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Abstract

In this thesis a new metaheuristic for combinatorial optimization is proposed,
with focus on the Quadratic Assignment Problem as the hard-problem of choice
- a choice that is reflected in the name of the method, BIMA-QAP. The al-
gorithm employs a memetic structure and stores information on the single
components along the search. This information is used to guide the search,
through an operator inspired by the solution approaches to the Multi-Armed
Bandit model.

Once the algorithm has been laid out and its set of parameters defined, its
implementation has been extensively tested under a Naive-Bayesian assump-
tion of independence among the parameters. The results show that BIMA-
QAP consistently performs better than Multi-start Local Search, and the new
operator perturb() alters the solutions better than a randomized approach.
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1 INTRODUCTION

1 Introduction

There is an empirical rule in informatics that goes under the name of Moore’s
Law. First stated in 1965 [1], up to now it correctly predicted the number of
transistors in integrated circuits to double every two years, with a proportional
impact on their performance.

Almost fifty years later, the CPU found in a modern cellphone can crunch
instructions faster than the first supercomputers in use back then1. Main-
frames are many orders of magnitude faster, and nowadays we depend on fast
computers for tasks that range from complex meteorological simulations to
rendering entire blockbusters frame by frame - tasks that would have been
unfeasible for the machines of our recent past.

Yet there are limits that the current computational technology is not ex-
pecting to catch up anytime soon. Limits that are hard-coded in mathematics
itself, under the form of Hard Problems. Hard problems cannot be solved in
polynomial time, and their complexity greatly increases with size; for some
particularly complex problems, the problematic input size can be smaller than
many would expect. In the case of the Quadratic Assignment Problem (QAP),
an archetypal Hard Problem that deals with optimally matching a set of n fa-
cilities to a set of n locations, currently instances of size greater than 30 are
considered intractable. This limit is going to increase over time, but there will
always be instances too big to be solved by exhaustive search.

The most common approach is then to be happy with an approximate
solution, and to research techniques that are able to provide solutions of ac-
ceptable quality in an affordable time frame. Meta-heuristics are the most
common of such techniques, and have the desirable property of being problem-
independent. This because they approach the task by analyzing the structure
of the solution more than the nature of the problem itself.

Many of such algorithms have been introduced in the past decades. Genetic
Algorithms [2] adopt a different approach from Tabu Search [3], which in turn
doesn’t behave like Simulated Annealing [4]. Yet they have in common many
inspiring principles, and design elements are often shared across methods. This
thesis aims to combine several ideas that were object of extensive past research,
to define a new method for finding approximate solutions to QAP instances.

1As of 2012, smartphones are nearing the 50 MFLOPS mark, far more than the CDC7600
- the world’s fastest supercomputer in 1969/1970.
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1.1 The Scope of this Work 1 INTRODUCTION

1.1 The Scope of this Work

As will be briefly discussed in Chapter 2, there are theoretical results that
prove that no metaheuristic can outperform every other in all the problems.
This pushed researchers to pursue different approaches and to combine exist-
ing ones, and it has been a fundamental stimulus to this project as well.

The scope of this work is to design, implement and evaluate a new method
for solving instances of the Quadratic Assignment Problem. While the im-
plementation is somewhat of a technicality, in the field of metaheuristics the
experimental analysis of an algorithm is as important as the theoretical con-
cepts behind it. It is impossible to assess the long-term effectiveness of a good
method without running it first, so the matter of testing has been taken very
seriously.

The algorithm has a memetic structure and uses several matrices to collect
data about the components of the solutions alongside the search. This data
is used to modify and combine the solutions, drawing inspiration from the
Multi-Armed Bandit framework [5]. The resulting method is called BIMA-
QAP, which stands for Bandit-Inspired Memetic Algorithm for Quadratic As-
signment Problems.

The process of defining an effective metaheuristic for dealing with hard
problems necessarily involves some trial and error. Defining a set of param-
eters to be tweaked is not only a way to suit the algorithm to the different
instances, but it is also important to estimate the influence of the various de-
sign elements on the final results.

The final target is to get an algorithm that shows a converging behavior,
is effective in exploring the search space and outperforms Multi-start Local
Search (MLS) - which is the simplest of metaheuristics and is discussed, among
other methods, in Chapter 2.

The next section will describe the structure of this thesis more in details.

1.2 Structure of the Thesis

The extent of Chapter 2 is broader than its name would suggest. It starts
by the sheer concept of (combinatorial) optimization problems to then briefly
characterize their Hard subset. Talking about approximate optimization meth-
ods follows logically, and the discussion on Metaheuristics themselves starts in

2



1 INTRODUCTION 1.2 Structure of the Thesis

section 2.4; the section contains some fundamental categorization, a brief his-
torical background and a first mention of the exploration versus exploitation
dilemma. The focus then switches back to the problems when the QAP is in-
troduced and formalized in the last section of the chapter; here the important
concept of 2-opt neighborhood is discussed, together with an efficient way of
encoding solutions.

Once some theoretical background has been laid out, the topic of Chapter
3 is the BIMA-QAP method itself. Designing a metaheuristic is a complex
process, and involves a synergy of different elements. After defining the basic
structure of the algorithm, the chapter opens a parenthesis on the Multi-Armed
Bandit framework and on UCB [6] as a technique to tackle it. It then gets
back to the method itself by describing the process of intuitively adapting the
formula from an optimization problem to another - a process that culminates
in the definition of the operator perturb() in section 3.6. Before that, Section
3.5 explains how BIMA-QAP manages its pool of solutions, and suggests the
inclusion of additional matrices to better model the search neighborhoods. An
overview of the algorithm, its methods and its parameters concludes the Con-
tribution chapter.

The crucial importance of experimentally assessing the performance of a
method has been already stressed out; the lengthy Chapter 4 deals precisely
with that. After the quick overview on the implementation offered by section
4.1, the experimental approach is discussed in the following section. Finding
the optimal settings for a method is an optimization problem in itself, so the
effects of the parameters are analyzed individually. A set of standard settings
has been chosen for the experiment e00; then, for each of the parameters, a
number of experiments has been defined. Two additional tests are in place, to
compare the performance of BIMA-QAP to MLS and to itself with a random
components selection in place of the custom operator. Some results are pre-
sented in section 4.3, followed by a comparative analysis of the experiments
on each instance. Section 4.4 ends the chapter by summarizing the findings.

Chapter 5 concludes the thesis with some brief final assessment of the re-
search done; Appendix A collects in a tabular form many experimental results
that didn’t make it to Chapter 4.

3



1.2 Structure of the Thesis 1 INTRODUCTION

4



2 METAHEURISTICS

2 Metaheuristics

This chapter is meant to provide some theoretical background over the thesis
subject. It starts by discussing the nature of optimization problems and their
characteristics, to then shift to possible solution methods. It later gets more
focused, with a section about metaheuristics and one that deals with the op-
timization problem of choice, the Quadratic Assignment Problem.

The sources that inspired the bulk of the chapter are the book “Metaheuris-
tics” by El-Ghazali Talbi [7], the book “Essential of Metaheuristics” by Sean
Luke [8], the paper where Blum and Roli introduce the I&D frame ([9], see
section 2.4.5) and the work of Stützle on the Quadratic Assignment Problem
(e.g. [10]). Several other sources are cited along the chapter.

2.1 A Problem of Optimization

Operations Research is an interdisciplinary mathematical science that aims
at providing optimal or near-optimal solutions to complex decision-making
problems. While its origin dates back to at least the 19th century, when a
systematic study of the UK postal service and railway network was carried
by Charles Babbage, Operations Research as a discipline can be considered
as a lesser known offspring of World War II. The unprecedented scale of the
conflict and the availability of new and more complex technologies put the
governments for the first time in the position of forming entire research teams
dedicated to sustain the war effort by... optimizing it.

The work of those scientists heavily relied on modelling and statistical anal-
ysis, and tackled practical problems such as logistics and training schedules.
They discussed about the safest convoy size to cross the Atlantic Ocean with
minimal losses from enemy submarines, they found the most effective depth
at which to detonate depth charges, they optimized the patterns of bombing
raids in order to minimize losses. After the war this new science shared the
faith of many wartime technological byproducts, and research partially shifted
its focus to possible civil applications.

Fast-forward 70 years: nowadays Operations Research is commonly used
to deal with - among others - complex problems of supply-chain management,
freight transportation and automation. Optimization algorithms heavily influ-
ence our daily lives, the items we rely on and even our society as a whole.
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2.1 A Problem of Optimization 2 METAHEURISTICS

2.1.1 Getting More Formal

It now seems appropriate to introduce some definitions, starting from formal-
izing the problem itself. Note that in the remainder of this work by “opti-
mization” we in fact mean single-objective optimization, not considering those
problems that sport more than one function to minimize at the same time.
The definitions in this subsection are taken from [9] and [7].

Definition 1. An optimization problem can be seen as a couple (S, f),
with S being the set of feasible solutions (also known as search space) and
f : S → R the objective function2 to optimize3. This function assigns to each
s ∈ S a real number indicating its quality, allowing to define a total order
relation over the solutions in the search space.

It is then possible to describe the desired kind of solution.

Definition 2. A solution s* is a global optimum if its objective function
value is minimum among the solutions in the search space, that is, ∀s ∈ S,
f(s∗) ≤ f(s). The set S∗ ⊆ S contains all the globally optimal solutions.

While a good optimization method should ideally reach one of the solutions
in S∗, there is a more general category of solutions that is of fundamental
importance. But it is first needed to define the concept of neighborhood.

Definition 3. A neighborhood structure is a function N : S → 2S that
assigns to every s ∈ S a set of neighbours N(s) ⊆ S. N(s) is called the
neighborhood of s.

It is now possible to introduce the concept of locally minimal solutions.

Definition 4. A solution s* is a local minimum with respect to a neighbour
structure N if ∀s ∈ N(s∗), f(s∗) ≤ f(s). s* is called a strictly local minimal
solution if ∀s ∈ N(s∗), f(s∗) < f(s).

While sharing these common concepts, among others, optimization prob-
lems have different characteristics among them. A variety of models has con-
sequently been proposed to deal with them.

2also known as cost, utility or fitness function.
3maximizing a function f is the same as minimizing a function −f ; in this project opti-

mization and minimization will often be used interchangeably, without a loss of generality.
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2.1.2 Combinatorial Optimization

The focus of this work is on a specific subset of optimization problems, the so
called combinatorial optimization ones. They are defined as follows.

Definition 5. A combinatorial optimization problem P = (S, f) can be
defined by the following elements:

• a set of variables X = {x1, . . . , xn};

• variable domains D1, . . . , Dn;

• constraints among variables;

• the objective function f to be minimized, where f : D1 × · · · ×Dn → R;

The set of all possible feasible assignments is then

S = {s = {(x1, v1), . . . , (xn, vn)} | vi ∈ Di, s satisfies all the constraints }

The scope is then restricted to problems with discrete decision variables and
a finite search space, while objective function and constraints are quite more
flexible to define. These characteristics are actually suitable for modelling a
variety of complex real-world problems, as hinted in the next sections.

2.2 Hard Problems

One further way of categorizing optimization problems is by how difficult they
are to solve. This depends on several factors and abstracts from the instance
size, which is in fact taken as parameter in the complexity analysis.
It may seem that the restrictions introduced while defining the class of prob-
lems above could have simplified things quite a bit, but the reality is that
combinatorial optimization problems can be extremely hard to tackle, and
even relatively small instance sizes can lead to huge search spaces.

Assuming the reader to be somewhat familiar with the basic concepts of
NP-completeness (whose extensive analysis is in turn out of the scope of this
thesis), it is interesting to note that any optimization problem can be reduced
to a homologous decision problem. An optimization problem is defined NP-
hard if its associated decision problem is NP-complete. NP-hard problems
are intractable, which means that there are no algorithms able to solve them
in polynomial time (unless P = NP). This has brought scientists to research a
wide range of techniques to deal with them, as will be later discussed.

7
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The first problem to be proved as NP-complete, by Stephen Cook in 1971
[11], was the Boolean satisfiability problem. The following year Richard Karp
published a list of 21 known hard problems that could be reduced to the SAT
problem and hence proved NP-complete [12].

2.3 Optimization Methods

Depending on several factors, such as a) complexity of the problem; b) com-
plexity and size of the problem instance; c) time availability; and d) actual
need for best-in-class solutions, two kinds of approaches are adopted in opti-
mization: exact and approximate methods.

2.3.1 Exact Methods

Exact methods are guaranteed to provide an optimal solution to the problem
in analysis, if given enough time for it - which, incidentally, is not always a
feasible option.

The most trivial algorithm to minimize a problem with a finite set of so-
lutions is to evaluate them one by one and then return the best found, an
approach that goes under the name of exhaustive or brute-force search. Un-
fortunately it is not difficult to think about real-life combinatorial problems
with a solution space so big that if the fastest existing computer spent the
estimated age of the universe crunching solutions, it would still be a long way
from evaluating them all. To avoid being confined just to small instances of
simple problems, improved exact methods need to reduce the amount of evalu-
ations performed while guaranteeing not to miss a global optimum on the way.
Two main approaches have been employed.

In dynamic programming the problem is recursively divided into sim-
pler subproblems. This is consistent with Bellman’s principle [13], that states
that any subpolicy to an optimal policy should be optimal as well. Once the
method detects that a certain set of assignments cannot lead to optimality,
these are pruned from any further analysis.

Branch and bound algorithms and A* algorithms work instead by divid-
ing the solutions into classes that are then assigned bounds on the quality of
the objective function. Those areas of search space whose best possible quality
is inferior to the best reached solution can be safely pruned.

8



2 METAHEURISTICS 2.4 Metaheuristics

Despite the continuous refinements in the field of exact algorithms, there
will always be optimization problems that due to stringent time constraints or
pure intractability won’t be suitable to this kind of approach. In fact, in most
practical applications all is needed is a good enough solution.

2.3.2 Approximate Methods

Approximate optimization methods exist to complement exact algorithms. An
optimal solution is always preferable to a best-effort one, but as mentioned ear-
lier such solution is not always at reach.

A first distinction that needs to be made on this new class of methods is
about guaranteed performances. The family of Approximation Algorithms
differs from other approximate solution methods because its members guaran-
tee that the generated solution will be within a maximum bound4 from the
global optimum and reached in polynomial time. These sound like nice prop-
erties, but unfortunately there are two big issues: the specificity to a target
optimization problem and the fact that the bound is often not strong enough
to be of much practical use.

The other category of algorithms is the one of heuristics. In computer
science, heuristics are sort of “good practice” rules, often derived from common
sense or experience, whose reason of existence is basically to improve over
random choice in the majority of cases. Heuristics often end up sacrificing
accuracy in exchange of computing time and conceptual simplicity. Yet they
are tweaked on the solution of a problem or even an instance of it, leaving intact
the need of an optimization method for intractable problems that abstracts a
bit more from the contingent situation. Metaheuristics attempt to fill this
gap, and they are discussed in the next section.

2.4 Metaheuristics

Legend has it that Archimedes of Syracuse - one of the greatest minds of its
time to say the least - overjoyed at his discovery of a method to determine the
density of a supposedly golden crown, shouted out a loud Eureka! 5.

The most famous exclamation in Science, here reported in its English
transliteration, is a form of the ancient Greek verb heuriskō, which means
“to find, to discover”. The word heuristic shares the same root. In 1986 Fred

4often referred to as ε, from which comes the definition of ε-approximate algorithms.
5Literally: “I found it!”

9



2.4 Metaheuristics 2 METAHEURISTICS

Glover first used the word metaheuristic (where meta is a Greek suffix for
“beyond”) to describe Tabu Search [14].

The term “metaheuristic” these days defines those techniques in the field of
Stochastic Optimization that are not problem specific6 and introduce random-
ness in the search to improve exploration. They often employ subordinates
search heuristics (such as local search, later described), enhancing them by
allowing sub-optimal choices that permit escape from local minima. Meta-
heuristics don’t provide any theoretical bound on the quality of the solution
found and don’t guarantee results within a specified time-frame, but work on
a best effort basis.

Glover’s definition was pretty successful, but the scientific research in the
field is older than the name itself.

2.4.1 Fundamental Classification

Before getting into a historical overview of metaheuristics, it seems appropri-
ate to introduce two fundamental distinctions between methods.7

A first discrimination to be made is between population-based and single-
solution techniques. As the name suggests, the difference is between the
amount of solutions the two approaches handle at a time during the search.
Single-solution methods are also known as trajectory methods because their
search process describes a path in the search space. Population methods, on
the contrary, evolve a set of points in the search space. Their behaviour is
summed up in the figure below, taken from [7].

Another fundamental distinction is between techniques with memory us-
age versus memory-less ones. While the latter base the choice on where to
direct the search next just on the solutions stored at the time, methods that
employ memory try to extract dynamically (or adaptively) additional informa-
tion about the search space to support further decisions.

Now that some order has been made, the following sections will deal with
the metaheuristics themselves. For tidier exposition, they have been grouped
according to the first categorization presented above.

6their implementation, of course, can be
7note that many further distinctions can actually be made

10
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Memory

Generate
candidates

Select
solution

Candidate
solutions

Memory

Generate population

Replace population

Figure 1: The scheme on the left sketches the behavior of a trajectory method: at each step,
given a current solution, a set of candidates is generated and possibly one chosen to replace
the existing solution. The scheme on the right displays instead the behavior of population
methods; here there are multiple current solutions, and multiple generated solutions can be
put in their place at the end of each step. In both approaches the use of memory is optional.

2.4.2 Trajectory Methods

Multi-start Local Search (MLS), in its basic form, is probably the sim-
plest metaheuristic. Local Search is a subordinate heuristic that iteratively
scans the neighborhood of the current solution looking for an improvement.
In a first-improvement local search the hunt stops as soon as a better so-
lution is encountered; a best-improvement method, conversely, explores the
whole neighbourhood and sticks with the best found solution. Once a step is
completed, the search looks for an improvement in the neighborhood of the
new solution and so on. This technique has the limit of stopping once a local
minimum is reached, which translates into reaching a solution whose neigh-
bourhood doesn’t contain any improvement. One simple enhancement consists
in restarting the search from a random solution once this minimum has been
reached, and repeat until a termination condition is reached; the resulting
method, MLS, can be already classified as a metaheuristic due to its ability of
exploring different areas of the search space.

A more sophisticated approach is to apply a perturbation to the local mini-
mum and restart the search from there. This is the strategy used by Iterated
Local Search. More precisely, ILS also chooses if to perturb the last found
local minimum or the previously found one according to a specified acceptance
criterion. Determining the entity of the perturbation is the trickiest part of
such an algorithm: if the perturbation is too small, the algorithm would not be
able to escape the local minima it got trapped in; if it is too big, the algorithm
would turn in the less effective multi-start local search described above. To
deal with this issue, techniques such as Adaptive-ILS [15] have been proposed.

Simulated Annealing has an illustrious past, being derived from the

11



2.4 Metaheuristics 2 METAHEURISTICS

Metropolis Algorithm [16]. But despite being considered as the oldest meta-
heuristic method, its first applications to the solution of combinatorial opti-
mization problems date back to the eighties [4]. As the name suggests, the
metaheuristic takes inspiration from annealing, a process of cooling molten
metal. It shouldn’t be surprising then that temperature is the parameter of
choice. In practice, what happens is that the method tries to escape from a
local minimum by sometimes accepting solutions worse than their predeces-
sors. This suboptimal choice happens with a probability that is proportional
to the temperature and inversely proportional to how much worse the tweaked
solution is in comparison to the original one.

The approach adopted by Tabu Search [3] is to use a short-term memory
to escape local minima and avoid cycles. Basically, the algorithm keeps track
of the recently visited solutions and temporarily blacklists them to the search
procedure. This forces the search to explore other areas of the solution space,
effectively making the search neighbourhood dynamic. In practice, several ad-
ditional tweaks are applied to make the method work; the blacklist is often
implemented as a list of features to be avoided, and good solutions satisfying
specified aspiration criteria are considered as acceptable even if they would
normally be discarded.

The Greedy Randomized Adaptive Search Procedure (GRASP) [17] is
an example of synergy between heuristic techniques and problem-independent
ones. Assuming each solution is formed by a set of components, GRASP adopts
a constructive strategy to build the next solution by iteratively choosing the
components according to a heuristic criterion that scores them proportionally
to the benefit they are supposed to bring to the partial solution. The second
phase of the algorithm is a local search process, which refines the composed
solution and enhances its fitness.

2.4.3 Population-based Methods

Genetic Algorithms are the archetypal population-based method and were
introduced by John Holland in 1975 [2]. This kind of algorithms keeps a pool
of good solutions (individuals) and try to improve their quality by mimicking
the Darwinian evolution theory. The parent solutions are matched and mated,
breeding new children that, if good enough (according to a selection rule)
will then be part of the population instead of their ancestors. In traditional
GAs, consistently with the biological paradigm, solutions are combined using
a crossover operator, and additional variability is brought in the population
by a mutation operator. Countless variations of this basic recipe exist.

12
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Another category of population-based algorithms8 are the Estimation of
Distribution Algorithms (EDA) [18, 19]. These methods, whose theoretical
foundation is in probability theory, build a probabilistic model around good
solutions and use that as a guide in exploring the search space. The model is
constantly updated to include information about newly generated solutions.

Ant Colony Systems (ACS), first introduced by Marco Dorigo in [20],
attempt to solve combinatorial optimization problems by imitating the be-
haviour of worker ants hunting for food. The small insects initially explore the
surroundings of the colony in a random fashion; when a food source is found,
they go back leaving behind a trail of pheromones. These pheromones act as a
guidance for the next ants, and evaporate over time. The most basic forms of
ACS work in a pretty similar way: virtual ants are travelling around the search
space, composing solutions by combining heuristic evaluations with values left
behind in virtual pheromone trails, to which an evaporation factor is applied
at each iteration. The trails that survive are ideally the ones that lead to the
best solutions.

