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Abstract

Participation in tra�c requires drivers to perform multitasking. A
driver needs to pay attention to di↵erent events in tra�c occurring at the
same time. Other events, like a phone call, or people having a conver-
sation in the back seat, can draw the driver’s attention away from what
is important. This thesis proposes a framework that implements a safety
warning system that uses machine to machine communication to commu-
nicate with other tra�c users. The safety warning system seeks to aid
tra�c users with the task of detecting possible dangers during participa-
tion in tra�c. The system consists of four di↵erent parts: perception of
the environment, the communication protocol, the localization and track-
ing system, and a collision risk assessment algorithm. Perception of the
environment is performed by using a laser-rangefinder. The localization
and tracking system keeps track of a tra�c user’s own location and the
locations of other moving objects with respect to the tra�c user itself.
A single-hop broadcasting communication protocol between tra�c users
enhances the range of the localization and tracking system by sharing
the detected moving objects with other tra�c users. By using Multiple
Hypotheses Tracking (MHT), measurements of the same moving object
obtained by di↵erent tra�c users are associated with each other. The
localization and tracking system is tested by using three robots that are
equipped with several sensors including a LIght Detection And Ranging
(LIDAR) sensor and an Inertial Measurement Unit (IMU). The collision
risk assessment algorithm consists of a Support Vector Machine (SVM)
that is trained and tested using simulator data. The simulator aims to
create data as realistic as possible by using a physics engine. It is shown
that a collision can be detected 2 seconds before the collision occurs.
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Chapter 1

1 Introduction

With an increasing amount of tra�c, tra�c accidents are becoming more com-
mon. An estimated 1.2 million people die each year as the result of tra�c
accidents. It is thereby estimated that another 50 million people get injured
every year because of tra�c accidents [38]. In 2011, 661 people died during a
tra�c accident in the Netherlands alone, in countries with less well formulated
tra�c rules these numbers are significantly higher.

Participation in tra�c requires multitasking as many events take place at
the same time. When driving a car, a tra�c light might turn orange while
pedestrians cross a red sign and a biker that was first visible in the mirror
has suddenly disappeared. A car driver is often not only paying attention to
the road, but also to events occurring within the vehicle. Passengers might be
talking on the backseat, the radio might draw the driver’s interest or the driver
might be involved in a (hands-free) phone call. Pedestrians in their turn need to
pay attention when crossing the street, but might at the same time be caught
up in a vivid conversation or be checking their phone. It is easy to see that
little is needed to distract someone from the main tasks of paying attention to
tra�c.

A safety warning system seeks to aid tra�c users with the task of detecting
possible dangers during participation in tra�c. Such a system therefore needs to
give feedback to the user when he or she finds himself in a dangerous situation.
Eventually, the technology behind a safety warning system can become part of
a greater system that autonomously drives a car. The system can indicate when
a car should use more throttle, when it should break, and when it should steer
in case of a dangerous situation. The purpose of autonomous cars is not only
to create safer means of transportation, they also take away the need to have
a driver, therefore giving people more time to relax or work while traveling. A
safety warning system needs to be able to perceive the environment to be able
to make judgements about the current tra�c situation, it needs to be able to
predict situations that might follow from the current situation and at last it
needs to determine if the current situation is dangerous.

In this thesis a framework is proposed for an Intelligent Transportation Sys-
tem (ITS) that implements such a safety warning system. This system consists
of four parts: perception of the environment, communication, localization and
tracking, and collision risk assessment. For perception of the environment var-
ious sensors are utilized. Of these sensors the Light Ranging and Detection
(LIDAR) sensor and an Inertial Measurement Unit (IMU) are used for localiza-
tion and tracking. Three di↵erent robots are configured to carry these sensors
and to perform outdoor measurements. Sensors are sensitive to noise and their
measurements therefore lead to imprecise localization and tracking of moving
objects. By communicating with each other, tra�c users share localization and
tracking data of themselves and moving objects they detected. Moving objects
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that are visible for only a few tra�c users can in this way become visible for
all tra�c users that are in the same communication group and sensor noise can
partly be filtered out.

Two Machine to Machine (M2M) communication protocols are proposed in
this thesis. The first protocol only enables direct neighbors to communicate
with each other by using a one-hop broadcasting protocol. The second protocol
allows for messages to be broadcasted further than only to the direct neighbors of
a sender, therefore increasing the range at which tra�c users can communicate.
The received data is merged together with the tra�c user’s own data by using
Multiple Hypotheses Tracking (MHT) [40]. After the data is merged, a map is
obtained that contains the locations of each moving object with respect to the
tra�c user.

The localization and tracking part of the framework is responsible for the
localization and tracking of the tra�c user itself and the moving objects detected
by the tra�c user. The LIDAR-sensor generates multiple scans per second.
These scans consist of range measurements defined in a polar coordinate system.
By aligning and merging scans obtained at consecutive time steps, a greater
map can be created. In order to align the scans, it is required that they have
a certain similarity. The amount with which one scan needs to be rotated and
translated to align with a scan from a previous time step indicates the rotation
and translation of a tra�c user during a certain period of time. The point cloud
of one scan can be segmented into smaller point clouds called segments. Similar
segments in two di↵erent scans that only di↵er in location can indicate moving
objects. A Kalman filter [24] using two di↵erent prediction models is deployed
to track tra�c users and moving objects.

The collision risk assessment algorithm predicts if a collision might occur
at a certain point in the future. This algorithm consists of a Support Vector
Machine (SVM) [1] and uses several di↵erent features as input. The collision
risk assessment algorithm is trained and then tested in order to evaluate its
performance. While it is possible to use the localization and tracking system to
create a data set for training and testing, a simulator was used in this project.
There are several reasons for using a simulator over the localization and tracking
system: a simulator is safer than letting real tra�c users crash into each other,
the environment in a simulator is easier to control, and large training and testing
sets can be generated in reasonable time.

The simulator presented in this thesis uses two simulated cars to generate
data. Each session, two cars follow a predefined path while adding noise to the
input (i.e. steering and throttle), each path is thus always unique. A session
starts with the two cars at their respective starting position and ends when both
cars finish their predefined path or when they crash into each other. The paths
both cars drive are stored and a label is added. When the cars collide with each
other the paths are classified as dangerous and otherwise as safe. By using the
path that was driven by both cars, features such as the relative distances, speeds
and rotations between the two cars at each time step can be extracted. There
are six features in total, the label and the amount of features multiplied by the
amount of time steps in a session represents one data point. Multiple sessions
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are executed to generate a data set for training and testing of the algorithm.
Even though during this project the training and testing data is generated

using a simulator, the environment perception, communication, and localization
and tracking parts are of great importance. When the di↵erent parts are even-
tually merged into one system, the localization and tracking part will provide
the input for the collision risk assessment algorithm that is now generated by
the simulator.

One of the objectives of the safety warning system is that it is applicable
for many kinds of transportation methods used in tra�c. In this project the
localization and tracking part of the safety warning system are evaluated us-
ing robots, while the collision risk assessment part is evaluated using simulated
cars. In this thesis all these di↵erent kinds of transportation methods and the
robots are referred to as tra�c users. It is assumed that all tra�c users have
the safety warning system at their disposal. This assumption does not neces-
sarily hold for all moving objects, however the term moving objects can include
both tra�c users and other objects that are moving. It can take time for a
tra�c user to determine if an object that is moving is another tra�c user or
a moving object, during this time the object is considered to be a moving object.

By implementing the above proposed framework two research questions are
attempted to be answered:

1. Can a Support Vector Machine predict upcoming dangerous situations?

2. If the answer to question 1 is positive: What is the predictive capacity of
the classifier when using the two second rule?

The 2-second rule is a rule of thumb used by many governments to instruct
drivers on how to keep distance between cars [48]. It is assumed that 2 seconds
are enough to either avoid an accident or to reduce the impact of an accident
significantly.

This thesis starts with an explanation of related work in chapter 2. Chapter
3 elaborates on the di↵erent robots used for testing, the sensors that are used
and the communication protocol that is used to share the sensory information.
Chapter 4 explains how ego estimation is performed and how moving objects
are tracked. Chapter 4 thereby elaborates on how moving objects detected by
di↵erent tra�c users are merged into one map using multiple hypothesis track-
ing. Chapter 5 explains the implemented simulator and how this simulator is
used to obtain training and testing data to train and test the classifier with.
Chapter 6 describes the implemented classifier, it explains the basic theory of
the classifier, how data is preprocessed for classification and elaborates on the
results obtained. In the last chapter a discussion is given and possible future
work is discussed.
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Chapter 2

2 Background and Related Work

This chapter gives an overview of related work on di↵erent parts of the frame-
work described in this thesis. First, previous work on machine to machine
communication is elaborated on in section 2.1. Previous work on localization
and tracking is described in section 2.2, and in section 2.3 some background and
previous work on safety warning systems is discussed.

2.1 Communication

To make relative localization and tracking more e↵ective Machine to Machine
(M2M) communication is used. In the context of this thesis M2M communica-
tion is the communication between di↵erent cars. This section explains related
work in M2M communication between cars and possible infrastructure nodes.
A Vehicular Ad-Hoc Network (VANET) is a class of networks that includes any
ad-hoc network between two or more moving vehicles, VANETs are mainly used
in intelligent transportation systems [27].

Karthikumar and Krishnaveni describe di↵erent common entities for VANETs
in [26]. The first entity they describe is a VANET used for infrastructure pur-
poses. Such a VANET can be used to communicate between a tra�c control
center and cars. Information about road conditions, tra�c jams and accident
locations are conveyed to a tra�c control center. This information can then be
used to notify other drivers using dot-matrix displays or the same VANET.

In Vehicle to Vehicle (V2V) group communication only vehicles that are of
the same group can communicate with each other. These groups can be defined
statically (e.g. grouped by car brand) or dynamically (e.g. when vehicles are
in the same area during a certain time interval). Group communication can for
example be used for entertainment purposes. In vehicle to vehicle beaconing,
periodical messages are sent out to nearby vehicles and convey information
such as speed, heading and braking. These messages are sent out to increase
neighborhood awareness.

The last entity Karthikumar and Krishnaveni describe is the infrastructure
to vehicle (I2V) and the vehicle to infrastructure (V2I) warning entity. In case
of potential danger, messages are broadcasted by either an infrastructure node
installed on the side of the road or by a vehicle. A roadside unit can for example
send out a message to a car when it is approaching an intersection while a
possible collision might occur.

Maihöfer describes di↵erent geocasting routing protocols including the Loca-
tion Based Multicast (LBM) geocast routing protocol in [29]. The LBM protocol
avoids flooding the whole network by using a forwarding zone. When a package
travels outside the forwarding zone the package will be discarded. Such a for-
warding zone can for example be defined using GPS coordinates. The protocol
fails however when the forwarding zone is partitioned.
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Bachir and Benslimane describe a multicast protocol for vehicular ad hoc
networks in [4]. An area in which an accident has happened or a vehicle broke
down is defined as a risk area. Vehicles are inside a risk area if they are driving
towards the accident. Whether a vehicle belongs to a multicast group (the
forwarding area) depends on the vehicle’s location, speed and driving direction.
This reduces the amount of tra�c on the network since automobiles for whom
the message is not applicable, but who are in range of the network, will not
receive an alarm message.

Ye, et. al. describe a collision avoidance system in [53] that uses V2V com-
munication for avoiding rear-end collisions on highways. Their communication
protocol assumes that every vehicle on the highway is equipped with a posi-
tioning device (e.g. GPS) and IEEE 8.02 radio. Emergency Warning Messages
(EWM) are sent out in case of an emergency. Such a message contains the
sender’s position, a lane ID, an event ID, event location, an event time stamp,
and the message’s lifetime. These messages are sent out using multi hop broad-
cast. A message is accepted only when it was received from the vehicle in front
with the same lane ID, the event ID is new and the message has not exceeded
its lifetime.

