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Abstract 
It is extremely difficult to teach robots the skills that humans take for granted. 

Understanding the robot's surrounding, localizing and safely navigating through an 

environment are examples of tasks that are very hard for robots. 

The current research on navigation is mainly focused on mapping a fixed and empty 

environment using depth sensory data and localizing the robot location based on robot 

odometry, sensory input and the map. The most common navigation method that is 

widely used is to map the environment using a 2D laser range finder and localize the 

robot by using iterative closest point algorithms. There are also studies on localization 

and mapping the environment using 3D laser data and the scale invariant feature 

transform to correct the robot odometry. However, these methods heavily rely on the 

precision of the depth sensors, have poor performance in outdoor environments, and 

require a fixed environment during training. 

In the presented method, the robot brain organizes a set of visual keywords that 

describe the robot’s perception of the environment similar to that of human topological 

navigation. The results of its experiences are processed by a model that finds cause and 

effect relationships between executed actions and changes in the environment. This 

allows the robot to learn from the consequences of its actions in the real world. The 

robot is resistant to non-major changes in the environment during training and testing 

phases. More specific, the robot takes several pictures from the environment with an 

RGB camera during the training phase. The raw images will be processed using the 

histogram of oriented gradients method (HoG) to extract salient edges in major 

directions. By using clustering on HoG results, similar scenes will be clustered based on 

visual appearances. Furthermore, a world model is made from the observations and 

actions taken during training. Finally, during testing, the robot selects actions that 

maximize the probability to reach its goal using model-based reinforcement learning 

algorithms. We have tested the method on the pioneer 2 robot in the AI department's 

robotic lab to navigate to a user selected goal from its initial position. 
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Chapter 1 

1. Introduction 
It is extremely difficult to teach robots the skills that humans take for granted, for 

instance, the ability to orient the robot with respect to the objects in the room, and to 

memorize and reconstruct a three dimensional scene. In addition, navigating and 

localizing, responding to sounds, interpreting speech, and grasping objects of varying 

sizes, textures and fragility count as difficult robotic tasks. Even something as simple as 

telling the difference between an open door and a window is a complex task for a robot. 

Another obstacle for the development of robots is the high cost of hardware such as 

sensors that enable a robot to determine the distance to an object as well as motors 

that allow the robot to explore the world and manipulate an object with both strength 

and delicacy. But prices are dropping rapidly. In South Korea the Ministry of Information 

and Communication hopes to put a robot in every home there by 2013. The Japanese 

Robot Association predicts that by 2025, the personal robot industry will be worth more 

than $50 billion a year worldwide, compared with about $5 billion today (Gates, 2007). 

A focus to develop service and assistive robot technology with high relevance for future 

personal applications is necessary. The focus lies in domestic and urban service robotics 

that require Self organizing brains, Human-Robot-Interaction and Cooperation, 

Navigation and Simultaneous Localization and Mapping (SLAM) in dynamic 

environments (Thrun, 1998) (Weng, et al., 2001) (Leonard & Durrant-Whyte, 1991), 

Computer Vision and Object Recognition under natural light conditions, and Object 
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Manipulation. The first expectation from a complete autonomous robot is the ability to 

navigate autonomously in a changing environment while maintaining safety. Therefore,   

in this thesis, we focus on robot navigation which is one of the most important parts of a 

robotic framework.  

1.1. Background 
In this section we present a brief overview of navigation in robotics, histogram of 

oriented gradients, and reinforcement learning methods. 

1.1.1. Navigation 

For any mobile device, the ability to navigate in the environment is the most important 

required capability. Staying in healthy operational mode comes first, but if any tasks are 

to be performed that relate to specific places in the environment, navigation is a must 

and is one of the most important tasks in daily domestic activities. In the following, we 

will present an overview of navigation systems and try to identify the basic blocks of a 

robot navigation system, types of navigation systems, and have a closer look at its 

related components. 

Navigation is the ability to understand the current position and to be able to plan a path 

towards some goal location. In order to navigate in an environment such as a house, the 

robot or any another mobile device requires somehow a map of the environment and 

the ability to interpret that representation. 

Navigation can be defined as the combination of the three fundamental competences: 

1- Self-Localization 

2- Path Planning 

3- Map-Building and Map-Interpretation 

Map in this context denotes any mapping of the world onto an internal representation. 

Robot localization denotes the robot's ability to understand its own position and 

orientation within the frame of reference. Please note that this localization does not 

necessary mean the exact metric position on the environment map.  Information that 

connects the location or builds a partial map is also sufficient. This is the case in 

humans, we do not map our environment precisely, but we connect our received 

visualization of the environment and extract a partial map out of it.   

Path planning is effectively an extension of localization. The robot should be able to 

know how to reach a goal state from its current position. Map building can be in the 
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shape of a metric map or any notation describing locations in the robot frame of 

reference. 

The most popular type of localization method, largely used in domestic service robots, is 

probabilistic models of the robot's motion control where the robot has probabilistic 

motion models and uncertain perception models. Integrating these two probability 

distributions using, for example, Kalman or particle filters, gives us the real location of 

the robot (Smith & Cheeseman, 1986). By using 2D and 3D planar mapping as an 

extension, the performance of such systems increase significantly. In (Thrun, 2002), the 

author reviews methods to solve 2D SLAM, such as maximum likelihood estimation 

(Frese & Hirzinger, 2001), (Folkesson & Christensen, 2003), expectation maximization 

(Thrun, Fox, & W., 1997), and extended Kalman filter (Dissanayake, Newman, Clark, 

Durrant Whute, & Csorba, 2001). One main problem with these approaches is that the 

observations and maps are built manually from earlier information concerning the 

environment's geometry, appearance and topology.  For example, in some studies, 

(Simmons & Koenig., 1995) and (Tomatis, Nourbakhsh, & Siegwart, 2003), the 

environment geometry is standardized. 

Another localization method which is very popular in the middle-size soccer RoboCup 

league is based on the global appearance from omni directional-camera images 

(Zivkovic, Bakker, & Krose, 2005) (Booij, Terwijn, & Zivkovic, 2007) (Goedeme, Nutting, 

Tuytelaars, & van Gool, 2007) (Valgren, Duckett, & Lilienthal, 2007). Images are 

distinguished by change in regions or points of interest, and the localization is done by 

calculation of similarity in the distances between points of interest. These approaches 

are based on image-appearances to segment the environment, taking advantage of 

recognizing spots from distant locations with full view images. However, similar to 

probabilistic models, a standard environment, and manual training is required. 

All these methods only try to solve the localization problem in navigation schemes. Even 

after localization, navigating to different goal locations is a complex task. Methods are 

required to deal with localization uncertainties and external forces such as new 

obstacles and changes in the environment. In our proposed method we tackle 

localization and navigation at the same time by connecting the topological information 

with reinforcement learning.  

1.1.2. Histogram of Oriented Gradients 

A popular method in machine vision is the use of histograms of oriented gradients which 

is based on histograms of image gradient orientations in a dense grid. The idea is that if 



10 
 

we divide a picture into a dense grid and calculate the normalized histograms of 

oriented gradients, we will have a special code. Since the code is based on edge 

magnitudes and orientations of these sub images, it is rarely possible that two different 

pictures give the same edge information and code, even without precise knowledge of 

the corresponding gradient or edge positions. This is implemented by dividing the image 

window into small regions (cells).  For each cell, we calculate a local 1-D histogram of 

gradient directions or edge orientations over the pixels of the cell for the eight major 

directions. The combined histogram entries form the representation of each image. For 

better robustness against illumination, shadowing, etc., it is also useful to contrast-

normalize the local responses before using them. We will refer to the normalized 

descriptor blocks as Histogram of Oriented Gradient (HOG) descriptors (Dalal & Triggs, 

2005).  

1.1.3. Reinforcement Learning 

Machine learning is programming to optimize a performance criterion using example 

data or previous observations. Learning a model with partially defined parameters is the 

execution of a computer program to optimize the parameters of the model using the 

training data or previous observations. Machine learning uses the theory of statistics in 

building mathematical models, because the main task is making inference from a 

sample. In applications such as navigation, grabbing, and exploration, the output of the 

system is a sequence of actions. In such a case, a single action is not important; what is 

important is the policy that defines the sequence of correct actions to reach the goal 

given the current state of the environment. Such learning methods are called 

reinforcement learning algorithms (Alpaydin, 2004) (Kaelbling, Littman, & Moore, 1996). 

In reinforcement learning, the learner is a decision-making agent that takes actions in an 

environment and receives reward (or penalty) for its actions in trying to solve a 

problem. After a set of trial-and error runs, it should learn the best policy, which is the 

sequence of actions that maximizes the total reward (Sutton & Barto, 1998). One of the 

most famous methods of completing tasks in robotics is the use of behaviour based 

models (Arkin, 1998). Each behaviour requires a sequential set of actions to be 

completed and reinforcement learning is the best candidate for such systems. 

1.1.4. Automatic Navigation Using Reinforcement Learning 

The robot brain organizes a vocabulary of keywords that describe the robot’s perception 

of the environment. The results of its experiences are processed by a model that finds 

cause and effect relationships between executed actions and changes in the 

environment. This allows the robot to learn from the consequences of its actions in the 

real world. More specific, the robot starts with a training procedure. During training, the 
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robot takes pictures with an RGB camera. The raw images will be used by the histogram 

of oriented gradients (HoG) method to extract salient edges in major directions. Each 

picture will be divided into several rectangular cells. Each cell’s gradient picture will be 

calculated and the histogram of the major oriented gradients will be calculated. 