2.4.4 Hybrid Approaches

While metaheuristics usually abstract from the problem in analysis, the No
Free Lunch Theorem for optimization [21] has shown that in fact there isn’t
an optimization method that performs consistently better on all problems and
instances.9 A further implication of the theorem is that the performance of a
metaheuristic on a specific problem is - as a general rule - proportional to the
amount of domain-specific knowledge it incorporates.

This supports the use of custom-tailored heuristics inside metaheuristics,
as some methods used to do well before the theorem was published. It also
supports the idea of hybridization between optimization techniques: in hybrid
approaches different methods are combined in the attempt of using each other’s
strengths to support each other’s weaknesses.

Several ways of combining algorithms have been proposed, such as coop-
erative search - where more methods are run in parallel with some extent of

8while some single-solution EDA methods have been attempted, these algorithms are
population-based in the vast majority of the cases

9actually in [22] the same authors show that there are in fact “free lunches” in a co-
evolutionary setting; several limitations to the theorem have arisen, too, but the underlying
idea is still standing
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information exchange - or integrating metaheuristics with exact methods like
Branch and Bound. What is more interesting to the scope of this thesis is the
hybridization between different metaheuristics, in particular between trajec-
tory search methods and population ones.

This is happening, for example, in Memetic Algorithms [23]. Loosely
taking inspiration from the concept of meme first introduced by Richard
Dawkins [24], the idea behind these methods is to combine a population-wide
evolution with an individual refinement of the single solutions, that improves
their quality before they share with their peers. In practice, this is obtained
by applying local search to the individuals in the pool of a genetic algorithm.

Many other approaches have been attempted, yet the aim here is not to
provide with an extensive list of them. The next section will instead introduce
a framework that attempts to add a more systematic perspective on these
hybrid techniques.

2.4.5 Intensification and Diversification

A crucial problem in the design of metaheuristics sits in achieving the bal-
ance between two contrasting needs: the need to visit random areas of the
search space in order to sample them, and the need to use the information
already obtained from the search space to bias the search. These two opposed
tendencies go under the names, respectively, of diversification and intensi-
fication. Two other terms are often used to refer to the same concept, albeit
with a slightly different meaning according to [9]: exploration and exploitation.
While acknowledging this subtle distinction, as a matter of fact in this thesis
they will be used interchangeably.

As Glover and Laguna remark in [3], during an intensification phase the
search focuses on exploring the neighborhood of promising solutions, while
during a diversification phase the search is encouraged to explore unvisited
regions of the search space, generating solutions that are ideally different in
significant ways from the ones encountered before.

In fact, talking about phases can be misleading: the two behaviors often
coexist in the same design elements of a method. As a very simple example,
consider a first-improvement local search that analyzes the possible modifica-
tions to the original solution in random order; the search in itself is purely
guided by the resulting fitness, but a dimension of exploration is introduced
by randomizing which candidates are considered first.
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A way of visualizing the role of metaheuristic components on intensifica-
tion and diversification has been proposed by Blum and Roli in [9] with the
proposed I&D frame, reported in Figure 2.
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Figure 2: The I&D frame introduced by Blum and Roli.

In this formalization, the three corners of the triangle represent, at the
extremes, the three roles a metaheuristic component can assume. The OG
corner corresponds to those elements guided only by the objective function
- think about checking the neighborhood of the current solution in a best-
improvement local search. Here exploitation is at work in its purest form. The
NOG corner refers to those components guided by other functions than the
objective one, like for example some of the corollary information gathered by
an EDA algorithm during the optimization process. The remaining corner, la-
beled R, comprises those components that are totally random; randomness is
an important factor in many metaheuristics, albeit has do be dosed sparingly
to avoid losing focus - an example of it is a random restart in a MLS.

Interleaving these three tendencies over time in a synergistic way is the key
ingredient to any successful metaheuristic.

After this brief overview on hard combinatorial optimization problems and
the techniques used to deal with them, it is time to focus the discussion and
present the problem of choice for this thesis: the Quadratic Assignment Prob-
lem.

2.5 The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) is a combinatorial optimiza-
tion problem introduced by Koopmans and Beckmann in 1957 as a formal
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model for allocating indivisible economical activities [25]. Informally, there is
a given number of facilities to assign to the same number of locations in an
optimal way; a mutual distance is given between locations, as is the flow, a
number which quantifies the mutual interaction between facilities. The opti-
mality is reached by placing the facilities in the locations so to minimize the
summation of the products of distance and flow between all the facilities.

The next section will provide a more formal definition of the QAP.

2.5.1 Mathematical Formulation

Several statements of the problem have been proposed in literature; the fol-
lowing one, proposed by Çela in [26], is maybe the most commonly used:

cost(π) =
n∑
i=1

n∑
j=1

fijdπ(i)π(j)

where

• n is the size of the problem instance;

• π represents a possible permutation over (1,2,...,n) and π(i) corresponds
to the index of the location to which facility i is assigned; as later detailed,
π is an ideal way of representing a solution to a QAP problem;

• f is the flow matrix, and fij is the directed flow between facility i and
facility j;

• d is the distance matrix, and dij is the directed distance between location
i and location j.

The aim is to minimize the cost function defined by the formula above; QAP
has been proved NP-hard in [27].

QAP instances can be categorized according to various criteria.

Symmetric instances are those where, given any couple of facilities (or lo-
cations) i and j, the flow (distance) between i and j is the same as the one
from j to i.

Flow dominance and Distance dominance are two further attributes that
can be ascribed to QAP instances: an instance with a high flow dominance
will have a consistent part of the overall flow exchanged among relatively few
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facilities; a homologous definition applies to distance dominance.

A fundamental resource for Quadratic Assignment Problems is QAPLIB
[28, 29], an online repository of instances, solutions and resolution approaches.

2.5.2 Motivation and Applications

As of the time of writing, instances of the Quadratic Assignment Problem of
size greater than 30 or so are considered to be non-solvable in an exact way.
The concise formulation of the problem coupled with its intrinsic complexity
made it a popular test bench for metaheuristics. But the problem is far from
being a purely theoretical one; as seen, it arose from practical needs, and there
are many scenarios in which the facility/location model can be applied.

One possible situation that can be effectively modelled by a QAP is the
placement of electronic components on a board. The problem was first stated,
in the form of a specific instance, by Paul Steinberg in 1961 [30]. In his
formulation, locations were the slots where to install the components, and
the components themselves were the facilities. The two matrices would then
contain the distances among the various slots and the amount of wires that
connect each couple of components (as flow). The instance proposed by Stein-
berg had cardinality thirty-six10 and took until 2001 [31] to be solved exactly
by a specifically tailored branch and bound algorithm - despite having been
solved pseudo-optimally since the early nineties.

Another interesting application, in this case an asymmetric one, is related
to the design of keyboard layouts. Keys can be seen as locations, and the
corresponding letters as facilities. The flow between two letters is the empirical
frequency with which they are used one after the other, given a language. The
distance between keys i and j is given by the time it takes to press j after
typing i. Note that the real-life problem has been modelled more in detail in
[32], but the QAP modelling is still interesting because the original paper [33]
provided several QAP instances that became rather popular in literature.

2.5.3 Solution and Neighbourhood Representation

Despite the fact that metaheuristics can be fairly problem-independent, when-
ever applying such methods to a new problem, this needs to be modelled in a
convenient way. This translates into providing a representation for solutions

10there were actually 34 components to place in 36 slots, so two dummy zero-wired com-
ponents had to be added in the modelling phase
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themselves, and a definition of the neighbourhood structure defined earlier in
the chapter.

In general, a good solution representation for an optimization problem
should share the following properties [7]:

Completeness the representation should be able to represent all the solu-
tions associated to a problem;

Connexity a search path must exist between any couple of solutions in the
search space;

Efficiency the representation should be as easy as possible to manipulate
by the search operators.

When defining the QAP formally, the permutation π of numbers in the
interval (1,2,...,n) has been deemed as an ideal solution representation to an
instance of size n. As mentioned, given a permutation π, π(i) corresponds to
the index of the location to which facility i is assigned.

But does such encoding fulfil the three criteria listed above?
It is relatively straightforward to see that, given n locations and n facilities,
it is possible to represent any n disjoint matchings among them using a per-
mutation of the numbers in the interval (1,2,...,n). The set of all possible
permutations is then a complete representation of the solution space.
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Figure 3: Here π is a solution to a hypothetic QAP instance of size 4, encoded in the
discussed permutation representation; the grey area encloses the entire 2-opt neighborhood
of the solution.
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To show that connexity holds it is needed to proof that a search operator
can be able to travel from an arbitrary point in search space to any other.
It is problematic to make such a statement while abstracting from the search
operator itself; the same issue applies to efficiency. To overcome this limit, the
concept of 2-opt search neighbourhood is introduced. Given a solution S for
the QAP, its 2-opt neighbourhood is the set of solutions obtained by simply
swapping the locations of two facilities; an example of 2-opt neighborhood can
be seen in Figure 3.

It is now possible to define a simple search operator, 2-opt local search,
which is a basic local search that explores the neighbourhood defined above.
With regards to 2-opt local search, connexity holds because it is indeed the-
oretically possible to reach a solution from any other by performing a proper
sequence of swaps. Efficiency does too, since any possible swap transforms a
given solution into another valid one, and takes constant time to be performed.

2.5.4 Approaching the QAP

The interesting theoretical properties and the extensive range of applications
contributed to make the QAP a popular test-bench for many optimization
methods.

The best known-solutions listed in QAPLIB have been reached using a
variety of metaheuristics, both single-solution and population-based. For the
first group algorithms like GRASP [17], Simulated Annealing [34] and several
incarnations of Tabu Search [35–37] are used. Among the successful population
based approaches are Ant Systems [38] and various forms of Hybrid Genetic
Algorithms [39, 40].

The main inspiration for this work came from those methods that try to
explicitly deal with scoring or marking some subsets of the solutions; this
is a technique common to Ant Colony Systems, Estimation of Distribution
Algorithms and Tabu Search, among others. The next Chapter will start by
describing the process of designing, choosing and assembling the metaheuristic
components of BIMA-QAP, and concludes with an overview of the resulting
algorithm.
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3 Contribution

The aim of this project is to design, code and evaluate a new metaheuris-
tic for the Quadratic Assignment Problem, the Bandit-Inspired Memetic
Algorithm (BIMA-QAP). The idea is to combine several concepts found in
literature and create a method that is able to efficiently travel across the search
space hunting for good solutions; some inspiring works are cited along the chap-
ter. Before getting into details, though, it seems appropriate to introduce a
few fundamental concepts.

The method discussed in this chapter shares a fundamental assumption
with most (if not all) metaheuristics. The Proximate Optimality Princi-
ple (POP for short), introduced by Glover and Laguna in [3], stipulates in
short that good solutions have a similar structure. This suggests that sharing
good features between solutions could generate new, better solutions. Coher-
ently with this assumption, BIMA-QAP will be tested on QAP instances for
which the POP has been experimentally verified to hold in [41].

The previous paragraph mentioned that good solutions share good features:
the smallest possible of such features is called a solution component - not to be
confused with the components of a metaheuristic discussed in the last chapter.
In the context of this thesis, a solution component is one of the n2 possible
atomic choices that assigns facility i to location j, so that π(i) = j. The
definition comes from the fact that each solution π is composed by n of these
elements.

Note that the set of components forming a solution must respect the prob-
lem constraints; it is not possible, for example, to assign a single facility to
multiple locations. Given that in any valid QAP solution no facilities or loca-
tions are left unassigned, every attempt of modifying a solution results in the
change of at least two components; this is behind the concept of swap used
in 2-opt local search. In the remainder, enforcing a component on a solution
means applying the associated assignment in place of an existing one, and con-
sequently modifying one further component in the solution in order to keep it
coherent.

In the rest of the chapter the design choices for BIMA-QAP are presented
and motivated. Section 3.1 starts by describing the structure of the algorithm;
section 3.2 underlines a component-focused approach common to many meta-
heuristics. Section 3.3 takes a step back introducing the Multi-Armed Bandit
problems as an example of the exploration/exploitation dilemma, and UCB
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[6], a technique used to tackle it. In section 3.4 the formula is altered in sev-
eral, significant ways; this formula will concretize in an operator as seen in
section 3.6. Before getting there, the pool management policies are discussed
in section 3.5. The last section offers eventually an overview of the algorithm
structure and parameters.

3.1 Hybrid Structure

The first big design choice for a metaheuristic is the one between a trajectory
based and a population based approach. As seen in chapter 2, on the other
hand, hybrid methods such as memetic algorithms have shown to successfully
combine some of the better traits of both worlds. A hybrid method needs two
kinds of operators:

1. A local search operator, used to perform neighborhood search and refine
solutions;

2. Some form of perturbation/crossover operator, necessary to avoid getting
stuck in local minima and ideally share the best traits across neighbor-
hoods.

Note that a crossover operator implies the use of a pool of solutions rather
than focusing on a single promising candidate at once.

The structure of BIMA-QAP has much in common with what was just de-
scribed; the algorithm has a pool of solutions, which are in fact local optima
with respect to a local search neighborhood. And, while not using “conven-
tional” genetic operators, solutions in BIMA-QAP share that condensed re-
worked information that is behind the idea of a meme in memetic algorithms.

The local search operator of choice is the 2-opt local search already men-
tioned in chapter 2. The recombination operator will be the main topic of this
chapter, with its components gradually introduced and itself fully defined in
section 3.6.

Before getting into further details, it is time to describe two definitions
connected to the algorithm structure itself. A macro-iteration is a step in the
loop which involves randomly selecting a solution in the pool, perturbing it
and further enhancing it by local search. The newly obtained solution is either
inserted in the pool in place of the initial one or discarded, as described in
section 3.5.
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Once a macro-iteration is over, a new one is started as long as the stopping
condition has not been fulfilled. Stopping conditions are discussed in subsec-
tion 3.7.1, and usually involve a reached iterations threshold. In contrast with
macro-iterations, the iterations counter is updated every time a solution is
evaluated, which mostly happens during local search.

3.2 Selective Components Memory

In the previous chapter a distinction has also been made between techniques
that memorize information on the search space and techniques that don’t.
While a pool of solutions is in itself a way of encoding good features found
during the optimization, the focus here is on explicitly storing data about such
features.

An approach common to Tabu Search [3], ACS algorithms [42] and univari-
ate EDA algorithms [19, 41] is to associate to single components flags or values
that are then used to guide the search. Ant Colonies and several EDA algo-
rithms, in particular, approach the QAP by keeping a n× n matrix encoding
the desirability of each component χi,j in time-step t.

X t =


χt1,1 χt1,2 · · · χt1,n
χt2,1 χt2,2 · · · χt2,n

...
...

. . .
...

χtn,1 χtn,2 · · · χtn,n


This kind of explicit memory is appealing because it can add an additional

dimension to the search by efficiently re-using selected data already gathered
during the algorithm execution. In fact, BIMA-QAP uses two kinds of such
matrices to store information that is used to modify existing solutions, as de-
scribed in section 3.4.

Note that using only the quality of single components to guide the search
can result in overlooking the linkage relationships between components. This
issue is further commented in subsection 3.4.3.

3.3 A Matter of Balance

Once decided that the components-based approach looks promising, there is
the need of defining which information to store about components and how to
use it in this context. The technique of choice will have an important role in
dealing with the delicate task of balancing exploration and exploitation, the
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key issue in the design of any metaheuristic, as earlier discussed.

Achieving a good compromise between the two extremes is not a problem
found only in metaheuristics; it is in fact common in learning [43], planning
[44] and dealing with imperfect knowledge in general. One of the archety-
pal examples of such dilemma is the Multi-Armed Bandit (MAB) model,
known since the beginning of the century and first formalized in its current
form by Robbins in 1951 [5].

The MAB models the uncertainty faced by a gambler who has to choose
how to spend his coins among K one-armed bandits, each behaving according
to an independent and initially unknown probability distribution, in order to
maximize his final profit. An alternative way of describing the gambler’s goal
is to talk about regret minimization, where the regret is the difference between
the profit obtained by an ideal sequence of plays (always pulling the best arm,
if the reward distributions are stationary) and the performed plays.

The problem has been daunting scientists since it was introduced during
the Second World War. It was considered so difficult by Allied research per-
sonnel that it was suggested to drop leaflets about it over Germany, so the
enemy scientists could also waste some time on it. Over the next decades,
however, several solution approaches started to surface. The focus here is on
optimistic index policies, and on the Upper Convergence Bound (UCB for
short, [6]) in particular.

In 1979 Gittins [45] has shown that it is possible to maximize the expected
discounted reward in the MAB with a policy that first assigns to each arm a
score based on the current state, then selects the highest scoring one. Such an
approach goes under the name of index policy. The idea behind UCB is similar;
it involves computing for each arm an upper bound for the returned reward,
basing the bound estimation on both the rewards history and the accuracy of
the reward estimation (the number of pulls performed on the arm). Whenever
the gambler has to choose which arm to pull, he finds out the value of UCB
for each arm according to formula 1 and selects the highest scoring one.

x̄tj +

√
2 ln

∑
k p

t
k

ptj
(1)

The first term in the formula, xtj, encodes the expected average reward for
arm j according to the knowledge available in time-step t. Always choosing
the arm with the highest expected reward would result in a purely exploitative
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algorithm, so the formula includes a second term to deal with exploration. The
variable ptj represents the number of times arm j has been pulled at time-step
t, making the value of the second term in formula 1 inversely proportional to
the arm popularity.

Despite not having the best proven bound on regret, a technique like UCB
manages to be simple and efficient at the same time. Note that in some
applications the numerical constant in the second term is turned into a variable,
as formula 2 shows. This allows to tweak the contribution of the exploration
term to the score, and the modified formula takes the name of cUCB.

x̄tj +

√
c ln

∑
k p

t
k

ptj
(2)

By now, the parallel this section is trying to suggest should be clear to
the reader: getting back to the QAP, what if the components to enforce on a
solution were to be treated as arms of a bandit machine?

It is crucial to note that many of the properties characterizing the MAB
are lost in the combinatorial optimization scenario. More than one component
needs to be enforced at once, otherwise the chances of getting out of the basin
of attraction of the previous minimum would be pretty slim. Furthermore,
the quality measure of a component would be dependent on the rest of the
components in the solution as well. This implies that components are not in-
dependent as arms are assumed to be, and that also non “pulled” components
are influencing the feedback. One more consequence is that the feedback as-
sociated to a component can change according to the neighborhood(s) being
analyzed.

Nonetheless, the loss of theoretical bounds and properties doesn’t take away
from the fact that it would be interesting to see how an algorithm like cUCB
performs in balancing exploration and exploitation in this new scenario.

3.4 Tweaking the Formula

The index formula in equation 2 seems like a nice start, but requires some
extensive modifications to be of any use in BIMA-QAP. The basic idea behind
the formula, as noted, is to combine a score encoding the asserted quality of
a component with a score inversely proportional to how often it was used - so
that also what seem to be lower-quality components may have a chance. This
structure is summarized in Fomula 3, below.
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component value← exploitation term+ exploration term (3)

The two coming subsections try to contextualize the two terms of the sum
to the approximate solution of a QAP instance.

3.4.1 First Term: Scaling the Fitness

As seen in the previous section, the first term in equation 2 encodes the ex-
pected value of an arm. Stressing the point that the aim is to define a good
policy for balancing exploration and exploitation more than to strictly adhere
to the MAB model, the most natural candidate for representing the value of a
component seems to be the fitness of the solutions in which it appeared. This
approach is coherent with the idea that good solutions share similar traits im-
plied by the POP.

The idea is then to keep track of a fitness value for each component, and
to store them in the fitness matrix F̃ t. The value f̃i,j in the matrix represents
the aggregate fitness associated to component χti,j.

F̃ t =


f̃ t1,1 f̃ t1,2 · · · f̃ t1,n
f̃ t2,1 f̃ t2,2 · · · f̃ t2,n

...
...

. . .
...

f̃ tn,1 f̃ tn,2 · · · f̃ tn,n

 (4)

At every update, f̃i,j is computed by linearly combining the average fitness
of the solutions containing that component (f̄ij, with weight w1) and the fitness
of the best solution with χti,j in it (f̌ij, with weight 1 − w1), as in Equation
5. These values are updated every time a solution containing the respective
components is evaluated.

f̃ tij = w1f̄ij + (1− w1)f̌ij (5)

As noted, the great majority of the evaluations take place during local
search. Updating the matrix values during local search is considered sort of
compulsory to get a decent estimation of the fitness. Staying in the MAB
metaphor, this choice influences the pulls as well: this will be discussed in the
next subsection.

A final note is to be made on the exquisitely practical differences between
the concept of reward in UCB and the idea of fitness in a minimization prob-
lem. In Equation 2 the first term is assumed to be in [0, 1] and to higher values
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of it is associated a better performance.

The straightforward solution is to first scale the fitness in the interval [0,1]
proportionally to the value of the other components involved in the compari-
son, then consider the complement to 1 of the resulting number to model the
concept that in this case to higher fitness corresponds lower solution quality.

The resulting first term, f tij is presented in Equation 6,

exploitation term← 1−
f̃ tij − min

(k,l)∈At
(f̃ tkl)

max
(k,l)∈At

(f̃ tkl)− min
(k,l)∈At

(f̃ tkl)
(6)

where At is the restricted set of components described in subsection 3.4.3.

3.4.2 Second Term: Managing the Pulls

The second term doesn’t share the same scaling issues: the main question here
is when to update the counts associated to each component. Intuitively, this
should go together with the update of the fitness estimations - which, once
again, is mostly done during local search. Considering that the formula being
put together is not going to be involved with local search, this in the MAB
paradigm means that in the vast majority of cases the arms are not pulled
because of their higher index score. In fact, most of the pulls are performed
implicitly while traversing 2-opt neighborhoods.

The pull counts pti,j are stored in matrix P t and updated whenever the
associated component is involved in a solution being evaluated. This seems
the most coherent choice, since the pulls are meant to represent the accuracy
of the estimation on components fitness.