2.2 Localization & Tracking

Much research has been done in the field of localization and tracking, a few
papers are discussed below. Premebida et. al. [39] describe a system for pedes-
trian and vehicle detection and tracking using a light ranging and detection
(LIDAR) system and a camera. By using the LIDAR, detection and tracking is
performed while object classification is performed by both the LIDAR and the
camera system. After segmentation and data association a linear Kalman filter
is employed for tracking of cars and pedestrians. Data points obtained from
LIDAR scans are classified using a Gaussian mixture model. Objects detected
by the camera system are in turn classified using an AdaBoost classifier. This
system is able of classifying pedestrians and cars in various positions up to a
distance of 20 meters.

Wang et. al. [50] describe a mathematical framework which aims to in-
tegrate Simultaneous Localization And Mapping (SLAM) with tracking of ob-
jects. The paper describes two implementations: SLAMwith generalized objects
and SLAM with Detection And Tracking of Moving Objects (DATMO). SLAM
with generalized objects is computationally very expensive as it keeps track of
both static and moving objects by maintaining posteriors for both. Due to the
computational demands of this technique it is generally infeasible to use it in
real-time. The paper therefore also describes an implementation in which only
moving objects are tracked. By only detecting and tracking moving objects, a
lower dimensional space can be used posing less computational requirements on
the system. The paper proposes a framework in which perception modeling,
data association and moving object detection are described. During perception
modeling the input obtained from sensors is preprocessed by segmenting the
laser points. Then, during data association a multiple hypotheses method is
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used in which multiple hypotheses of data association are generated and the
most likely hypothesis is chosen. In moving object detection, laser point seg-
ments that are associated with the same object and of which at least half of all
points in the segment have moved are classified as a moving object. A track is
initiated for each newly detected moving object.

Competitions such as the DARPA urban challenge have been set up to stim-
ulate research in the field of localization and tracking. An example of a project
that was set up to compete in the DARPA urban challenge is Junior, an au-
tonomous vehicle. Junior is described by Montemerlo et. al. in [34]. Equipped
with a variety of sensors such as laser scanners and radar the vehicle needs to find
its way in an urban environment. For this, path planning is required, thereby,
a collision avoidance system is implemented to avoid collisions with static and
dynamic obstacles such as curbs and cars. When an obstacle is detected the
car plans a path around it. The goal is to arrive at the finish line before the
cars of other teams do while obeying all tra�c rules. The paper describes in
detail how environment perception of the car, the software, mapping, tracking
and localization is implemented.

2.3 Safety Warning Systems

Many of the documented safety warning systems are static systems that are
positioned alongside the road. Such systems are described by Gangisetty in [16]
and by Kamijo et. al. in [25]. Both describe static systems that are positioned
at crossroads. Dagan et. al. [11], Miller & Huang [31], Morioka et. al. [35]
and Seiler et. al. [45] propose the use of thresholding to determine if a possible
collision might appear.

Salim et. al. [42] propose a collision detection system based on a C4.5
decision tree that uses information from roadside sensors and in-vehicle sensors.
Training and testing data to train and test the decision tree with is obtained
using a 2D tra�c simulator. Other proposed implementations use more complex
algorithms. Edgar & Harris [14] describe a neural network called the Cerebellar
Model Articulation Controller (CMAC) and the Conventional Linear Model
(CLM) to classify dangerous situations.

Kamijo et. al. describe a system in [25] that uses a spatial-temporal Markov
random field (MRF) which is trained using a Baum-Welch algorithm. Training
data consists of camera images containing observation sequences of real accidents
that occurred at di↵erent intersections.

Zou et. al. [54] use camera images as data, Principal Component Analy-
sis (PCA) for feature extraction, and Hidden Markov Models in combination
with a Support Vector Machine (HMM/SVM) classifier to detect tra�c inci-
dents. First, images are resized then features are extracted while at last these
features are classified using the HMM/SVM classifier. To train the classifier,
100 images for each class are sampled. These classes are defined as tra�c move-
ments, namely: West-East, East-West, North-South, South-North, and acci-
dents. Then another 100 images are sampled for each class to test the classifier
with.
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Huang & Lin propose an algorithm called: Early Collision Warning Algo-
rithm (ECWA) in [21]. This system is omni-directional and therefore provides
a 360� range of protection and early warnings for drivers. In the early collision
warning algorithm, Relationship Information (RI) packages are broadcasted to
neighbors. Information within an RI message contains measurements of GPS
and accelerometers. The ECWA deploys a Closest Point of Approach denot-
ing the point at which two vehicles will pass by each other while having the
smallest distance to each other. The distance from a vehicle A to this point is
denoted as DCPA while the variable TCPA denotes the time it takes to reach
the Closest Point of Approach for both vehicles. When DCPA is equal to zero
a collision might occur while TCPA then denotes the time to this collision. By
using thresholding it is decided if a warning message needs to be sent out.

Aköz & Karsligil [3] describe an implementation of a tra�c abnormality
detection. Using a HMM and a mixture of Gaussians (MoG) trajectories of
tra�c are clustered. These trajectories represent the normal tra�c situation
and are also called models. After training, for every vehicle observed the log-
likelihood is determined of that vehicle following a certain model. If no model
can be matched to the trajectory of the observed vehicle, the behavior of the
vehicle is classified as being abnormal. Such an abnormal situation can for
example represent an accident.

Misener & Sengupta introduce the term Cooperative CollisionWarning (CCW)
in [32]. They show that wireless communication between cars does enhance
safety given that all cars have a wireless communication module installed. Three
di↵erent systems are proposed in their paper: a forward collision warning sys-
tem, an intersection warning system, and a blind-spot and lane change warning
system. Their system uses GPS signals and a fusion of onboard sensors to
measure wheel speed and yaw rate. Also a vehicle dynamics model is used to
predict vehicle movements. By using a communication system the values of the
di↵erent sensors are broadcasted to neighboring vehicles in order to obtain a
360� degrees awareness. Possible threats are displayed to the driver using an
in-car display.

2.4 Discussion

The papers discussed in the previous section all implement a safety warning
system. Where some of them use simple methods such as thresholding, others
use more complex algorithms such as hidden Markov models. However, most
systems are only designed to work on a predefined intersection or highway. The
papers that describe a communication enhanced safety warning system only
share GPS data, and only detect frontal and rear collisions. The papers that
describe a system based on thresholding often do not need training data and
testing is done using real cars. The papers that describe a more complex system
either use image sequences of one intersection or use a 2D simulator to generate
data. This thesis describes a system in which LIDAR data can be shared using
communication and in which a 3D car simulator with physics is used to generate
training and testing data. Because of safety issues and because the scale of the
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project is too small at this moment, the LIDAR data described in this thesis is
not yet used for training and testing of the collision risk assessment algorithm.
The safety warning system developed in this project can however be adopted to
incorporate LIDAR data for training and testing purposes.
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Chapter 3

3 Robots, Sensors, and Communication

This chapter introduces the hardware used during this project. First the robots
that are used to test the localization and tracking system are explained in section
3.1. Then the sensors that are used to obtain measurements are explained
in section 3.2, at last the communication protocol with which data is shared
amongst tra�c users is explained in section 3.3. This last section also discusses
a second, not implemented, communication protocol.

3.1 Robots

To test the localization and tracking described in chapter 4, robots are used
instead of real transportation methods for several reasons:

1. Robots are cheaper than using real means of transportation.

2. Robots can carry sensors while this can be di�cult for some means of
transportation.

3. Robots can easily be modified.

4. Robots are a reasonable simplification.

Each element in the list will shortly be explained below.
1. Real means of transportation include pedestrians, bikes but also cars,

busses and trucks. However, using a car to transport the equipment is a more
expensive solution than using simpler robots. In an early stage of the project it
is acceptable to use robots for development and testing to get initial results of
the performance of the system.

2. The robots are optimized to carry the sensors, the sensors are, however,
not yet optimized for all means of transportation. A pedestrian would for ex-
ample have to carry an unreasonable amount of weight. Optimizing the sensors
for mobility lies outside the scope of this thesis.

3. The robots used during this project are specifically designed to carry the
sensors used in this project. When using a car, either special frames need to
be designed to fit the sensors on the car or the sensors need to be modified
to fit the car. Installing and adding additional sensors will therefore be more
burdensome on a car than on a robot that is designed to carry these sensors.

4. It is important to test if the implemented localization and tracking algo-
rithm functions as expected. Since the project is at an early stage, no complex
systems are required during this testing phase. Given the previous points robots
are therefore a reasonable simplification and are su�cient for testing.
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3.1.1 Implementation

Three di↵erent robots are used during this project: PAL1, PAL2 and PAL3.
These robots carry the sensors that are described in the next section. Metal
frames have been designed on which these sensors are installed. Figure 1 shows
pictures of these robots.

(a) PAL1 (b) PAL2 (c) PAL3

Figure 1: The three robots

As can be seen in figure 1 the robots do not have the same overall design.
However, their sensors, purpose, and functionality are the same. Each robot is
thereby equipped with 12 volt lead acid batteries with a DC to AC converter to
110V to supply power for the computer. Since some sensors run on 24 volt, some
batteries are coupled together to supply 24 volt. On each robot computational
power is provided by a personal computer running Windows XP. The computer
is capable of processing sensory data and controls the communication using the
DSRC module described in section 3.2. Each robot is thereby equipped with a
DC motor for propulsion.
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3.2 Sensors

During this project it is assumed that the environment consists of moving ob-
jects and tra�c users only. In order to determine the current state of the
environment sensors are needed. This section introduces the di↵erent sensors
that were considered during this project: RFID sensors, stereo vision, LIDAR,
GPS, accelerometers and inertial measurement units are discussed. Since, as a
preprocessing step, some of these sensors are fused, sensor fusion is also shortly
explained in this section.

3.2.1 RFID

During the project the use of active RFID was considered as a possible sensor
for localization. Active RFID can communicate up to a range of 100 meters
and while the signal can be used for communication, it can also be used for
localization.

To perform localization, the distance between two tra�c users needs to be
determined. Huang et. al. [19] use the Received Signal Strength Indicator
(RSSI) to measure distance. By measuring the amount with which the broad-
casted signal has weakened while traveling between a sender and receiver, the
distance between them can be determined. This method, however, has great
disadvantages. The signal is sensitive to temperature, humidity, and obstacles.
The strength of the signal upon arrival at the receiver’s end thus greatly de-
pends on many di↵erent factors other than the distance traveled. By using
Bayesian estimation an accuracy up to 7 meters can be achieved. This accuracy
is however lower than that of a GPS.

By using two RFID tags triangulation can be used by measuring the Angle
of Arrival (AOA), for this at least two RFID tags are needed. This setup is
displayed in figure 2.

Figure 2: Triangulation

In the figure above the AOA’s are labeled as Angle 1 and Angle 2. Using
the geometric properties of triangles the distance between the reader and the
two RFID tags can be determined. By using two separate RFID tags wrong
measurements can be detected when the signal strength received from both
RFID tags di↵ers more than a certain threshold. However this setup is still
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sensitive to environmental influences as described above [8]. Therefore RFID
will not be used during the project.

3.2.2 Stereo Vision

By using stereo vision, depth images can be generated. This is done by using two
pictures taken by two di↵erent cameras that are only installed a few centimeters
apart from each other with respect to the horizontal axis. The camera used on
PAL1 is the Bumblebee 2. This camera provides a resolution of 1032x776 pixels
and its cameras are positioned 12 cm apart from each other. The camera used
on the PAL2 is the Bumblebee XB3 and provides a resolution of 1280x960 pixels,
the cameras are positioned 12 cm apart from each other. The camera installed
on the PAL3 is the ladybug 3 and provides a resolution of 1600x1200 per camera.
The ladybug 3 is an omnidirectional camera. All camera’s mentioned above are
manufactured by Point Grey. Pictures of each of these cameras are given in
figure 3.