Therefore, each picture will consist of several histograms which will be used later to 

approximately localize the robot. Next, a clustering algorithm such as K-means, or 

neural gas, will be used to cluster pictures that are similar to each other. Then during 

navigation, a goal picture is selected, using reinforcement learning the best set of 

actions will be selected to take the robot to its goal. However, there is uncertainty in the 

system. Therefore, each action can bring the robot to several states. After each action is 

done, the new picture will be tested against the clustered pictured and the new state 

will be selected based on the clustering results. The new decision will be made by the 

reinforcement learning algorithm. After obtaining the optimized action sequences for 

each behaviour, the internal model can be updated based on the outcome of the 

behaviour. Finally, to test whether the world model of the robot is correct, a set of 

navigation benchmarks will be designed. 

1.2. Thesis Goals and Contribution 
The objective of this research is to implement a navigation system that can 

automatically gather topological information about the environment, process the data, 

and navigate using reinforcement learning methods to a goal location. The research 

questions that we aim to answer are: 

1. Can we develop a navigation system based on topological information extracted 

by histograms of oriented gradients? 

2. Can we develop this navigation system without user interference in any of the 

phases? 

3. Can we develop a continuous learning method that automatically adapts to 

changes in the environment? 

1.3. Thesis Structure 
The thesis structure can be seen in Figure 1.  In chapter ‎2, we discuss the literature 

study that we have done on reinforcement learning (RL) methods. Dynamic 

Programming, model-free RL, model-based RL, and partially observable Markov decision 

processes are the main sections of this chapter. We continue the thesis by presenting 

the state of the art image processing methods in chapter ‎0‎3. We start the chapter by 

introducing histogram equalization, noise reduction and image smoothing methods. 

Next, we discuss our edge detection method and extraction of histogram of oriented 
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gradients. Chapter ‎3 is concluded by a presentation of clustering methods used in this 

research. Chapter ‎4 mainly is about our robotic software and hardware framework. We 

also discuss the approach we used for implementation of the behaviors required to 

complete the navigation task. In chapter ‎5 we discuss the results we got from the 

experiments. Finally, in chapter ‎6, we conclude the thesis by summarizing the results 

and suggesting improvements for future work.   
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Chapter 2 

2. Reinforcement Learning 
The human navigation system is very complex. From the moment that an infant starts 

crawling, a combination of sensory data is fed to the brain, an action is generated by the 

brain, and the child will receive feedback. Most of the time, perhaps, the child just 

randomly moves around to explore the environment. Other times the child moves 

toward a certain goal, like a toy, his/her1 parents etc. Over time he learns the 

characteristics of the environment and can easily navigate through the environment. 

When he grows up, this task is much faster and he immediately remembers visual 

scenes and connects them together in order to correctly navigate to the destination. 

This complex navigation not only uses a visual memory, but also semantics, 

understanding of physical laws, and common sense (Maguire, Burgess, & O'Keefe, 1999) 

(Smith & Cheeseman, 1986). Therefore, implementing a similar approach for robots is 

challenging. Having a robot with pressure sensors everywhere, like our skin, ability to 

learn, and a complex brain is almost impossible. Therefore, we decided to imitate the 

human navigation using only the part which is about visual memory. We humans usually 

memorize the important part of the scene, special patterns, textures, objects, edges etc. 

and then connect these scenes together and will make a visual route to the goal. During 

                                                           
1
 From now on, to avoid repetition of his/her, by using his or her we mean both male and female 

subjects. 



14 
 

this process, a rough visual map is also built which helps us understand the 

environment. 

The best method to imitate this learning behavior in humans is reinforcement learning. 

In reinforcement learning, the learner is a decision-making agent that takes actions in an 

environment and receives reward (or penalty) for its actions in trying to solve a 

problem. After a set of trial-and error runs, it should learn the best policy, which 

generates the sequence of actions that maximizes the total reward. 

 

2.1. Dynamic Programming 
Dynamic programming (DP) is a very powerful algorithmic paradigm in which a problem 

is solved by identifying a collection of sub problems and tackling them one by one. It 

starts by solving the smallest problems, next, it uses the answers to small problems to 

help figure out larger ones, until the whole problem is solved. The method can be 

applied both in discrete time and continuous time settings. The value of dynamic 

programming is that it is a “practical” (i.e. constructive) method for finding solutions to 

extremely complicated problems. However, continuous time problems involve technical 

difficulties. If a continuous time problem does not admit a closed-form solution, the 

most commonly used numerical approach is to solve an approximate discrete time 

version of the problem. Since under very general conditions one can find a sequence of 

discrete time DP problems whose solutions converge to the continuous time solution, 

the time interval between successive decisions tends to zero (Kushner, 1990). Dynamic 

programming can also be used to compute optimal policies for Markov decision 

processes. Three well known methods are used to compute the policy and value 

function, namely, Policy iteration, Value iteration, and linear programming. Policy 

iteration evaluates a policy by computing the value of each state by solving a set of 

linear equations. After that, the policy is changed so the actions with highest Q-values 

are chosen. In value iteration, for all the states, all the actions are evaluated, and actions 

with the highest Q-values will assign the value of each state. This procedure is continued 

until the values stop changing. Linear programming maximizes the value function 

subject to a set of constraints. We will show the policy and value iteration algorithms, 

but will first discuss the Markov Decision Process framework. 

2.1.1. Markov Decision Processes 

A Markov decision process (MDP) is a controllable dynamic system whose state 

transitions depend on the previous state and the action selected by a policy. The policy 
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is based on a reward function that assigns a scalar reward to each state-action pair. The 

objective is to find a policy that maps states to actions in a way that maximizes the 

expected long-term cumulative reward, given an arbitrary initial state. 

A Markov decision process consists of: 

· A discrete time counter             

· A finite set of states    *             +. A state at time   is denoted as    

· A finite set of actions    *             +   

· A transition probability function  . We use  (      )   (        |   

      ) to define the transition probability to the next state      given    and 

  . 

· A reward function   that assigns a scalar number to a state/action pair 

 (   )    . We assume that the reward function is deterministic. 

· A discount factor      ,   - is used to discount rewards received later. 

2.1.2. Policy Iteration 

Policy iteration calculates an optimal policy and always terminates in finite time 

(Littman, 1996). This is because we have a limited number of actions and states; 

therefore the maximum number of policies is |A||S|. Policy iteration makes an update at 

each iteration of the algorithm. The algorithm is divided in two parts: policy evaluation 

and policy improvement. The algorithm starts with an arbitrary policy and value 

function. The symbol   is the policy and  ( ) is the action selected by the policy in state 

 . The policy is evaluated by iterating through all the states and solving the following set 

of linear equations: 

   ( )   (   ( ))    ∑  (   ( )   )  ( 
 )

     

 

The value of the policy in each state is equal to the reward received by the action done 

using the policy plus the transition probabilities to the next states multiplied by the 

discounted value of the policy in the next states. After evaluation, a policy improvement 

step is done. The new policy in each state will be the action which had the highest value 

in the respective state.  

 ( )         ( (   )    ∑  (       )  ( 
 )

     

) 
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The policy evaluation and improvement steps should be repeated for a specific number 

of times until the policy is not changed anymore. The algorithm stops with the optimal 

value function V* and the optimal policy π*.  

The complexity of the algorithm is only for the evaluation part, a simple comparison is 

done for the improvement step. Each iteration of this algorithm takes O(|A||S|2  + |S|3 ) 

time that is more than that of value iteration, but policy iteration needs fewer iterations 

than value iteration. 

2.1.3. Value Iteration 

The value iteration algorithm in contrast to policy iteration, does not fully evaluate a 

policy before the update steps. The method starts with an arbitrary policy and value 

function. For each state, all the Q-values of the possible actions are calculated, 

 (   )   (   )    ∑  (       ) (  )

     

 

Then the new value function will be calculated by, 

 ( )       ( (   )) 

This is continued until V(s) converges. We say that the values converged if the maximum 

value difference between two iterations is less than a certain threshold,   

        | 
(   )( )    ( )( ) |     

where “I” is the iteration counter. Because we only care for the actions with maximum 

value, it is possible that the policy converges before the values converge to their optimal 

values. The complexity of the method is,  (| | | |), for each iteration. However, there 

is often a small number      | | of next possible states, so complexity decreases to 

 ( | || |). 

 

Value iteration repeatedly performs a one-step look ahead, and this is the big difference 

between value iteration and policy iteration. In contrast to policy iteration, however, 

value iteration is not guaranteed to find the optimal policy in a finite number of 

iterations (Littman, 1996).   
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2.2. Model-Free Reinforcement Learning 
Reinforcement learning can be counted as an automatic learning method. There exists 

an environment which requires to be explored, and knowledge is gained by the 

outcomes of the agent’s actions (Sutton & Barto, 1998). In reinforcement learning 

problems, the agent receives input data from the environment. Based on this data, the 

agent selects an action and receives an internal reward based on the quality of the 

actions. The goal of the agent is to select the actions in each state which lead to the 

largest future cumulative rewards which are discounted by a certain factor. In order to 

solve this problem, different action sequences are executed and the system learns how 

much long term reward the agent receives on average by selecting a particular action in 

a particular state. These estimated values are stored in a Q-function which is used by 

the policy of the reinforcement learning method to select an action. There are two types 

of reinforcement learning, direct or model-free and indirect or model-based. In model-

free reinforcement learning, exploring the unknown environment and learning to 

choose the correct action sequence is done simultaneously. On the other hand, in 

model-based RL, first an estimation of the surrounding environment, world, is required 

and then a dynamic programming approach is used to compute the Q-function. We will 

first describe the most important RL methods: Temporal difference learning (Sutton, 

1988) and Q-learning (Watkins, 1989). 