P t =


pt1,1 pt1,2 · · · pt1,n
pt2,1 pt2,2 · · · pt2,n

...
...

. . .
...

ptn,1 ptn,2 · · · ptn,n

 (7)

An interesting consequence of this is that when the formula is eventually
used to select a set of components to enforce on a specified solution, the com-
ponents not involved in local search will be more likely to be selected due to
their relatively higher exploration term. These components are also more likely
to be outside the basin of attraction of the 2-optimized solution, which is a
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very desirable property for an operator that has to complement local search.
The resulting exploration term can be seen below.

exploration term←

√√√√c ln
∑

(k,l)∈At

ptkl

ptij
(8)

In Equation 8 the summation is carried on over the members of set At,
which is the topic of the next subsection.

3.4.3 A Dynamic Set of Arms

Now that the two terms have been defined, the immediate idea would then be
to use the formula to select a set of components from the n2 available to enforce
on a solution in the pool. This seems like a promising approach, but it relies
on a Naive Bayesian assumption of independence among the components: it
assumes the value of a component to be independent from the remaining n−1
which are going to form the solution.

This is clearly not the case, since the fitness of a solution is depending on
the values of all the components it contains. The POP suggests that good
solutions share features, and in fact the extent of these features is not limited
to the single component. To put it in different words, if a linkage between
the components is assumed then BIMA-QAP would need a way of storing and
transmitting good patterns of components.

Storing is not doable by simple book-keeping, since maintaining statistics
about all the possible subgroups of components is clearly unfeasible. Pool-
based algorithms try to get around this problem by simply storing a set of
good solutions, which are in turn expected to contain good patterns. This is
also the approach adopted by BIMA-QAP.

Transmitting good patterns between solutions, on the other hand, needs
some further thinking. The problem is that the chance of sharing a good set
of components from a solution to another in the pool by just selecting them
randomly over the n2 available is pretty slim.

The intuitive workaround is then to restrict the set of components on which
the index values are computed. If this restricted set contains only the compo-
nents found in another solution in the pool, the algorithm will behave similarly
to a guided crossover. This should greatly increase the chance of sharing good
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patterns between solutions.

Another restricted set of components worth some attention is the one con-
taining all the components found in the solutions in the pool. This sort of
reminds of the pool-centered matrix updates in PBIL [19], but doesn’t take
into account the components multiplicity (it is still a set, after all).

Finally, the whole set of components is still considered with a certain prob-
ability; selecting a component over all the available ones, while not strictly
random, is more similar to the concept of mutation common in GA algorithms.

The restricted set of components used by the algorithm at macro-iteration
t is called At. The three options proposed earlier are summarized in the table
below.

1 At ← the components in a donor solution11 pdonor
2 At ← the components in all the solutions in the pool ppool
3 At ← the set of all components pall

At each timestep the restricted set is selected proportionally to the specified
probabilities pdonor, ppool and pall, intuitively summing to 1.

3.5 The Solutions Pool

Before finalizing the definition of the perturb() operator in the coming section,
it is appropriate to introduce the solution pool and the concept of slot.

In BIMA-QAP, the solution pool is defined as

Pool(t) = {πt1, πt2, . . . , πtϕ}

where t is the macro-iterations counter. The pool contains ϕ solutions, which
are initially randomly generated and immediately optimized by 2-opt local
search. Each of the solutions in the pool occupies a slot s of the ϕ available;
slots can hence be enumerated in the interval [1, ϕ].

A fundamental property related to the pool of solutions is the Survival
Rule, which states the conditions that bring a new solution to be inserted in
the pool in place of a pre-existing one. In BIMA-QAP the Survival Rule is
rather simple: when a new local optimum is reached, it is inserted in the pool
if it is better than the one the perturb() operator was applied on - the father,

11randomly chosen from the pool members, as seen later
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in GA wording.

This means that each slot in the pool over time hosts only descendants of
the solution that was there initially. Each slot, in other words, traces a search
path in the search space. This leads to a further take on the concept of com-
ponents memory: what if a fitness and a pulls matrix were to be associated
to each slot, so that whenever modifying a solution by perturb() the algorithm
could take into account also some neighborhood specific information?

The matrices F̃ t(s) and P t(s) related to a given slot s are its local matri-
ces. Their values are updated every time the solution in the associated slot is
perturbed to generate a new local minimum; given that the solution to modify
is selected randomly among the ones in the pool, each slot has a probability
of 1

ϕ
of being selected. The local matrices associated to the slot of choice are

updated during the macro-iteration in the same way as the global matrices;
the other local matrices are left untouched. Of course, being updated much
less often, their estimation will be less accurate; as mentioned in section 3.7.1
this makes the initialization of these matrices a tad more tricky than their
global counterparts.

3.6 The perturb() Operator Defined

Now that all the main ingredients have been discussed, the perturb() operator
can be discussed more in details.

Devised as a complement to local search, perturb(At, s, δ, c, w1, w2, w3) is
used once in each macro-iteration. A slot s is randomly chosen from the ϕ
available, then δ components are selected to be enforced on the associated so-
lution; these components are the ones for which the formula discussed in the
previous sections takes the highest values.

The final structure for the calculation can be seen in Formula 9; the first
and the second terms earlier discussed have an index g for global and l for
local.

w2(exploitationg) + (1− w2)(exploitationl)

+w3(explorationg) + (1− w3)(explorationl)
(9)

where
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exploitationg ←

1−
f̃ tij − min

(k,l)∈At
(f̃ tkl)

max
(k,l)∈At

(f̃ tkl)− min
(k,l)∈At

(f̃ tkl)


exploitationl ←

1−
f̃ tij(s)− min

(k,l)∈At
(f̃ tkl(s))

max
(k,l)∈At

(f̃ tkl(s))− min
(k,l)∈At

(f̃ tkl(s))


explorationg ←

√√√√c ln
∑

(k,l)∈At

ptkl

ptij

explorationl ←

√√√√c ln
∑

(k,l)∈At

ptkl(s)

ptij(s)

The resulting formula is quite more complicated than the original; the ef-
fectiveness of the operator perturb() and its reactivity to various settings of
the parameters are extensively evaluated in the next chapter.

Now that all the fundamental design elements of BIMA-QAP have been
defined, it is time to give an overview of the method as a whole.

3.7 The Algorithm as a Whole

It is now time to formalize the structure of the algorithm and to discuss the
nature of its parameters. Subsections 3.7.1 and 3.7.2 deal with such issues.

3.7.1 Structure and Methods

The BIMA-QAP structure is sketched in Algorithm 1. The pool is initialized
with ϕ random solutions, which are then optimized by 2-opt local search.

The method 2opt local search(πrndi ) returns a local minimum obtained
by performing a sequence of swaps, either the best- or the first- improving, on
the original solution. The method stops when no improving swaps are found;
this project will focus on first-improvement local search, because after a brief
experimental assessment it proved to be the better performer. Note that, as
discussed, the fitness and pulls matrices are updated every time a solution
fitness is computed - a task that also increments the iterations counter. The
local search takes up most of the algorithm iterations; hence, most of the
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Algorithm 1 BIMA-QAP

Pool(rnd)← {πrnd1 , πrnd2 , . . . , πrndϕ } . random pool
for all πrndi in Pool(rnd) do

π0
i ← 2opt local search(πrndi ) . local search

end for
Pool(0)← {π0

1, π
0
2, . . . , π

0
ϕ} . 2-optimized pool

t← 0

repeat
s ← generate random number(1, ϕ)
σ ← generate random number(0, 1)

switch σ do
case 0 ≤ σ < pdonor

j ← generate random number(1, ϕ) . j 6= i
At ← components(πtj)

case pdonor ≤ σ ≤ (pdonor + ppool)
At ← components(Pool(t))

case (pdonor + ppool) < σ ≤ 1
At ← components(all)

SAt ← perturb(At, s, δ, c, w1, w2, w3) . selecting the components
πtmpi ← apply components(SAt, πti)
πnewi ← 2opt local search(πtmpi )

if fitness(πnewi ) ≤ fitness(πti) then . survival rule
Pool(t+ 1)← Pool(t) \ {πti} ∪ {πnewi }

else
Pool(t+ 1)← Pool(t)

end if

t← t+ 1

until stop condition
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updates to the matrices are done by the evaluations performed while this
method is running.

At the end of the initial optimization, the great majority of the general
matrices components will have been updated at least once. In case this didn’t
happen, the pulls p0i,j are initialized to 1 and the corresponding f̃ 0

i,j to 0, in a
form of optimistic initialization. Initializing all the values in the local matrices
the same way would take a lot more time; the approach adopted is to link
the values in the local matrices to the values in the main ones instead: once a
component is used locally, its estimation will decouple from the main one for
the rest of the algorithm execution.

Once the data structures have been initialized, the proper algorithm loop
can start. Two random numbers, i and s, are generated by calling the method
generate random number(min,max), where the two parameters represent
the lowest and highest number that can be extracted by the generator. The
first generated number is an integer in [1,ϕ], that determines which solution
to modify; the second is a decimal in the range (0,1) and is used to select the
set of components At to draw from, as discussed in subsection 3.4.3.

The function components(πtj|pool|all) is used to obtain A from the spec-
ified source. Setting a solution as parameter (case 1) will return the n compo-
nents in πtj. If the solution pool is set as parameter, as in case 2, At will include
all the components present in the solutions in the pool. In case 3 the dummy
parameter all is passed to the function to signal that At should comprise all
n2 components.

When the set has been defined, the operator perturb(At, s, δ, c, w1, w2, w3)
generates the vector of components SA to be enforced on πti , as described in
the previous section. The method apply components(SAt, πti) takes care of
altering the initial solution by carrying on the specified sequence of swaps -
enforcing the components in increasing order of score, to minimize the risk of
displacing the best components by the end of the task.

The resulting solution πtmpi is then optimized by local search, until the min-
imum, πnewi , is found. This is in turn compared with πti , and inserted in the
pool instead of the original solution if having a better fitness. Fitness is com-
puted (once) and retrieved by the function fitness(πti), which is extensively
used during the local search phase.

Once the macro-iteration is over, BIMA-QAP continues iterating over the
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loop until the specified stopping condition is reached. This condition can
be related to a solution quality threshold or to an iterations limit (or both);
for example, the algorithm could just stop once the first known minimum is
inserted in the pool. Since the analysis carried out in the next chapter is also
about the amount of different minima found, the stopping condition of choice
is an arbitrary and rather high iterations limit.

3.7.2 Parameters

All the parameters of the algorithm have been introduced in the previous sec-
tions; it is now time to briefly summarize their expected influence on BIMA-
QAP’s behavior.

Setting a proper solutions pool size, ϕ, is presumably going to have a de-
cisive effect on the effectiveness of the algorithm. A too small value would
risk an early convergence, while an oversized pool would dilute too much the
calls to perturb(). As previously noted, pool sizes for algorithms adopting a
memetic approach are usually significantly smaller than the canonical settings
for GA.

The amount of components enforced δ is also expected to impact the per-
formance of BIMA-QAP. If nothing else, a low setting could result in not being
able to use the perturb() operator to get out of a basin of attraction; a too
high setting would be highly disruptive with regards to the solutions currently
in the pool.

Tweaking the probabilities of restricting the components allowed in At at
each given macro-iteration should result in a noticeable change in the meta-
heuristic behavior. Altering the values pdonor, ppool and pall (which sum to
1, effectively resulting in two degrees of freedom) changes BIMA-QAP’s op-
erating mode from an algorithm performing multiple single mutations to one
transferring entire sets of components among solutions.

The weight w1, as seen, is the one governing the computation of f̃i,j by
balancing it between the average and the minimum fitness of the solutions the
component is involved into. Estimating the behavior of this setting is more
complicated than many others; the weight is actually there to allow an exper-
imental evaluation of which balance between the two values works best.

The two other weights, w2 and w3, govern the use of global matrices over
local ones, as seen in Section 3.5. In principle, the use of local matrices should
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enhance the awareness of a solution to its own neighborhood. In practice,
without a mechanism in place to keep the neighborhoods of the various slots
in the pool relatively disjoint, the influence of this setting on overall perfor-
mances is probably not going to be huge.

Finally, c is the parameter taking care of balancing the extent to which the
exploration term influences the computation of index policies - making it the
setting with the most direct impact on the exploration/exploitation dilemma.

The actual effect of the discussed parameters will be object of rigorous ex-
perimental analysis in the next chapter.
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4 Results

Now that the algorithm structure has been laid down and the parameters de-
fined, an experimental study is necessary to analyze its performances. Section
4.1 provides few details about the implementation of BIMA-QAP, section 4.2
discusses the methods adopted in analyzing the metaheuristic performances.
In section 4.3 a synthesis of the experimental results is proposed, with a brief
overview over the behavior of the algorithm on each instance. Section 4.4
concludes the chapter with some general remarks over the behavior of the
parameters.

4.1 Implementation

Several frameworks are available for quickly implementing various types of
metaheuristics [46–48]. Despite this, for increased flexibility the code for
BIMA-QAP has been mostly written from scratch. The language of choice
is C++ for sheer performance reasons, the software was compiled with gcc
4.4.5 and run under linux Debian OS with amd64 architecture.

As predictable, the algorithm is processor- rather than memory-intensive;
the experiments were executed on an Intel i7 3930K 6-cores cpu. The multi-
core capability has been extensively taken advantage of in the experimen-
tal scenario, by allowing to execute multiple runs of an experiment at once.
OpenMP [49] was the library of choice for implementing this naive parallelism.

As in any stochastic algorithm, selecting a proper pseudo-random num-
ber generator (PRNG) is crucial in BIMA-QAP. The PRNG of choice is the
Mersenne Twister [50], due to its performance and very long period; in an
attempt to guarantee a random enough initialization, the seed is obtained by
seeding in turn the function rand() with the current system time.

As a final note, most of the post-processing and all of the graphical output
found in this chapter is performed by R scripts, with the aid of the multcomp
package for the statistical comparisons.

4.2 Experimental Approach

Testing the algorithm serves two purposes: understanding if it indeed works
as expected, and finding the best set of parameters to tune it properly. While
the first part is straightforward, the second is not: since there is some sort of
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interdependency between the parameters, finding a good set is in fact a meta-
optimization problem in itself - a multi-parameter optimization problem, to
be precise.

To avoid over-complications, the approach adopted is to analyze the im-
pact of each parameter individually. The first step is to define a set of standard
settings for the various parameters, chosen mostly according to intuition, ex-
perience and the review of previous approaches - for example, the setting of δ
to 1/6 was inspired by the results in [51]. These standard settings are summa-
rized in Table 1.

Parameter Value(s)
ϕ 70
δ 1/6 n

psources 0.34, 0.33, 0.33
w2 0.5
w3 0.5
c 2
w1 0.5

Table 1: Standard Experiment e00 settings. Note that psources has three values: this
because, despite being discussed about as a single parameter, it in fact represents three
probabilities (pdonor, ppool and pall) with the constraint of summing to one. This practically
results in two parameters.

The parameters are then altered individually over a predefined set of val-
ues, mostly uniform across the instances. Each modification results into an
experiment, for a total of 30 proper experiments. The results of these tests
should provide a useful insight on the behavior of the single settings, without
getting into analyzing their mutual relationships.

The altered settings for each experiment are displayed in Table 2. The
last two experiments, e31 and e32, are respectively about a MLS with 2-opt
first-improvement local search and about a version of BIMA-QAP where the
components to enforce are chosen randomly from the At of choice instead of
being selected according to formula 9. This allows to isolate the effect of the
operator perturb() from the one of the memetic structure combined with the
restricted subsets of components, and is often referred as RND in the remain-
der. MLS, being the simplest metaheuristic conceivable, is used as a baseline
for performances - even if the operator is not effective, RND population based
hybrid approach is expected to perform better.
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Experiment Altered Parameter Parameter Value
e01 ϕ 10
e02 ϕ 20
e03 ϕ 40
e04 ϕ 100
e05 ϕ 150
e06 δ 1/12
e07 δ 1/8
e08 δ 1/4
e09 psources 1, 0, 0
e10 psources 0, 1, 0
e11 psources 0, 0, 1
e12 psources 0.5, 0.5, 0
e13 psources 0, 0.5, 0.5
e14 psources 0.5, 0, 0.5
e15 w2 0
e16 w2 0.25
e17 w2 0.75
e18 w2 1
e19 w3 0
e20 w3 0.25
e21 w3 0.75
e22 w3 1
e23 c 0
e24 c 1
e25 c 10
e26 c 100
e27 w1 0
e28 w1 0.25
e29 w1 0.75
e30 w1 1
e31 MLS NA
e32 RND NA

Table 2: The list of experiments with the varied parameter and the according value.
Experiment e31 measures the performances of a Multi-start Local Search on the given
instance, while e32 chooses the components randomly from the selected At instead of ranking
them according to Formula 9.
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By analyzing each parameter individually it is possible to operate a proper
statistical analysis on the effect of each parameter values on the performance
of BIMA-QAP. In order to achieve statistical relevance, each experiment is
repeated for a total of 24 times. Then an ANOVA procedure is performed,
confidence intervals are computed and the results direcly fed to a Tukey test,
as suggested in [52]. More practical details are discussed in the next section,
before presenting the results.

4.3 Experimental Results

In Chapter 2 QAPLIB was mentioned as a repository for QAP instances and
results. To test BIMA-QAP, 8 instances of various size have been selected from
QAPLIB: bur26a, nug30, ste36a, tai60a, tai60b, tai80a, tai80b, sko100a. The
choice was not random: these are the instances for which the POP is verified
in [41].

Being the instances of different sizes and complexity, the iterations thresh-
old had to be intuitively modified accordingly - up to a limit, to keep the
runtime manageable. The table below provides for each instance the fitness of
the known minimum and the amount of iterations specified for the stopping
condition.

Instance Known Min. Iterations Runs
bur26a 5,426,670 10,000,000 24
nug30 6,124 40,000,000 24
ste36a 9,526 100,000,000 24
tai60a 7,205,962 300,000,000 24
tai60b 608,215,054 200,000,000 24
tai80a 13,499,184 300,000,000 24
tai80b 818,415,043 300,000,000 24

sko100a 152,002 300,000,000 24

Table 3: The instances with the fitness of the best solution known, the amount of iterations
for each run and the number of runs for each experiment.

As will be reported, BIMA-QAP could not always stretch down to the
known minimum in the specified amount of iterations. In the smaller instances,
on the other hand, the algorithm converges quickly to a first minimum, prov-
ing then very effective in finding multiple solutions having fitness equal to the
known minimum.
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Two different metrics are then adopted to rank the results of the experi-
ments. The comparisons between experiments in bur26a, nug30 and ste36a is
made analyzing the average amount of different minima found by BIMA-QAP.
The behavior of the experiments on the bigger instances is compared focusing
on how close - on average - they get to the known minimum, within the al-
lowed execution boundaries. Note that the first metric is more centered on the
exploration capabilities of the algorithm, while the second could value a more
exploitative approach. For example, an experiment that reaches the minimum
a bit more slowly - but once there is better at keeping looking for others - would
be ranked better than a faster but less explorative one. Ultimately, a fair bal-
ance of the two opposed tendencies is required to reach even a single minimum.

Before getting to the comparison, though, it seemed appropriate to provide
an additional insight over the standard run, and of course the results of the
experiments themselves. Note that this chapter hosts a very condensed view
of both the results and the comparisons, for further reference please check Ap-
pendix A.

4.3.1 Results

The next two pages contain two plots of e00 for each instance, in Figures 4
and 5. The plots on the left display the average fitness of the ϕ solutions in
pool over time; the plots on the right show the fitness of the local minima gen-
erated across the macro-iterations - the candidates for pool admission. While
the average fitness in the pool of solutions can just improve with time due to
the survival rule, the generated local minima don’t have such a constraint and
can get worse over time - although this is an undesirable behavior if persistent
and the algorithm didn’t converge to a minimum first.