(a) Bumblebee 2 (b) Bumblebee XB3 (c) Ladybug 3

Figure 3: Stereo Cameras

By using just one of the two images that are generated by a stereo camera,
objects such as pedestrians, bicycles, and cars can be detected. After detecting
an object the distance to this object can be determined. As an example, to
detect pedestrians, a Histogram of Oriented Gradient (HOG) feature extractor
can be deployed such as the one readily available from the OpenCV computer
vision library. Also, a for pedestrian detection trained SVM classifier is readily
available from the OpenCV library. By using an image of one of the cameras,
the HOG-feature detector, and the readily trained SVM-classifier, pedestrians
can be classified. Other pedestrian detection algorithms are described in [13].

Since the distance measurement with a stereo vision camera is generally less
precise than a LIDAR-system, these sensors can be fused as described in section
3.2.6. The LIDAR-system will enhance the distance measurement performance
of the stereo vision while the stereo vision system is able of classifying objects
given the feature-rich images it produces.

15



3.2.3 LIDAR

Light Detection and Ranging (LIDAR) is used to obtain relative position mea-
surements between the sensor and objects in the environment. When consider-
ing relative localization, a global positioning system (GPS) is less accurate in
comparison to a LIDAR-sensor based system and may create noise that trans-
lates to a few meters di↵erence from the real position of a tra�c user. GPS
can therefore generate misleading information upon which the collision risk as-
sessment algorithm can give misleading warnings. It is therefore vital to have
precise relative localization between tra�c users.

The LIDAR used on the PAL1 and PAL2 is the Sick LMS111 while on the
PAL3 the LMS291-S05 is used. The LMS111 has a range of 20 meters at 10%
reflectivity while the LMS291 has a range of 30 meters at 10% reflectivity. The
error of the LMS111 and the LMS291 are ± 30 mm and ± 35 mm respectively.
With better reflectivity the range of both types of laser scanners can go up to
about 80 meters. When using a LIDAR sensor for localization and tracking, the
data-association problem needs to be solved. This problem consists of associat-
ing data points measured at di↵erent time-steps as belonging to the same object
[6]. A possible solution that tries to solve for the data association problem is
given in chapter 4. Pictures of the LIDAR-sensors used during this project are
given in figure 4.

(a) LMS111 (b) LMS291

Figure 4: LIDAR sensors

Both sensors discussed in this subsection use laser-light to measure distance.
A beam of laser-light is emitted from within the sensor and reflected on the
mirror inside the sensor. This mirror can change its angular position along its
vertical axis. The mirror of the LMS111 has a range of 270� and can be moved
within this range with steps of 0.5�. This means that a maximum of 540 data
points can be obtained. The physical setup used in this project only allows for
a range of 180� and thus obtaining a maximum of 361 data points. The range
of the LMS291-S05 is 180� and also has a resolution of 0.5�.

A known disadvantage of LIDAR is that it performs poorly in rain and
snow. However, LIDAR is less expensive to produce than for example a radar
system. Radar is therefore more often used than LIDAR in safety warning
systems that are available on the market [22]. Disadvantages that can be found
in both LIDAR and radar systems are that the ground is measured when a car
drives over a bump causing noise in the measurement signal. For this project,
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using LIDAR is su�cient to conduct experiments and is therefore the cheaper
solution. Dealing with noise generated by the LIDAR can be done by using for
example Kalman filtering.

3.2.4 Global Positioning System

The Global Positioning System (GPS) module used during this project is the
Holux M1000C. This module is used to obtain an inaccurate measurement of the
global position of a tra�c user. The information provided by the GPS-module is
however not accurate enough for classification. Noise in a GPS-signal can cause
errors from 3 meters up to 15 meters. The amount of noise is largely dependent
on the environment in which the GPS-module is used. Urban areas generally
cause more noise because of bad signal reception due to high buildings. A GPS
will provide better accuracy in an open field [37].

Global positioning systems that provide sub-meter accuracy do exist. Exam-
ples of such systems are Di↵erential GPS (DGPS) and Wide Area Augmentation
System (WAAS). However, for DGPS a ground-based station is needed and each
GPS module needs to have a clear line of sight with this base station. This is
di�cult to achieve in an urban environment with high-rise buildings. Also, at
this moment WAAS is only available in the United States of America [17]. The
GPS-module used in this project can however be used to obtain a first indica-
tion of the relative positions of other tra�c users and its signal can therefore be
used to initiate the Kalman Filter.

3.2.5 Inertial Measurement Unit

All three robots are equipped with an Inertial Measurement Unit (IMU). The
IMU is of type 3D-GX1 and is produced by MicroStrain (figure 5). Within
this sensor three angular rate gyros, three orthogonal DC accelerometers and
three orthogonal magnetometers are combined. This sensor is used to measure
acceleration, velocity and rotation of the robots.

When considering short time-intervals the measurements obtained by an
IMU are more precise than the velocity and rotation measurements obtained
by a GPS. An IMU merely relies on its accelerometer readings to determine
acceleration, speed and distance and does not rely on satellite signals. The
magnetometer is used to determine rotation. A GPS needs a few measurements
to determine rotation and its performance relies heavily on the connection be-
tween di↵erent satellites. However, over a longer time-interval the error of the
IMU accumulates while this is not the case with GPS, thereby, disturbances in
the magnetic field can cause the magnetometers to give false readings.

When the information from the LIDAR and the IMU are combined, a more
precise reading can be obtained about the relative positions between tra�c
users. Both the measurements obtained by the IMU and the LIDAR can be
used as an input to the Kalman filter.
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Figure 5: Inertial Measurement Unit

3.2.6 Sensor Fusion

As explained previously, images from a stereo camera are used for pedestrian
detection while LIDAR is used for distance measurements. The stereo camera is
able to give a depth indication about the pedestrians it detects. By overlaying
the distance measurements of the LIDAR and the stereo camera LIDAR data
can be merged with data of the camera. Using this method, pedestrians can be
classified on the LIDAR image.

The LIDAR has a higher precision than the stereo camera and will therefore
give more reliable results while tracking. By detecting pedestrians a di↵erent
motion model can be selected for Kalman filtering. The pedestrian detection
therefore helps improving the results of a tracking system. An example of a
result of a fusion between the stereo camera and the LIDAR can be seen in
figure 6.

Figure 6: Sensor Fusion souce: [12]
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In the figure above the purple dot in the bottom-middle of the figure repre-
sents one of the robots described in section 3.1, the red dots represent distance
measurements obtained by the LIDAR while the green dots represent the data
obtained by the stereo camera. The circled areas represent pedestrians detected
by the OpenCV pedestrian detector using the camera images [12].

This section however only shows how the camera and LIDAR are used in
order to detect pedestrians. In a similar way cars and possible other classes
can be detected as well. At this moment the functionality of the pedestrian
detection is not yet put into use and will not further be described in this thesis.

3.3 Communication

Di↵erent tra�c users can detect di↵erent moving objects. Using communication,
these detected moving objects along with the tra�c user’s own location and
rotation can be shared with other tra�c users. This enables tra�c users to
notice moving objects that they have not detected themselves. Communication
between tra�c users thus increases the range at which moving objects can be
detected. The safety warning system builds a map containing all moving objects
detected by the tra�c user itself and the ones it retrieved from other tra�c users,
how this map is built is explained in the next chapter.

The safety warning system uses the collision risk assessment algorithm to
determine if a warning should be displayed. In the current implementation, this
algorithm only uses simulated data. It will, however, in the near future use the
previously mentioned map to extract features. The precision of the algorithm
will thus depend on the completeness of this map and is therefore also dependent
on the communication between tra�c users. Hence, it is important that data is
reliably shared. This section describes two di↵erent data sharing algorithms that
both implement a VANET (Vehicular Ad-Hoc Network) and the communication
hardware that is used. Section 3.3.1 describes this hardware, the next section
elaborates on the actual implemented approach using single-hop broadcasting.
Another approach using multi-hop multicasting is described in section 3.3.3.

3.3.1 Hardware

Dedicated Short Range Communications (DSRC) modules are designed specif-
ically for automotive applications [31]. DSRC modules are preferred over other
communication systems because of several reasons [44], a few of these are listed
below:

• DRSC operates on a licensed frequency band.

• Supports high speed and low latency.

• Works with vehicles that are driving at high velocity.

• The performance is immune to extreme weather conditions.

• Specifically designed for safety applications.
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• Preferred over Wi-Fi because of the proliferation of Wi-Fi devices.

The DSRC modules used in this project are of type IWCU 3.0 OBE and
are manufactured by the Industrial Technology Research Institute of Taiwan.
These modules are able to communicate over distances of up to 100 meters
where most Wi-Fi hardware only has a range of about 30 meters. When driving
at 120 km/h and applying the 2 second rule explained in the introduction the
distance between two cars becomes approximately 66 meters. The modules thus
have a range large enough to support this distance. The modules communicate
to the computer installed on the robot using LAN and the UDP protocol. A
picture of the DSRC module is given in figure 7.

Figure 7: The DSRC module

3.3.2 Broadcasting Algorithm

When implementing a communication algorithm a few criteria should be kept
in mind. Some of these criteria are the load on the network that the algorithm
imposes, the speed at which packages are delivered and the reliability of the net-
work. When using a multi-hop multicast network, messages might reach farther
than when using a single-hop broadcasting algorithm. It is, however, di�cult
to determine until what physical range the messages should be forwarded and
messages might take several hops to reach a destination that could have also
been reached in one hop. This causes unnecessary time delays in a system in
which time delays can be critical. However, multi-hop can be useful when there
is no direct line of sight causing the network to not be able to reach certain
tra�c users [33].

This section describes a one-hop broadcasting algorithm which only sends
messages to tra�c users within one hop range (i.e. the range of the DSRC
module) as shown in figure 8
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Figure 8: Single-hop Broadcasting

In figure 8 the source is given by an open circle while the black circles rep-
resent tra�c users. The grey circle represents the range of the DSRC module
which is about 100 meters when having direct line of sight. The tra�c user that
is broadcasting in figure 8 can therefore not reach all tra�c users visible in the
figure.

Implementation
The broadcasting algorithm implemented during this project uses the Windows
sockets (Winsock) API. The implementation is divided in a client side and a
server side. The client side sends information to other tra�c users while the
server side receives information from other tra�c users. The client side consists
of three methods: OpenConnection(), send() and closeConnection().

The method OpenConnection opens a connection to a server by setting
its IP address and listening port. The method furthermore specifies that the
socket type to be used is a datagram socket, which means that the user datagram
protocol (UDP) is used. The user datagram protocol is chosen over the trans-
mission control protocol (TCP) mainly because UPD is a lot faster than TCP
since no acknowledgement messages need to be sent out causing the overhead
of the protocol to be much smaller.

The method send uses the connection that was opened by the OpenCon-
nection method to send packages over the network. As explained in the begin-
ning of this section a message contains the position of a tra�c user and possible
other data. The structure in which this data is stored first needs to be converted
into a character array before it is sent out over the network. When the message
is received at the server side it will be converted back into its original type. The
method closeConnection() closes the socket.