2.2.1. Temporal Difference Learning 

As described before, a model is defined by the reward received and probability 

distributions of the next state and the respective actions. When these are known, we 

can use dynamic programming to find the optimal policy. However, we rarely have an a-

priori model with perfect knowledge of the surrounding environment. Therefore,   

exploration of the environment is necessary. Consequently, in the case of navigation, 

significant changes to the environment such as full redecoration will not happen. 

However, changing a location of a single chair or table is allowed.  As we will see shortly, 

when we explore and get to see the value of the next state and reward, the 

reinforcement learning algorithm uses this information to update the value of the 

current state. These algorithms are called temporal difference algorithms, because they 

take into account the difference between the current estimate of the value of a state (or 

a state-action pair) and the discounted value of the next state and the reward received. 
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2.2.2. Q-Learning 

 One of the simplest reinforcement learning algorithms is Q-learning. (Watkins, 1989) 

(Watkins & Dayan, 1992). In Q-learning, the agent learns the optimal policy by 

repeatedly executing the actions with the highest estimated future reward intake, or 

performing an explorative action. An example explorative policy to choose actions is an 

 -greedy method in which with a fixed probability   the action with highest Q-value is 

selected and a random action is selected otherwise. The algorithm is shown in Figure 2. 

The reward   is the value given for action a taken in state  .  The step size    defines the 

learning rate. At each time step the algorithm uses one step look ahead to update the 

currently selected state/action pair. Q-learning updates all the state/action pairs in the 

solution path a single time, spreading the final goal reward one step back in the chain. 

For this reason, it takes a long time till the Q-value changes drop and the system reaches 

a stable state. Although slow, it is proved that Q-learning will converge to the optimal 

policy if all the state/action pairs are traversed infinitely often while using an annealing 

scheme for the learning rate (Watkins & Dayan, 1992).  This method is called off-policy 

because the value of the best next action is used without using the policy that can 

choose an explorative action. 

2.3. Model-based Reinforcement Learning 
It is possible to learn a model of the environment by experience. Combining models with 

reinforcement learning has a wide range of possible advantages.  If the agent learns a 

model and then computes the respective Q-functions, then the learning speed can be 

significantly improved. Models help improving the exploration behavior. If an agent, in 

our case a robot navigating in a room, uses a model, it can simulate possible scenarios 

resulting from a specific action. For example, the robot can plan how to roughly reach 

the kitchen before executing the movement. 

Initialize all   (   ) arbitrarily 
For all episodes 
    Initialize   
    Repeat 
        Choose   using policy derived from Q, e.g.,  -greedy 
        Take action  , observe   and    
        Update  (   )  

            (   )    (   )     (            (     )     (   )) 

               
    Until s is terminal state 

Figure 2 Q-learning, which is an off-policy temporal difference algorithm 
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In this section we describe how models can be learned by monitoring the agent in the 

environment and how they can be used to compute a policy.       

2.3.1. Extracting a Model 

Given a set of experiences, we have to make a model and compute the parameters for 

it. The Maximum Likelihood function is a proper method to find which model and 

parameters reproduce the experimental data best. The likelihood function gives the 

probability  (   | ) in which   is the model,   the parameters of the model, and   the 

experimental data. Following the Bayes’ rule we have: 

  (   | )   
  ( |   )   ( | ) ( ) 

 ( )
 

 ( ) acts as a normalizing constant and shows the probability of generating the data. 

Assuming the model is correct, we can understand how good the guessed parameters 

are. In our problem, we do not know which model is correct. One way of extracting the 

necessary parameters from a set of experiences is to count the frequency of the 

occurrence of experimental data, which are quadruples of the form (             ) 

received during exploration of the environment. For this, the agent uses the variables 

below: 

   
   Number of transitions from state   to state   after executing action   

  
   Number of times the agent has executed action   in state   

  
   Sum of the rewards received by the agent by executing action   in state    

The maximum likelihood model (MLM) contains maximum likelihood estimates which 

maximize the likelihood function. We use matrices to store transition probabilities, and 

rewards. The estimation of these matrices is done by computing the average 

probabilities over possible transitions and the average reward. 

 ̂(     )    
   

 

  
  

 ̂(   )    
  

 

  
  

In order to reduce the time, we let the robot to randomly move around, or we manually 

drive it to experience different states. After sufficient information is gathered, the 
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Figure 3 Value iteration based on a Model 

system will traverse through all the stored data and updates the respective matrices. If 

observations are without noise, which is almost impossible in our case, we have a 

deterministic reward and transition function and the estimated reward for a particular 

transition from state  , by action  , to state    is known and fixed after a single 

experience. However, in our case, to estimate the transition probabilities we need to 

have multiple examples of the transition in the experimental data, since there are 

multiple results because of the different stochastic outcomes of each state/action pair. 

Otherwise, the decisions made later will be based on insufficient data and this can lead 

to reduced performance or failure.  

Bias. Since the extracted information is directly sampled from the underlying probability 

distribution and we use the maximum likelihood model with statistical transition 

probabilities and reward matrices, the estimator is unbiased.  

Variance. The variance of transition probabilities  ̂(      ) after n occurrences of the 

state/action pair (      ) is: 

   ( ̂(      )|  )

  ∑(
 

 
   (      ))

 

.
 

 
/ (   (      ))

   
( (      ))

 
 

   

  
 (      )(   (      ))

 
 

As can be seen, the variance goes to 0 as the number of experiences of each specific 

state/action pair goes to infinity. However, for usual problems, there is no need to 

accurately extract the probabilities by running a lot of experiments. It is possible to use 

the policy and exploration to focus on some parts of the state space. Since the policy is 

derived from the model directly; we need to learn from a large number of new 

experiences in order to avoid performance reduction because of the variance. 

Therefore, model-based learning is in fact a stochastic approximation algorithm. 

Initialize  ( ) to arbitrary values 

Repeat 

    For all     

        For all     

             (   )     ̂(   )     ∑  ̂(     )  ( )     

         ( )         (   ) 

Until  ( ) converges 
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2.3.2. Value Iteration based on a Model 

 The value iteration method requires an expected reward and transition probabilities 

per state/action pair. Therefore, it is intrinsically based on a model itself. From the 

experiments we deduce the transition probability matrix  ̂(      ). The expected 

reward for each state/action pair is initially zero. Only the actions that connect a state to 

the final goal state will have a reward larger than 0. After a certain number of iterations, 

the values of each state will be stabilized. The algorithm seen in Figure 3 is based on the 

value iteration algorithm described in section ‎2.1.3. 

 

2.3.3. Prioritized Sweeping  

In the value iteration model-based approach we use the probabilistic graph to 

propagate state-value updates to other state-values. However, since the state space is 

fairly large in the case of navigation, the convergence of values may take a lot of time 

and slows down the learning process. When there are high probability transitions to 

distant states, a small change in their values will cause a chain of changes in other 

states. This change destabilizes the whole system and a lot of iterations will be required 

for convergence. Therefore, in order to efficiently distribute the state-values, some 

management of update steps should be performed so that only the most useful updates 

are propagated through all the states. 

Prioritized sweeping was found by (Moore & Atkeson, 1993) which is an efficient 

management method that decides which updates have to be performed. This method 

uses a heuristic estimate of the size of the Q-values’ update and assigns priorities for 

state updates based on that. The algorithm stores a backtracking model, which connects 

states to previous state/action pairs. After a number of state value updates, the 

predecessors of the state are inserted in a priority queue. Then the Q-values of the 

states with the highest priority in the priority queue are updated. For the experiments, 

we will use a priority queue for which an insert/delete/update operation takes  (    ) 

with   the number of states in the priority queue.   
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 Moore and Atkeson’s prioritized sweeping uses a set of predecessor lists,      ( ), 

which contains all predecessor state/action pairs (   ) of a state  . The priority of state   

is stored in another list called  ( ). When the value of state   is updated, the transition 

from (   ) to   contributes to the update of  (   ). The priority of a predecessor state   

is the maximum value of these kinds of contributions. The algorithm can be seen in 

Figure 4. 

The parameter      denotes the maximal number of updates which is allowed to be 

performed per update sweep to keep the speed high. The parameter   controls the 

update accuracy. On each loop, the current state/action pair will be put on the top of 

the queue, and then it will remove the top state from the queue and update its Q-value. 

Next, we store the amount of update in a temporary value   and assign zero to the 

priority of the current state. Finally, we traverse all the predecessors   of the state  , and 

if the transition probability of that state/action pair to the current state multiplied by   

is bigger than the priority of state   and   threshold, then we assign it as the new 

priority of that state and promote it in the priority list (Wiering, 1999). 