The x axis of each plot starts when all the runs in e00 are done with
the initial pool optimization; different starting pools take different time to
optimize, so actually the macro-iterations start on average slightly before the
plot does. Each of the thousand dense points in the plots represents the average
of ten samplings per run in the given window, averaged over the 24 runs that
constitute the experiment - no additional interpolation has been applied in
either case, apart from a simple fitted curve in the plots on the left.
Just after the plots, a tabular overview of the average amount of minima found
for each experiment (for bur26a, nug30, ste36a) and of the average percentage
over the known minimum of the best solution found (for all the instances) is
offered by Tables 4 and 5.
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Figure 4: Average fitness in pool (left) and average fitness of the generated local minima
(right) for bur26a, nug30, ste36a and tai60a.
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Figure 5: Average fitness in pool (left) and average fitness of the generated local minima
(right) for tai60b, tai80a, tai80b and sko100a.
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4.3 Experimental Results 4 RESULTS

exp. bur26a nug30 ste36a tai60a tai60b tai80a tai80b sko100a
e00 100.000 100.000 100.000 101.070 100.000 101.490 100.056 100.183
e01 100.000 100.035 100.061 101.157 100.016 101.370 100.232 100.113
e02 100.000 100.005 100.036 101.090 100.000 101.410 100.098 100.124
e03 100.000 100.000 100.004 101.108 100.000 101.429 100.032 100.129
e04 100.000 100.003 100.000 101.163 100.000 101.595 100.038 100.192
e05 100.000 100.000 100.000 101.225 100.000 101.697 100.060 100.205
e06 100.000 100.008 100.000 101.171 100.000 101.366 100.088 100.164
e07 100.000 100.000 100.000 101.108 100.001 101.393 100.055 100.162
e08 100.000 100.000 100.000 101.309 100.000 101.823 100.027 100.210
e09 100.000 100.000 100.000 101.062 100.000 101.796 100.015 100.152
e10 100.000 100.008 100.006 101.182 100.000 101.488 100.043 100.186
e11 100.000 100.003 100.000 101.257 100.004 101.460 100.143 100.195
e12 100.000 100.000 100.000 101.094 100.000 101.555 100.026 100.175
e13 100.000 100.011 100.000 101.202 100.000 101.470 100.068 100.183
e14 100.000 100.000 100.000 101.093 100.000 101.605 100.030 100.172
e15 100.000 100.000 100.000 101.155 100.000 101.527 100.054 100.180
e16 100.000 100.003 100.000 101.160 100.000 101.522 100.046 100.188
e17 100.000 100.003 100.000 101.222 100.000 101.572 100.019 100.162
e18 100.000 100.000 100.010 101.441 100.000 101.868 100.006 100.182
e19 100.000 100.000 100.000 101.138 100.000 101.533 100.049 100.179
e20 100.000 100.000 100.000 101.162 100.000 101.559 100.030 100.190
e21 100.000 100.003 100.000 101.164 100.000 101.486 100.032 100.165
e22 100.000 100.000 100.004 101.162 100.000 101.496 100.076 100.162
e23 100.000 100.003 100.004 101.237 100.000 101.485 100.063 100.155
e24 100.000 100.000 100.000 101.154 100.000 101.479 100.045 100.180
e25 100.000 100.000 100.000 101.152 100.000 101.603 100.036 100.188
e26 100.000 100.000 100.000 101.181 100.000 101.950 100.029 100.189
e27 100.000 100.000 100.000 101.139 100.000 101.483 100.072 100.148
e28 100.000 100.000 100.000 101.162 100.000 101.525 100.033 100.160
e29 100.000 100.000 100.000 101.135 100.000 101.544 100.036 100.198
e30 100.000 100.000 100.000 101.153 100.000 101.836 100.037 100.196
e31 100.000 100.068 100.574 102.318 100.110 102.468 100.375 100.534
e32 100.000 100.000 100.000 101.733 100.000 102.231 100.057 100.248

Table 4: This table displays the average value of the best found solution at the iterations
threshold for each experiment. It looks like it is going to be difficult to infer something from
tai60b average best found solution, since the value converged to 100.000 by the end of the
experiments. The workaround will be to consider a different timestep in the comparison, as
later remarked.
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exp. bur26a nug30 ste36a
e00 92.08 2.96 6.29
e01 78.59 0.75 2.33
e02 88.67 1.75 2.92
e03 92.58 2.46 3.83
e04 88.79 3.08 6.62
e05 83.00 3.62 6.04
e06 80.21 1.92 4.75
e07 90.08 2.92 5.92
e08 93.92 3.37 5.50
e09 94.08 3.29 5.67
e10 90.33 1.58 3.29
e11 87.25 1.87 3.71
e12 92.75 3.29 5.67
e13 91.08 1.87 4.25
e14 92.37 3.00 5.92

exp. bur26a nug30 ste36a
e15 91.37 3.00 5.62
e16 91.46 2.96 5.58
e17 91.79 2.92 5.33
e18 85.79 3.04 3.00
e19 93.21 3.17 5.83
e20 91.04 3.04 5.83
e21 90.67 2.29 5.46
e22 86.29 2.25 6.00
e23 84.87 2.58 4.83
e24 92.67 3.08 5.37
e25 89.21 3.46 5.83
e26 89.21 3.75 6.54
e27 94.67 2.83 5.62
e28 92.54 3.17 6.67
e29 91.33 3.12 5.87
e30 89.92 3.25 5.71
e31 14.2 0.33 0.08
e32 86.2 3.87 3.79

Table 5: This table displays the average amount of different minima found at the iterations
threshold for each experiment on bur26a, nug30 and ste36a.

Figures 4 and 5 clearly show that BIMA-QAP has an oscillating behavior on
tai60a and tai80a. While not being able to provide an exhaustive explaination
for it, the phenomenon is not uncommon nor inherently wrong. As will be
noted in the next few pages, the two instances share the same origin.

4.3.2 Comparing the Experiments

The remainder of this subsection will present a brief overview of the behavior
of the parameters on each considered QAP instance, which is accompanied by
a graphical representation of the Tukey test on the experiments about a single
parameter. The four columns are meant to display the changing behavior of
the parameters over time: they are based on values sampled at 1/10, 3/10,
6/10 and 10/10 of the iterations threshold.

A comparison shows significant differences if the bar associated to it doesn’t
overlap with the dotted vertical line in the middle. While analyzing the amount
of minima found, the first experiment in the comparison is better than the
second if the bar is to the right of the vertical line. When the analysis switches
to the best found solution, a smaller value is preferred and the situation is
inverted.
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Figure 6: Bur26a [33] is an asymmetric instance having as flow matrix the frequency of
typing two letters one after the other, and as distance matrix the average time required for
such a task. Bur26a is solved very easily, but once the first minimum has been found the
algorithm keeps crunching. The standard ϕ works just ok, bigger and smaller values perform
worse; small δ is also noticeably reducing the amount of minima found. Setting pall, w2 or w3

to 1 also leads to a similar subpar result. The standard value of c is optimal, while as pictured,
the smaller w1 the more minima the algorithm finds. In fact, using just the minimum fitness
and discarding the average one seems to work best. MLS is performing much worse, reaching
on average less than a sixth of the minima found by BIMA-QAP. Randomly choosing the
components instead of using the components matrices leads to discovering less solutions
than the standard settings of BIMA-QAP.
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Figure 7: Nug30 [53] is a popular instance whose distance matrix contains Manhattan
distances of regular grids. It is once again very straightforward for BIMA-QAP to reach a
minimum, so the amount of minima is compared instead. Here to higher settings of ϕ and
δ correspond straightforward and marked improvements in the results, while the opposite
happens for values lower than the standard. It is interesting to note how every experiment
where pdonor equals 0 performs much worse, while once again e00 holds the ground quite well.
As the figure above suggests, increasing the value of w3 leads to worse results, while nothing
significant can be said about w2 or w1. To higher c correspond better performance, with the
highest setting being almost on par with the random components selection. Nug30 is the only
instance in which RND seems to perform slightly better (not always significantly so) than
BIMA-QAP. The general trend here seems to suggest that a very high level of exploration
is needed to reach all the minima. MLS results are half as good as those obtained by the
worst BIMA-QAP settings.
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Figure 8: Ste36a [30] models an instance of the Steinberg Wiring Problem (mentioned in
subsection 2.5.2) having Manhattan distances. This is the third and last of the instances
where finding multiple minima is a common occurrence and the focus of the analysis. The
standard settings perform very well; experiments with lower value of ϕ perform much worse.
The smallest value of δ also lowers the performance a bit. As in the previous case and
shown in the figure, here also experiments where pdonor is set to 0 yield a clearly lower
amount of minima. While the various settings of w3 don’t cause any significant difference
in performance, for some reason the e18 where w2 is at 1 finds about half the minima
compared to the other experiments on the parameter - this is a sharp difference with no
straightforward explanation. Bigger c values yield once again higher results; while e00 and
e28 perform better on w1, no significance is achieved. On ste36a the difference between RND
and e00 is quite marked in favor of the latter, but what really stands out is the horrible
performance of MLS - which almost never manages to reach a minimum.
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Figure 9: Quoting QAPLIB [28], ‘‘the instances in Taixxa are uniformly [randomly] gener-
ated ... problems in Taixxb are asymmetric and randomly generated”. Solving these bigger
instances (with the exception of tai60b) is much more challenging to BIMA-QAP than the
smaller ones, and the analysis switches to the average quality of the best solutions found
across the runs. Quite astonishingly, in Tai60a [35] e00 performs better than any other
experiment. Setting ϕ to 40 as in e02 works just as fine, but any other setting worsens the
solution quality. Increasing the value of δ to 1/6 results in the worst performance obtained
on this instance by BIMA-QAP. Despite the different evaluation metrics, here the results
of experiments with pdonor = 0 are markedly not as good. Also this time setting w2 = 1
results in a very bad performance, as depicted above. No significant differences can be found
among the experiments on w3, and all experiments on c and w1 perform a bit worse than
the standard settings. MLS clearly lags behind, and RND average best solution is worse
than any experiment with BIMA-QAP.
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Figure 10: As noted, the number of iterations allotted to tai60b [36] proved to be pes-
simistic; in fact, the algorithm starts finding the first minima already at 1

10 of the total
run-length. By the time the 200M iterations mark is reached, most of the runs ended up in
the minimum. This doesn’t allow for any statistically relevant end-experiment comparisons,
so the earlier time-steps are considered instead. Early on, a small ϕ helps the algorithm
to lower the average best solution fitness. Altering δ doesn’t modify the behavior of the
algorithm. On the other hand, the difference on psources is quite sharp, and mimics what
was seen on ste36a despite the different metrics: pdonor is crucial to the performance of the
algorithm, and shouldn’t be set to 0. Setting pall to 1 is not a very good idea either. Nothing
significant comes out of w3, w1 and c, while the experiments on w2 provide some minor vari-
ability. On the long run, the performance of RND converges to match BIMA-QAP; before
then, the latter has an edge. MLS doesn’t get to 100.000 within the iterations threshold.
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Figure 11: Tai80a [35] seems the most difficult instance among the considered ones: the
average best solution here is well above the 101% of the known minimum. The standard
settings prove here to be optimal for some parameters, improvable for others. In particular,
smaller settings for ϕ and δ seem to improve the algorithm behavior; on the other hand,
setting a pool size of 100 (or greater) or δ to 1/4 results into a noticeable reduction of the
solution quality. Interestingly, on tai80a the parameter psources works opposite than what
was seen up to now: all the experiments where pdonor is different from 0 reach worse minima,
apart from e00. Once again no significant differences come from altering the value of w3,
and the infamous setting of w2 to 1 performs much worse. A high value of c brings the search
to lose focus, and for c = 100 BIMA-QAP reaches the worst result on this instance. Finally,
setting w1 to 1 works very bad, suggesting that it is important to consider the minimum
fitness also. MLS and RND perform rather similarly here, and noticeably worse than any
setting of BIMA-QAP.
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Figure 12: Tai80b [36], on the other hand, proves to be much easier to tackle; several
runs in various experiments are able to reach the known minimum. As in figure, reducing ϕ
to 10 has dramatically negative effects on the performance of BIMA-QAP, making e01 the
worst of the proper experiments. No significant differences can be inferred from the results
on δ. The various settings for psources perform more or less the same, with the exception of
setting pall = 1 which results in the second worst result. While once again w3 doesn’t really
influence too much the behavior of the algorithm, w2, the best mean value for this instance
is obtained in e18. This is quite interesting, since up to now setting w2 = 1 had largely
negative results on the performance of the algorithm. Despite the fact that a higher w1

seems to perform a little bit better, no significant results are obtained for the experiments
on c and w1. As usual MLS lags behind, but in this case RND average best found solution
is on par with e00 - note that the performance of BIMA-QAP can be improved by tweaking
settings like the mentioned w2.
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Figure 13: Sko100a [54] is the biggest instance considered in this analysis; in this case,
the distances are rectangular and the entries in the flow matrix pseudo-random numbers.
Given the instance size and the fact that the iteration threshold is the same as some smaller
instances, it is no surprise if BIMA-QAP struggles to reach the minimum here as well. The
paradigm for good performance here looks to be a limited exploration. Smaller values of ϕ
lead to the best results, and - as depicted above - reducing δ also improves the average best
solution found by a small margin. In this instance is rather difficult to infer general rules
about psources, but setting pdonor to 1 leads to better results. Remarkably, if c is at 0 (the
exploration term is ruled out from the equation) BIMA-QAP seems to perform better here;
a smaller pool size still leads to a lower fitness, but it would be interesting to combine the
two settings. A lower w1 also somewhat improves the performance, which suggests that the
minimum fitness is the one to be taken into account while computing f̃ . Sko100a in not
challenging just for BIMA-QAP: MLS and the random components selection perform worse
than any tested setting of BIMA-QAP.

53



4.4 Summary and Remarks 4 RESULTS

4.4 Summary and Remarks

Overall, the behavior of the algorithm is pretty satisfactory. In smaller in-
stances BIMA-QAP easily manages to reach a global minimum, and keeps
exploring looking for more. In bigger instances, while often not managing to
reach the global minimum, it shows a converging behavior. BIMA-QAP beats
MLS in every single analyzed instance by a margin, and - since the random
components selection is generally a worse performer - the perturb() operator
is shown to significantly contribute to the quality of the results in most of the
cases.

BIMA-QAP has also shown to be reactive to different settings of its pa-
rameters, whose optimal values change according to the instance. Overall, it is
pretty remarkable how e00 always manages to be among the best performers
- its intuitively chosen set of values proved to be a good bet.

It was quite reasonable to expect the optimal pool size ϕ to change with
the instance size, but this is not the case. Bigger values look especially suited
to find more minima, but in general the optimal ϕ is different from instance to
instance. The difference in performance dictated by a wrong pool size is often
quite marked, so it is a rather important parameter to take into account. The
standard value of 70 works pretty well, in general.

The algorithm reacts rather sharply to different valued perturbation size
δ also. This was expected, as mentioned at the end of the previous chapter.
Higher settings tend to find more minima but often result in a worse average
solution in the bigger instances, with the exception of tai80b.

To different values of psources correspond different behaviors of BIMA-QAP.
It is often the case that some guided crossover among solutions (which means
setting pdonor different from 0) improves the algorithm performance; tai80a is
the exception to the rule, since the crossover seems to be counterproductive.
An even balance between the three restricted sets of components works ok in
most of the cases.

The weights w2 and w3 are the most difficult parameters to argue about.
Experimental results show that they do have some influence on the algorithm,
but it is not very straightforward to justify the extent of some results. In
particular, the terrible performance of e18 in ste36a, tai60a and tai80a is quite
striking - and it gets more puzzling when the same experiment gets ahead of
its peers in tai80b. The impact of w3 is less pronounced, but very evident in

54



4 RESULTS 4.4 Summary and Remarks

nug30, where reducing the weight brings a steep improvement in the average
number of minima found.

The parameter c was conceived with the explicit task of regulating the bal-
ance between exploration and exploitation; in nug30 and ste36a it is possible
to see how to a bigger c correspond more minima found, on average. The
optimal c varies greatly among the instances: apart from the aforementioned
case, in some (tai80a, sko100a) the smaller is c the better are BIMA-QAP
performances, to the point of ruling out the exploration term in formula 9. In
other cases a middle value performs best.

It was difficult to estimate the influence of w1 on the algorithm beforehand,
and the results of the experiments seem to suggest that using both f̄ and f̌
was a good idea. In general, the suggested trend is that using mostly the
minimum fitness results in a better performance, but including a percentage
of the average fitness in f̃ makes the method more versatile.

Having so many parameters is not necessarily a good thing, since it means
that the algorithm requires a process of meta-optimization to perform at its
best. On the other hand, the great majority of experiments with BIMA-QAP
perform better than their RND counterpart, and they all beat MLS. This is
a very positive result, because it suggests that using the algorithm is worth
considering even if its parameters have not been fine-tuned.
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5 Conclusions and Future Work

This brief section sums up the work introduced in the past chapters, provides
a simple self-assessment and suggests several aspects that could be the topic
of further research.

5.1 Looking Back

The aim of this thesis was to design, implement and evaluate a new metaheuris-
tic for the Quadratic Assignment Problem. This was partially motivated by the
No Free Lunch Theorem for Combinatorial Optimization, and started with an
extensive literature review - part of which made it to Chapter 2. Then, piece
by piece, the elements of the metaheuristic have been assembled to obtain
BIMA-QAP.

BIMA-QAP is memetic in structure, but instead of applying genetic op-
erators on the solutions, generation after generation, it alters one solution
at a time with the custom operator perturb(). This method enforces the δ
highest scoring solution components on the original solution; the score is com-
puted with a formula inspired by the Multi-Armed Bandit model and UCB
in particular. The formula combines an exploitation term, to provide a rough
estimation of the quality of a component, with an exploration term which is
inversely proportional to its popularity. Two global matrices and 2ϕ (with ϕ
representing the size of the solutions pool) local matrices are used to store the
values for fitness and pulls needed in the computation. As a further feature,
the set of components to consider can be restricted to the ones in a donor
solution or to the ones involved in the solutions pool.

While drawing much inspiration from literature, the resulting method is a
novelty. To study the effect of its components and try to get the best results
from the test instances, several parameters have been isolated while defining
the algorithm structure. These parameters have then been put to test and the
results are split between Chapter 4 and Appendix A.

5.2 On the Results

The target for BIMA-QAP had been set in building a method able to converge
and to outperform Multi-start Local Search. Experimental testing has shown
both conditions to hold, by a margin.
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Not only the method is seemingly able to converge towards a global mini-
mum, but it actually keeps looking for more once the first one has been found.
It must be noted that - despite showing a converging behavior - the algorithm
is not able to reach a solution with fitness equal to the known best minimum
in few of the bigger instances. This is where MLS comes handy as a baseline
for performance: in every single experiment, on each instance, BIMA-QAP is
performing significantly better than Multi-Start Local Search.

This doesn’t mean by any chance that altering the parameters in the al-
gorithm doesn’t yield different results; in fact, the behavior of BIMA-QAP is
relatively sensitive to a change in configuration. Different settings work best
with different instances of the QAP, but it is possible to find some patterns
in the behavior of the parameters, as pointed out in section 4.4. It was par-
ticularly interesting to see how, in the smaller instances, to higher exploration
coefficient c corresponded a higher number of minima found. To better an-
alyze the influence of the operator perturb() on the final results, it has been
disabled in favor of a random components selection in the method RND. The
experiments show the performance of RND to be much better than the one of
MLS, but in the great majority of the cases significantly worse than the one of
BIMA-QAP. This suggests that the biggest impact on the quality of solutions
found by BIMA-QAP is due to its hybrid structure, but also shows that the
operator perturb() is effectively improving the metaheuristic.

A comparison with existing algorithms proved to be difficult due to the dif-
ferent ways of analyzing performance adopted in literature; it would definitely
be interesting to see how BIMA-QAP fares against some of the methods that
inspired it.

5.3 Future Work

The process of creating a new hybrid metaheuristic combining various ideas
found in literature can be a bit disorientating at the beginning, due to the
amount of different approaches and techniques attempted in the past. Defin-
ing the design elements to combine in a single algorithm is a task that involves
a lot of choices, and leaves many promising options unexplored. Similar obser-
vations can be made about the experimental phase, since the whole analysis
of the interaction between the parameters has been left out - being, as noted,
a multi-parameter optimization problem in itself. It doesn’t come then as a
surprise that the possibilities for improving this work are quite varied.

In most of the analyzed instances, either the flow or the distance matrices
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are symmetric. As noted in [55] the process of evaluating the fitness during
local search - when a single swap is operated at a time - can be faced incre-
mentally if both of the matrices of the instance in analysis are symmetrical.
This translates into computing the fitness of a new solution by considering the
fitness of the previous one and the swap that was applied on it. The paper
referenced above also describes a simple way of turning instances with a single
symmetric matrix into instances where both the matrices are symmetric, and
states that the speed of local search has increased by a factor of 4 - definitely
worth a try.

Talking about local search, it would be interesting to see how the algo-
rithm would react if a more sophisticated method were to be used in place
of 2-opt local search, for example some form of Tabu Search. The general
approach during this work has often been to go for the simplest option when
many were available; this translated also in the choice of the traditional MAB
model and UCB as inspiration for the operator perturb(). Section 3.3 stressed
out how several of the constraints in the model are violated; over the years
several derivatives of the original MAB have been proposed, each having dif-
ferent properties and solution techniques - maybe a better suiting model could
be adopted, if existing.

One of the issues left unsolved at design time is the effective separation
among the neighborhoods encoded by the local matrices. Simply put, there is
no mechanism in place to enforce a minimum distance between the solutions
in the various slots, and this can limit the effectiveness of the local matrices
- interpreting the results on the global exploitation weight w2 and the global
exploration weight w3 has been difficult also due to this fact. The matter is
quite delicate, because introducing additional checks could seriously hamper
the speed of the method.

It has been noted that also the experimental phase could use some ad-
ditional research; apart from the analysis of the mutual interaction among
parameters, a technique that has not been attempted is to change the settings
during BIMA-QAP execution. This can be done in three different ways. The
first one is to randomly allocate the values from a set of possible ones, similarly
to what was done for the restricted set of components At. A good candidate for
this approach would be δ, since the number of swaps needed to flee an attrac-
tion basin is far from being constant. One more technique involves changing
the parameters at predetermined time-steps, or following a trend chosen before
starting the algorithm; for example, c could be set to monotonically increase
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over the iterations, in an attempt to increase the algorithm exploration over
time. Finally, some parameters could dynamically adapt to better suit the
current search state; a similar approach has been adopted in Adaptive-ILS
[15] for the perturbation size.

]

Overall, the performance of BIMA-QAP can be said to be very satisfac-
tory; in particular it proved to be really effective in exploring the search space,
managing to find almost all the minima for the smaller problems.

The method is at its first iteration, and some further research would prob-
ably enhance its performance. Even in its current form, it easily reaches the
targets set at the beginning of the work.

While being based on previous research, the framework adopted in BIMA-
QAP is a novelty, and the use of an index formula to score the solution com-
ponents is a very versatile approach that could be easily extended in the near
future.
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[38] T. Stützle, “Max-min ant system for quadratic assignment problems,”
1997.

[39] C. Fleurent, Jacques, and J. A. Ferland, “Genetic hybrids for the quadratic
assignment problem,” in DIMACS Series in Mathematics and Theoret-
ical Computer Science, American Mathematical Society, 1993, pp. 173–
187.

63



REFERENCES REFERENCES
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A DETAILED EXPERIMENTAL DATA

A Detailed Experimental Data

The aim of this appendix is to provide an overview of the huge amount of ex-
perimental data collected while testing the algorithm. The results are grouped
in several tables, ordered by instance. The data has been collected at intervals
of 10% of the total iterations, and in the following the intermediate timesteps
at 1/10, 3/10, 6/10 and 10/10 of the total are proposed.

The section contains two types of tables, the first containing the sheer ex-
perimental results of BIMA-QAP for each instance, experiment and timestep.
The second provides a list of the p-values of the pairwise comparison among
the experiments run to test each parameter. As described in chapter 4, this is
obtained by applying first an ANOVA and then a Tukey test on the results.