Experiments and Results
Four di↵erent experiments were conducted using the robots explained in section
3.1 and the single-hop broadcasting algorithm. During these experiments the
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DSRC modules of the robots explained in section 3.1 are broadcasting messages
at the same time. All four experiments were conducted in a laboratory. These
four experiments are listed below:

1. Each robot sends out 10 packages per second at the same time during a
period of 30 minutes.

2. Each robot sends out 20 packages per second at the same time during a
period of 5.4 minutes.

3. Each robot sends out 20 packages per second at the same time during a
period of 7.35 minutes.

4. Each robot sends out 20 packages per second at the same time during a
period of 10.8 minutes.

In the first experiment an average of 0.9992 percent of the packages were
received by all robots, while in the second experiment only 0.9157 percent of the
packages were received. In the third experiment 0.9975 percent of the packages
were received while in the last experiment 0.9980 percent of the packages were
received. In the second experiment the robots had a bigger distance to each
other and one robot was placed outside of the laboratory, causing the signal
to weaken and therefore causing a higher loss of messages. In the single-hop
broadcasting algorithm the DSRC modules will start broadcasting over one
channel and to one ID. This results in package collisions in the wireless network
causing the transfer rate to drop. The more tra�c users are broadcasting, the
higher the message collision rate will become. It is expected that the algorithm
will work when it is applied in a real-world application but that it will fail once
the amount of tra�c users grows too large. The next section describes a protocol
in which tra�c users are only allowed to send to a select group of other tra�c
users by using a tree. This protocol is expected to have a lower collision rate
and a larger range.

3.3.3 Discussion: Multiple Initiators Flooding Algorithm

This section discusses a multi-hop multiple initiators flooding algorithm that
can extend the range of a normal single-hop broadcasting algorithm and poses
less load on the network. Where the message complexity of the single-hop
broadcasting is n � 1 (the initiator does not receive a message from itself) the
message complexity of a flooding algorithm is 2l � (n � 1) where l represents
the number of edges in the graph where l could take the value of n2 in a worst
case scenario.

In figure 9 a flooding tree can be seen. The open circle represents the root of
the tree. As can be seen in the picture, because there are multiple-hops possible
in the algorithm, the nodes (tra�c users) that are not in direct reach of the root
of the tree can still be reached.
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Figure 9: A flooding tree

The multiple initiators flooding tree building algorithm consists of two parts:
the tree initiation part and the tree building algorithm. Both algorithms run
on all nodes i. However, the tree building algorithm is only called when a con-
nection breaks or a new connection is made. Every time a connection between
two tra�c users breaks or a new connection is available a new tree needs to be
built.

Due to this requirement a few changes have to be made to the normal flood-
ing algorithm. Every node contains a variable my root in which it stores the
root of the communication tree, each node thereby possesses an ID and a pseudo-
id called TID (tree-ID). Messages sent out over the network are denoted with
< M >.

When initiating a tree each message will contain the TID of the node who
is initiating a new network, this is denoted as < M(TID) >. The ID of a node
never changes while the TID does change when the topology of the network
changes. Such a change occurs when a tra�c user either leaves or enters a
network.

When building a new tree, upon receiving message < M(ID) > a node will
check if its current root ID variable my root is higher than the ID stored in the
message (ID < my root). When the ID in the message is higher than my root,
the new ID is accepted as the root ID and my root is set to this ID. When
the ID is not higher the node will respond accordingly (further explained in the
algorithms below). In a changing topology, however, there exists a chance that
the root leaves the tree (e.g. when the root drives faster than other nodes).
This causes all nodes that detect this change to initiate a new tree. In a normal
flooding algorithm where no (variable) TID is available this poses a problem
since the statement ID > my root can never be true anymore and a new tree
cannot be built. By using the TID this problem is solved. Every time a node
leaves the tree each node that detects this change increases its TID with the
amount of nodes available until their IDs are higher than the previous root ID.
Since, in the beginning of execution, all TIDs are based on the unique ID of
each node, increasing the TID with the amount of participants always generates
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a new unique TID. The algorithms implementing this idea are given below.

1 While ( t rue )
2 {
3 Check i f new connect i ons are a v a i l a b l e or i f a l r eady e x i s t i n g

connec t i ons are l o s t ;
4 i f ( connect ion l o s t | | new connect ion a v a i l a b l e )
5 {
6 I n c r e a s e TID with amount o f p a r t i c i p an t s u n t i l TID > my root
7 Send message <M> conta in ing ID and TID .
8 }
9 }

Algorithm 1: Tree Initiation Algorithm

1 i f ( r e c e i v ed (<M(TID)> from b
j

)
2 {
3 i f (my root < M(TID))
4 {
5 send <PARENT> to b

j

6 my root := TID
7 forward <M> to a l l ne ighbors except parent .
8 }
9 e l s e i f (my root == M(TID) //Node i i s the root i t s e l f .

10 {
11 send <ALREADY, TID> back to b

j

12 }
13 e l s e i f (my root > M(TID))
14 {
15 send <ALREADY, TID> back to b

j

16 }
17 }

Algorithm 2: Tree Building Algorithm

In order to explain the algorithms given above, tra�c users are denoted as
processes. Each process starts with sending out a message. Whenever a process
receives a message, it checks if the ID in the message is either higher, equal, or
lower. When the TID is higher, the node sets the variable my root to the TID
in the message.

When a process receives a message with a TID that is equal to the variable
my root the process is the root itself. While initiating a new tree all processes
are still allowed to send messages to all other processes. When process a and b
are both connected to each other but also to the root it is possible for the root
to receive a message containing its own TID. This can happen when the root
(process a) sent a message containing its TID to both b and c and when the
message arrived earlier at process b than at process c. Process b forwards the
message it got from the root to process c. When the message from process b
arrives earlier at process c than the message sent by the root, process c considers
process b as its parent and sends out a message to all processes that are not his
parent. Since process a is not the parent of process c, process c sends a message
to process a not knowing that this is the actual root. The root can therefore
receive a message containing its own TID. A situation in which this happens
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occurs when the delay between the root and process c is higher than the total
delay over the path: root, process b, process c.

The root will then send a message back to node c containing< ALREADY, TID >.
If the variable my root is higher than the TID in the message node i will send
a message back also containing < ALREADY, TID > .

Problems
Even though the multiple initiators flooding algorithm proposed here can deal
with changing topologies, a few problems still are to be solved. Using only the
three robots described in section 3.1 no problems will occur. However, given the
(usually) large scale at which intelligent transportation systems are deployed,
this algorithm will have to deal with a large amount of participants. Tra�c
users will constantly be in and out of reach of di↵erent networks and networks
can grow very big in physical range. To overcome the problem of large networks,
a GPS range can be defined around the root.

Also, to overcome the problem of constantly having to build a new tree a
time limit can be posed onto a network during which a network has to exist.
The biggest problem however consists of assigning a unique TID to each tra�c
user as very large numbers will have to be used due to the immense amount of
tra�c users throughout the world. Before a solution to this problem is found
this algorithm can only be used in small ITS applications where the amount of
tra�c users is known.
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Chapter 4

4 Localization & Tracking

In order to predict events that may follow from a certain tra�c situation, local-
ization and tracking of moving objects needs to be performed. The localization
and tracking part uses the measurements that are obtained by the sensors, de-
scribed in the previous chapter, to compose a map with relative distances and
orientations between moving objects. The more accurate the localization, the
better the predictions become. Therefore, in a safety warning system precise
(relative) localization is a must. When it is possible to communicate the ex-
act global location of a tra�c user to other tra�c users, the localization and
tracking problem becomes a much easier one to solve.

As explained in subsection 3.2.4, global positioning systems that perform
global localization with sub-meter accuracy do exist but are either very expen-
sive, are field specific or their service is limited to a select few countries. Having
the precise global position of each tra�c user is useful, but not necessary, and
for this application almost impossible. For all of the described global positioning
systems, a direct line of sight with for example a base station is required. This
is however often impossible in an urban environment. Since only the relative
positions between tra�c users and obstacles are of importance other (relative)
localization methods can be used.

By measuring the distances and angles between di↵erent objects relative lo-
calization can be performed. A wide variety of sensors can be used to obtain
these measurements. In order to associate di↵erent measurements that belong
to the same object with each other, the data association problem needs to be
solved. To measure the relative distance the LIDAR sensors described in sec-
tion 3.2.3 are used. This section describes the implementation of the localization
and tracking part using the LIDAR. First the pose estimation calculated from
LIDAR data is explained, then the tracking algorithm with which moving ob-
jects are tracked is explained. The Kalman filter performing state updates is
explained in section 4.3 while at last the multiple hypotheses tracking algorithm
is elaborated on.

4.1 Pose Estimation

Pose estimation is necessary to compute the ego-motion of a tra�c user. The
pose of a tra�c user is computed using LIDAR data and is therefore relative.
A pose (w, T ) consists of the rotation w and translation T with respect to
the previous pose. The initial pose is set to (0,0). Because error accumulates
over time, poses become increasingly noisy over time. This noise can partly be
corrected for by using a Kalman filter. To keep track of the pose of a tra�c user,
consecutive LIDAR-scans are aligned. This process is repeated every time a new
LIDAR-scan is obtained. When the tra�c user is moving each LIDAR-scan is
slightly di↵erent from the previous one, due to sensor noise this can also be
the case when the tra�c user is not moving. By aligning two scans obtained at
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two consecutive time steps the translation and rotation of the tra�c user can be
computed between these two time steps. The amount a scan of the current time-
step has to be translated and rotated to fit the scan of the previous time-step
equals the rotation and translation of the tra�c user.

In [28], Lu & Millios explain the Dual Correspondence algorithm. This
algorithm tries to solve for the translation and rotation between two point clouds
(in this case the LIDAR-scans) given an initial guess. In this algorithm, a
normal iterative closest point (nearest neighbor) method is combined with the
Matching-Range-Point Rule method. Both methods are explained below. In
the Dual Correspondence algorithms a scan Sref and Snew are required. Sref

corresponds to the scan made in the previous time step while Snew corresponds
to the scan obtained in the current time step.

In the closest point rule (Iterative Closest Point: ICP), for each point in
Snew the point with the smallest euclidean distance in Sref is assigned as the
corresponding point. In the Matching-Range-Point Rule an angular range Bw

around a point in Snew is determined. An example is given in figure 10. In this
figure, ✓ represents the angle of the mirror of the LIDAR-sensor. Within the
range Bw, the point P’ on Sref that has the lowest length (radius) di↵erence to
point P on Snew will be chosen as the corresponding point of P. Hence P’ does
not necessarily have to be the closest point to P. At the end of one iteration of
the Dual Correspondence algorithm, point pairs (P, P’) are obtained from both
the closest point rule and the Matching-Range-Point Rule. For both methods
thresholds can be set to determine the maximum distance in the closest point
rule or length di↵erence in the Matching-Range-Point rule.

Figure 10: Angular range, Source: [28]

By computing the least squares estimates (linear regression) using the point
pairs, the angle and the translation (w, T ) can be determined for both the
nearest neighbor method and the Matching-Range-Point Rule method. The
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angle w is obtained from the Matching-Range-Point Rule method while the
translation is obtained from the closest point method. Then all points in Sref

are transposed using the formulas given in equation 1 and 2.

P 0
x = cos(!) ⇤ Px � sin(!) ⇤ Py + Tx (1)

P 0
y = sin(!) ⇤ Px + cos(!) ⇤ Py + Ty (2)

After transposing the points the algorithm is repeated again for a certain
amount of iterations. The algorithm is well known to get stuck in local minima,
to overcome this problem an initial guess can be provided to the algorithm. This
initial guess can for example consist of a translation and rotation (w, T ) that
lies close to the solution. In this implementation the outcome of the previous
time-step is used as the initial guess. The dual correspondence algorithm is
given below.

1 whi le ( cond i t i on )
2 {
3 Apply c l o s e s t po int r u l e ;
4 Apply matching�range�point r u l e ;
5 Compute the l e a s t squares e s t imate s (w1 , T1) o f the c l o s e s t

po int r u l e ;
6 Compute the l e a s t squares e s t imate s (w2 , T2) o f the Matching�

Range�Point r u l e ;
7 Use w2 and T1 as the s o l u t i o n ;
8 Transpose the po in t s o f S

ref

;
9 }

Algorithm 3: Dual Correspondence Algorithm.