Promote the most recent state to the top of the priority queue 

While        AND the priority queue is not empty 

    Remove the top state   from the priority queue  

        For all     

             (   )    ∑  ̂(     ) . ̂(   )    ( )/     

          ( )         (   ) 

           | ( )    ( )| 

         ( )     

         ( )    ( ) 

        For all (   )       ( ) 

                ̂(     )  

            If      ( ) 

                 ( )     

  If       

      Promote   to new priority  ( ) 

               

Figure 4 Moore and Atkeson's prioritized sweeping algorithm 
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2.4. Partially Observable States 
In certain applications, such as navigation, the agent does not know the state exactly, 

but it has access to information via sensors. The observation helps the agent to estimate 

the state. In this thesis, the example is navigation in an unknown environment. The 

robot has a RGB camera. The image processing part of the software calculates important 

edge information, and feeds it to the agent. This information does not tell the robot its 

exact state, but gives some indication as to its likely state. Using the information about 

the edges in different parts of the image, the robot may only know that it is located 

somewhere in the living room near the door. The setting is like a Markov decision 

process, except that after taking a specific action   , for example moving forward for 

one meter, the new state      is not known because of the robot movement and 

perception uncertainties. For example, it is possible that a robot sees an obstacle and 

moves to a different direction, or because of the robot’s imperfect odometry, it does 

not move exactly one meter. However, we have an observation      which is a 

stochastic function of    and   . This is a partially observable Markov decision process or 

POMDP. If,        for all t, then the POMDP is reduced to an MDP. From the 

observation, we could deduce the real state (or rather a probability distribution for the 

states) and then take actions based on this. If the agent believes that it is in state    

with probability 0.4 and in state    with probability 0.6, then the value of any action is 

0.4 times the value of the action in     plus 0.6 times the value of the action in   . One 

difference between POMDPs and MDPs is that the Markov property does not hold for 

the observations in a POMDP, which means the next state observation does not only 

depend on the current action and observation. When there is limited observation, or 

the observations are faulty because of the information received, two states may appear 

equal but are actually different from each other. If these two states require different 

actions, this can lead to a loss of performance, as measured by the cumulative reward. 

Therefore, it is essential that the agent has a failure recovery in case of such situations. 

The agent should somehow keep track of the past trajectory and compress it into a 

current unique state estimate. The past observations can also be taken into account by 

taking a part of the past using a window of observations as input to the policy or using a 

recurrent neural network to maintain the state without forgetting past observations. In 

this thesis we take into account the history of observations. The agent may also take an 

action to gather information and reduce uncertainty, for example, the robot can go to a 

search mode and moves randomly until it sees a familiar scene or landmark, or stop to 

ask for directions. The agent chooses between actions based on the amount of 

information they provide, the amount of reward they produce, and how they change 

the state of the environment. 
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One formal method to approach POMDPs is that the agent keeps an internal belief state 

   that is the guess of the agent about its current state based on the information 

received via sensors. The agent has a state estimator that updates the belief state 

     based on the last action   , current observation     , and its previous belief state 

  . There is a policy π that generates the next action      based on this belief state, in 

contrast to the real state in a completely observable environment. The belief state is a 

probability distribution over states of the environment given the initial belief state 

(before we did any actions) and the past observation-action history of the agent 

(without leaving out any information that could improve agent's performance) and the 

selected action. This approach relies on a model of the environment after which POMDP 

solutions can be used. Estimating such a model can be done with hidden Markov 

models, but these do not scale up well and need a lot of training examples. Therefore, 

we propose using past observations in a history window to disambiguate the current 

observation when necessary. 
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Chapter 3 

3. Image Processing and Clustering 
One of the most essential parts of robotics is vision and image processing. The same 

applies to humans, we are unable to easily follow our daily activities without our eyes 

and vision system. Most of the activities either require direct vision data for processing 

or vision data for feedback. Grabbing objects, navigation and path planning, any kind of 

recognition requires visual information. It is possible to survive without vision system, as 

shown by visually impaired people, but it reduces the ability of the person significantly, 

and there is no good replacement of such system in robotics. In chapter 2, we presented 

our method to solve a partially observable Markov decision process. In this chapter, we 

start by describing image processing preliminaries and continue by presenting our novel 

method to distinguish states from one another by using a set of image processing 

methods. Since our model-based reinforcement learning method requires a set of 

discrete states, we will end with clustering method to discretize the perceptual space. 

3.1. Histogram Equalization 
Histograms can be used for numerous spatial domain processing techniques. However, 

the histogram of one specific image can change, if we change the contrast of the image. 

For instance, the components of the histogram of a particular dark image are 

concentrated on the low side of the intensity scale, and if we lighten the same image, 

the components of the histogram will be biased toward the light side of the scale. In the 
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case of navigation, it is possible that data gathering is done in different times of the day. 

This means that the contrast of each image can be affected by the position of sun, or 

shades made by different lamps and objects.  Therefore, before we use an image for our 

computational purposes, we need to use a method to lessen the sensitivity of 

histograms to changes of image contrast. This can be achieved by histogram 

equalization. 

The histogram of a digital image with intensity levels of range [0,   ] is defined as a 

discrete function  (  )      , where    is the  th intensity value, and    is the number 

of pixels having intensity value   . Using the following formula we calculate the new 

intensity values for the histogram equalized image. 

   
(   )

  
∑  

 

   

  

for               

where    is the total number of pixels,    is the number of pixels with intensity value 

   , and   is the total number of possible intensity levels in the image. At this point,    

may contain fractions because they were generated by summing probability values. 

Therefore, we round    to the nearest integer. Finally, the intensity value of pixels of 

which their original intensity level is not included in    anymore, will be changed to the 

closest higher intensity value available in   .  

 Figure 5 shows the histograms of one image before and after equalization. The original 

image mostly shows low intensity values, but the equalized image includes a larger 

contrast range2. 

3.2.  Spatial Filtering   
After histogram equalization, a set of operations is required to be done on the image, 

such as smoothing, edge detection, etc. These operations require certain filters to be 

applied on the image using spatial filtering methods.  

Two important concepts in linear spatial filtering are correlation and convolution. 

Simply, correlation is the process of moving a desired filter mask over an image and 

computing the sum of the products at each location. The mechanics of convolution are 

similar to those of correlation, except for the fact that in convolution the mask should 

                                                           
2
 picture source:  http://www.cs.utah.edu/~jfishbau/improc/project2/ 
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be rotated by 180 degrees in the beginning. In the following sections we explain two 

dimensional correlation and convolution, as we used in our work.  

 

Figure 5  Histograms of a crowd, before and after equalization.  

3.2.1. Correlation and Convolution 

Having an image, and a filter of size    , the first thing we need to do is to pad the 

image with a minimum of     rows of zeros at the top and bottom, and     

columns of zeros on the left and right. The reason for this is that the center of the mask 

should traverse all of the picture pixels. When the center of the mask is on the border, 

some part of the mask will be outside of the image; therefore we need padding to avoid 

ambiguities. Then, we begin to slide the mask over the image to calculate either 

correlation or convolution by computing the sum of the products of filter weights and 

pixel values at each pixel of the image. 

To compute the correlation of image  (   ) with filter  (   ) of size    , which is 

denoted by  (   )   (   ),  we use the following equation: 

 (   )   (   )   ∑ ∑  (   ) (       )

 

    

 

    

 

where  
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(   )

 
  and   

(   )

 
 

If   has been padded appropriately, then we can apply this formula on all the pixels of  . 

In a similar manner, to compute the convolution of image  (   ) with filter  (   ) of 

size    , which is denoted by  (   )  (   ), we use the following equation: 

 (   )  (   )   ∑ ∑  (   ) (       )

 

    

 

    

 

As we already mentioned, we need to rotate the filter by 180, before we start to slide it 

over the image. In convolution expression, this is applied by inserting minus signs on the 

 . Shifting   instead of   is done for notational simplicity, and the result is the same as 

if we have rotated the filter. 

Based on the fact that using correlation or convolution to perform spatial filtering is a 

matter of preference, and each of them could be used to perform the intended 

operation, we have decided to use convolution in our work.         

3.3. Noise Reduction 
Image noise is a random (not present in the real object imaged) fluctuation of 

illumination or color information in images, and is usually an aspect of electronic noise. 

Noise in our case is usually produced by the sensor and circuitry of the digital camera. 

The digital camera noises can be divided as follows: 

· Amplifier Noise: In colour cameras, more amplification is used in the blue 

colour channel than in the green or red channel. Therefore the blue channel 

data can be noisier than the other ones. 

· Shot Noise: The dominant noise in the lighter parts of an image from an image 

sensor is typically caused by statistical quantum fluctuations. This noise is 

identified as photon shot noise. Shot noise has a root-mean-square value 

related to the square root of the image intensity, and the noises at different 

pixels are independent of one another. Shot noise follows a Poisson distribution, 

which is usually not very different from Gaussian. 

· Moving Noise: This noise is caused when the speed of sensing the image is less 

than the speed of the camera. This happens when the picture is taken during 

camera movement. This can be counted as an external distortion more than  

camera noise. 



29 
 

These types of noises will reduce image processing performance significantly. We 

provide an example (Gonzalez & Woods, 2008) to see how these types of noise can be 

destructive in edge detection. 