For bur26a, nug30 and ste36a two kinds of results are listed: the ones re-
lated to the average amount of different minima found, and the ones based on
the best solution found on average.
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experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e01 100.000 0.000 100.000 0.000 100.000 0.000 100.000 0.000
e02 100.000 0.000 100.000 0.000 100.000 0.000 100.000 0.000
e03 100.000 0.002 100.000 0.000 100.000 0.000 100.000 0.000
e04 100.001 0.002 100.000 0.000 100.000 0.000 100.000 0.000
e05 100.004 0.016 100.000 0.000 100.000 0.000 100.000 0.000
e06 100.006 0.018 100.000 0.000 100.000 0.000 100.000 0.000
e07 100.007 0.019 100.000 0.000 100.000 0.000 100.000 0.000
e08 100.001 0.004 100.000 0.000 100.000 0.000 100.000 0.000
e09 100.000 0.000 100.000 0.000 100.000 0.000 100.000 0.000
e10 100.000 0.000 100.000 0.000 100.000 0.000 100.000 0.000
e11 100.003 0.015 100.000 0.000 100.000 0.000 100.000 0.000
e12 100.001 0.004 100.000 0.000 100.000 0.000 100.000 0.000
e13 100.003 0.008 100.000 0.000 100.000 0.000 100.000 0.000
e14 100.001 0.004 100.000 0.000 100.000 0.000 100.000 0.000
e15 100.005 0.015 100.000 0.000 100.000 0.000 100.000 0.000
e16 100.002 0.006 100.000 0.000 100.000 0.000 100.000 0.000
e17 100.000 0.000 100.000 0.000 100.000 0.000 100.000 0.000
e18 100.001 0.004 100.000 0.000 100.000 0.000 100.000 0.000
e19 100.002 0.006 100.000 0.000 100.000 0.000 100.000 0.000
e20 100.004 0.014 100.000 0.000 100.000 0.000 100.000 0.000
e21 100.005 0.019 100.000 0.000 100.000 0.000 100.000 0.000
e22 100.006 0.019 100.000 0.000 100.000 0.000 100.000 0.000
e23 100.002 0.008 100.000 0.000 100.000 0.000 100.000 0.000
e24 100.001 0.004 100.000 0.000 100.000 0.000 100.000 0.000
e25 100.002 0.007 100.000 0.000 100.000 0.000 100.000 0.000
e26 100.004 0.015 100.000 0.000 100.000 0.000 100.000 0.000
e27 100.000 0.000 100.000 0.000 100.000 0.000 100.000 0.000
e28 100.005 0.013 100.000 0.000 100.000 0.000 100.000 0.000
e29 100.001 0.004 100.000 0.000 100.000 0.000 100.000 0.000
e30 100.001 0.005 100.000 0.000 100.000 0.000 100.000 0.000
e31 100.004 0.010 100.000 0.002 100.000 0.000 100.000 0.000
e32 100.001 0.005 100.000 0.000 100.000 0.000 100.000 0.000

Table A.1: Mean and standard deviation of the best solution found by each experiment in their
runs on bur26a. Each pair of columns represents a timestep.
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comparison 1/10 3/10 6/10 10/10
e01 - e00 0.962 0.514 0.514 0.514
e02 - e00 0.962 0.514 0.514 0.514
e03 - e00 0.986 0.514 0.514 0.514
e04 - e00 0.997 0.514 0.514 0.514
e05 - e00 0.769 0.514 0.514 0.514
e02 - e01 1.000 1.000 1.000 1.000
e03 - e01 1.000 1.000 1.000 1.000
e04 - e01 1.000 1.000 1.000 1.000
e05 - e01 0.264 1.000 1.000 1.000
e03 - e02 1.000 1.000 1.000 1.000
e04 - e02 1.000 1.000 1.000 1.000
e05 - e02 0.264 1.000 1.000 1.000
e04 - e03 1.000 1.000 1.000 1.000
e05 - e03 0.352 1.000 1.000 1.000
e05 - e04 0.452 1.000 1.000 1.000
e06 - e00 0.634 0.494 0.494 0.494
e07 - e00 0.526 0.494 0.494 0.494
e08 - e00 1.000 0.494 0.494 0.494
e07 - e06 0.999 1.000 1.000 1.000
e08 - e06 0.553 1.000 1.000 1.000
e08 - e07 0.448 1.000 1.000 1.000
e09 - e00 0.984 0.503 0.503 0.503
e10 - e00 0.984 0.503 0.503 0.503
e11 - e00 0.995 0.503 0.503 0.503
e12 - e00 1.000 0.503 0.503 0.503
e13 - e00 0.995 0.503 0.503 0.503
e14 - e00 1.000 0.503 0.503 0.503
e10 - e09 1.000 1.000 1.000 1.000
e11 - e09 0.767 1.000 1.000 1.000
e12 - e09 1.000 1.000 1.000 1.000
e13 - e09 0.767 1.000 1.000 1.000
e14 - e09 0.998 1.000 1.000 1.000
e11 - e10 0.767 1.000 1.000 1.000
e12 - e10 1.000 1.000 1.000 1.000
e13 - e10 0.767 1.000 1.000 1.000
e14 - e10 0.998 1.000 1.000 1.000
e12 - e11 0.940 1.000 1.000 1.000
e13 - e11 1.000 1.000 1.000 1.000
e14 - e11 0.974 1.000 1.000 1.000
e13 - e12 0.940 1.000 1.000 1.000
e14 - e12 1.000 1.000 1.000 1.000
e14 - e13 0.974 1.000 1.000 1.000

comparison 1/10 3/10 6/10 10/10
e15 - e00 0.598 0.513 0.513 0.513
e16 - e00 1.000 0.513 0.513 0.513
e17 - e00 0.951 0.513 0.513 0.513
e18 - e00 0.997 0.513 0.513 0.513
e16 - e15 0.598 1.000 1.000 1.000
e17 - e15 0.197 1.000 1.000 1.000
e18 - e15 0.372 1.000 1.000 1.000
e17 - e16 0.951 1.000 1.000 1.000
e18 - e16 0.997 1.000 1.000 1.000
e18 - e17 0.997 1.000 1.000 1.000
e19 - e00 1.000 0.513 0.513 0.513
e20 - e00 0.988 0.513 0.513 0.513
e21 - e00 0.900 0.513 0.513 0.513
e22 - e00 0.804 0.513 0.513 0.513
e20 - e19 0.988 1.000 1.000 1.000
e21 - e19 0.900 1.000 1.000 1.000
e22 - e19 0.804 1.000 1.000 1.000
e21 - e20 0.996 1.000 1.000 1.000
e22 - e20 0.975 1.000 1.000 1.000
e22 - e21 1.000 1.000 1.000 1.000
e23 - e00 0.998 0.513 0.513 0.513
e24 - e00 0.998 0.513 0.513 0.513
e25 - e00 0.999 0.513 0.513 0.513
e26 - e00 0.930 0.513 0.513 0.513
e24 - e23 0.963 1.000 1.000 1.000
e25 - e23 1.000 1.000 1.000 1.000
e26 - e23 0.991 1.000 1.000 1.000
e25 - e24 0.975 1.000 1.000 1.000
e26 - e24 0.787 1.000 1.000 1.000
e26 - e25 0.984 1.000 1.000 1.000
e27 - e00 0.920 0.513 0.513 0.513
e28 - e00 0.409 0.513 0.513 0.513
e29 - e00 1.000 0.513 0.513 0.513
e30 - e00 1.000 0.513 0.513 0.513
e28 - e27 0.081 1.000 1.000 1.000
e29 - e27 0.978 1.000 1.000 1.000
e30 - e27 0.945 1.000 1.000 1.000
e29 - e28 0.274 1.000 1.000 1.000
e30 - e28 0.361 1.000 1.000 1.000
e30 - e29 1.000 1.000 1.000 1.000
e31 - e00 0.468 0.443 0.443 0.443
e32 - e00 0.997 1.000 0.443 0.443
e32 - e31 0.421 0.443 1.000 1.000

Table A.2: The p-values resulting from the pairwise comparison of the average best solution
obtained by the experiments on bur26a, at the 4 timesteps.
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experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e01 23.708 12.042 54.042 15.791 70.375 15.205 78.583 14.355
e02 16.042 8.995 61.792 12.793 82.333 10.124 88.667 7.251
e03 10.625 5.492 48.083 17.695 82.708 12.876 92.583 5.725
e04 3.917 3.216 29.542 9.551 67.167 11.200 88.792 5.532
e05 4.000 2.654 22.583 8.876 56.625 10.858 83.000 5.846
e06 6.667 4.967 27.125 9.940 56.208 11.673 80.208 7.729
e07 6.750 6.641 34.625 14.018 69.875 12.224 90.083 5.963
e08 5.375 4.052 37.292 10.593 76.708 8.579 93.917 2.992
e09 6.458 2.859 44.583 10.202 84.667 6.062 94.083 1.954
e10 5.292 3.394 25.208 11.632 68.708 10.045 90.333 4.622
e11 4.500 2.766 32.292 9.072 66.042 9.836 87.250 5.689
e12 6.083 4.596 35.500 11.279 78.292 10.845 92.750 3.745
e13 6.333 4.678 32.333 9.788 66.458 8.526 91.083 3.438
e14 5.208 4.384 38.708 10.511 76.542 10.446 92.375 3.334
e15 4.833 4.061 33.667 11.605 72.625 11.390 91.375 4.412
e16 6.000 4.423 35.375 11.443 72.125 9.750 91.458 3.064
e17 7.167 4.565 42.250 9.289 78.417 9.422 91.792 4.644
e18 4.833 3.497 39.083 19.328 71.833 22.983 85.792 16.529
e19 6.708 4.123 41.083 11.504 76.208 8.449 93.208 2.085
e20 5.333 4.410 35.000 11.041 72.625 8.647 91.042 3.544
e21 5.292 4.258 30.208 10.455 69.875 10.768 90.667 5.427
e22 5.500 4.773 30.500 11.306 68.125 12.099 86.292 7.298
e23 4.833 3.384 34.000 10.966 67.500 12.525 84.875 7.380
e24 7.042 5.361 37.000 14.074 75.833 8.575 92.667 2.792
e25 5.500 4.181 32.917 10.558 68.417 10.450 89.208 6.580
e26 5.667 3.852 34.208 6.600 71.417 5.445 89.208 4.201
e27 6.125 4.153 41.167 7.257 80.208 6.136 94.667 1.435
e28 4.292 3.569 34.708 10.925 73.583 10.533 92.542 3.297
e29 6.625 4.528 35.958 11.922 73.042 8.605 91.333 2.599
e30 4.292 3.368 30.333 8.879 68.667 9.494 89.917 5.090
e31 1.500 1.285 4.375 2.183 8.583 3.063 14.208 3.901
e32 3.875 2.755 24.833 7.867 60.958 10.166 86.208 5.626

Table A.3: Mean and standard deviation of the amount of minima found by each experiment in
their runs on bur26a. Each pair of columns represents a timestep.
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comparison 1/10 3/10 6/10 10/10
e01 - e00 0.001 0.001 1.000 0.001
e02 - e00 0.001 0.001 0.016 0.649
e03 - e00 0.029 0.002 0.011 1.000
e04 - e00 1.000 0.894 0.794 0.685
e05 - e00 1.000 0.044 0.001 0.002
e02 - e01 0.003 0.300 0.006 0.001
e03 - e01 0.001 0.597 0.004 0.001
e04 - e01 0.001 0.001 0.927 0.001
e05 - e01 0.000 0.001 0.001 0.365
e03 - e02 0.078 0.005 1.000 0.503
e04 - e02 0.001 0.001 0.001 1.000
e05 - e02 0.001 0.000 0.001 0.123
e04 - e03 0.013 0.001 0.001 0.540
e05 - e03 0.015 0.001 0.001 0.001
e05 - e04 1.000 0.422 0.022 0.108
e06 - e00 0.411 0.208 0.001 0.001
e07 - e00 0.378 0.986 0.952 0.550
e08 - e00 0.918 0.647 0.270 0.620
e07 - e06 1.000 0.102 0.001 0.001
e08 - e06 0.801 0.012 0.001 0.001
e08 - e07 0.769 0.844 0.094 0.061
e09 - e00 0.537 0.006 0.001 0.527
e10 - e00 0.989 0.089 0.947 0.679
e11 - e00 1.000 1.000 0.390 0.001
e12 - e00 0.758 0.995 0.128 0.997
e13 - e00 0.614 1.000 0.492 0.970
e14 - e00 0.994 0.589 0.450 1.000
e10 - e09 0.939 0.001 0.001 0.013
e11 - e09 0.563 0.002 0.001 0.001
e12 - e09 1.000 0.043 0.195 0.885
e13 - e09 1.000 0.002 0.001 0.092
e14 - e09 0.916 0.441 0.037 0.703
e11 - e10 0.992 0.219 0.950 0.076
e12 - e10 0.992 0.013 0.007 0.292
e13 - e10 0.965 0.213 0.979 0.994
e14 - e10 1.000 0.001 0.051 0.501
e12 - e11 0.780 0.936 0.001 0.001
e13 - e11 0.639 1.000 1.000 0.011
e14 - e11 0.996 0.332 0.002 0.001
e13 - e12 1.000 0.939 0.001 0.727
e14 - e12 0.986 0.936 0.995 1.000
e14 - e13 0.948 0.340 0.004 0.899

comparison 1/10 3/10 6/10 10/10
e15 - e00 0.998 1.000 0.998 0.999
e16 - e00 0.676 0.987 1.000 0.999
e17 - e00 0.143 0.133 0.368 1.000
e18 - e00 0.998 0.559 1.000 0.062
e16 - e15 0.854 0.991 1.000 1.000
e17 - e15 0.269 0.146 0.561 1.000
e18 - e15 1.000 0.588 1.000 0.127
e17 - e16 0.854 0.346 0.478 1.000
e18 - e16 0.854 0.854 1.000 0.118
e18 - e17 0.269 0.913 0.431 0.085
e19 - e00 0.354 0.117 0.413 0.914
e20 - e00 0.953 0.990 0.993 0.934
e21 - e00 0.960 0.831 0.981 0.821
e22 - e00 0.913 0.873 0.754 0.001
e20 - e19 0.792 0.300 0.691 0.476
e21 - e19 0.774 0.007 0.152 0.312
e22 - e19 0.860 0.009 0.032 0.001
e21 - e20 1.000 0.545 0.856 0.999
e22 - e20 1.000 0.605 0.478 0.005
e22 - e21 1.000 1.000 0.969 0.011
e23 - e00 0.998 1.000 0.572 0.001
e24 - e00 0.196 0.787 0.451 0.995
e25 - e00 0.905 1.000 0.785 0.290
e26 - e00 0.847 1.000 1.000 0.290
e24 - e23 0.344 0.867 0.017 0.001
e25 - e23 0.981 0.997 0.997 0.030
e26 - e23 0.956 1.000 0.572 0.030
e25 - e24 0.692 0.676 0.044 0.133
e26 - e24 0.775 0.894 0.451 0.133
e26 - e25 1.000 0.994 0.785 1.000
e27 - e00 0.563 0.063 0.005 0.046
e28 - e00 1.000 0.994 0.902 0.988
e29 - e00 0.296 0.911 0.964 0.926
e30 - e00 1.000 0.802 0.793 0.136
e28 - e27 0.467 0.165 0.059 0.150
e29 - e27 0.992 0.365 0.033 0.004
e30 - e27 0.467 0.003 0.001 0.001
e29 - e28 0.226 0.993 1.000 0.684
e30 - e28 1.000 0.544 0.267 0.041
e30 - e29 0.226 0.287 0.385 0.540
e31 - e00 0.001 0.000 0.000 0.000
e32 - e00 0.729 0.001 0.001 0.001
e32 - e31 0.008 0.001 0.000 0.000

Table A.4: The p-values resulting from the pairwise comparison of the amount of minima found
by the experiments on bur26a, at the 4 timesteps.
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A DETAILED EXPERIMENTAL DATA

experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e01 100.083 0.134 100.054 0.092 100.041 0.081 100.035 0.082
e02 100.024 0.032 100.016 0.029 100.008 0.022 100.005 0.018
e03 100.014 0.027 100.005 0.018 100.000 0.000 100.000 0.000
e04 100.047 0.083 100.003 0.013 100.003 0.013 100.003 0.013
e05 100.043 0.054 100.000 0.000 100.000 0.000 100.000 0.000
e06 100.050 0.053 100.016 0.029 100.008 0.022 100.008 0.022
e07 100.028 0.042 100.003 0.013 100.003 0.013 100.000 0.000
e08 100.042 0.048 100.000 0.000 100.000 0.000 100.000 0.000
e09 100.027 0.033 100.005 0.018 100.000 0.000 100.000 0.000
e10 100.035 0.044 100.016 0.029 100.011 0.025 100.008 0.022
e11 100.038 0.044 100.008 0.022 100.005 0.018 100.003 0.013
e12 100.030 0.050 100.003 0.013 100.000 0.000 100.000 0.000
e13 100.020 0.033 100.011 0.025 100.011 0.025 100.011 0.025
e14 100.022 0.031 100.005 0.018 100.000 0.000 100.000 0.000
e15 100.018 0.040 100.000 0.000 100.000 0.000 100.000 0.000
e16 100.031 0.035 100.003 0.013 100.003 0.013 100.003 0.013
e17 100.026 0.042 100.005 0.018 100.003 0.013 100.003 0.013
e18 100.024 0.032 100.000 0.000 100.000 0.000 100.000 0.000
e19 100.019 0.045 100.000 0.000 100.000 0.000 100.000 0.000
e20 100.019 0.045 100.000 0.000 100.000 0.000 100.000 0.000
e21 100.027 0.047 100.011 0.025 100.003 0.013 100.003 0.013
e22 100.042 0.050 100.016 0.029 100.003 0.013 100.000 0.000
e23 100.050 0.061 100.008 0.022 100.003 0.013 100.003 0.013
e24 100.014 0.027 100.000 0.000 100.000 0.000 100.000 0.000
e25 100.027 0.037 100.000 0.000 100.000 0.000 100.000 0.000
e26 100.042 0.058 100.003 0.013 100.000 0.000 100.000 0.000
e27 100.014 0.027 100.000 0.000 100.000 0.000 100.000 0.000
e28 100.014 0.027 100.000 0.000 100.000 0.000 100.000 0.000
e29 100.028 0.035 100.000 0.000 100.000 0.000 100.000 0.000
e30 100.037 0.054 100.000 0.000 100.000 0.000 100.000 0.000
e31 100.419 0.236 100.175 0.157 100.095 0.079 100.068 0.061
e32 100.058 0.069 100.005 0.018 100.000 0.000 100.000 0.000

Table A.5: Mean and standard deviation of the best solution found by each experiment in their
runs on nug30. Each pair of columns represents a timestep.
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A DETAILED EXPERIMENTAL DATA

comparison 1/10 3/10 6/10 10/10
e01 - e00 0.230 0.001 0.002 0.008
e02 - e00 0.992 0.729 0.966 0.995
e03 - e00 0.876 0.998 1.000 1.000
e04 - e00 0.995 1.000 1.000 1.000
e05 - e00 1.000 1.000 1.000 1.000
e02 - e01 0.060 0.017 0.019 0.038
e03 - e01 0.014 0.001 0.002 0.008
e04 - e01 0.531 0.001 0.004 0.018
e05 - e01 0.405 0.001 0.002 0.008
e03 - e02 0.996 0.938 0.966 0.995
e04 - e02 0.874 0.853 0.995 1.000
e05 - e02 0.941 0.729 0.966 0.995
e04 - e03 0.574 1.000 1.000 1.000
e05 - e03 0.701 0.998 1.000 1.000
e05 - e04 1.000 1.000 1.000 1.000
e06 - e00 0.725 0.004 0.133 0.058
e07 - e00 0.925 0.935 0.885 1.000
e08 - e00 0.976 1.000 1.000 1.000
e07 - e06 0.347 0.021 0.465 0.058
e08 - e06 0.925 0.004 0.133 0.057
e08 - e07 0.725 0.935 0.885 1.000
e09 - e00 0.981 0.965 1.000 1.000
e10 - e00 1.000 0.076 0.162 0.365
e11 - e00 1.000 0.794 0.871 0.993
e12 - e00 0.997 1.000 1.000 1.000
e13 - e00 0.779 0.493 0.162 0.085
e14 - e00 0.841 0.965 1.000 1.000
e10 - e09 0.991 0.493 0.162 0.365
e11 - e09 0.961 1.000 0.871 0.993
e12 - e09 1.000 1.000 1.000 1.000
e13 - e09 0.997 0.965 0.162 0.086
e14 - e09 1.000 1.000 1.000 1.000
e11 - e10 1.000 0.794 0.871 0.806
e12 - e10 1.000 0.224 0.162 0.365
e13 - e10 0.841 0.965 1.000 0.993
e14 - e10 0.892 0.493 0.162 0.365
e12 - e11 0.992 0.965 0.871 0.993
e13 - e11 0.707 1.000 0.871 0.365
e14 - e11 0.777 1.000 0.871 0.993
e13 - e12 0.981 0.794 0.162 0.085
e14 - e12 0.991 1.000 1.000 1.000
e14 - e13 1.000 0.965 0.162 0.085

comparison 1/10 3/10 6/10 10/10
e15 - e00 0.391 1.000 1.000 1.000
e16 - e00 0.987 0.887 0.797 0.797
e17 - e00 0.848 0.349 0.797 0.797
e18 - e00 0.782 1.000 1.000 1.000
e16 - e15 0.710 0.887 0.797 0.797
e17 - e15 0.941 0.349 0.797 0.797
e18 - e15 0.970 1.000 1.000 1.000
e17 - e16 0.987 0.887 1.000 1.000
e18 - e16 0.969 0.887 0.797 0.797
e18 - e17 1.000 0.349 0.797 0.797
e19 - e00 0.654 1.000 1.000 1.000
e20 - e00 0.654 1.000 1.000 1.000
e21 - e00 0.949 0.183 0.797 0.513
e22 - e00 0.994 0.011 0.797 1.000
e20 - e19 1.000 1.000 1.000 1.000
e21 - e19 0.971 0.183 0.797 0.513
e22 - e19 0.388 0.011 0.797 1.000
e21 - e20 0.971 0.183 0.797 0.513
e22 - e20 0.388 0.011 0.797 1.000
e22 - e21 0.777 0.804 1.000 0.513
e23 - e00 0.839 0.109 0.513 0.513
e24 - e00 0.408 1.000 1.000 1.000
e25 - e00 0.952 1.000 1.000 1.000
e26 - e00 0.994 0.925 1.000 1.000
e24 - e23 0.049 0.109 0.513 0.513
e25 - e23 0.406 0.109 0.513 0.513
e26 - e23 0.973 0.479 0.513 0.513
e25 - e24 0.840 1.000 1.000 1.000
e26 - e24 0.199 0.925 1.000 1.000
e26 - e25 0.787 0.925 1.000 1.000
e27 - e00 0.201 0.513 0.513 0.513
e28 - e00 0.201 0.513 0.513 0.513
e29 - e00 0.941 0.513 0.513 0.513
e30 - e00 1.000 0.513 0.513 0.513
e28 - e27 1.000 1.000 1.000 1.000
e29 - e27 0.629 1.000 1.000 1.000
e30 - e27 0.200 1.000 1.000 1.000
e29 - e28 0.629 1.000 1.000 1.000
e30 - e28 0.200 1.000 1.000 1.000
e30 - e29 0.940 1.000 1.000 1.000
e31 - e00 0.001 0.001 0.001 0.001
e32 - e00 0.859 0.977 1.000 1.000
e32 - e31 0.001 0.001 0.001 0.001