The condition variable in the while loop can be replaced by di↵erent con-
ditions. The algorithm can for example terminate when a certain least squares
estimate threshold has been reached. In this project the algorithm terminates
after a fixed amount of 20 iterations. The algorithm converges rather fast and
using a fixed amount of iterations forces the algorithm to always terminate after
an invariable amount of time. This increases time performance and ensures that
the algorithm always returns a result.

In figure 11 a screenshot is shown in which data points from di↵erent consec-
utive laser scans are aligned. The red line shows the trajectory that the tra�c
user made through the environment. This trajectory is determined using the
dual correspondence algorithm.
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Figure 11: A map created using consecutive laser scans. The distance from left
to right and up to down is about 50 meters and 400 scans were used. The length
of the trajectory is about 90 meters.

The dual correspondence algorithm described here uses the current laser scan
as Snew and the laser scan obtained five scans before as Sref . The di↵erence in
translation and orientation between two consecutive scans is almost negligible.
Using consecutive scans in combination with a poor initial guess can cause the
algorithm to get stuck in a local minima during the first few iterations while
having a relative high error. A larger separation between scans is therefore
desirable. However, when using two scans that are separated by a too large
time-interval, the two scans will show no resemblance with each other and no
solution can be found. It was empirically determined that in this project a
di↵erence of 5 scans results in the least error. Depending on the quality of the
initial guess this di↵erence can be smaller.

A distance threshold is used to determine if a point pair is valid. When
the two closest points P and P 0 lie too far away from each other they will
not be associated with each other to avoid divergence of the algorithm. As
the algorithm converges, the distances between correspondence points become
smaller, the threshold should therefore also become smaller. During the first
iteration this threshold is set to 9500 millimeter and is decreased every iteration
using the following formula: threshold = threshold � (9500/maxiterations),
where maxiterations is the total amount of iterations that the algorithm is
iterated for [41]. The threshold was determined empirically, when using a bigger
threshold the algorithm starts to diverge. The largest possible threshold still
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yielding convergence of the algorithm is desirable since this allows for the biggest
distance margin between point pairs. This method increases the performance
of the algorithm. The pose obtained from this algorithm is fed into a Kalman
filter using a motion model which is explained in section 4.3.

4.2 Moving Object Detection & Tracking

When a tra�c user detects a moving object a few processes are executed: the
moving objects are shared with other tra�c users and the multiple hypotheses
tracking algorithm instantiates multiple Kalman filters and chooses the most
likely hypothesis. This section explains how moving object detection is per-
formed and how moving objects are tracked. When using LIDAR-data to per-
form tracking, first the pose of the tra�c user itself needs to be computed,
this was explained in section 4.1. Then, scans of two consecutive time-steps
need to be segmented, the centroids of each segment need to be determined and
data-association needs to be performed in order to determine which centroid
of the current LIDAR-scan belongs to what centroid in the previous LIDAR-
scan. These operations are performed every time a new LIDAR-scan is obtained.
This procedure is described by both [39] and [50]. This section first explains how
scans are segmented, it then continues with explaining how data association is
performed, at last it explains how tracks are initiated and maintained.

4.2.1 Segmentation

When performing data association, segmentation of the laser scans is a necessary
preprocessing step. Depending on the LIDAR scanner each scan consists of
361 or 540 data points. During segmentation, data points that lie close to
each other are grouped together. The segmentation algorithm used in this
project is described in [9]. In this algorithm breakpoints are detected using a
dynamic threshold. If the euclidean distance between two points pn and pn�1 is
bigger than some threshold Dmax (||pn � pn�1|| > Dmax) then both points are
classified as breakpoints. In this case kbn and kbn�1 are set to true, kbn denotes the
indices at which breakpoints are found and therefore functions as a flag. The
superscripted b denotes that it is a flag for breakpoints and 1  n  N denotes
the amount of data points. The variable krn represents a rupture flag and is set to
TRUE at the indices of points that are most likely invalid measurements. Since
invalid measurements are already filtered out before the segmentation process,
the rupture flag will not be used.

A virtual line with an angle � is defined with respect to the scanning direction
�n�1. This line indicates under what angle environmental lines (e.g. a wall) are
still reliably detectable. The variable �� corresponds to the angular resolution
of the laser scanner (0.5 degrees using the scanners described in section 3.2.3).
Figure 12 gives an intuition of how these angles are used.
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Figure 12: Segmentation, source: [9]

In each step the threshold Dmax is computed depending on the radius rn
that a point pn has with respect to the LIDAR-scanner. By using the virtual
line under an angle of �, the biggest range for point pn can be extrapolated.
Since the hypothetical range distance rhn for the nth point is related to the radius
of the previous point rn�1 by rn�1 · sin� = rhn · sin� � �� it follows that the
biggest acceptable range between two points is given by

||phn � pn�1|| = rn�1 ·
sin��

sin(����)
(3)

Since noise should also be taken into account the threshold will become

Dmax = ||phn � pn�1||+ 3�r (4)

where �r is the standard deviation of the measured distances. The algorithm
is given below.

1 kb1 = FALSE
2 f o r (n = 2 ; n < N; n++)
3 {
4 D

max

= ||ph
n

� p
n�1||+ 3�

r

5 i f ( ||ph
n

� p
n�1|| > D

max

)
6 {
7 kb

n

= TRUE

8 kb
n�1 = TRUE

9 }
10 e l s e
11 {
12 kb

n

= FALSE
13 }
14 }

Algorithm 4: Breakpoint Detection
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After the di↵erent segments have been determined, the ones that contain too
few data points are discarded. For each remaining segment, the segment centroid
is determined by simply calculating the average of the x and y positions of all
points in the segment. These segments are then used during the data association
step described in the next section.

4.2.2 Data Association

Data association is necessary when landmarks cannot uniquely be identified
by using only the measurement data as is the case with LIDAR-data. Due to
random sensor noise, clutter and other interfering targets in the LIDAR-data
data association is a non-trivial problem [46]. The data association process tries
to associate measurements made in di↵erent time steps belonging to the same
moving object. When a measurement cannot be associated with an existing
object, a new moving object has been detected. One measurement can only be
associated to one moving object at a time. In this project, the data association
problem is solved by using segmentation, ICP and a nearest neighbor algorithm.

Each new scan Snew is segmented using the algorithm described in the pre-
vious subsection. Each segment found in the scan Snew is then matched to
the complete previous scan Sref using ICP as described in section 4.1. Each
segment for which there is a solution will therefore be matched to the segment
in the reference scan Sref that is most likely representing the same object. In
this way the orientation of each segment and the translation of that segment
relative to the previous scan is determined. Figure 13 shows the first iteration
during the ICP process between a segment (in this case a moving car) and the
previous scan.

Figure 13: ICP on segments (first iteration)

In figure 13 the segment obtained from scan Snew is displayed in green while
the reference scan Sref is displayed in blue. Figure 14 shows the last iteration
of the ICP process. As can be seen the segment is now aligned.

Figure 14: ICP on segments (last iteration)
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As explained in subsection 4.2.1, before the ICP algorithm is executed the
scan Sref and Snew are segmented. Then the centroids of each segment from
both scans Sref and Snew are computed. The centroids obtained for scan Snew

are then translated using the translation and orientation obtained during the
ICP process. In this way the centroids that are most likely to belong to the
same segment and therefore to the same object are (almost) superimposed.

By using the nearest neighbor algorithm every centroid in the scan Snew

is associated with the centroid in Sref to which it has the smallest euclidean
distance. Also thresholding is used to determine if the distance between the
two closest centroids is too large for the centroids to belong to each other, in
this case the two centroids are farther apart than 500cm and are discarded.
For some segments the ICP algorithm diverges and does therefore not give a
feasible solution. This is normally the case when no corresponding segment can
be found in the reference scan to which the segment in the new segment can be
mapped. These segments are discarded.

In the next step Snew will be used as the reference scan Sref and the at
that time current scan will then become Snew. It is therefore not necessary to
compute the segments and centroids of Sref since they were already computed in
the previous time step when Sref still was the new scan Snew. Only at initiation
do the segments and the centroids of Sref have to be computed.

4.2.3 Track Initiation

As explained in the previous section centroids of di↵erent segments that repre-
sent the same object are associated with each other. When two centroids are
associated with the same object, depending on the centroid in the reference scan
a track is either updated or initiated. When a centroid of the reference scan has
not yet been assigned to a track a new track is initiated. Both the centroid in
Sref and the matching centroid in Snew are assigned an id. A track therefore
consists of the centroids belonging to the same object (segment) in di↵erent
scans made at consecutive time steps and each track is thereby assigned an id.

Using the previous pose results from the ICP algorithm an accumulated pose
can be computed. The positions of centroids in a laser scan are mapped using
this accumulated pose. Centroids belonging to a track of a non-moving object
are likely to stay at almost the same global location in each consecutive scan
(given that there is no noise). However, because of noise, and because of the
movements of the tra�c user, segments of the same object tend to look a bit
di↵erent in each consecutive laser scan and segment centroids therefore also
change location.

After an object is visible for twenty consecutive frames and the distance trav-
eled by this object is greater than a certain threshold, the segment is considered
to be a moving object. The threshold used during this project is 4 meters. Each
moving object is assigned a label and its path is stored in a vector structure.
The result of the moving object detection can be seen in figure 15. The red line
shows the path made by the car while the blue line shows a moving object (a
car in this case).
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Figure 15: Moving Object Detection: the red line is the pose of the tra�c user
while the blue line is a detected moving object. The distance from left to right is
about 50 meters while the distance from up to down is about 90 meters. About
600 scans were used.

4.3 The Extended Kalman Filter

To perform localization and tracking of the tra�c user itself, the other tra�c
users, and moving objects, an augmented-state Extended Kalman Filter (EKF)
[23] is deployed. In an augmented-state EKF all states of all tra�c users and
moving objects are augmented into one state vector, which is variable in size.
Depending on the amount of moving objects and tra�c users at each point in
time, the state vector changes in size.

First the basics of Kalman filtering are explained in subsection 4.3.1. The
state vector used in this project is explained in subsection 4.3.2. The motion
model used to model the movements of tra�c users is explained in subsection
4.3.3. The constant velocity model used to model movements made by moving
objects that are not tra�c users or not yet classified as such, is explained in
subsection 4.3.4. At last the measurement model is explained in subsection
4.3.5.

4.3.1 The Algorithm

A Kalman filter [24] recursively estimates variable values at each time step using
sensor measurements, control inputs and a prediction model. The variables
are usually grouped together to form a state vector µ. The control input u
often consists of the input given to the actuators of a system (e.g. the amount
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of throttle in an airplane). The previous state µt�1 and the current control
vector ut are the inputs of the prediction model which generates a prediction
of the current state µ̄t. By using a weighted average K, the predicted state
µ̄t and the measured state are combined and form the estimated current state
µt. The weights are computed using the predicted covariance ⌃̄. The predicted
covariance is dependent on the prediction model G, the process noise Q, the
observation modelH, and the observation noise R. The observation model maps
the predicted state variables into measurement space. The weighted average is
given by the Kalman gain K.

A Kalman filter is, however, not capable of dealing with non-linear input.
Therefore, an extended Kalman filter is deployed that performs linearization
using the Jacobians of the prediction model and the observation model to gener-
ate the predicted covariance. In this way, non-linear prediction and observation
models (often functions) can be used, their Jacobians bear the variables G and
H respectivily. A Jacobian matrix contains the first order partial derivatives
of each function within a matrix with respect to each variable apparent in the
matrix. The extended Kalman filter algorithm is given below.
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Algorithm 5: EKF Algorithm

In the algorithm above, the function g represents the state transition func-
tion. This function computes the predicted state µ̄t and has input variables µt�1

and ut. The function h maps the predicted state µ̄t to the measurement space.
The variable zt represents the measurements obtained at time t. The covariance
matrix is given by ⌃ and is used to determine the predicted covariance matrix
⌃̄. This matrix is then used to compute the Kalman gain K. In this project
two prediction models were used: to predict the states of tra�c users a motion
model is used, while the states of moving objects are predicted using a constant
velocity model.