Figure 6 shows a close-up of four different ramp edges transiting from a black region to 

white region. The first image segment, located at the top of the figure, is free of noise. 

But the rest of the ramp edges are corrupted with additive Gaussian noise with zero 

mean and standard deviations of 0.1, 1.0, and 10.0 intensity levels. The graph below 

each image is a horizontal intensity profile passing through the center of the image, and 

the second and third columns indicate first and second-derivatives, respectively. As we 

go from the top to the bottom in the first column of Figure 6 the standard deviation is 

increased, and therefore, the Gaussian noise is increased. It is clear that, when the 

Gaussian noise is increased the first-derivatives become increasingly different from the 

noise free case. The second-derivatives are even more sensitive to the noise, and as the 

noise increases it gets more difficult to associate the second-derivatives to their ramp 

edges.  

This example is a good illustration of sensitivity of derivatives to noise. Therefore, we 

need to use a method to first smooth the image and reduce noise, and then perform 

edge detection. Since, most of the images are affected by shot noise, we use a Gaussian 

smoothing filter to decrease the effect of the noise. 

3.3.1. Gaussian Smoothing Filter 

We use a Gaussian smoothing (also known as Gaussian blur) filter for blurring images 

and reducing noise and details. Mathematically, applying a Gaussian smoothing filter on 

an image is the same as convolving the image with a Gaussian function. The equation of 

a Gaussian function in one dimension is: 

 ( )   
 

√    
 
 

  

    

 In our work we use this filter in two dimensions, and it is the product of two Gaussians, 

one in each dimension: 

 (   )  
 

    
 
 
     

    

where    is the distance from the origin in the horizontal axis,   is the distance from the 

origin in the vertical axis, and   is the standard deviation of the Gaussian distribution.   
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Figure 6 Four different ramp edges transiting from a black region to white region. The 2

nd
 to 4

th
 ramp 

edges are corrupted with additive Gaussian noise with zero mean and standard deviations of 0.1, 1.0, 
and 10.0 intensity levels. The second column is the first derivative. The third column is the second 
derivative. From the Image courtesy of Rafael C. Gonzalez. 
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A Gaussian smoothing filter is a low-pass filter, which attenuates high frequency signals. 

We use  (   ) to compute a     filter,  (   ), and in future computations we will 

use this filter to speed up the computations. 

3.4. Edge Detection 
Now that the image is smoothed and its histogram is equalized, we can apply the main 

image processing methods. As mentioned in chapter 2, our goal is to implement a 

navigation system that is close in spirit to the human navigation method. It is found that 

humans mostly use topological information for their navigation with addition of 

semantics and texture detection (Maguire, Burgess, & O'Keefe, 1999). Our system, 

however, will only use topological information. To achieve this goal, we plan to extract 

topological information by extracting edge intensities and orientations. The idea is to 

split the image in several sub images, and find the salient edges and their orientation. 

One of the most famous edge detectors is the Canny edge detector which we will 

describe in the following subsection. 

3.4.1. The Canny Edge Detector 

Although the Canny edge detector (Canny, 1986) is one of the most complex methods of 

edge detection, it is a very robust approach and its performance is superior compared to 

other edge detector methods (e.g., the Marr-Hildreth edge detector). This approach is 

based on three main objectives: 

· Low error rate. This means that all the edges of an object should be found, and 

the detected edges should be as close as possible to the real edges of the 

object. 

· Good localization of edge points. The located edges should be as close as 

possible to the real edges of the object. This means that the distance between a 

point specified as an edge and the center of the real edge should be minimum. 

· Single edge point response. Only one point should be returned by the detector 

for each real edge point. This means that the number of local maxima around 

the real edge should be minimum. 
The Canny edge detector is a multi-step detection procedure. The steps are as follows: 

1. Smoothing the input image by using a Gaussian filter in order to reduce the 

noise and undesirable details and textures: 

  (   )   (   )   (   ) 
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Where  (   ) is a     filter introduced in section 3.3.1.  

 

2. Compute gradients in both x and y directions using any of the gradient 

operators (i.e., Roberts, Sobel, Prewitt, etc.) to get the magnitude and angle 

image. For our work we decided to use the Sobel gradient operator (Gonzalez & 

Woods, 2008): 

 (   )   √  
     

  

and 

 

 (   )        [
  

  
] 

Where the Sobel masks for x and y gradients are:  

        [
   
   
   

]     and            [
   
   
   

] 

The gradient images are calculated by convolving the Sobel masks on   (   ). 

 

  (   )            (   ) 

  (   )            (   ) 

 

3. Thinning ridges of magnitude image by using non-maxima suppression. 

We check to see whether each non-zero  (   ) is greater than its two 

neighbors along     and   . If so, keep the magnitude unchanged, otherwise, 

set it to 0. 

4. Finally,   (   ), which is the nonmaxima-suppressed image, should be 

thresholded. Canny’s algorithm uses hysteresis thresholding to avoid including 

false edges and/or eliminating valid edges while setting the threshold. 

Hysteresis thresholding is performed by selecting two thresholds: a low 

threshold,    and a high threshold,   .  Canny suggests in his method (Canny, 

1986)  that the ratio of the threshold    to threshold    be two or three to one. 

The thresholding operation can be visualized by creating two extra images: 

 

   (   )     (   )       

and  

 

   (   )     (   )       
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where both    (   ) and    (   ) are set to zero at the beginning. After 

performing the thresholding operation,     (   ) will have fewer nonzero 

pixels than    (   ), and since    (   ) is created with a lower threshold, all 

the nonzero pixels in    (   ) will be included in    (   ). Therefore, we 

remove all the nonzero pixels of    (   ) from    (   ): 

 

   (   )      (   )      (   ) 

 

After we perform thresholding, all the strong pixels (i.e., nonzero pixels in 

   (   )) in    (   ) will be specified as valid edge pixels and are marked. 

Based on the value of    the edges in    (   ) might have gaps. However, 

longer edges can be formed by using the following four steps procedure: 

 

1. Identify the next unvisited edge pixel,  , in    (   ). 

2. Mark all the weak pixels (i.e., nonzero pixels in    (   )) that are 

connected to   as valid edge pixels. 

3. If all nonzero pixels in    (   ) have been visited go to step 4, 

otherwise, return to step 1. 

4. Set all of the unmarked (as valid edge pixels) pixels in    (   ) to zero. 

At last, we can get the output image of the Canny edge detector algorithm by linking all 

the nonzero pixels from    (   ) to    (   ). In Figure 7 the main processes of 

obtaining the Canny edge image are demonstrated.  

3.5. Histogram of Oriented Gradients 
Based on the description in chapter 2, we need a method that can transfer the robot 

observations, pictures taken, into states. Therefore, pictures that are taken from close 

geographical locations should be also close to each other in our data space. In order to 

achieve this, we use the idea of histogram of oriented gradients (Dalal & Triggs, 2005). 

In this method, we first divide the picture in      rectangular cells. Next, we use 

histogram equalization on each image. After equalization, Gaussian smoothing is done 

on each picture to decrease the effect of noise. Next, using the Canny edge detector, we 

calculate the important edges. Then the magnitude and orientation images are 

recalculated on the Canny edge detector result. Finally, we make a histogram with eight 

bins that correspond to eight major directions for each cell. For each pixel in the cells, 

the orientation will be decided from the filtered orientation image, and the weight of 

the edge is calculated by normalizing the pixel’s edge magnitude from the magnitude 

image. The final result will be added to the corresponding histogram bin. 
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Because we use an edge histogram consisting of 8 edge directions, each sub image will 

result in eight real numbers. If we divide a picture in 5 by 5 cells, the result will be a 

vector of length 200. Thus, all the images are transformed to the same number of real 

values. 

  

Figure 7 (a) The original Image (b) The gradient image in direction y (c) The gradient image in direction x (d) The final Canny 
edge image 
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3.6. Clustering Methods 
Now that we have vectors representing our observations, we can use the Euclidean 

distance function to find out how close they are together. For our model-based 

reinforcement learning approach we cluster observations to make them discrete. We 

are going to present two famous unsupervised clustering methods, K-means clustering, 

and Neural Gas. 

3.6.1. K-Means Clustering 

K-means (MacQueen, 1967) is one of the simplest unsupervised learning methods that 

solves the well-known vector quantization problem. The main idea is to define k 

centroids, one for each cluster. Usually, a good practice is to initially select the centroids 

as random members of the dataset. Then, we traverse the data set. For each point, the 

distance to all the centroids is calculated, and the label of the data point will be the label 

of the closest centroid. The distance measure can be anything, but the famous ones are 

Euclidean, Manhattan, and Mahalanobis distance. After a complete iteration through 

the data set, the centroids will be recalculated by averaging all the data points with the 

same label inside that cluster. The procedure is continued until the changes in the 

location of centroids are less than a certain threshold.  

The algorithm which is shown in Figure 8 aims at minimizing an objective function, in 

this case a squared error function as shown below. The prototypes are   , and    are 

the data points. 

