedy n/a 4.795e-01 0.000e+00

Feature-Q 4.795e-01 n/a 0.000e+00

MACS 0.000e+00 0.000e+00 n/a

(d) 4 UAVs

Greedy Feature-Q MACS
Greedy n/a 3.864e-02 0.000e+00

Feature-Q 3.864e-02 n/a 0.000e+00

MACS 0.000e+00 0.000e+00 n/a

(e) 6 UAVs

Greedy Feature-Q MACS
Greedy n/a 1.697e-04 0.000e+00

Feature-Q 1.697e-04 n/a 0.000e+00

MACS 0.000e+00 0.000e+00 n/a

(f) 8 UAVs

Greedy Feature-Q MACS
Greedy n/a 9.908e-07 6.661e-16

Feature-Q 9.908e-07 n/a 0.000e+00

MACS 6.661e-16 0.000e+00 n/a

(g) 10 UAVs

Table 4.4: P-values of the algorithmic performances being di↵erent from each other for
di↵erent numbers of UAVs. Solutions were created for a randomised 30x30 grid world
containing 26 areas of interest and 50 no-fly areas.
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4.6 Case Studies

To give the reader an idea of the di↵erences in solutions between the three algorithms, we
made two case studies that emphasise these di↵erences. The results are not to be confused
with the empirical research done on the performance of the algorithms, as conducted in
the previous part of this section, but merely as an addition to this research.
The first case study includes three isles of areas of interest, which need to be visited. We
also included a variant of the isles with a wall of no-fly zones.
The second case study includes three areas of interest, separated by two large no-fly zones.

4.6.1 Isles Case Study

For the isles case study, we created two variants. A normal variant in which there are three
isles of areas of interest, this can be seen in Figure 4.5. We also created a variant with a
wall in between the isles, this van be seen in Figure 4.6.
There are some notable outcomes of this particular case:

• Both the Greedy and Feature-Q algorithm do not divide over the isles. In both
algorithms, all the UAVs head to the nearest isle and visit all areas. If the visit isle is
fully visited, they head to the next nearest. The MACS algorithm divides the UAVs
between the isles, this makes for a faster solution.

• When we add a wall in between the isles (Figure 4.6), we find that when using the
Greedy or Feature-Q algorithm the UAVs have a tendency to visit the right-most isle
first. The MACS algorithm still divides between the isles.

• Another interesting finding is that the Feature-Q algorithm sometimes decides to
cross the no-fly wall, to reach an area of interest.

4.6.2 No-fly Zone Case Study

To further illustrate the di↵erences, we set up a second case where there are three areas of
interest that are divided by two large no-fly zones, see Figure 4.7. We will again give some
notable outcomes of this case:

• When using the Greedy an Feature-Q algorithm, all three UAV from a train to head
to the middle area of interest. After this area is visited, they head to the right-most
area of interest to end at the left-most area of interest.

• The MACS algorithm divided the UAVs between all three areas of interest, signifi-
cantly lowering the time needed to visit all three areas of interest.

• In a few observations we saw the Feature-Q algorithm chose to cross a no-fly zone to
reach an area of interest.
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Figure 4.5: Isles grid world
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Figure 4.6: Isles with wall grid world
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Figure 4.7: No-fly zone grid world



Chapter 5

Discussion and Conclusion

We compared the Greedy, MACS and Feature-Q algorithms on performance and scalability.
The results from this research gave us insight in the usability of all algorithms for the UAV
routing task. We will answer our main research question and sub questions for all three
algorithms in the three next paragraphs.

5.1 Greedy

The Greedy algorithm was very easy to implement and gave good results when a small
number of UAVs was used. However, the algorithm has no advantages over the MACS
algorithm except compute time.
One of the reasons the performance of the Greedy algorithm is disappointing at a higher
number of UAVs, is because of the fact that there is no communication between the UAVs
except for a list of visited areas. Therefore we see that UAVs have a tendency to follow
each other, resulting in a train of UAVs all heading to the same best destination given the
Greedy algorithm.
Despite the fact that the Greedy algorithm is easy to understand and is not computational
heavy, the process of creating the graph representation from the grid world is. Creating
the graph initiates approximately N2

interest

A-star searches to determine all edges on the
graph, making it an algorithm that does not scale very well.

5.2 Feature-Q

The parameter sweep showed us that the discount factor was of little influence on the
performance. If we look at the problem we are trying to solve, this makes sense. When a
UAV reaches a high value state, there is no guarantee that the next state will also be of
high value.

47



48 CHAPTER 5. DISCUSSION AND CONCLUSION

The performance of the Feature-Q algorithm is somewhat disappointing, but given the
fact that this level of performance is reached with only four features leaves room for im-
provement. The Feature-Q algorithm su↵ers from the same lack of communication as the
Greedy algorithm. The agents only get a list of areas that still need to be visited. Current
destinations are not considered. This makes for the same potential behaviour of multiple
UAVs following each other as is the case with the Greedy algorithm.
The learning of the value function takes a fair amount of CPU-time. However, when the
algorithm has finished learning it has learned to solve the problem as a whole and the
solution it has found is independent of the grid world. This is a big advantage the Feature-
Q algorithm has above the other two algorithms, who both need to recalculate the optimal
solution if something in the world changes.
An argument against the Feature-Q algorithm would be that the knowledge of this algo-
rithm is in the features, which is partially true. While the creation of informative and
high quality features is done by using human knowledge, reinforcement learning is used to
find the weights of those features that give the highest reward. A human with extensive
knowledge of the problem would probably be able to guess these weights by trial and error,
but this would consume a reasonable amount of time and would not necessarily render a
better solution.
The features are both the greatest part of this algorithm as they are its Achilles heel. They
make that this algorithm can be used in a dynamic on-line environment, without the need
to relearn for every new world or change of the environment. But since the performance of
the algorithm is as good as its features, more features should be added and tested to use
the full potential of feature-based RL on UxV routing.