4.3.2 State Vector

In an augmented-state extended Kalman filter the states of all tra�c users and
all moving objects are augmented into one larger state vector. The state vector
of a tra�c user i at time t is given by T i

t =
⇥
xi
t yit ✓it

⇤
and contains the

x and y positions and the rotation ✓ of that tra�c user. The state vector of a
moving object j at time t is given by Oj

t =
⇥
xj
t yjt vxj

t vyjt
⇤
and consists

of the x and y positions and the velocity in both the x and y direction, relative
to a tra�c user i. The x and y positions and the rotation ✓ of a tra�c user
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are relative to the initial position of that tra�c user as explained in section 4.1.
Since multiple moving objects can be detected by a tra�c user, multiple state
vectors O can exist. Also, the state vector T and all state vectors O of a tra�c
user are shared to all other tra�c users within range of communication. In the
end, state vectors T i

t and Oj
t with 1  i  N and 1  j  M are obtained

where N represents the amount of tra�c users and M the amount of moving
objects. All these state vectors are merged into one bigger state vector X as
shown in the formula below:

Xt =
⇥
(T 1

t )
T . . . (TN

t )T (O1
t )

T . . . (OM
t )T

⇤
(5)

4.3.3 Motion Model

The motion model is used to predict the position and rotation of a tra�c user.
It thus predicts the values for state vector T for each tra�c user and stores these
values in the predicted state vector T̄ i

t . This predicted state vector is computed
using the formula below.

T̄ i
t = gT (T

i
t�1, u

i
t) + wi

T (6)

where wT ⇠ N (0, Qi
T ) models the Gaussian process noise. The function

gT (T i
t�1, u

i
t) is represented by the formula below:
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The vector
⇥
4xi 4yi 4✓i

⇤T
represents the control vector u and its

values are obtained using the inertial measurement unit. The Jacobian Gi
Tt

of

the function gT is given by the formula Gi
Tt

=
�gT (T i

t�1,o
i
t)

�T i
t

which results in the

Jacobian matrix below:

Gi
Tt

=

2

4
1 0 � sin(✓it�1)4 xi � cos(✓it�1 4 yi)
0 1 cos(✓it�1)4 xi � sin(✓it�1 4 yi)
0 0 1

3

5 (8)

In this project the matrix Qi
T is initialized to:

Qi
T =

2

4
10000 0 0
0 10000 0
0 0.025

3

5

4.3.4 Constant Velocity Model

The constant velocity model predicts the states of the moving objects Ōj
t using

the following formula:
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Ōj
t = Gj

Ot
·Oj

t�1 + wj
O (9)

In the above formula the Gaussian process noise is modeled by wO ⇠ N (0, Qi
O).

The variable Gj
Ot

represents the matrix:

Gj
Ot

=

2

664

1 0 4t 0
0 1 0 4t
0 0 1 0
0 0 0 1

3

775 (10)

By multiplying the above matrix with the state vector Oj
t a new predicted

state is obtained. Since the matrix G and state vector O are linear no Jacobian
is needed. Both the Jacobian of the motion model Gi

Tt
and the Jacobian of the

constant velocity model Gj
Ot

are merged in the bigger matrix G as shown below.
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(11)

In this project the matrix Qi
O is initialized to:

Qi
O =

 p
5000 0
0

p
5000

�

4.3.5 Measurement Model

A measurement consists of the relative position between a tra�c user i and
a moving object. When a moving object is associated with moving object j
apparent in the state vector the measurement model is given by:

zO
j

T i = hTO(T̄
i
t , Ō

j
t ) + wTOt (12)

In the above formula the observation noise is modeled by wTO ⇠ N (0, Ri
O)

and the function hTO(T̄ i
t , Ō

j
t ) is given by the formula below.
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i
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j
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In the formula above q represents (x̄j
t � x̄i

t)
2 + (ȳjt � ȳit)

2. The Jacobian of
this function is given by
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Each tra�c user maintains the state of all objects it has within its state
vectorX. All relations between tra�c users and moving objects are independent
of each other, this results in the Jacobian matrix of function h that is given
below.

Hi
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=
h
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ROt
0 . . . 0 Hj

ROt
0 . . . 0

i
(15)
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When the detected object Ōj
t is another tra�c user the Jacobian matrix will

be of the same form as it is for Hi
TOt

. The matrix Ri
O is initialized to:

Ri
O =


1000 0
0 3

�

4.4 Multiple Hypotheses Tracking

All tra�c users send their data to other tra�c users by using the communication
protocol described in section 3.3. Each tra�c user generates a map containing
the locations of all moving objects it has detected or received from other tra�c
users. The Multiple Hypotheses Tracking (MHT) algorithm as explained in [6]
uses the previously explained Kalman filter to update the states of tra�c users
and moving objects.

(a) Two Hypotheses (b) One Hypothesis

Figure 16: Multiple Hypotheses Tracking
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Suppose tra�c user 1 (T1) detects a moving object O1, and is already track-
ing two other tra�c users T2 and T3. In the left drawing of figure 16, O1 finds
himself in both the uncertainty bounds of T2 and T3, therefore three data asso-
ciation hypotheses are generated: one in which O1 is used to update the state
of tra�c user T2, one in which O1 is used to update the state of tra�c user
T3, and one in which O1 represents a new moving object. These updates result
in a branching of the Kalman filter into three di↵erent Kalman filters each of
which represents a hypothesis. All hypotheses have a probability of being the
right hypothesis and the MHT algorithm then chooses the most likely one. In
the right drawing of figure 16, O1 is detected within the uncertainty bounds of
T3 and the probability of O1 belonging to T2 is almost zero. Therefore, only
two hypothesis are generated: O1 can either represent T3 or can represent a
new moving object. The uncertainty bounds of both tra�c users are given by
the covariance matrix ⌃. The probabilities of a hypothesis ⌦ are computed
following [40], the formula is given below:

p(⌦k
t |Z1:t) = p(⌦t�1, 

k|Z1:t) (18)

=
1

n
p(Zt|⌦t�1, 

k)p( k|⌦t�1)p(⌦t�1|Z1:t�1) (19)

The kth data association hypothesis at the current time step is denoted by
 k and n denotes a normalization constant. The probability of a hypothesis ⌦
depends on the measurements Z1:t obtained during the time between the first
time step to time t.

4.4.1 Experiment

In the figure below two drawings are shown of a situation in which the multiple
hypotheses algorithm is applied. During this experiment the robots explained in
chapter 3 are used to represent tra�c users. The drawings below are generated
using the data obtained by robot 3. In drawing 17(a) robot 3 has multiple
hypotheses about robot 1 and robot 2. Robot 1 thereby detected a moving object
that is shown as a blue dot. The ellipses around the robots and the moving
object show the uncertainty bounds. Robot 3 made four di↵erent hypotheses
regarding the positions and rotations of both robot 1 and robot 2. The position
of the moving object depends on the position and rotation of robot 1. Robot 3
therefore has four di↵erent possibilities of how the moving object can be placed.
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(a) Multiple Hypotheses

(b) Resulting Hypothesis

Figure 17: Multiple Hypotheses Tracking: The pink dots represent the robots,
the blue dots correspond to moving objects. The pink ellipses and blue circles
represent the uncertainty bounds. The blue lines represent observations made
by robots and the pink line initiating from a robot shows its rotation.

Depending on the previous positions and rotations and the current possibil-
ities, the most likely hypothesis is chosen. The resulting hypothesis is shown in
drawing 17(b).
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Chapter 5

5 Simulator

The previous chapter explained how tra�c users and moving objects are de-
tected and tracked. While the results of the tracking system can be used as an
input for the collision risk assessment algorithm, the algorithm is trained and
tested using a data set created by a simulator. A simulator can create a large
data set within a reasonable amount of time and performs automatic labeling of
the data. By using a physics engine it is attempted to obtain data as realistic as
possible. The first section describes the framework that is used for implement-
ing the simulator. Section 5.2 explains the environment used in the simulator,
next the implementation of the code is shortly described in section 5.3. Section
5.4 describes the physics used in the simulator, and section 5.5 elaborates on
how path planning was done during simulation.

5.1 The Framework

To implement the simulator the freely available game development software and
game engine Unity is used. Unity provides a framework in both java and c#
programming languages. Unity uses the OpenGL graphics library under Mac
OSX and is able to work with DirectX under Windows. Unity also provides
the possibility of importing 3D models that were designed using 3D modeling
software such as Maya 3D. This alleviates the user from programming models in
OpenGL or by having to map textures on objects generated in OpenGL. Unity
therefore makes it easier for the user to work with more complex models. The
framework also provides a physics engine with which physics can be simulated.

5.2 Environment

The simulation environment consists of roads and cars. The roads consist of
planes that are drawn in Unity and a texture is used to give them the appearance
of a road. A road has the same material property that asphalt has assigned to
it. This material property defines the friction that a road has with objects that
are situated on it. During simulation only two cars are used since only the
interaction between two cars will be classified by the classifier. When more cars
are apparent the classifier will classify the situation between each car separately
and base its conclusion on the di↵erent outcomes between the di↵erent cars.
Only one type of car is used in the simulator, this car is readily available from
the Unity tutorials website [49] and can be seen in figure 18.
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Figure 18: Two cars in the simulator

Within Unity the environment can easily be changed. Di↵erent road con-
figurations are possible such as straight roads, normal intersections and t-
intersections. In figure 19 two di↵erent road configurations can be seen.

(a) T-intersection

(b) Crossroads

Figure 19: Di↵erent road configurations
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5.3 Implementation

The tra�c simulator consists of three di↵erent parts: the code that simulates
the car, the data retrieval code and the code that steers the car. The code that
simulates the car sets up the physics of the car. The physics include the weight,
the suspension, the maximum speed and acceleration of the car. The code also
takes care of shifting gears and other necessary elements to enable the car to
behave like a normal car. This part of the code also takes care of the updates
that need to be done. Unity o↵ers two di↵erent update methods. One of which
is called update and the other one is called fixedupdate. The function update is
called when the graphics card finished rendering a frame and is therefore called
at variable time intervals dependent on the frame rate. The function update
is mainly used to call to other functions that update the graphics of the game.
The functions that update the physics of the car are normally called from within
the function fixedupdate. This update function is independent of the frame rate
and makes sure that the physics are updated at a constant time-interval of 0.02
seconds.

The second part consists of the data retrieval code. Information about the
time, the position, the rotation and the status of a car are stored. The status
of a car indicates if a car has crashed or not. This data is made relative to
other cars and can then be used for training and testing of the collision risk
assessment algorithm. More information about preprocessing of the data and
the collision risk assessment algorithm is given in the next chapter.

The third part is the code that steers the car. A car can be manually
controlled or it can be controlled by the computer. When a car is manually
controlled the steering and throttle applied to a car can be recorded at each
time step. The code can then automatically recreate the path when following
the recorded input parameters, by adding noise to the recorded input unique
paths can be created automatically. This part of the code is mainly used to
build a data set for the collision risk assessment system, which is explained in
the next chapter.

5.4 Physics

The Unity game engine has a built in physics engine that can be used to simulate
gravity but also car physics and more. Car physics are used in this simulator
to make the car behave more realistically. Cars used in the simulator are all
assigned a rigid body and suspension. The rigid body is used to simulate mass
and drag while the suspension is used to define the grip that the car has on the
road. Wheels are thereby assigned wheel friction curves that define how much
a tire is slipping both sideways and in the rolling direction. A collision plane
is defined around each car and aside of the road. These planes make sure that
cars can not drive through each other or through the wall. Whenever a collision
occurs a signal is given to the script which is driving the cars. Figure 20 shows
a collider on the side of a road. Colliders are invisible planes with which cars
can collide and prevent the cars from driving of the road. In the figure below
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two colliders are made visible by a green wire-frame and by a light-grey surface.