 

 (*  +   
 | )    ∑∑  

 ‖      ‖
 

  

 

Initialize                 for example, to   random    

Repeat 

    For all         

          
   {

     ‖      ‖      ‖      ‖

           
  

    For all                 

           ∑   
    ∑   

 
 ⁄  

Until    converge 

Figure 8 K-Means clustering algorithm 
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Where  

  
   {

     ‖      ‖      ‖      ‖

           
  

 

K-means, however, has a number of problems which can severely reduce the reliability 

of its results: 

· Dead Units 

It is possible that we randomly select an outlier as a centroid in K-means. The 

result is that the centroid will not be updated since its distance to the rest of the 

data is extremely high which makes the results biased and unreliable.  

· Multimodal Data 

If the underlying data represent a multimodal shape, then K-means clustering 

error increases.  

· Dependance on Initialization 

The results and reconstruction errors are significantly dependent on the initial 

locations of cluster centers.  

· Local Minima 

K-means clustering does not guarantee global minimization. Because of the 

previous mentioned problems, this clustering method often falls into local 

minima. 

3.6.2. Neural Gas 

Neural gas (Martinetz & Schulten, 1991) is an artificial neural network, inspired by 

Kohonen’s self-organizing map (Kohonen & Somervuo, 1998). The neural gas is a simple 

algorithm for finding optimal data representations based on feature vectors. The same 

as the k-means clustering method, the cluster centers are initialized to random data 

members. The method initializes a neighbourhood value   to later use in the update of 

the prototypes. Next, a random data point will be selected, and all the cluster centers 

will be ranked based on their distance to the data point. The rank is lower if the cluster 

centers are closer and vice versa. Therefore each cluster center    will have a rank 

value of   . Finally, each cluster center will be updated using the following formula. 

              (     ) 

After each epoch, the neighbourhood value   decreases. The pseudo code of the 

method can be seen in Figure 9. For our experiment,   is equal to one divided by the 

number of data points. For small values of  , effectively only the winning cluster 
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updates since all other cluster updates will be exponentially lower. In our experiment, 

the initial neighbourhood value   is selected as the number of clusters divided by two. 

These values were selected based on experiments and observations on our image 

datasets. Neural gas solves some of the K-means clustering problems, such as dead 

units, because of the simultaneous update of all clusters in each epoch.  

 

 

  

Initialize                 for example, to   random    

Repeat 

    For all         

        For all  , 

                ‖      ‖ 

        Sort(  ) in ascending order 

             rank of cluster    

    For all                 

                      (     ) 

           

Until    converge 

 

Figure 9 Neural Gas clustering algorithm 
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Chapter 4 

4. Implementation 
In this chapter, first, we present the hardware characteristics of the robotic system. 

Next, we continue by describing the framework, programming languages, and 

architecture of the robot used for the proposed navigation system. Finally, we conclude 

the chapter by mentioning the libraries and open source programs used to develop our 

system. 

4.1. Robotic Hardware 
The robot which is used for all the phases in this thesis can be seen in Figure 10. As can 

be seen, the robot is consisting of a mobile platform, structural frame, different sensors, 

and a minimum of two processing units. 

4.1.1. Processing Units 

One laptop is required as the Brain of the robot. It is possible to add other processing 

units to the system to increase the computing speed and performance. All of the 

processing units are connected to a networking switch which enables them to connect 

to another platform (i.e., the moving platform), and exchange data over the network. 

4.1.2. Sensors 

The sensors available in this robotic system are as follow: 

· RGB Camera (Connected to processing unit) 

· Depth Camera (Connected to processing unit) 
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· Odometer (On Pioneer 2) 

· Sonar  (On Pioneer 2) 

· Stall  (On Pioneer 2) 

The RGB camera is mounted on the bottom and top of the robot as can be seen in 

Figure 10. A Microsoft Kinect RGBD camera is used on top of the robot. The moving 

platform, Pioneer 2, has an odometer, Sonar, and stall sensors for which we only use the 

Odometer and stall for our navigation purpose. 

4.1.3. Pioneer 

The base mobile platform used in our system is the Pioneer-2 robot, manufactured by 

Aria Robotics. This robot has a size of 40x20x15cm and is capable of carrying 23Kg of 

weight in addition to its own weight without batteries. Pioneer 2 movements are done 

by two moving wheels connected to two different engines. It receives movement 

commands from the main processing unit, Brain (Figure 11).   

Figure 10 Robotic Platform 
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Figure 11 (left) Pioneer 2 Platform (right) Pioneer 2 AT Platform 

4.2. Robotic Software  
The robotic software framework of our robot is based on distributed behavior based 

robotics. As can be seen in Figure 12, The Brain of the robot is the main control center. It 

is connected to the behavior controller, sensor integrator, and body controller. The 

behavior controller is the location where all the high level decisions are made. Several 

behaviors run in parallel in order to make sure that the robot executes user commands. 

However, in order to make decisions, each behavior requires high level information 

input. The sensor integrator is the part that manages all the information received from 

sensor modules. Several sensory modules can be run on distributed computers. All 

these sensor modules occasionally can send information updates to the sensor 

integrator. Then, the sensor integrator will sort and place the data in the robot Memory.  

Memory is the location where all the high level processed information is stored and is 

accessible by all the main modules in the Brain. The main task of memory is to store 

processed sensory data, but it can also be used to store behavior status. The objects in 

the memory have a name and a timestamp, which means all the data stored during 

robot operation will be saved. Finally, to execute selected actions from the behaviors 

module, the commands are given to the body controller which has the authority to give 

commands to the robotic platform to either move, turn, manipulate or speak. 

4.2.1. Programming Language 

The main language used for the whole architecture is Python. This language was 

selected because of its simplicity in implementation and availability of image processing 

tools for this language. MATLAB was used for the main clustering part of the system 

because of its easy approach for matrix calculation. The processing time required for 

these experiments can become very large when constantly recalculating descriptors or 
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during clustering, especially considering some experiments will have to be repeated for 

different parameter settings. The required processing time was reduced by making use 

of threading while extracting features. The program design follows an Object Oriented 

approach. Methods and Features are described generically and are easily accessible for 

customization of existing features, as well as, the insertion of new objects. The Object 

Oriented approach has also aided greatly in creating the vision tool, which was 

discussed in section 3. 

4.2.2. Libraries 

A lot of standard libraries were used for development of this project. The most 

important library was the OpenCV Library. OpenCV was used for image acquisition, 

noise reduction, filtering, edge detection and histogram equalization. This library was 

also used to enable the obstacle avoidance method. 

4.3. Methodology 
The implementation of this project was separated into the following phases: 

1. Image and action acquisition 

2. Image smoothing 

3. Image division 

4. Edge detection 

5. Histogram of oriented gradients extraction 

6. Clustering 

7. Goal based reinforcement learning – Value Iteration 

8. Action control 

Since our robotic framework is behavior based, we separated the task into training and 

testing navigation behaviors. 

4.3.1. Training Behavior 

The idea of training is to be able to leave the robot in any environment, and it should 

safely move around and record observations and actions taken without hitting an 

obstacle. Next, it should process the entire image database and convert them to real 

numbers, do clustering on the real numbers and be ready to start the navigation as soon 

as a goal location is selected. 
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Figure 12 Robot Architecture UML Diagram.  
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Data Gathering 

We implemented two types of training behavior, automatic and manual. In manual 

training behavior, the user controls movements of the robot by keyboard. He can select 

three actions: Move, turn left, and turn right.  If there is an obstacle in front of the 

robot, the obstacle avoidance will take over and guides the robot safely to move away 

from it.  

The same approach applies to the automatic method, the difference is that the actions 

are selected based on a random number generator. In order to increase the 

performance of data gathering, the robot cannot turn left after having a turn right or 

vice versa. 

The detailed observation method is as follow: 

Before taking each action, the robot will take a picture of the environment. An action 

will be selected and the robot starts to execute that action. The robot has X seconds to 

complete the action. If it is unable to execute the action, the action will be marked as 

finished after X seconds are passed, and another action will be selected. This is to 

overcome the possible hardware and software problems that can rise during the 

behavior execution. However, if the robot is aware of its internal problem, the behavior 

stops before the external modules are restarted and working. 

When an action is finished, all variables are reset and another observation will be taken. 

There is one exception in this process. If the robot sees an obstacle in its movement 

trajectory, and a collision is imminent, the robot will stop the movement command, 

mark it as finished, and continues a new enforced action called “obstacle”. After an 

obstacle is recognized, the robot should move away from the obstacle for Y millimeters. 

The X second rule also applies for the obstacle action. 

In order to make the states discrete, robot movement steps are fixed to Z millimeters. In 

our experiment we used 500mm, and 1000mm steps. The result of this part of the 

behavior is a directory with all the observations, and a single file with the observations 

and the actions taken after it. One advantage of this behavior is that automatic and 

manual data gathering from different days can be merged easily. 

Image Processing 

After the robot has gathered sufficient observations from the environment, it starts 

processing the observations and actions done during exploration. Each image undergoes 

the following operations: 
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· Image Division: 

Two types of division are used in our method. For the first method, each image 

is divided into     number of cells and added to a list for further processes. 

In the second method, a hierarchical division is used. First the whole image is 

added to the list. Next, the row and column division is multiplied by two, thus 

the image is divided into 4 sub images. This process continues until the 

resolution of cells reaches     . This method is used to keep hierarchical 

relations in the image. 

· Edge Detection: 

In order to have a robust method, it is necessary to extract the salient features 

of the image. Therefore, we used the Canny edge detector which is one of the 

most popular edge detection methods currently used in image processing 

applications. The Canny edge mask will be calculated for each of the sub images. 