5.3 MACS

The parameter sweep of the MACS algorithm showed us that three parameters were of little
influence: the local update strength (⇢), the random probability (q0) and the evaporation
rate (↵). A possible explanation for this can be found in the number of iterations of the
MACS algorithm. All these parameters promote exploration to find a better solution, but
due to the high number of iterations we chose it is very possible the algorithm converges to
a low cost solution with minimal exploration. Therefore more exploration would not result
in a higher quality solution.
All the results point to the MACS algorithm being the best performing amongst all al-
gorithms used in this research. So we cannot conclude otherwise than that the MACS
approach is the best learning technique in the sense of quality of the solution.
But as we already pointed out in the previous paragraph, a large disadvantage of the MACS
algorithm is the increase in computational complexity with the size of the problem. This
makes the MACS algorithm a very good choice for small and static planning problems, but
a less ideal choice for larger or more dynamic problems. In our research we noticed that a
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grid of 100x100 is about the maximum that can be calculated with the MACS algorithm
in a reasonable amount of time (i.e. < 5 minutes on standard hardware). But a large
part of this is due to creating the graph from the grid world. Actually running the MACS
algorithm on the graph takes about the same time as creating the graph.
Furthermore, the MACS algorithm is a centralised form of planning, where all planning
is done on a single server and a route is given to the UAVs. As opposed to the MACS
algorithm, the Feature-Q algorithm can be run locally on every UAV.

5.4 Research Question

Our main research question was: “What is the best machine learning technique for au-
tonomous planning in a group of UxVs?”.
We can answer this question in two ways. The best algorithm in terms of quality of the
solution is the MACS algorithm. Its solutions have the lowest cost and they also have the
lowest increase in cost if we scale the problem.
If we take in account the computational complexity, the Feature-Q algorithm is not as
computational intensive when the learning is finished and the knowledge of the algorithm
is exploited. Furthermore the Feature-Q algorithm scales better in terms of computational
complexity than the MACS algorithm. When we look at the computational power of a
standard UAV, we find that this is very limited. Therefore running any learning algorithm
on-board of a UAV makes little sense. In case of the MACS algorithm, this is not a
problem, since all planning is done at a central server. In case of the Feature-Q algorithm,
the limited computational power might be a problem, but only when the UAV is learning
to solve the problem. The UAV could also learn the task by simulation, thus removing the
need to learn the task on the on-board hardware of the UAV. If the Feature-Q algorithm
is trained, execution is as simple as multiplying detected features with learned weights,
resulting in an action the UAV should take.
All our algorithms depend on a certain amount of communication. Communication on-
board standard UAVs however, has limited range and reliability. This imposes an issue for
all our algorithms, but in particular for the MACS algorithm as it assumes full communi-
cation.
The Feature-Q algorithm is the only algorithm of the three that generates a universal
solution to the problem, as opposed to the problem specific solutions of the MACS and
Greedy algorithm. While a universal solution is more useful than a problem specific solution
that needs to be recalculated at every change, the quality of the solutions of the Feature-Q
algorithm are significantly worse than those of the other two algorithms.
To answer the research question, we make the choice that the quality of the solution
weights heavier for a planning problem than scalability or a universal solution. Therefore
we will conclude that the MACS algorithm is among the tested techniques the best machine
learning technique for autonomous planning in a group of UxVs. The Feature-Q algorithm
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has a great potential given its scalability and universal solution, but needs more research
and better features to be of practical use for solving planning problems.

5.5 Future Work

As a last part of this thesis, we would like to mention possible future work to research
planning algorithms for multiple UxVs.
We mentioned before that the performance of the Feature-Q algorithm is depending on
the quality of the features. This algorithm is promising in the sense it is decentralised and
robust in a dynamic environment. Research on new features could improve the performance
of the algorithm and therefore make the algorithm competitive for centralised algorithms
as MACS. Possible features are features that tell the agent about goals or locations of other
agents, features about the spread of agents across the grid or features that determine the
distance to the next nearest area of interest or no-fly zone.
Another interesting idea for further research on RL in multi UxV planning is the use of a
cascade of RL agents, where one agent could for example determine the next destination
and another agent could be used to navigate to this destination.
As for the MACS algorithm, the creation of a graph containing the distances is a time
consuming process that leaves a lot of room for improvement. The use of multiple A-
star algorithms to determine the distances is not of any practical use at larger grids. A
solution to this lies in finding other ways to construct a graph. One approach that might
be interesting to investigate is if the features used for the Feature-Q algorithm could be
used for a biased search when creating the graph, creating a hybrid solution.
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