Table A.6: The p-values resulting from the pairwise comparison of the average best solution
obtained by the experiments on nug30, at the 4 timesteps.
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A DETAILED EXPERIMENTAL DATA

experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e01 0.292 0.464 0.417 0.504 0.667 0.637 0.750 0.608
e02 0.917 0.830 1.250 0.989 1.458 0.977 1.750 1.073
e03 1.250 0.897 1.875 0.850 2.125 0.741 2.458 0.833
e04 0.667 0.637 2.500 0.933 2.917 1.060 3.083 1.100
e05 0.583 0.654 2.625 0.824 3.167 0.702 3.625 0.576
e06 0.625 0.875 1.500 1.180 1.792 1.215 1.917 1.248
e07 1.083 1.060 2.583 1.060 2.708 1.042 2.917 0.929
e08 0.792 0.932 2.625 0.970 2.958 0.955 3.375 0.770
e09 0.958 0.955 2.417 1.100 2.792 0.721 3.292 0.690
e10 0.792 0.932 1.250 0.989 1.458 0.977 1.583 0.974
e11 0.750 0.897 1.667 1.049 1.708 0.999 1.875 0.947
e12 0.917 0.881 2.333 1.090 3.000 0.933 3.292 0.806
e13 0.792 0.588 1.667 1.049 1.708 1.083 1.875 1.116
e14 1.083 0.881 2.333 1.090 2.792 0.932 3.000 0.885
e15 0.917 0.584 2.125 0.947 2.583 1.018 3.000 0.722
e16 0.792 0.884 2.167 1.007 2.667 1.129 2.958 1.083
e17 1.042 0.908 2.042 0.999 2.542 0.932 2.917 0.929
e18 0.708 0.624 1.750 0.737 2.625 0.711 3.042 0.624
e19 0.833 0.482 2.542 0.833 2.958 0.751 3.167 0.702
e20 0.958 0.624 2.375 0.875 2.875 0.741 3.042 0.690
e21 0.833 0.761 1.583 1.100 2.042 0.955 2.292 0.955
e22 0.625 0.711 1.375 1.096 1.833 1.049 2.250 0.897
e23 0.542 0.658 1.750 1.113 2.125 1.191 2.583 1.213
e24 1.542 1.103 2.583 0.974 2.875 0.741 3.083 0.830
e25 1.000 0.885 2.708 0.908 3.250 0.794 3.458 0.833
e26 0.708 0.751 2.375 1.096 3.500 0.590 3.750 0.532
e27 1.167 0.816 2.208 0.932 2.667 0.816 2.833 0.702
e28 1.250 0.847 2.625 0.875 2.833 0.868 3.167 0.761
e29 0.708 0.690 2.375 0.924 3.000 0.780 3.125 0.797
e30 0.958 0.999 2.708 0.908 3.167 0.761 3.250 0.737
e31 0.083 0.282 0.125 0.338 0.208 0.415 0.333 0.637
e32 0.542 0.833 2.042 1.083 3.333 0.868 3.875 0.338

Table A.7: Mean and standard deviation of the amount of minima found by each experiment in
their runs on nug30. Each pair of columns represents a timestep.
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A DETAILED EXPERIMENTAL DATA

comparison 1/10 3/10 6/10 10/10
e01 - e00 0.602 0.001 0.001 0.001
e02 - e00 0.729 0.007 0.001 0.001
e03 - e00 0.038 0.911 0.165 0.336
e04 - e00 1.000 0.645 0.957 0.996
e05 - e00 1.000 0.324 0.417 0.083
e02 - e01 0.038 0.011 0.018 0.002
e03 - e01 0.001 0.001 0.001 0.001
e04 - e01 0.471 0.001 0.001 0.001
e05 - e01 0.729 0.001 0.000 0.000
e03 - e02 0.602 0.117 0.075 0.054
e04 - e02 0.838 0.001 0.001 0.001
e05 - e02 0.602 0.001 0.001 0.001
e04 - e03 0.065 0.117 0.018 0.124
e05 - e03 0.022 0.031 0.001 0.001
e05 - e04 0.999 0.996 0.908 0.250
e06 - e00 1.000 0.162 0.014 0.002
e07 - e00 0.312 0.420 1.000 0.999
e08 - e00 0.922 0.342 0.834 0.437
e07 - e06 0.312 0.003 0.014 0.003
e08 - e06 0.922 0.002 0.001 0.001
e08 - e07 0.688 1.000 0.834 0.352
e09 - e00 0.824 0.960 1.000 0.858
e10 - e00 0.994 0.062 0.001 0.001
e11 - e00 0.999 0.729 0.006 0.001
e12 - e00 0.899 0.993 0.934 0.858
e13 - e00 0.994 0.729 0.006 0.001
e14 - e00 0.507 0.993 1.000 1.000
e10 - e09 0.994 0.003 0.001 0.001
e11 - e09 0.980 0.168 0.002 0.001
e12 - e09 1.000 1.000 0.988 1.000
e13 - e09 0.994 0.168 0.002 0.001
e14 - e09 0.999 1.000 1.000 0.920
e11 - e10 1.000 0.808 0.968 0.920
e12 - e10 0.999 0.008 0.001 0.001
e13 - e10 1.000 0.809 0.968 0.920
e14 - e10 0.899 0.008 0.001 0.001
e12 - e11 0.994 0.291 0.001 0.001
e13 - e11 1.000 1.000 1.000 1.000
e14 - e11 0.824 0.291 0.002 0.001
e13 - e12 0.999 0.291 0.001 0.001
e14 - e12 0.994 1.000 0.988 0.920
e14 - e13 0.899 0.291 0.002 0.001

comparison 1/10 3/10 6/10 10/10
e15 - e00 0.680 1.000 0.991 1.000
e16 - e00 0.943 1.000 1.000 1.000
e17 - e00 0.331 0.998 0.973 1.000
e18 - e00 0.996 0.625 0.999 0.998
e16 - e15 0.980 1.000 0.999 1.000
e17 - e15 0.980 0.998 1.000 0.998
e18 - e15 0.880 0.625 1.000 1.000
e17 - e16 0.790 0.990 0.991 1.000
e18 - e16 0.996 0.524 1.000 0.998
e18 - e17 0.559 0.810 0.999 0.987
e19 - e00 0.825 0.570 0.862 0.903
e20 - e00 0.437 0.899 0.966 0.997
e21 - e00 0.825 0.303 0.072 0.044
e22 - e00 1.000 0.063 0.007 0.027
e20 - e19 0.969 0.976 0.998 0.985
e21 - e19 1.000 0.008 0.005 0.003
e22 - e19 0.825 0.001 0.001 0.002
e21 - e20 0.969 0.043 0.012 0.016
e22 - e20 0.437 0.005 0.001 0.010
e22 - e21 0.825 0.946 0.924 1.000
e23 - e00 0.998 0.695 0.136 0.570
e24 - e00 0.003 0.511 0.962 0.988
e25 - e00 0.543 0.265 0.193 0.278
e26 - e00 0.998 0.910 0.016 0.018
e24 - e23 0.001 0.038 0.025 0.278
e25 - e23 0.337 0.011 0.001 0.007
e26 - e23 0.961 0.203 0.001 0.001
e25 - e24 0.182 0.993 0.556 0.570
e26 - e24 0.008 0.952 0.093 0.068
e26 - e25 0.756 0.779 0.851 0.774
e27 - e00 0.167 0.998 1.000 0.980
e28 - e00 0.076 0.320 0.985 0.878
e29 - e00 0.997 0.875 0.731 0.943
e30 - e00 0.636 0.178 0.302 0.676
e28 - e27 0.997 0.507 0.955 0.555
e29 - e27 0.318 0.969 0.622 0.676
e30 - e27 0.908 0.320 0.220 0.327
e29 - e28 0.167 0.875 0.955 1.000
e30 - e28 0.743 0.998 0.622 0.996
e30 - e29 0.836 0.709 0.955 0.980
e31 - e00 0.019 0.001 0.000 0.000
e32 - e00 0.905 0.937 0.014 0.001
e32 - e31 0.056 0.001 0.000 0.000

Table A.8: The p-values resulting from the pairwise comparison of the amount of minima found
by the experiments on nug30, at the 4 timesteps.
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A DETAILED EXPERIMENTAL DATA

experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e01 100.100 0.121 100.067 0.111 100.067 0.111 100.061 0.104
e02 100.131 0.164 100.036 0.086 100.036 0.086 100.036 0.086
e03 100.101 0.119 100.037 0.065 100.013 0.035 100.004 0.021
e04 100.278 0.213 100.031 0.058 100.000 0.000 100.000 0.000
e05 100.315 0.244 100.023 0.065 100.000 0.000 100.000 0.000
e06 100.261 0.256 100.015 0.055 100.000 0.000 100.000 0.000
e07 100.228 0.246 100.004 0.021 100.000 0.000 100.000 0.000
e08 100.337 0.225 100.059 0.095 100.000 0.000 100.000 0.000
e09 100.156 0.125 100.017 0.040 100.006 0.023 100.000 0.000
e10 100.243 0.210 100.074 0.103 100.031 0.072 100.006 0.023
e11 100.235 0.151 100.032 0.071 100.004 0.021 100.000 0.000
e12 100.138 0.140 100.009 0.030 100.000 0.000 100.000 0.000
e13 100.255 0.217 100.025 0.057 100.004 0.021 100.000 0.000
e14 100.227 0.234 100.021 0.071 100.000 0.000 100.000 0.000
e15 100.249 0.272 100.013 0.035 100.000 0.000 100.000 0.000
e16 100.268 0.193 100.006 0.023 100.000 0.000 100.000 0.000
e17 100.184 0.141 100.031 0.069 100.000 0.000 100.000 0.000
e18 100.214 0.163 100.089 0.110 100.042 0.086 100.010 0.047
e19 100.276 0.247 100.015 0.055 100.000 0.000 100.000 0.000
e20 100.152 0.210 100.030 0.069 100.004 0.021 100.000 0.000
e21 100.184 0.155 100.029 0.059 100.002 0.009 100.000 0.000
e22 100.132 0.151 100.023 0.057 100.004 0.021 100.004 0.021
e23 100.178 0.197 100.024 0.060 100.004 0.021 100.004 0.021
e24 100.187 0.154 100.036 0.081 100.000 0.000 100.000 0.000
e25 100.248 0.245 100.038 0.080 100.010 0.047 100.000 0.000
e26 100.300 0.235 100.062 0.098 100.000 0.000 100.000 0.000
e27 100.137 0.152 100.004 0.021 100.000 0.000 100.000 0.000
e28 100.263 0.154 100.013 0.035 100.000 0.000 100.000 0.000
e29 100.286 0.216 100.012 0.031 100.000 0.000 100.000 0.000
e30 100.297 0.247 100.051 0.097 100.000 0.000 100.000 0.000
e31 101.418 0.454 100.934 0.266 100.799 0.300 100.574 0.312
e32 100.369 0.192 100.086 0.098 100.012 0.031 100.000 0.000

Table A.9: Mean and standard deviation of the best solution found by each experiment in their
runs on ste36a. Each pair of columns represents a timestep.
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A DETAILED EXPERIMENTAL DATA

comparison 1/10 3/10 6/10 10/10
e01 - e00 0.340 0.071 0.002 0.003
e02 - e00 0.722 0.798 0.293 0.234
e03 - e00 0.350 0.775 0.973 1.000
e04 - e00 0.722 0.908 1.000 1.000
e05 - e00 0.287 0.987 1.000 1.000
e02 - e01 0.991 0.676 0.441 0.618
e03 - e01 1.000 0.702 0.023 0.008
e04 - e01 0.011 0.515 0.002 0.003
e05 - e01 0.001 0.294 0.002 0.003
e03 - e02 0.992 1.000 0.767 0.375
e04 - e02 0.061 1.000 0.293 0.234
e05 - e02 0.008 0.990 0.293 0.234
e04 - e03 0.011 1.000 0.973 1.000
e05 - e03 0.001 0.987 0.973 1.000
e05 - e04 0.982 1.000 1.000 1.000
e06 - e00 0.834 0.984 0.494 0.494
e07 - e00 0.985 0.994 0.494 0.494
e08 - e00 0.200 0.019 0.494 0.494
e07 - e06 0.962 0.923 1.000 1.000
e08 - e06 0.663 0.050 1.000 1.000
e08 - e07 0.366 0.009 1.000 1.000
e09 - e00 0.970 1.000 0.993 1.000
e10 - e00 0.992 0.007 0.012 0.178
e11 - e00 0.998 0.846 0.999 1.000
e12 - e00 0.876 1.000 1.000 1.000
e13 - e00 0.967 0.976 0.999 1.000
e14 - e00 1.000 0.994 1.000 1.000
e10 - e09 0.658 0.031 0.089 0.178
e11 - e09 0.750 0.982 1.000 1.000
e12 - e09 1.000 1.000 0.993 1.000
e13 - e09 0.516 1.000 1.000 1.000
e14 - e09 0.839 1.000 0.993 1.000
e11 - e10 1.000 0.236 0.053 0.178
e12 - e10 0.441 0.007 0.012 0.178
e13 - e10 1.000 0.089 0.053 0.178
e14 - e10 1.000 0.054 0.013 0.178
e12 - e11 0.538 0.846 0.999 1.000
e13 - e11 1.000 1.000 1.000 1.000
e14 - e11 1.000 0.996 0.999 1.000
e13 - e12 0.313 0.976 0.999 1.000
e14 - e12 0.648 0.994 1.000 1.000
e14 - e13 0.999 1.000 0.999 1.000

comparison 1/10 3/10 6/10 10/10
e15 - e00 0.934 1.000 1.000 1.000
e16 - e00 0.801 1.000 1.000 1.000
e17 - e00 0.996 0.714 1.000 1.000
e18 - e00 1.000 0.001 0.003 0.513
e16 - e15 0.998 0.996 1.000 1.000
e17 - e15 0.776 0.846 1.000 1.000
e18 - e15 0.973 0.001 0.003 0.513
e17 - e16 0.577 0.623 1.000 1.000
e18 - e16 0.881 0.001 0.003 0.513
e18 - e17 0.983 0.015 0.003 0.513
e19 - e00 0.701 0.996 1.000 1.000
e20 - e00 0.881 0.683 0.819 1.000
e21 - e00 0.996 0.716 0.993 1.000
e22 - e00 0.691 0.905 0.819 0.513
e20 - e19 0.178 0.885 0.819 1.000
e21 - e19 0.462 0.905 0.993 1.000
e22 - e19 0.080 0.988 0.819 0.513
e21 - e20 0.980 1.000 0.968 1.000
e22 - e20 0.997 0.993 1.000 0.513
e22 - e21 0.887 0.996 0.968 0.513
e23 - e00 0.993 0.957 0.966 0.513
e24 - e00 0.999 0.707 1.000 1.000
e25 - e00 0.952 0.656 0.604 1.000
e26 - e00 0.500 0.096 1.000 1.000
e24 - e23 1.000 0.979 0.966 0.513
e25 - e23 0.774 0.965 0.935 0.513
e26 - e23 0.253 0.373 0.966 0.513
e25 - e24 0.849 1.000 0.604 1.000
e26 - e24 0.326 0.732 1.000 1.000
e26 - e25 0.904 0.779 0.604 1.000
e27 - e00 0.753 0.999 0.513 0.513
e28 - e00 0.835 0.999 0.513 0.513
e29 - e00 0.599 1.000 0.513 0.513
e30 - e00 0.470 0.040 0.513 0.513
e28 - e27 0.173 0.976 1.000 1.000
e29 - e27 0.069 0.984 1.000 1.000
e30 - e27 0.041 0.018 1.000 1.000
e29 - e28 0.995 1.000 1.000 1.000
e30 - e28 0.974 0.086 1.000 1.000
e30 - e29 1.000 0.074 1.000 1.000
e31 - e00 0.000 0.000 0.000 0.000
e32 - e00 0.155 0.244 0.968 1.000
e32 - e31 0.000 0.000 0.000 0.000

Table A.10: The p-values resulting from the pairwise comparison of the average best solution
obtained by the experiments on ste36a, at the 4 timesteps.
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A DETAILED EXPERIMENTAL DATA

experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e01 1.333 1.404 2.208 1.769 2.250 1.800 2.333 1.926
e02 0.917 1.283 2.833 1.926 2.917 2.041 2.917 2.041
e03 0.792 0.977 2.500 2.000 3.417 2.083 3.833 1.949
e04 0.125 0.448 2.167 1.993 5.375 1.765 6.625 1.715
e05 0.167 0.482 1.625 1.209 4.542 1.956 6.042 1.334
e06 0.333 0.637 2.833 1.711 4.542 1.693 4.750 1.847
e07 0.625 1.013 3.708 2.196 5.417 2.165 5.917 2.165
e08 0.083 0.282 1.583 1.472 4.625 1.637 5.500 1.642
e09 0.292 0.550 3.292 1.989 5.042 2.312 5.667 1.834
e10 0.250 0.532 1.208 1.351 1.792 1.474 3.292 1.829
e11 0.167 0.381 1.458 1.062 3.125 1.424 3.708 1.301
e12 0.458 0.779 3.625 2.018 5.375 2.163 5.667 2.180
e13 0.250 0.532 1.917 1.349 3.083 1.381 4.250 1.452
e14 0.375 0.647 3.750 1.871 5.458 1.978 5.917 1.717
e15 0.292 0.550 2.417 1.316 4.792 2.021 5.625 1.789
e16 0.083 0.282 2.333 1.435 5.250 2.048 5.583 1.954
e17 0.250 0.532 2.792 2.303 4.875 1.918 5.333 1.834
e18 0.250 0.532 1.000 1.063 1.708 1.268 3.000 1.560
e19 0.292 0.550 3.167 2.014 5.250 2.027 5.833 1.949
e20 0.375 0.576 2.500 1.911 5.292 1.922 5.833 1.579
e21 0.500 1.142 2.458 1.933 4.500 2.043 5.458 1.933
e22 0.500 0.722 3.083 2.020 5.125 2.193 6.000 2.106
e23 0.417 0.776 2.417 1.840 4.250 2.152 4.833 2.200
e24 0.333 0.761 2.458 1.933 4.542 1.668 5.375 1.689
e25 0.375 0.770 2.750 2.069 4.875 2.252 5.833 1.857
e26 0.167 0.381 1.167 1.274 4.333 1.949 6.542 1.318
e27 0.458 0.721 3.708 1.853 5.417 1.816 5.625 1.884
e28 0.167 0.816 3.875 2.383 6.333 1.523 6.667 1.274
e29 0.208 0.509 2.917 1.717 5.167 1.736 5.875 1.569
e30 0.167 0.381 1.667 1.404 4.958 1.546 5.708 1.398
e31 0.000 0.000 0.000 0.000 0.000 0.000 0.083 0.282
e32 0.000 0.000 0.458 0.721 1.833 1.239 3.792 1.318

Table A.11: Mean and standard deviation of the amount of minima found by each experiment
in their runs on ste36a. Each pair of columns represents a timestep.