Figure 20: A roadside collider

5.5 Path Planning

In order to obtain a large data set, data generation should be done automatically.
A data point consists of the path that a car has driven storing its rotation, speed,
and position at every time step with time steps of 0.02 seconds. At the beginning
of a session (the creation of one data point) each car selects a di↵erent starting
position randomly. When a car has selected a starting position it notifies the
other cars of its decision so the other cars will only choose a starting position
that has not yet been taken.

The starting positions themselves are defined manually and must be recorded
before a data set can be created. Tracks initiating from each starting position
must also be defined manually. Each starting position generally has multiple
tracks along which cars can drive. After a car has selected a starting position it
randomly select a track that initiates from this starting position. Only a finite
number of tracks can be created manually. To account for this limitation each
car uses Unity’s random number generator to adjust the path it is driving along.
By slightly changing the previously recorded input, cars drive di↵erently every
session. A new session is started automatically when one of the cars crashes
into the wall, when both cars reach the end of their track (safe situation) or
when both cars crash into each other (dangerous situation).

5.5.1 Plane Detection

Plane detection is part of path planning and tries to avoid cars from crashing
into the colliders on the side of the road. Data obtained during a session in
which a car drives into a wall is not used to train the collision detection algorithm
with, since we are mostly interested in interaction between other moving objects
(tra�c users) and not static objects. When a plane is detected the car slows
down and tries to steer away from the plane. When the car is driving at high
speed it might not have the chance to change direction anymore and will then
still crash into the wall. The plane detection first determines the distance from
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the car to the plane and at which side of the plane the car is located. This
distance is computed using the formula given in equation 20

d =
(x2 � x1)(z1 � z0)� (x1 � x0)(z2 � z1)p

(x2 � x1)2 + (z2 � z1)2
(20)

The variables x0 and z0 are the x and z positions of the car (the y-axis rep-
resents height in Unity and is not used). The variables x1 and z1 and x2 and z2
are the minimum and maximum x and z coordinates of a collision plane. When
the distance gets below a certain threshold the following formula determines if
the car is driving toward or away from the plane.

ic =
cxp � cxc + tan(↵c � ↵p · czp)

tan(↵c � ↵p)
(21)

where

cxp = xp ·
q
cos(↵p)2 + zp ·

q
sin(↵p)2 (22)

cxc = xc ·
q
cos(↵p)2 + zc ·

q
sin(↵p)2 (23)

and

czc = xc ·
q
sin(↵p)2 + zc ·

q
cos(↵p)2 (24)

In the above equations xc represents the x coordinate of the car and xp

the x coordinate of the collision plane. The variable zc and zp represent the z
coordinate of the car and the plane respectively. The variables ↵c and ↵p are
the rotations of the car and the plane respectively. The variable cxc represents
the combined x coordinate of the car incorporating the x and z coordinate of the
car with respect to the rotation of the car. The variable cxp is the combined x
coordinate of the plane incorporating the x and z coordinate and the rotation of
the plane. The czc variable is the combined z variable for the car incorporating
the x and z coordinate of the car with respect to the rotation of the car. The
result of formula 21 (the variable ic) is the intersection coordinate which specifies
at what coordinate the car will hit the plane when the car would continue to
drive along the same line. Therefore, the results of formula 20 and 21 determine
in which direction the car should steer to avoid hitting the plane.
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Chapter 6

6 Collision Risk Assessment

Safety systems can be divided into two di↵erent categories: Passive safety sys-
tems and active safety systems. Passive safety systems aim to keep damage as
low as possible in the case of an accident but have no means of preventing the
accident (e.g. seat-belts and airbags). Active safety systems try to prevent ac-
cidents before they occur [20]. The system described in this thesis implements
an active safety system which notifies tra�c users when they find themselves
in a dangerous situation. This chapter describes how collision risk assessment
is performed to determine if a warning should appear to notify a tra�c user
of a dangerous situation. To make a well founded judgement of the current
situation having reliable and complete information is a big advantage, complete
information is however almost never available. By using communication be-
tween tra�c users more complete information can be obtained and the range
at which moving objects are detected can be enlarged. However, even by using
communication no complete information can be obtained due to noise in sensor
data and failures in the network that might occur from time to time.

This chapter is organized as follows. Section 6.1 explains the two di↵erent
classes used for classification. Section 6.2 elaborates on the features that are used
for classification. Section 6.3 explains what experiments have been conducted
to obtain data for training and testing. The algorithm is explained in section
6.4 while in the last section the results of the experiments are given.

6.1 Classes

A warning needs to be given when a dangerous situation occurs. This results in
two di↵erent classes: a class in which no warning should be given is named safe
situation and a class in which a warning should be given is named dangerous
situation. The class dangerous situation can however be broken down into dif-
ferent classes appropriate to the situation in which the tra�c user finds himself
at a certain moment. The advantage of breaking down the di↵erent dangerous
situations is that it can give the user a specific warning about how he or she
should react to the upcoming danger. Also, the state of the user at the time the
warning is given can be taken into account. If the user is not paying attention
a warning can be given. However, when warnings are given too often the user
might start to ignore warnings. This report only discusses the capability of the
collision avoidance system to classify the two classes safe situation and danger-
ous situation. The class dangerous situation is denoted by C1 and the class safe
situation is denoted by C2. Class C1 bears the label 1 and class C2 the label
-1.
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6.2 Features

Collision patterns can be learned when using the right features. A few di↵erent
features have already been proposed such as the vehicle maneuver, direction
and angle in [43] and velocity vectors in [25]. This section explains the di↵erent
features that will be used for classification. Features that are relative are always
relative between two objects only. One of these objects being the object who
is classifying the current situation (host) while the other object represents the
object being detected by the host. In the current status of this project, objects
only represent cars but can later also represent pedestrians and other tra�c
users. For each detected object the host runs the classification algorithm using
the features described below as input. These features can be obtained using the
sensors with which the car is equipped as described in chapter 3 and by using
the communication algorithm.

6.2.1 Relative Distance

The distance between two objects is relevant when detecting dangerous situa-
tions. When two objects are closer to each other while in motion a dangerous
situation might occur. When two objects are far away from each other the sit-
uation will be less dangerous. In order to determine the distance between two
objects the relative position is required. The relative distance is a temporal
variable and needs to be stored at each time step. The relative distance is given
in millimeters.

6.2.2 Relative Speed

The relative speed between two objects determines at what rate two objects
are moving closer to each other. When the relative speed between to objects is
high and the distance is getting smaller this can be an indication for a possible
dangerous situation. Relative speed is a feature that is often used such as in
[25]. The relative speed changes over time and is therefore stored at every time
step. The relative speed is given in millimeters per second.

6.2.3 Relative Angle

The relative angle between two objects gives information about how two objects
are positioned with respect to each other. This is a relevant feature when
combined with the relative direction and gives an indication under what angle
the objects are approaching each other or under what angle they drive away
from each other. The relative angle is given in degrees.

6.2.4 Relative Direction

The relative direction determines if two objects are approaching or leaving each
other. This is determined by using the global angle of each object and by
determining their current linear path. The point where both paths of both
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objects cross is called the intersection point. When the two objects are moving
towards this point it is said that both objects are on a collision course, no matter
the distance they are away from each other. When one of the objects is moving
away from the intersection point it is unlikely for a collision to occur between
the two objects. In figure 21 two black squares representing cars are visible.
When both cars move towards the intersection point, a dangerous situation
might occur. This feature will then take the value 1. When one of them moves
away a dangerous situation is less likely and this feature will then take the value
-1.

Figure 21: Relative direction

6.2.5 Relative Rotational Speed

When an object turns at a high rotational speed it is easier to loose grip and
therefore get out of control. A dangerous situation might therefore occur. Since
this feature is temporal it is stored at every time step. The relative rotational
speed is given in degrees per second.

6.2.6 Next Time-Step Relative Distance

Since the speed of both of the objects is known the distance between the two
objects at a later time step can be predicted. The size of this time step can
easily be varied but is now taken 2 seconds. The next time-step relative distance
is given in millimeters.

6.3 Data Retrieval

Collisions are di�cult to simulate in the real world, it is therefore an acceptable
method to obtain training data using computer simulations [43]. In this project,
the simulator described in chapter 5 is used to obtain training and testing data
for tra�c accidents. The simulator only terminates when the user manually
stops the simulation. During simulation two data files per session are generated,
one for each car. Each session ends whenever an accident has happened, when
both cars ran out of data points or when one of the cars hit the side of the road.
A new session is then initiated automatically as described in section 5.5. Each
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data file consists of multiple lines. Per time-step, the class of the situation at
that time step, the x, y and z coordinates of the car, the rotation of the car
measured with respect to the y-axis and the current simulator time are stored.
A time step is 0.02 seconds in size.

The class of the situation is safe (C2) until an accident happens or until one
of the cars hits the side of the road. When the situation stays safe throughout
a session both cars classify the session as belonging to the class C2. When
an accident happened, both cars classify the session as belonging to class C1

(unsafe). When one of the cars has hit the side of the road it communicates
this to the other car, both cars then label the session as 2. This label does not
belong to any class and only indicates that these sessions need to be discarded
later on. Data files belonging to the same session always contain the same label.

The simulator time consists of a timer that is increased with 0.02 seconds
every time step and is set to zero at the beginning of the simulation. In figure 22
the coordinate system of the simulator is displayed. The y-axis is perpendicular
to the x- and z-axis and is not drawn in the figure. The degrees in the figure
indicate the angle of rotation around the y-axis.

Figure 22: The coordinate system of the simulator

6.3.1 Feature Calculation

The data files generated by the simulator need to be preprocessed in order to
obtain the features as described in section 6.2. Before features are calculated
the labels of the data files are checked. When the label is 1 or �1 the data file
belongs to class C1 or C2 respectively. When the label is 2 (i.e. one of the cars
hit the wall) the data file does not belong to any class and will be discarded.
During simulation 11281 sessions were executed, therefore the same amount of
data files per car were recorded. Of these files, 1324 files were classified as a
session in which an unsafe situation occurs. In 8347 of the files no dangerous
situations occurs and are classified as safe. The other 1610 files were discarded.
Features are calculated using a program written in c++. This section will de-
scribe per feature how it is calculated.
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Relative Distance
To compute the relative distance between two cars the x- and z-position of both
cars are used. Using formula 25 the euclidian distance between the two cars is
calculated.

dist =
p

(xcar0 � xcar1)2 + (zcar0 � zcar1)2 (25)

Relative Speed
By storing the translation over the x and z axis of each car at each time-step, the
speed of both cars can be calculated. The translation in x and the translation
in z is calculated separately for each car given two sequential time-steps t � 1
and t. By dividing these translations by the size of the time-step the speed in
both directions can be calculated. The relative speed is calculated by taking the
absolute value of the di↵erence in speed in both directions between the two cars.

Relative Angle
To compute the relative angle the absolute value of the di↵erence between the
angle of both cars is used. When the relative angle is bigger than 180 degrees
the angle is subtracted from 360 (360 � relativeangle) to obtain the smallest
angle between the two cars.

Relative Direction
The relative direction is computed by first calculating the intersection as given
in figure 21 using the intersection point between two linear equations. The dis-
tance to the intersection is calculated for two consecutive time steps for both
cars. When the distance to the intersection at the last time step has become
smaller the car is driving towards the intersection point. When both cars drive
towards the intersection point a 1 is written to the feature file while when one
of the cars drives away from the intersection-point, -1 is written to the file.

Relative Rotational Speed
By storing the rotation at two consecutive time steps for both cars the relative
rotational speed can be computed. First, the rotational speed for each of the
cars is calculated separately. The absolute value of the di↵erence between the
rotational speed is then taken as the value for the feature.