· Histogram of Oriented Gradients computation: 

After the final Canny mask is calculated, we recalculate the gradient images in   

and   directions. From these two images we compute the magnitude and 

orientation images. Next, we make a histogram with eight bins corresponding to 

eight major directions. Finally, we pass through the orientation image, and 

wherever the Canny edge image has a non-zero element, we increase the 

related histogram bin based on the current pixel’s orientation. The magnitude of 

the gradient is used to scale the effect of the pixel in the histogram. 

· Vector Extraction 

All the histograms of the sub images are put together to make a vector of real 

numbers. 

Clustering 

After the image processing phase, we will have a directory full of vectors which 

represents each image. It is essential to cluster these vectors to keep similar scenes in 

the same cluster for later reinforcement learning processes. It is well known that 

unsupervised clustering gives good results when the number of clusters in the 

underlying data is known. Therefore, based on the robot step size in the training mode, 

we make an estimation of the number of clusters. We know the step size. The possible 

number of different scenes in each location is four because of four major turns. 

Therefore, if we assume that the length and width of the environment are   and  , then 

we divide     by the step size and multiply it by four to get our estimated number of 

clusters. Another number of clusters can also be chosen for testing purposes. We use 

two major clustering methods, K-means and Neural Gas. 
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· K-means Clustering: 

The vectors will be loaded by our MATLAB program and K-means clustering is 

used to cluster the input data. First, the clusters are initialized to randomly 

selected data points. Furthermore, a batch K-means will be done on the data 

until the clusters are stable, then on the same results an online K-means will be 

done to further reduce the reconstruction error until clusters are stable or a 

maximum number of iterations has passed. The results are the filenames with 

their cluster labels and the cluster centers. All of these results are written to 

files for further use by the main program.  

 

· Neural Gas: 

We also use a batch Neural Gas method to try to improve the clustering process. 

The main difference between Neural Gas and K-means is, when each cluster 

center moves, other clusters also move based on the neighborhood values. This 

method takes significantly more time compared to K-means but has often less 

reconstruction error compared to K-means. 

Transition Probability Matrix 

After the clustering phase, in each cluster, there should be images that were taken from 

the same location in the environment. Now, we want to know which actions were taken 

in each location and how many times a step was made to another cluster. This results in 

a transition probability matrix which is required for implementation and execution of 

the value iteration method. In a nutshell, our approach automatically divided the 

environment in different discrete states. Each state is a scene that indicates a certain 

location in the environment. 

The transition probability matrix is an       matrix, where   is the number of 

clusters/states, and   is the number of actions, which is four in our navigation scheme. 

We read the action file mentioned in the data gathering sub-section and, all the picture 

names will be replaced by their corresponding cluster numbers. Finally, the transition 

probability matrix is made from the updated action file and is written to file to be used 

later by the reinforcement learning method. 
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4.3.2. Testing Behavior 

The idea of testing is to turn on the robot on a random location in the environment, give 

it a goal location by selecting a picture from the data base or taking a new picture from 

the environment, and ask the robot to go to the location. The robot first will localize 

itself by extracting the current location state as mentioned in section ‎4.3.1. Then it will 

localize the goal location using the same method. After the goal is selected, value 

iteration updates the Q-values and State values according to the goal. Next, using the Q-

values an action will be selected. The robot has X seconds to execute the action, 

otherwise the action will be marked as failed, and a new action will be selected. If the 

robot sees an obstacle during movement, the obstacle avoidance method takes over 

and moves the robot up to the default step size for the behavior or up to X seconds have 

passed. The behavior stops as soon as the goal cluster is reached. 

Value Iteration 

As soon as the goal cluster is identified, the state value of that cluster will be set to one 

hundred. Then, for each state and action, we traverse all other states and check 

whether the transition probability matrix is bigger than zero. If it is, it means an action 

was taken during the training phase. The new Q-value will be calculated based on the 

value iteration algorithm presented in Figure 3. In our case, we stop the method as soon 

as the distance between the state value vector of one update round with the other is 

less than a certain threshold. 

Action Selection 

The action selection is based on the  -greedy exploration policy. First, the action with 

the highest value is found. Next, a random number between zero and one is selected. If 

the number lies between 0 and 0.25, a random action will be selected. Otherwise, the 

action with the highest Q-value will be executed. This is used to overcome the problem 

of local minima and possible deadlocks in the system because of clustering errors. 
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Chapter 5 

5. Experiments and Results 
In this chapter we discuss the experiments done to test the performance of each part of 

our navigation system, namely, data gathering, image processing, and navigation. 

5.1. Environment 
The environment used for testing all parts of our method can be seen in Figure 13. This 

small arena is part of a bigger laboratory. The walls on the bottom are small artificial 

walls with height of 50cm. The robot can see most of the lab from inside the designated 

environment. We deliberately allowed the robot to see the outer part in order to test 

the method against changes in the environment. During all parts of the experiment, the 

outer and inner layers were changed (Chairs location, People walking outside the arena, 

People walking inside the area, artificial Obstacles inside the arena). 

5.2. Image Processing Results 
We are using histograms of oriented gradients as the base method to estimate states 

and localize the robot. Therefore, the results are heavily dependent on the edges 

extracted from the Canny edge detector. As mentioned in section ‎3.4.1, the Canny edge 

detector requires image smoothing and two threshold numbers. To find the best 

parameters, we selected several images from the database to extract the best 

parameter set for our navigation. The experimented thresholds can be seen in Table 1. 
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Figure 13 The environment used for training and testing 

 

Table 1 Experimented parameters for Canny edge detector 

Threshold 1 Threshold 2 Smoothing (      ) 

1 128 False 

1 128 True 

1 255 False 

1 255 True 

30 250 False 

30 250 True 

 

The result of these parameters can be seen in Figure 14. Figure 14(a) shows the original 

image. As can be seen, all images without smoothing, Figure 14 (b), (d), and (f), have 

more noise compared to their smoothed counterparts. Therefore we compare the 

smoothed pictures. We can see in Figure 14 (c) that all major edges are preserved. 

Chairs, battery, small wall, the magazine on the cupboard are all covered. However, the 

small textures on the mini wall on the left are also presented. Although the textures are 

detailed, texture information of the mini wall cannot be seen on the cupboard in the 

back of the screen. Figure 14 (e) shows much less noise compared to Figure 14 (c) but it 

also suppressed major edges from the chair which can severely affect the clustering 
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results. Figure 14 (g) is similar to Figure 14 (c). Therefore, to preserve all major edges 

and unique details, we select 1, 128 with smoothing as the parameters used for the 

Canny edge detector. 

5.3. Clustering Results 
Based on the results of the previous section, we smoothed the images with a     

Gaussian filter and standard deviation of 1.25, and used 128 and 1 as the higher and 

lower threshold of the Canny edge detector. We used hierarchical picture division to 

extract the histograms of oriented gradients, the maximum resolution selected 

was    . This means that we calculated the HoG of the original image, then divided 

the image into     cells and calculated the HoG, and then again divided the original 

image into     cells and calculated the HoG. Therefore, we extracted twenty one (1 + 

4 + 16) histograms per image which means the feature vector has 168 dimensions. In 

order to cluster these images, we implemented two different clustering methods: K-

means, and Neural Gas clustering. In addition, principle component analysis was used in 

our comparisons. We projected the data on twenty eigenvectors with the highest 

eigenvalues before clustering them. 

In unsupervised clustering, the usual method to compare the algorithms is to check the 

reconstruction error. However, in our case, this alone does not help us. We need to find 

out which method performs better in putting pictures with similar topological 

information in the same cluster. Consequently, the best approach is to manually label 

pictures from the same location and test the clustering methods against them. We took 

1400 images from the environment in 14 different states. The results can be seen in 

Table 2 and Table 3. In order to compute the success rates, for each labeled set, we 

compute the clustering results. If the images are the same as in the label set, and they 

are dominant in the cluster (more than 50%), we take them into account. If there are 

multiple clusters from the same original label, we calculated a weighted success rate.  

Since the number of clusters was limited, the results are also similar. The neural gas 

method is the winner with the best clustering and we are going to use this method in 

the next section. One main problem seen in the results was that a single labeled cluster 

was clustered as two different clusters or a single cluster contains multiple images from 

different goal clusters.  
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Figure 14 Canny edge detector results with different parameters (a) Original Image.  (b) 
Threshold 1 is 1, threshold 2 is 128 and no smoothing. (c) Threshold 1 is 1, threshold 2 is 128 
and with smoothing. (d) Threshold 1 is 1, threshold 2 is 255 and no smoothing. (e) Threshold 
1 is 1, threshold 2 is 255 and with smoothing. (f) Threshold 1 is 30, threshold 2 is 250 and no 
smoothing. (g) Threshold 1 is 30, threshold 2 is 250 and with smoothing. 
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Table 2 Clustering Result. The methods used are K-means clustering, Neural gas, PCA K-means, and PCA 
Neural Gas 

Cluster 
Number 

Neural Gas 
Success Rate 

K-Means 
Success Rate 

PCA-Kmeans 
Success Rate 

PCA-Neural Gas 
Success Rate 

1 0.92 0.95 0.67 0.91 

2 1.00 1.00 0.88 0.88 

3 0.54 0.42 0.59 0.51 

4 0.76 0.76 0.75 0.81 

5 0.50 0.65 0.55 0.40 

6 0.45 0.45 0.25 0.40 

7 0.85 0.85 0.85 0.45 

8 0.57 0.51 0.88 1.00 

9 0.80 1.00 0.66 0.91 

10 0.50 0.57 0.32 0.58 

11 0.57 0.53 1.00 0.80 

12 0.22 0.20 0.72 0.40 

13 0.45 0.50 0.00 0.47 

14 1.00 0.60 1.00 1.00 

This problem is well known for K-means and neural gas. However, the neural gas 

method usually tackles this problem better. The reason is that all prototypes are 

connected to each other in neural gas. As soon as one prototype changes, its 

neighboring prototypes also change, thus, reducing the probability of having multi-

mode centers and dead units. In our results, we ignored the multi-mode problem if the 

points with the correct labels inside the cluster were dominant.  