78



A DETAILED EXPERIMENTAL DATA

comparison 1/10 3/10 6/10 10/10
e01 - e00 0.003 0.734 0.001 0.001
e02 - e00 0.208 1.000 0.001 0.001
e03 - e00 0.453 0.964 0.009 0.001
e04 - e00 0.991 0.683 1.000 0.986
e05 - e00 0.998 0.122 0.734 0.997
e02 - e01 0.651 0.824 0.820 0.856
e03 - e01 0.360 0.993 0.263 0.040
e04 - e01 0.001 1.000 0.001 0.001
e05 - e01 0.001 0.862 0.001 0.001
e03 - e02 0.998 0.987 0.940 0.457
e04 - e02 0.050 0.781 0.001 0.001
e05 - e02 0.075 0.174 0.037 0.001
e04 - e03 0.152 0.987 0.006 0.001
e05 - e03 0.208 0.524 0.302 0.001
e05 - e04 1.000 0.896 0.637 0.856
e06 - e00 0.997 0.999 0.462 0.018
e07 - e00 0.343 0.406 0.995 0.885
e08 - e00 0.723 0.049 0.563 0.418
e07 - e06 0.463 0.317 0.324 0.113
e08 - e06 0.594 0.073 0.999 0.466
e08 - e07 0.039 0.001 0.413 0.850
e09 - e00 1.000 0.986 1.000 0.861
e10 - e00 1.000 0.007 0.001 0.001
e11 - e00 0.991 0.038 0.001 0.001
e12 - e00 0.958 0.745 1.000 0.861
e13 - e00 1.000 0.348 0.001 0.001
e14 - e00 0.999 0.574 1.000 0.988
e10 - e09 1.000 0.001 0.001 0.001
e11 - e09 0.991 0.003 0.006 0.002
e12 - e09 0.958 0.993 0.996 1.000
e13 - e09 1.000 0.062 0.004 0.064
e14 - e09 0.999 0.960 0.984 0.999
e11 - e10 0.999 0.999 0.138 0.979
e12 - e10 0.884 0.001 0.001 0.001
e13 - e10 1.000 0.745 0.165 0.445
e14 - e10 0.991 0.001 0.001 0.001
e12 - e11 0.607 0.001 0.001 0.002
e13 - e11 0.999 0.960 1.000 0.925
e14 - e11 0.884 0.001 0.001 0.001
e13 - e12 0.884 0.008 0.001 0.064
e14 - e12 0.999 1.000 1.000 0.999
e14 - e13 0.991 0.003 0.001 0.015

comparison 1/10 3/10 6/10 10/10
e15 - e00 1.000 0.812 0.868 0.663
e16 - e00 0.632 0.710 1.000 0.609
e17 - e00 0.999 0.999 0.928 0.304
e18 - e00 0.999 0.001 0.001 0.001
e16 - e15 0.632 1.000 0.900 1.000
e17 - e15 0.999 0.926 1.000 0.977
e18 - e15 0.999 0.022 0.001 0.001
e17 - e16 0.798 0.856 0.950 0.987
e18 - e16 0.798 0.036 0.001 0.001
e18 - e17 1.000 0.002 0.001 0.001
e19 - e00 1.000 0.991 1.000 0.905
e20 - e00 0.996 0.941 1.000 0.905
e21 - e00 0.875 0.919 0.627 0.503
e22 - e00 0.875 0.999 0.999 0.981
e20 - e19 0.996 0.741 1.000 1.000
e21 - e19 0.875 0.695 0.674 0.952
e22 - e19 0.875 1.000 1.000 0.998
e21 - e20 0.979 1.000 0.627 0.952
e22 - e20 0.979 0.824 0.999 0.998
e22 - e21 1.000 0.784 0.802 0.838
e23 - e00 0.969 0.862 0.339 0.032
e24 - e00 1.000 0.896 0.663 0.351
e25 - e00 0.994 0.998 0.945 0.887
e26 - e00 0.969 0.007 0.425 0.987
e24 - e23 0.994 1.000 0.985 0.811
e25 - e23 1.000 0.966 0.795 0.265
e26 - e23 0.708 0.107 1.000 0.008
e25 - e24 1.000 0.979 0.975 0.887
e26 - e24 0.915 0.088 0.996 0.136
e26 - e25 0.826 0.020 0.867 0.611
e27 - e00 0.890 0.558 0.999 0.549
e28 - e00 0.959 0.362 0.184 0.912
e29 - e00 0.991 1.000 0.999 0.876
e30 - e00 0.959 0.127 0.955 0.671
e28 - e27 0.497 0.998 0.300 0.128
e29 - e27 0.645 0.558 0.985 0.979
e30 - e27 0.497 0.002 0.867 1.000
e29 - e28 1.000 0.362 0.104 0.372
e30 - e28 1.000 0.001 0.034 0.190
e30 - e29 1.000 0.127 0.992 0.996
e31 - e00 0.018 0.001 0.000 0.000
e32 - e00 0.018 0.001 0.001 0.001
e32 - e31 1.000 0.252 0.001 0.000

Table A.12: The p-values resulting from the pairwise comparison of the amount of minima found
by the experiments on ste36a, at the 4 timesteps.
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A DETAILED EXPERIMENTAL DATA

experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e01 101.605 0.206 101.356 0.175 101.242 0.181 101.157 0.174
e02 101.627 0.146 101.293 0.208 101.169 0.197 101.090 0.163
e03 101.706 0.151 101.378 0.179 101.198 0.182 101.108 0.147
e04 101.855 0.245 101.493 0.186 101.283 0.135 101.163 0.149
e05 102.028 0.167 101.629 0.192 101.371 0.164 101.225 0.171
e06 101.614 0.189 101.354 0.133 101.247 0.147 101.171 0.149
e07 101.647 0.235 101.278 0.199 101.183 0.168 101.108 0.175
e08 102.165 0.189 101.744 0.178 101.521 0.132 101.309 0.164
e09 101.998 0.180 101.522 0.168 101.240 0.135 101.062 0.146
e10 101.850 0.212 101.468 0.168 101.264 0.184 101.182 0.164
e11 101.824 0.166 101.508 0.159 101.392 0.126 101.257 0.184
e12 101.862 0.173 101.496 0.162 101.223 0.186 101.094 0.152
e13 101.817 0.247 101.454 0.185 101.251 0.132 101.202 0.142
e14 101.844 0.190 101.460 0.231 101.200 0.138 101.093 0.160
e15 101.824 0.177 101.505 0.182 101.220 0.118 101.155 0.140
e16 101.801 0.168 101.491 0.157 101.254 0.140 101.160 0.128
e17 101.911 0.218 101.597 0.161 101.393 0.101 101.222 0.145
e18 102.313 0.214 101.824 0.255 101.547 0.238 101.441 0.244
e19 101.941 0.196 101.502 0.240 101.254 0.149 101.138 0.146
e20 101.932 0.224 101.571 0.131 101.287 0.115 101.162 0.145
e21 101.806 0.150 101.472 0.169 101.242 0.196 101.164 0.184
e22 101.826 0.179 101.466 0.200 101.242 0.142 101.162 0.113
e23 101.846 0.115 101.574 0.113 101.339 0.137 101.237 0.135
e24 101.843 0.129 101.483 0.153 101.287 0.095 101.154 0.140
e25 101.958 0.187 101.555 0.220 101.283 0.144 101.152 0.115
e26 102.070 0.225 101.733 0.282 101.522 0.237 101.181 0.178
e27 101.697 0.168 101.367 0.174 101.210 0.144 101.139 0.115
e28 101.745 0.205 101.421 0.185 101.210 0.170 101.162 0.152
e29 101.887 0.196 101.493 0.251 101.233 0.150 101.135 0.121
e30 102.050 0.206 101.732 0.196 101.357 0.179 101.153 0.129
e31 102.669 0.167 102.517 0.195 102.380 0.191 102.318 0.169
e32 102.420 0.157 102.105 0.146 101.914 0.171 101.733 0.146

Table A.13: Mean and standard deviation of the best solution found by each experiment in their
runs on tai60a. Each pair of columns represents a timestep.
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A DETAILED EXPERIMENTAL DATA

comparison 1/10 3/10 6/10 10/10
e01 - e00 0.001 0.973 0.774 0.437
e02 - e00 0.004 0.396 1.000 0.999
e03 - e00 0.195 1.000 0.998 0.967
e04 - e00 0.998 0.524 0.271 0.366
e05 - e00 0.006 0.001 0.003 0.017
e02 - e01 0.999 0.861 0.696 0.710
e03 - e01 0.426 0.999 0.956 0.902
e04 - e01 0.001 0.136 0.963 1.000
e05 - e01 0.001 0.001 0.114 0.713
e03 - e02 0.691 0.635 0.992 0.999
e04 - e02 0.001 0.006 0.211 0.636
e05 - e02 0.001 0.001 0.002 0.056
e04 - e03 0.072 0.300 0.545 0.854
e05 - e03 0.001 0.001 0.011 0.141
e05 - e04 0.021 0.137 0.511 0.781
e06 - e00 0.002 0.826 0.398 0.162
e07 - e00 0.011 0.100 0.998 0.856
e08 - e00 0.001 0.001 0.001 0.001
e07 - e06 0.945 0.463 0.507 0.565
e08 - e06 0.001 0.001 0.001 0.025
e08 - e07 0.001 0.001 0.001 0.001
e09 - e00 0.054 0.239 0.778 1.000
e10 - e00 1.000 0.843 0.441 0.202
e11 - e00 1.000 0.382 0.001 0.002
e12 - e00 0.999 0.526 0.940 0.999
e13 - e00 1.000 0.944 0.627 0.072
e14 - e00 1.000 0.907 0.999 0.999
e10 - e09 0.127 0.953 0.999 0.138
e11 - e09 0.038 1.000 0.018 0.001
e12 - e09 0.195 0.999 1.000 0.993
e13 - e09 0.026 0.859 1.000 0.045
e14 - e09 0.095 0.908 0.973 0.994
e11 - e10 1.000 0.990 0.076 0.668
e12 - e10 1.000 0.999 0.971 0.494
e13 - e10 0.997 1.000 1.000 1.000
e14 - e10 1.000 1.000 0.789 0.479
e12 - e11 0.995 1.000 0.005 0.011
e13 - e11 1.000 0.949 0.035 0.901
e14 - e11 1.000 0.973 0.001 0.010
e13 - e12 0.986 0.986 0.996 0.238
e14 - e12 1.000 0.994 0.999 1.000
e14 - e13 1.000 1.000 0.915 0.227

comparison 1/10 3/10 6/10 10/10
e15 - e00 1.000 0.323 0.879 0.427
e16 - e00 0.983 0.473 0.453 0.368
e17 - e00 0.617 0.005 0.001 0.022
e18 - e00 0.001 0.001 0.001 0.001
e16 - e15 0.994 1.000 0.949 1.000
e17 - e15 0.536 0.471 0.004 0.659
e18 - e15 0.001 0.001 0.001 0.001
e17 - e16 0.289 0.321 0.031 0.721
e18 - e16 0.001 0.001 0.001 0.001
e18 - e17 0.001 0.001 0.013 0.001
e19 - e00 0.268 0.340 0.428 0.549
e20 - e00 0.350 0.019 0.116 0.242
e21 - e00 0.991 0.676 0.589 0.224
e22 - e00 1.000 0.742 0.598 0.244
e20 - e19 1.000 0.715 0.955 0.983
e21 - e19 0.104 0.983 1.000 0.978
e22 - e19 0.224 0.966 0.999 0.984
e21 - e20 0.148 0.375 0.871 1.000
e22 - e20 0.298 0.315 0.865 1.000
e22 - e21 0.997 1.000 1.000 1.000
e23 - e00 0.999 0.026 0.008 0.002
e24 - e00 1.000 0.598 0.143 0.308
e25 - e00 0.094 0.063 0.169 0.330
e26 - e00 0.001 0.001 0.001 0.086
e24 - e23 1.000 0.522 0.814 0.323
e25 - e23 0.181 0.998 0.771 0.301
e26 - e23 0.001 0.057 0.002 0.709
e25 - e24 0.160 0.732 1.000 1.000
e26 - e24 0.001 0.001 0.001 0.971
e26 - e25 0.169 0.023 0.001 0.963
e27 - e00 0.122 0.984 0.951 0.438
e28 - e00 0.538 0.996 0.952 0.164
e29 - e00 0.853 0.492 0.750 0.489
e30 - e00 0.002 0.001 0.003 0.245
e28 - e27 0.911 0.890 1.000 0.980
e29 - e27 0.008 0.208 0.990 1.000
e30 - e27 0.001 0.001 0.022 0.997
e29 - e28 0.088 0.735 0.989 0.967
e30 - e28 0.001 0.001 0.022 1.000
e30 - e29 0.034 0.001 0.077 0.993
e31 - e00 0.000 0.000 0.000 0.000
e32 - e00 0.000 0.000 0.000 0.000
e32 - e31 0.001 0.001 0.001 0.000

Table A.14: The p-values resulting from the pairwise comparison of the average best solution
obtained by the experiments on tai60a, at the 4 timesteps.
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A DETAILED EXPERIMENTAL DATA

experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e01 100.056 0.110 100.022 0.077 100.016 0.077 100.016 0.077
e02 100.074 0.108 100.007 0.015 100.001 0.004 100.000 0.000
e03 100.077 0.055 100.010 0.015 100.000 0.001 100.000 0.000
e04 100.168 0.113 100.030 0.030 100.002 0.007 100.000 0.000
e05 100.213 0.136 100.053 0.031 100.009 0.013 100.000 0.001
e06 100.174 0.146 100.033 0.041 100.006 0.012 100.000 0.000
e07 100.182 0.146 100.027 0.026 100.003 0.010 100.001 0.003
e08 100.114 0.070 100.016 0.020 100.003 0.007 100.000 0.000
e09 100.094 0.047 100.007 0.013 100.000 0.000 100.000 0.000
e10 100.308 0.198 100.039 0.026 100.006 0.010 100.000 0.000
e11 100.263 0.179 100.070 0.080 100.021 0.025 100.004 0.011
e12 100.115 0.081 100.025 0.021 100.002 0.006 100.000 0.000
e13 100.214 0.177 100.050 0.071 100.006 0.011 100.000 0.000
e14 100.107 0.080 100.016 0.017 100.000 0.001 100.000 0.000
e15 100.158 0.127 100.025 0.024 100.001 0.003 100.000 0.000
e16 100.200 0.153 100.033 0.027 100.008 0.016 100.000 0.000
e17 100.102 0.051 100.009 0.014 100.000 0.002 100.000 0.000
e18 100.068 0.089 100.004 0.011 100.000 0.000 100.000 0.000
e19 100.096 0.075 100.024 0.021 100.003 0.010 100.000 0.000
e20 100.147 0.116 100.015 0.017 100.001 0.003 100.000 0.000
e21 100.141 0.125 100.018 0.018 100.001 0.002 100.000 0.000
e22 100.119 0.137 100.021 0.024 100.000 0.001 100.000 0.000
e23 100.134 0.131 100.014 0.021 100.001 0.005 100.000 0.000
e24 100.176 0.154 100.018 0.020 100.001 0.002 100.000 0.000
e25 100.152 0.092 100.021 0.020 100.002 0.006 100.000 0.000
e26 100.116 0.064 100.016 0.021 100.004 0.011 100.000 0.000
e27 100.179 0.149 100.017 0.017 100.001 0.005 100.000 0.000
e28 100.156 0.155 100.017 0.026 100.001 0.003 100.000 0.000
e29 100.122 0.063 100.019 0.016 100.002 0.006 100.000 0.000
e30 100.111 0.068 100.020 0.022 100.001 0.003 100.000 0.000
e31 100.236 0.171 100.159 0.069 100.125 0.057 100.110 0.052
e32 100.095 0.052 100.033 0.026 100.005 0.010 100.000 0.000

Table A.15: Mean and standard deviation of the best solution found by each experiment in their
runs on tai60b. Each pair of columns represents a timestep.
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A DETAILED EXPERIMENTAL DATA

comparison 1/10 3/10 6/10 10/10
e01 - e00 0.003 1.000 0.656 0.514
e02 - e00 0.019 0.631 1.000 1.000
e03 - e00 0.026 0.773 1.000 1.000
e04 - e00 1.000 0.996 1.000 1.000
e05 - e00 0.895 0.087 0.976 1.000
e02 - e01 0.994 0.724 0.597 0.514
e03 - e01 0.986 0.849 0.547 0.517
e04 - e01 0.009 0.985 0.698 0.514
e05 - e01 0.001 0.060 0.972 0.532
e03 - e02 1.000 1.000 1.000 1.000
e04 - e02 0.047 0.307 1.000 1.000
e05 - e02 0.001 0.001 0.961 1.000
e04 - e03 0.062 0.442 1.000 1.000
e05 - e03 0.001 0.002 0.944 1.000
e05 - e04 0.735 0.266 0.985 1.000
e06 - e00 1.000 0.653 0.347 0.997
e07 - e00 1.000 0.989 0.983 0.505
e08 - e00 0.294 0.761 0.963 1.000
e07 - e06 0.995 0.836 0.565 0.640
e08 - e06 0.364 0.148 0.638 0.997
e08 - e07 0.245 0.563 1.000 0.504
e09 - e00 0.348 0.831 0.999 1.000
e10 - e00 0.025 0.907 0.866 1.000
e11 - e00 0.347 0.007 0.001 0.007
e12 - e00 0.692 1.000 1.000 1.000
e13 - e00 0.976 0.374 0.902 1.000
e14 - e00 0.567 0.995 1.000 1.000
e10 - e09 0.001 0.164 0.547 1.000
e11 - e09 0.001 0.001 0.001 0.007
e12 - e09 0.999 0.803 0.997 1.000
e13 - e09 0.049 0.015 0.607 1.000
e14 - e09 1.000 0.994 1.000 1.000
e11 - e10 0.924 0.175 0.001 0.008
e12 - e10 0.001 0.925 0.892 1.000
e13 - e10 0.226 0.971 1.000 1.000
e14 - e10 0.001 0.536 0.607 1.000
e12 - e11 0.006 0.008 0.001 0.007
e13 - e11 0.877 0.703 0.001 0.008
e14 - e11 0.003 0.001 0.001 0.007
e13 - e12 0.180 0.407 0.924 1.000
e14 - e12 1.000 0.992 0.999 1.000
e14 - e13 0.118 0.098 0.666 1.000

comparison 1/10 3/10 6/10 10/10
e15 - e00 0.974 1.000 0.998 0.797
e16 - e00 0.968 0.505 0.069 0.797
e17 - e00 0.154 0.090 0.977 1.000
e18 - e00 0.011 0.011 0.937 1.000
e16 - e15 0.720 0.659 0.031 1.000
e17 - e15 0.449 0.050 0.999 0.797
e18 - e15 0.060 0.005 0.991 0.797
e17 - e16 0.033 0.001 0.014 0.797
e18 - e16 0.002 0.001 0.008 0.797
e18 - e17 0.847 0.934 1.000 1.000
e19 - e00 0.120 1.000 0.783 0.513
e20 - e00 0.890 0.557 0.977 1.000
e21 - e00 0.803 0.872 0.944 1.000
e22 - e00 0.417 0.987 0.866 1.000
e20 - e19 0.570 0.521 0.420 0.513
e21 - e19 0.690 0.846 0.325 0.513
e22 - e19 0.962 0.981 0.219 0.513
e21 - e20 1.000 0.982 1.000 1.000
e22 - e20 0.926 0.853 0.996 1.000
e22 - e21 0.971 0.991 1.000 1.000
e23 - e00 0.689 0.462 0.995 0.513
e24 - e00 1.000 0.890 0.994 0.513
e25 - e00 0.939 0.992 0.997 0.513
e26 - e00 0.365 0.666 0.671 0.513
e24 - e23 0.729 0.946 1.000 1.000
e25 - e23 0.984 0.742 0.946 1.000
e26 - e23 0.986 0.998 0.422 1.000
e25 - e24 0.956 0.990 0.940 1.000
e26 - e24 0.403 0.994 0.409 1.000
e26 - e25 0.829 0.898 0.862 1.000
e27 - e00 1.000 0.767 0.988 0.513
e28 - e00 0.969 0.775 0.949 0.513
e29 - e00 0.478 0.910 0.995 0.513
e30 - e00 0.303 0.962 0.920 0.513
e28 - e27 0.965 1.000 1.000 1.000
e29 - e27 0.463 0.998 0.897 1.000
e30 - e27 0.291 0.988 0.998 1.000
e29 - e28 0.855 0.999 0.789 1.000
e30 - e28 0.689 0.989 1.000 1.000
e30 - e29 0.999 1.000 0.732 1.000
e31 - e00 0.267 0.000 0.000 0.000
e32 - e00 0.067 0.746 0.935 1.000
e32 - e31 0.001 0.001 0.000 0.000

Table A.16: The p-values resulting from the pairwise comparison of the average best solution
obtained by the experiments on tai60b, at the 4 timesteps.
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A DETAILED EXPERIMENTAL DATA

experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e01 101.968 0.138 101.624 0.173 101.458 0.140 101.370 0.125
e02 102.027 0.176 101.671 0.131 101.515 0.113 101.410 0.114
e03 102.184 0.174 101.868 0.130 101.606 0.102 101.429 0.118
e04 102.326 0.126 102.050 0.109 101.784 0.145 101.595 0.140
e05 102.326 0.139 102.041 0.172 101.860 0.152 101.697 0.167
e06 101.991 0.164 101.626 0.132 101.422 0.134 101.366 0.106
e07 102.104 0.166 101.733 0.164 101.485 0.129 101.393 0.112
e08 102.425 0.130 102.271 0.123 102.056 0.143 101.823 0.109
e09 102.441 0.107 102.223 0.135 101.984 0.140 101.796 0.120
e10 102.244 0.091 101.957 0.149 101.679 0.122 101.488 0.146
e11 102.229 0.155 101.949 0.162 101.664 0.136 101.460 0.094
e12 102.320 0.105 102.008 0.151 101.726 0.137 101.555 0.143
e13 102.227 0.132 101.940 0.152 101.637 0.127 101.470 0.108
e14 102.313 0.134 101.970 0.171 101.765 0.128 101.605 0.118
e15 102.209 0.149 101.949 0.110 101.700 0.135 101.527 0.092
e16 102.204 0.196 101.914 0.154 101.681 0.102 101.522 0.117
e17 102.339 0.185 102.015 0.163 101.766 0.158 101.572 0.159
e18 102.475 0.180 102.190 0.193 102.021 0.158 101.868 0.177
e19 102.323 0.164 102.071 0.175 101.784 0.228 101.533 0.180
e20 102.291 0.129 102.068 0.151 101.761 0.170 101.559 0.127
e21 102.205 0.127 101.920 0.183 101.625 0.153 101.486 0.126
e22 102.198 0.115 101.914 0.131 101.630 0.124 101.496 0.111
e23 102.153 0.135 101.866 0.120 101.645 0.103 101.485 0.100
e24 102.265 0.174 101.915 0.170 101.644 0.145 101.479 0.140
e25 102.333 0.130 102.112 0.153 101.841 0.209 101.603 0.172
e26 102.410 0.108 102.182 0.135 102.041 0.110 101.950 0.123
e27 102.186 0.096 101.789 0.187 101.602 0.146 101.483 0.133
e28 102.141 0.199 101.881 0.147 101.660 0.151 101.525 0.142
e29 102.326 0.205 101.960 0.129 101.766 0.127 101.544 0.161
e30 102.362 0.164 102.144 0.102 101.924 0.186 101.836 0.187
e31 102.701 0.158 102.562 0.131 102.506 0.115 102.468 0.114
e32 102.549 0.127 102.436 0.110 102.321 0.132 102.231 0.101

Table A.17: Mean and standard deviation of the best solution found by each experiment in their
runs on tai80a. Each pair of columns represents a timestep.
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A DETAILED EXPERIMENTAL DATA

comparison 1/10 3/10 6/10 10/10
e01 - e00 0.001 0.001 0.002 0.032
e02 - e00 0.001 0.001 0.126 0.325
e03 - e00 0.177 0.998 1.000 0.627
e04 - e00 0.961 0.006 0.001 0.093
e05 - e00 0.963 0.011 0.001 0.001
e02 - e01 0.771 0.907 0.717 0.913
e03 - e01 0.001 0.001 0.005 0.667
e04 - e01 0.001 0.001 0.001 0.001
e05 - e01 0.001 0.001 0.000 0.001
e03 - e02 0.008 0.001 0.220 0.997
e04 - e02 0.001 0.001 0.001 0.001
e05 - e02 0.001 0.001 0.001 0.001
e04 - e03 0.021 0.002 0.001 0.001
e05 - e03 0.022 0.003 0.001 0.001
e05 - e04 1.000 1.000 0.404 0.108
e06 - e00 0.001 0.001 0.001 0.003
e07 - e00 0.001 0.006 0.013 0.031
e08 - e00 0.018 0.001 0.000 0.001
e07 - e06 0.066 0.096 0.448 0.859
e08 - e06 0.001 0.000 0.000 0.000
e08 - e07 0.001 0.000 0.000 0.000
e09 - e00 0.002 0.001 0.001 0.001
e10 - e00 0.896 0.753 0.693 1.000
e11 - e00 0.670 0.844 0.891 0.981
e12 - e00 0.983 0.143 0.095 0.577
e13 - e00 0.639 0.923 0.999 0.998
e14 - e00 0.996 0.569 0.005 0.034
e10 - e09 0.001 0.001 0.001 0.001
e11 - e09 0.001 0.001 0.001 0.001
e12 - e09 0.024 0.001 0.001 0.001
e13 - e09 0.001 0.001 0.001 0.001
e14 - e09 0.014 0.001 0.001 0.001
e11 - e10 1.000 1.000 1.000 0.988
e12 - e10 0.408 0.933 0.908 0.528
e13 - e10 1.000 1.000 0.939 0.999
e14 - e10 0.527 1.000 0.335 0.027
e12 - e11 0.188 0.873 0.721 0.134
e13 - e11 1.000 1.000 0.994 1.000
e14 - e11 0.270 1.000 0.159 0.002
e13 - e12 0.170 0.773 0.292 0.241
e14 - e12 1.000 0.985 0.958 0.819
e14 - e13 0.247 0.995 0.028 0.006

comparison 1/10 3/10 6/10 10/10
e15 - e00 0.510 0.708 0.290 0.900
e16 - e00 0.452 0.982 0.544 0.935
e17 - e00 0.860 0.071 0.006 0.277
e18 - e00 0.004 0.001 0.001 0.001
e16 - e15 1.000 0.951 0.993 1.000
e17 - e15 0.082 0.652 0.524 0.807
e18 - e15 0.001 0.001 0.001 0.001
e17 - e16 0.066 0.233 0.276 0.748
e18 - e16 0.001 0.001 0.001 0.001
e18 - e17 0.062 0.005 0.001 0.001
e19 - e00 0.919 0.003 0.010 0.835
e20 - e00 1.000 0.004 0.035 0.441
e21 - e00 0.241 0.965 1.000 1.000
e22 - e00 0.173 0.985 0.999 1.000
e20 - e19 0.934 1.000 0.991 0.966
e21 - e19 0.035 0.023 0.016 0.773
e22 - e19 0.022 0.016 0.022 0.898
e21 - e20 0.220 0.026 0.056 0.371
e22 - e20 0.156 0.018 0.074 0.534
e22 - e21 1.000 1.000 1.000 0.999
e23 - e00 0.013 0.989 0.965 1.000
e24 - e00 0.979 0.978 0.971 0.999
e25 - e00 0.832 0.001 0.001 0.046
e26 - e00 0.035 0.001 0.001 0.000
e24 - e23 0.062 0.823 1.000 1.000
e25 - e23 0.001 0.001 0.001 0.032
e26 - e23 0.001 0.001 0.001 0.000
e25 - e24 0.485 0.001 0.001 0.022
e26 - e24 0.007 0.001 0.001 0.000
e26 - e25 0.343 0.547 0.001 0.001
e27 - e00 0.232 0.194 0.998 1.000
e28 - e00 0.026 1.000 0.872 0.938
e29 - e00 0.944 0.502 0.012 0.751
e30 - e00 0.571 0.001 0.001 0.001
e28 - e27 0.888 0.256 0.709 0.884
e29 - e27 0.042 0.003 0.005 0.655
e30 - e27 0.005 0.001 0.001 0.001
e29 - e28 0.003 0.412 0.141 0.994
e30 - e28 0.001 0.001 0.001 0.001
e30 - e29 0.947 0.001 0.007 0.001
e31 - e00 0.001 0.000 0.000 0.000
e32 - e00 0.001 0.000 0.000 0.000
e32 - e31 0.003 0.017 0.001 0.001

Table A.18: The p-values resulting from the pairwise comparison of the average best solution
obtained by the experiments on tai80a, at the 4 timesteps.
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A DETAILED EXPERIMENTAL DATA

experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e01 100.501 0.373 100.360 0.364 100.325 0.346 100.232 0.279
e02 100.531 0.327 100.155 0.229 100.114 0.191 100.098 0.174
e03 100.560 0.430 100.149 0.145 100.052 0.063 100.032 0.058
e04 100.717 0.357 100.187 0.171 100.071 0.039 100.038 0.020
e05 100.789 0.343 100.340 0.210 100.115 0.062 100.060 0.026
e06 101.025 0.359 100.389 0.297 100.166 0.178 100.088 0.108
e07 100.942 0.506 100.254 0.218 100.113 0.142 100.055 0.071
e08 100.546 0.366 100.111 0.060 100.054 0.024 100.027 0.018
e09 100.417 0.361 100.131 0.152 100.066 0.133 100.015 0.015
e10 100.919 0.489 100.269 0.225 100.116 0.163 100.043 0.040
e11 100.918 0.410 100.465 0.308 100.283 0.290 100.143 0.215
e12 100.580 0.360 100.132 0.108 100.049 0.026 100.026 0.018
e13 101.027 0.358 100.278 0.232 100.128 0.137 100.068 0.072
e14 100.615 0.377 100.142 0.143 100.055 0.031 100.030 0.021
e15 100.860 0.482 100.242 0.236 100.094 0.058 100.054 0.028
e16 100.907 0.465 100.269 0.202 100.074 0.068 100.046 0.059
e17 100.472 0.320 100.111 0.092 100.041 0.024 100.019 0.015
e18 100.260 0.246 100.050 0.045 100.010 0.011 100.006 0.010
e19 100.788 0.455 100.222 0.191 100.091 0.072 100.049 0.062
e20 100.764 0.352 100.213 0.219 100.068 0.035 100.030 0.021
e21 100.815 0.421 100.242 0.274 100.071 0.051 100.032 0.022
e22 100.839 0.411 100.371 0.317 100.167 0.211 100.076 0.134
e23 100.833 0.415 100.223 0.198 100.100 0.109 100.063 0.101
e24 100.750 0.421 100.226 0.223 100.092 0.128 100.045 0.060
e25 100.634 0.380 100.235 0.215 100.074 0.064 100.036 0.023
e26 100.508 0.382 100.165 0.168 100.057 0.023 100.029 0.017
e27 100.927 0.507 100.283 0.267 100.169 0.182 100.072 0.090
e28 100.765 0.367 100.189 0.168 100.078 0.083 100.033 0.023
e29 100.723 0.459 100.175 0.140 100.066 0.034 100.036 0.020
e30 100.752 0.439 100.162 0.129 100.069 0.078 100.037 0.023
e31 100.885 0.400 100.627 0.279 100.453 0.191 100.375 0.142
e32 100.334 0.182 100.116 0.040 100.078 0.027 100.057 0.014

Table A.19: Mean and standard deviation of the best solution found by each experiment in their
runs on tai80b. Each pair of columns represents a timestep.
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A DETAILED EXPERIMENTAL DATA

comparison 1/10 3/10 6/10 10/10
e01 - e00 0.018 0.236 0.001 0.001
e02 - e00 0.041 0.938 0.996 0.901
e03 - e00 0.082 0.911 0.975 0.992
e04 - e00 0.817 0.998 1.000 0.998
e05 - e00 0.993 0.398 0.995 1.000
e02 - e01 1.000 0.024 0.001 0.016
e03 - e01 0.994 0.019 0.001 0.001
e04 - e01 0.342 0.089 0.001 0.001
e05 - e01 0.086 1.000 0.001 0.001
e03 - e02 1.000 1.000 0.802 0.574
e04 - e02 0.517 0.997 0.951 0.669
e05 - e02 0.164 0.057 1.000 0.932
e04 - e03 0.690 0.993 0.999 1.000
e05 - e03 0.278 0.045 0.792 0.984
e05 - e04 0.985 0.178 0.946 0.995
e06 - e00 0.456 0.021 0.138 0.466
e07 - e00 0.864 0.912 0.910 1.000
e08 - e00 0.057 0.284 0.763 0.542
e07 - e06 0.898 0.107 0.436 0.453
e08 - e06 0.001 0.001 0.012 0.032
e08 - e07 0.007 0.075 0.360 0.555
e09 - e00 0.004 0.762 0.999 0.727
e10 - e00 0.997 0.967 0.996 1.000
e11 - e00 0.997 0.001 0.001 0.022
e12 - e00 0.221 0.777 0.967 0.916
e13 - e00 0.711 0.931 0.972 1.000
e14 - e00 0.385 0.867 0.986 0.957
e10 - e09 0.001 0.204 0.904 0.939
e11 - e09 0.001 0.001 0.001 0.001
e12 - e09 0.784 1.000 1.000 1.000
e13 - e09 0.001 0.146 0.780 0.423
e14 - e09 0.590 1.000 1.000 0.999
e11 - e10 1.000 0.016 0.004 0.005
e12 - e10 0.051 0.216 0.704 0.995
e13 - e10 0.965 1.000 1.000 0.967
e14 - e10 0.115 0.303 0.791 0.999
e12 - e11 0.053 0.001 0.001 0.001
e13 - e11 0.963 0.025 0.008 0.079
e14 - e11 0.117 0.001 0.001 0.001
e13 - e12 0.003 0.155 0.527 0.682
e14 - e12 1.000 1.000 1.000 1.000
e14 - e13 0.008 0.226 0.624 0.775

comparison 1/10 3/10 6/10 10/10
e15 - e00 1.000 0.980 0.999 1.000
e16 - e00 0.987 0.784 0.892 0.949
e17 - e00 0.010 0.177 0.038 0.043
e18 - e00 0.001 0.006 0.001 0.003
e16 - e15 0.994 0.979 0.756 0.972
e17 - e15 0.008 0.047 0.017 0.058
e18 - e15 0.001 0.001 0.001 0.004
e17 - e16 0.002 0.009 0.288 0.229
e18 - e16 0.001 0.001 0.003 0.023
e18 - e17 0.334 0.693 0.370 0.868
e19 - e00 0.985 1.000 1.000 0.998
e20 - e00 0.950 1.000 0.964 0.745
e21 - e00 0.999 0.996 0.980 0.815
e22 - e00 1.000 0.168 0.115 0.882
e20 - e19 1.000 1.000 0.953 0.906
e21 - e19 1.000 0.999 0.972 0.945
e22 - e19 0.993 0.204 0.129 0.708
e21 - e20 0.993 0.994 1.000 1.000
e22 - e20 0.969 0.153 0.021 0.208
e22 - e21 1.000 0.338 0.027 0.263
e23 - e00 1.000 1.000 0.994 0.996
e24 - e00 0.909 1.000 1.000 0.974
e25 - e00 0.338 0.998 0.980 0.816
e26 - e00 0.030 0.898 0.738 0.586
e24 - e23 0.952 1.000 0.999 0.860
e25 - e23 0.421 1.000 0.857 0.589
e26 - e23 0.044 0.843 0.470 0.352
e25 - e24 0.852 1.000 0.956 0.990
e26 - e24 0.225 0.819 0.656 0.912
e26 - e25 0.807 0.731 0.966 0.996
e27 - e00 0.973 0.695 0.071 0.844
e28 - e00 0.962 0.986 0.996 0.594
e29 - e00 0.852 0.935 0.945 0.736
e30 - e00 0.938 0.841 0.968 0.748
e28 - e27 0.698 0.374 0.027 0.103
e29 - e27 0.487 0.236 0.009 0.169
e30 - e27 0.635 0.144 0.012 0.177
e29 - e28 0.998 0.999 0.996 1.000
e30 - e28 1.000 0.986 0.999 1.000
e30 - e29 1.000 1.000 1.000 1.000
e31 - e00 0.933 0.001 0.000 0.000
e32 - e00 0.001 0.161 0.950 1.000
e32 - e31 0.001 0.001 0.000 0.000

Table A.20: The p-values resulting from the pairwise comparison of the average best solution
obtained by the experiments on tai80b, at the 4 timesteps.
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A DETAILED EXPERIMENTAL DATA

experiment µ 1/10 σ 1/10 µ 3/10 σ 3/10 µ 6/10 σ 6/10 µ 10/10 σ 10/10
e00 100.445 0.069 100.285 0.057 100.221 0.043 100.183 0.034
e01 100.289 0.059 100.171 0.041 100.130 0.040 100.113 0.036
e02 100.355 0.082 100.229 0.053 100.152 0.036 100.124 0.028
e03 100.371 0.053 100.245 0.050 100.181 0.034 100.129 0.030
e04 100.460 0.090 100.300 0.055 100.232 0.034 100.192 0.032
e05 100.528 0.076 100.347 0.056 100.261 0.036 100.205 0.045
e06 100.464 0.068 100.272 0.058 100.201 0.063 100.164 0.052
e07 100.448 0.078 100.250 0.047 100.197 0.039 100.162 0.039
e08 100.449 0.066 100.296 0.044 100.247 0.036 100.210 0.037
e09 100.421 0.055 100.291 0.045 100.216 0.035 100.152 0.041
e10 100.454 0.068 100.297 0.048 100.211 0.044 100.186 0.035
e11 100.468 0.076 100.311 0.046 100.238 0.040 100.195 0.033
e12 100.411 0.086 100.265 0.050 100.220 0.037 100.175 0.025
e13 100.465 0.070 100.309 0.058 100.219 0.042 100.183 0.040
e14 100.417 0.069 100.278 0.060 100.201 0.037 100.172 0.032
e15 100.450 0.072 100.270 0.059 100.213 0.053 100.180 0.043
e16 100.459 0.070 100.303 0.046 100.239 0.042 100.188 0.035
e17 100.405 0.074 100.265 0.051 100.202 0.039 100.162 0.040
e18 100.456 0.053 100.313 0.048 100.239 0.053 100.182 0.041
e19 100.446 0.083 100.286 0.045 100.228 0.028 100.179 0.027
e20 100.427 0.079 100.277 0.051 100.220 0.032 100.190 0.034
e21 100.452 0.080 100.279 0.048 100.213 0.039 100.165 0.038
e22 100.431 0.068 100.270 0.040 100.191 0.035 100.162 0.025
e23 100.435 0.077 100.280 0.046 100.206 0.036 100.155 0.035
e24 100.441 0.075 100.262 0.056 100.208 0.041 100.180 0.034
e25 100.440 0.066 100.267 0.041 100.217 0.030 100.188 0.038
e26 100.454 0.068 100.311 0.052 100.233 0.034 100.189 0.042
e27 100.408 0.057 100.259 0.056 100.190 0.037 100.148 0.031
e28 100.416 0.089 100.268 0.042 100.200 0.042 100.160 0.042
e29 100.468 0.046 100.300 0.042 100.239 0.037 100.198 0.028
e30 100.436 0.087 100.307 0.042 100.235 0.043 100.196 0.033
e31 100.666 0.071 100.588 0.070 100.573 0.066 100.534 0.072
e32 100.456 0.067 100.356 0.050 100.285 0.045 100.248 0.037

Table A.21: Mean and standard deviation of the best solution found by each experiment in their
runs on sko100a. Each pair of columns represents a timestep.
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A DETAILED EXPERIMENTAL DATA

comparison 1/10 3/10 6/10 10/10
e01 - e00 0.001 0.001 0.001 0.001
e02 - e00 0.001 0.005 0.001 0.001
e03 - e00 0.009 0.097 0.005 0.001
e04 - e00 0.979 0.920 0.884 0.959
e05 - e00 0.002 0.001 0.004 0.273
e02 - e01 0.027 0.003 0.306 0.857
e03 - e01 0.003 0.001 0.001 0.571
e04 - e01 0.001 0.001 0.001 0.001
e05 - e01 0.000 0.000 0.000 0.001
e03 - e02 0.970 0.890 0.082 0.997
e04 - e02 0.001 0.001 0.001 0.001
e05 - e02 0.001 0.001 0.000 0.001
e04 - e03 0.001 0.006 0.001 0.001
e05 - e03 0.001 0.001 0.001 0.001
e05 - e04 0.021 0.027 0.099 0.786
e06 - e00 0.799 0.839 0.469 0.347
e07 - e00 1.000 0.100 0.291 0.264
e08 - e00 0.997 0.900 0.205 0.127
e07 - e06 0.859 0.446 0.989 0.999
e08 - e06 0.896 0.426 0.005 0.002
e08 - e07 1.000 0.018 0.002 0.001
e09 - e00 0.906 1.000 1.000 0.028
e10 - e00 1.000 0.986 0.983 1.000
e11 - e00 0.922 0.597 0.731 0.905
e12 - e00 0.631 0.831 1.000 0.982
e13 - e00 0.959 0.696 1.000 1.000
e14 - e00 0.831 1.000 0.629 0.924
e10 - e09 0.676 1.000 1.000 0.014
e11 - e09 0.258 0.819 0.496 0.001
e12 - e09 0.999 0.614 1.000 0.225
e13 - e09 0.335 0.888 1.000 0.031
e14 - e09 1.000 0.984 0.840 0.372
e11 - e10 0.994 0.967 0.229 0.968
e12 - e10 0.344 0.336 0.988 0.935
e13 - e10 0.999 0.987 0.994 1.000
e14 - e10 0.559 0.875 0.979 0.826
e12 - e11 0.082 0.040 0.700 0.418
e13 - e11 1.000 1.000 0.641 0.893
e14 - e11 0.181 0.313 0.027 0.260
e13 - e12 0.118 0.060 1.000 0.985
e14 - e12 1.000 0.974 0.663 1.000
e14 - e13 0.243 0.401 0.720 0.934

comparison 1/10 3/10 6/10 10/10
e15 - e00 0.999 0.865 0.979 0.997
e16 - e00 0.954 0.750 0.652 0.996
e17 - e00 0.257 0.692 0.644 0.294
e18 - e00 0.982 0.341 0.636 1.000
e16 - e15 0.992 0.194 0.302 0.953
e17 - e15 0.155 0.998 0.930 0.492
e18 - e15 0.999 0.041 0.290 1.000
e17 - e16 0.054 0.097 0.054 0.144
e18 - e16 1.000 0.964 1.000 0.987
e18 - e17 0.080 0.017 0.051 0.368
e19 - e00 1.000 1.000 0.942 0.991
e20 - e00 0.926 0.981 1.000 0.943
e21 - e00 0.999 0.992 0.936 0.260
e22 - e00 0.970 0.823 0.042 0.150
e20 - e19 0.917 0.966 0.935 0.742
e21 - e19 0.999 0.983 0.539 0.523
e22 - e19 0.964 0.776 0.005 0.353
e21 - e20 0.802 1.000 0.943 0.049
e22 - e20 1.000 0.987 0.045 0.023
e22 - e21 0.885 0.973 0.245 0.999
e23 - e00 0.989 0.997 0.672 0.059
e24 - e00 1.000 0.517 0.771 0.997
e25 - e00 1.000 0.722 0.999 0.991
e26 - e00 0.992 0.391 0.795 0.980
e24 - e23 0.998 0.742 1.000 0.133
e25 - e23 0.999 0.900 0.838 0.017
e26 - e23 0.884 0.212 0.109 0.012
e25 - e24 1.000 0.998 0.908 0.927
e26 - e24 0.973 0.010 0.156 0.892
e26 - e25 0.963 0.025 0.618 1.000
e27 - e00 0.378 0.342 0.079 0.004
e28 - e00 0.621 0.736 0.399 0.122
e29 - e00 0.804 0.807 0.493 0.586
e30 - e00 0.992 0.516 0.736 0.681
e28 - e27 0.996 0.969 0.922 0.712
e29 - e27 0.035 0.030 0.001 0.001
e30 - e27 0.657 0.008 0.002 0.001
e29 - e28 0.094 0.144 0.009 0.002
e30 - e28 0.869 0.046 0.028 0.003
e30 - e29 0.533 0.990 0.996 1.000
e31 - e00 0.000 0.000 0.000 0.000
e32 - e00 0.849 0.001 0.001 0.001
e32 - e31 0.000 0.000 0.000 0.000

Table A.22: The p-values resulting from the pairwise comparison of the average best solution
obtained by the experiments on sko100a, at the 4 timesteps.
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