Table 3 Final weighted results of clustering 

Method Total Weighted 
Success Rate 

Neural Gas 68.25% 

K-Means 68.24% 

PCA Neural Gas 68.16% 

PCA K-Means 65.57% 

We can also conclude from Table 3 that the success rate of projecting the data set onto 

the first twenty eigenvectors with the highest eigenvalues is lower than the non-
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projected method. The result of both neural gas and K-means clustering using principle 

component analysis is lower than the normal methods. This shows that PCA is not able 

to factor out dimensions from the feature vector without increasing the final clustering 

error. We have to mention that the differences are not very significant. 

5.4. Navigation Results 
In the previous section, we concluded that neural gas is the best method to be used in 

our navigation system. We are going to compare the results of our method with neural 

gas clustering and value iteration with random search in which the robot randomly 

selects actions.  Therefore, in the next sections we present scenarios to test our 

reinforcement learning approach in combination with HoG and clustering. For these 

experiments, the robot step size was 50cm and we used 10 percent randomness for our 

action selection. The number of clusters used was 300 and each experiment was 

repeated 5 times.  

5.4.1. Scenario 1, two starting locations 

In the first scenario, one goal and two starting positions were selected which can be 

seen in Figure 15(a). We let each of the methods run for a maximum of 500 seconds to 

reach the goal. The results for this scenario can be seen in Table 4. The reinforcement 

learning with neural gas clustering was able to reach the goal from both starting 

Figure 15 Scenario 1. (a) Start and Goal Loactions. The arrows show the used 
direction to start or finish. (b) Trail of the robot using neural gas and value iteration 
from first start location. (c) Trail of the robot using neural gas and value iteration 
from second start location. (d) Trail of the robot using random search 
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positions and the performance was superior to that of random search. However, the 

performance is significantly weaker than human navigation. By looking at the trail of the 

robot in Figure 15 (b) and Figure 15 (c), we can conclude that the reinforcement learning 

is correctly distributing the state values, since the robot trail is close to the path to the 

goal location. Therefore, the problem seems to be the error in clustering and robot 

orientation.  During our observations, we saw that the robot headed toward the goal, 

moved near the designated location, but because it was not exactly on the right spot 

(less than a robot step size), it did several loops in order to finally set the “goal reached” 

flag. Since, the movements are discrete, and the robot odometry has errors, either a less 

number of clusters should be selected or multiple goal clusters should be marked as the 

final destination to improve the performance. The interesting point is that in the 

experiment we did not see a false positive goal that set the “goal reached” flag from the 

robot. This means that the number of clusters was high enough to avoid false positive 

results. If the clustering method results are not consistent with the underlying real data, 

the state value distribution may result in strange robot behaviors during navigation. For 

example, if an underlying real cluster (a similar scene) is separated into two clusters by 

our method, there will be no connection between these two states, and it will be an 

invisible wall during navigation. This behavior was seen when the second starting 

location was used, and because of this, the results are worse. 

Table 4 Scenrio 1 results. 

First Start 
Location Success Rate 

Average Action 
Numbers 

Average Time to 
reach goal  

Random Search 40% 33 225s 

Value Iteration 
with NG 80% 42 243.75s 

        

Second Start 
Location       

Random Search 0% N/A N/A 

Value Iteration 
with NG 40% 37.5 180s 

 

5.4.2. Scenario 2 and 3, one starting location 

For the last two scenarios we selected two different goal locations with one starting 

location. The results can be seen in Table 5. The same arguments that were mentioned 

in section ‎5.4.1 also apply here. Another difficulty that we think reduces the 
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performance is the obstacle avoidance effect. During training, the robot starts from a 

special heading, and for turning it does a     turn to either direction. When the robot 

avoids an obstacle, the control will be given to the obstacle avoidance. The problem 

arises when the obstacle avoidance puts the robot in another type of orientation. For 

example, the robot starts with the heading of 0 degrees. It turns 90 degrees to the right 

and recognizes an obstacle, and then the obstacle avoider takes control and avoids the 

obstacle. The new heading of the robot is now 30 degrees which will result in a 

complete change in the orientation, and subsequent observations. Therefore, during 

testing, since it is not possible to turn 30 degrees with our actions, the robot will try to 

repeat the scenario and hope that the obstacle avoidance leads it to the correct state. 

This can be fixed by reducing the turn angles, or reduce the number of clusters.  

Table 5 Scenario 2 and 3 results. 

Scenario 2 Success Rate 
Average Action 

Numbers 
Average Time 
to reach goal 

Random Search 40% 45 275s 

Value Iteration 
with NG 60% 32.3 306.33s 

        

Scenario 3       

Random Search 20% 47 477s 

Value Iteration  
with Neural Gas 40% 31.5 290s 

 

5.4.3.  Discussion of Results 

In this chapter we compared the value iteration method using neural gas clustering to 

discretize states to random search. Three scenarios with different goal and starting 

locations were used. In all of the scenarios the proposed navigation method performed 

better than random search. However, the results are considerably weaker than human 

navigation. We observed that the robot was moving in the path to the goal, but could 

not find the final goal cluster because of odometry and unsupervised clustering errors, 

and changes in the orientation of the robot after observing an obstacle.   
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Chapter 6 

6. Conclusion and Future Work 
In this thesis, we first performed a literature study on current research in indoor 

navigation methods. We found out that most of the methods used in robotics required 

manual user interference, and standardized or fixed environment during training. Some 

of these methods are prone to failure if changes to the environment were made during 

testing. We found out that there is a significant difference between these methods and 

the human navigation system. Humans navigate mainly based on topological 

information, and known landmarks. However, adults not only use their experience and 

knowledge about landmarks to navigate but they also use semantics, understanding of 

physical laws, and common sense.  Therefore, we decided to imitate the human 

navigation system using only the part which is about visual memory and topological 

information. To achieve this goal, we presented state of the art reinforcement learning 

methods to imitate the human’s learning loop. We continued by discussing the most 

applied image processing methods to extract topological information. Furthermore, for 

our model-based reinforcement learning approach we used clustering on our 

observations to discretize them. 

We separated the navigation system in training and testing phases. During both phases, 

minor changes in the surrounding environment were allowed and were enforced. The 

results in our experiment section showed that our proposed method works better than 

random search but considerably weaker than human navigation. Our observations 
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approved that the reinforcement learning correctly distributed the state values. The 

problem emanated from the fact that unsupervised clustering is an ill-defined problem, 

and the methods used could not guarantee successful clustering of the underlying data. 

Other issues such as limited turning actions and change in orientation of the robot 

because of obstacles in the environment deteriorated the performance even further. 

We will now first answer the research questions and then outline future work for 

improvement of the proposed methodology. 

Since the unsupervised clustering is by definition an ill-posed problem, we require prior 

information to reduce the errors. One way to moderate these inaccuracies is to take 

into account the odometry of the robot and connect the visual states to three 

dimensions of robot movement (x,y, and robot pose). However, the robot odometry 

itself is prone to errors over time and requires correction. One approach to solve this 

problem is to do a two way correction of labeling and odometry. This approach is logical 

since the error of odometry increases over time. For example, the robot should take 

several pictures on the starting point, and label all of them. Next, it will automatically 

select an action, and goes to another state. Based on odometry data, new clusters 

should be labeled. We continuously should train the supervised classifier with 

introduction of new data. The robot will move back toward previously learned locations 

to fix its odometry. Supervised classifiers such as support vector machine, learning 

vector quantization (Bunte, Schneider, Hammer, Schleif, Villmann, & M., 2011) 

(Schneider, Biehl, & Hammer, 2009), and neural networks can be used to achieve this 

goal. 

In addition we can increase the reliability of our topology information extractor by 

calculating the relation of edges in each picture cell in addition to HoGs. The number of 

corners, edge connections, and arrangement of edges are important and cannot be 

deduced from histograms of oriented gradients. 

The robot selects actions after a previous action is complete, and action selection 

requires small amount of processing time. This results in non-smooth movements of the 

robot. In order to solve this problem, we suggest using a queue of commands. This 

means, that the robot optimistically assumes that its selected actions using the value 

iteration method will be done without any errors.  A sequence of actions will be selected 

based on this assumption using the value iteration method. During the execution, the 

robot continues perceiving the environment and calculates the correct actions. The 

robot continuously checks whether the actions are done as planned. If something goes 

wrong, the robot uses its past history of actions to repair and fix its path.  
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