Next Time-Step Relative Distance
Since the speed of each car in both x and z direction is known, the locations of
the two cars at a certain amount ahead in time can be predicted. This is done
by using the formulas xpred = vx ⇤ time and zpred = vz ⇤ time in which xpred

and zpred are the predicted x and z locations of a car and vx and vz are the
velocities in the x and z direction respectively. The variable time is the amount
of time ahead of the current time at which the prediction is made, this variable
is set to two seconds. Once the predicted locations of both cars are known, the
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same procedure to compute the feature relative distance is followed to compute
the relative distance at this future time-step.

For every time step a line is written in the feature file containing the features
explained above, every line begins with indicating the label of the class to which
the feature file belongs to. When a session ends in a crash every line in the fea-
ture file starts with a 1, otherwise every line starts with a -1. This means that
every point in the feature file is either classified as safe or unsafe no matter how
much time before the accident (if any) the data point was recorded.

6.3.2 Data-Set Preparation

As a result of the feature calculation process, one feature file per session is
produced containing all features explained above for each time-step and the
class to which the feature file belongs to. The classifier described in the next
section needs to predict if the current situation is either safe or dangerous.
The classifier is trained using the features explained in the previous section.
However, these feature files are not yet in the right format and are thereby of
di↵erent length since some sessions take longer than other sessions. In some
sessions the cars crash sooner than in other sessions while in other sessions cars
do not crash at all.

The data recorded at the end of a session is the most informative. When
an accident has happened the data recorded in the last few seconds before the
accident happened is very descriptive. Only in the beginning of a session are
the feature values belonging to the unsafe class expected to be similar to the
ones belonging to the safe class. The accident is still far away in time and
therefore none of the features will indicate that an accident will happen in the
future. When getting closer to an accident the di↵erences between feature values
for safe situations and dangerous situations is however expected to grow and a
better separation between the both classes can be obtained, this phenomenon
is described in subsection 6.5.1.

It is interesting to learn the prediction capacity of the classifier at di↵erent
times leading up to an accident. Better predictions are expected when using
data closer in time to an accident than when using data further away in time. At
the end of each feature file either an accident happened or no accident happened.
The end of a feature file is therefore most descriptive and is called the ending
point. From this ending point on di↵erent windows are created that follow each
other up in time. A window is either 0.5, 1 or 2 seconds in size and the beginning
of each window is placed 0.2 seconds after the beginning of the previous window.
This means that windows overlap each other. Each window contains the data
of each feature file that was recorded during the time the window spans.

As an example, when using windows with a span of two seconds: the first
window spans the time from zero seconds to the ending point to two seconds
away from the ending point while the second window spans a time from 0.2
seconds from the ending point to 2.2 seconds from the ending point. Here, the
ending point is the point where either an accident or nothing happened. In
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figure 23 a drawing of the example above is given.

Figure 23: Data Windows

In figure 23, at zero seconds from the ending point the first window is initi-
ated, this window ends at 2 seconds. The window contains data from all feature
files since all feature files are long enough to contain information from the end-
ing point to two seconds before the ending point. Each data point in a window
consists of the data of one feature file that describes these two seconds. There
are therefore as many data points in this window as there are feature files that
can provide data for this window. The further away in time from the ending
point the less feature files are long enough to provide data for the window be-
longing to that point in time, thus the less data points that window contains.
The classifier is trained and tested per window. Part of the data in each win-
dow is used as a test set while the other part is used for training. Moreover this
method is explained in the next section. An overview of the data preprocessing
stage is given in figure 24.

Figure 24: Data Preprocessing Pipeline

In the figure above the files Car0Data0.txt and Car1Data0.txt contain the
data for the first session. During calculation of the features both files are merged
into one file called Data0.txt (the feature file). Out of all data files and the
therefrom generated feature files the windows are created.
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6.4 Collision Risk Assessment Algorithm

During participation in tra�c, data is obtained using the localization and track-
ing system as explained in chapter 4. By abstracting features from each data
point and storing features for each data point for a certain amount of time steps
the data can be classified. Di↵erent algorithms are applicable for classification
of the data. Examples of such algorithms are hidden Markov models, paramet-
ric classifiers, and linear classifiers. However, hidden Markov models require a
predefined model of which the transitions between states need to be learned.
When using parametric methods the parameters of the distributions of the two
classes need to be learned. A linear classifier does not require such data and only
seeks to find the boundaries between two classes and is therefore a less complex
approach. A Support Vector Machine (SVM) is therefore chosen to classify the
data. This section first explains how the SVM classifier is implemented, it then
elaborates on how the classifier is trained and tested.

6.4.1 Classification by an SVM

A support vector machine is a maximum margin method, this means that it
tries to find the maximum margin when separating between two classes. The
model is defined only by a subset of the training instances called the support
vectors. The optimal separating hyperplane is the hyperplane that separates
the two classes, defined in section 6.1, with the biggest possible margin. Class
C1 is defined as dangerous situation with label r = +1 while class C2 is defined
as safe situation bearing label r = �1.

The hyperplane is defined by a vector w orthogonal to the hyperplane and
a threshold w0. When using normal linear classifiers the following condition is
su�cient for class 1 C1: g(x) > 0 and for C2: g(x) < 0. Therefore, instances
lying on the positive side of the hyperplane belong to C1 while instances on the
negative side belong to C2. The discriminant function g(x) equals wTxt + w0.
In a support vector machine however the following conditions need to be met:

wTxt + w0 � +1 for C1 (26)

wTxt + w0  �1 for C2 (27)

In the formula above xt represents an instance out of N instances ({xt}Nt=1).
The formulas above indicate that samples do not only have to be on the correct
side of the hyperplane but should also be some distance away from the hyper-
plane. The larger the margin the better the generalization of the classifier. A
figure explaining the margins and the support vectors is given in figure 25.
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Figure 25: An optimal separating hyperplane

The distance of an instance xt to the discriminant is

rt(wTxt + w0)

||w||
where r 2 {�1, 1}, this function therefore always returns an absolute value

if the instance is correctly classified. The distance should take at least the value
⇢, the formula therefore becomes

r(wTxt + w0)

||w|| � ⇢, 8t

By setting ⇢||w|| = 1 and by minimizing ||w|| a unique solution can be
obtained. From this follows that

min
1

2
||w||2 subject to rt(wTxt + w0) � +1, 8t (28)

By using the Lagrange multiplier �t equation 28 can be solved. The formula
now becomes

1

2
||w||2 � ⌃N

t=1�t[r
t(wTxt + w0)� 1] (29)

By minimizing the function with respect to w and x and by maximizing
with respect to � the solution can be found. SVM is implemented in Matlab
using the matlab implementation of LIBSVM [10].
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6.4.2 Kernel

When a linear classifier is not able to fit the data another hypothesis might
be chosen such as a quadratic discriminant function. This however increases
the space and time complexities. Kernels can be used to map data to a higher
dimension where a linear model can actually fit the data [1]. It is assumed that
the data is linearly separable given the high dimensionality of the data and does
therefore not need to be mapped to another space.

6.4.3 Training of the SVM

The SVM is trained using the windows as explained in subsection 6.3.2. It is
recommended that data is normalized before it is used for training and testing to
avoid features in greater numeric ranges dominating the ones in smaller numeric
ranges [10]. Each dimension is linearly scaled to fit within the range of [0, 1].
For training and testing 9672 feature files were used of which 4836 feature files
are used for training and 4836 are used for testing. In the training set, 4167
instances belong to class C2 and 669 belong to class C1. The test set consists of
4181 instances belonging to C2 and 655 instances belonging to C1. A penalty
factor c is determined which allows for a certain amount of the instances to
lie within the margin of the SVM during training. This penalty factor can
prevent the SVM from over-fitting the training data and therefore cause better
generalization [1]. The parameter c is determined by using the following range:
2�4, 2�2, 20, 22, .... , 216. For each value in this range, five-fold cross validation
is performed on the training set, the value of parameter c at which the best cross
validation accuracy is achieved is chosen as the value for parameter c. The best
accuracy is achieved when c is set to 4.

6.5 Results

This section displays the results of the classification algorithm. Previously the
ending point was defined as the last point in a feature file which corresponds to
the last point in time before either an accident happens or both cars ran out
of data points while nothing happened. The results given in this section are all
referring to this ending point as 0 seconds in time. It is expected that the further
away in time from the ending point the less accurate the classifier becomes.
Figure 26 shows this phenomenon. When making a prediction at the ending
point an accuracy of 0.99 can be obtained. This accuracy however decreases
when predictions need to be made further away in time from the ending point.
The drop at five seconds occurs because cars normally crash within five seconds
from the start of a new session, therefore, feature files containing accidents are
at most five seconds long. At a distance greater than five seconds to the ending
point only feature files that describe a safe situation are long enough.
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Figure 26: Accuracy on the testing dataset.

The accuracy in figure 26 however does not distinguish between the perfor-
mance in the two di↵erent classes. It is important to look at the performance
of the classifier for both di↵erent classes apart. There are far more instances
belonging to the class safe situation (class -1). If the model obtained during
training fits this class well, it is expected that the accuracy of the classifier is
high even when the model doesn’t fit the unsafe situation class (class 1) well.
It is however important that the classifier performs well on both classes. When
the classifier doesn’t perform well on the safe situation class and classifies safe
situations as dangerous, a driver might get annoyed by the system warning for
unsafe situations while this is not the case. When the classifier doesn’t per-
form well on the unsafe situation class and classifies unsafe situations as safe,
a driver will get wrong information and the system does therefore not aid the
driver in detecting dangerous situations. To evaluate the performance of both
classes separately the true positive rate (tpr) and the true negative rate (tnr)
are computed.

tpr =
tp

(tp+ fn)
(30)

tnr =
tn

(tn+ fp)
(31)

In formula 30 the equation to compute the true positive rate is given. In
this formula tpr represents the true positive rate while tp is the amount of true
positives during testing and fn represents the amount of false negatives during
training. In formula 31 the equation to compute the true negative rate is given.
Here tnr is the true negative rate and tn represents the amount of true negatives

56



during training. The variable fp denotes the amount of false positives during
training.

Figure 27 shows the true negative rate. It is expected that this rate stays
constant since the feature values do not change much. In a safe situation the
values stay about the same. It does however fluctuate and does not go up to
1.0 accuracy completely since some instances belonging to the safe situation
class are still classified as belonging to the unsafe situation class. This can
be explained by the fact that at some points in time the two cars are almost
causing an accident and the recorded features values are thus very similar to the
feature values that are recorded just before an accident. As explained before,
for automation reasons a session is only classified as dangerous when the two
cars hit each other in the end since this is undoubtedly a dangerous situation.
However, when the two cars do not hit each other they can still get very close
to each other and cause feature values that are similar to the ones belonging to
the ones of an accident. These instances are therefore causing a false positive.
This false positive is actually a true positive (a dangerous situation occurred)
but is not classified as such since it belongs to a session in which the cars did
not crash. This therefore causes the true negative rate to fluctuate.

Figure 27: True Negative Rate

The true positive rate is given in figure 28. From this figure it can be seen
that the true positive rate does decrease as the window used for classification is
further away in time from the ending point. Just before the accident happens,
dangerous situation are detected with a true positive rate of 0.98, while at 5
seconds before the accident the rate has decreased to 0.7.
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Figure 28: True Positive Rate

Figure 28 also shows fluctuations in the true positive rate. It is expected
that the further away in time from the ending point the worse the predictive
capacity of the classifier becomes. The fluctuations in accuracy are caused due
to false negatives. As explained before, none of the sessions generated by the
simulator are of the same length. In most cases, the ones in which no accidents
happen are longer than the ones in which accidents happen. In some cases, when
no accidents happen, cars can still get dangerously close to each other. This,
however, does normally not happen at the end of a session but a few seconds
before the end, this can cause the accuracy to decrease and then grow again.

An example of such a session is one in which two cars approach the crossroad
but still have a respectable distance between each other. Once both cars have
entered the crossroad they pass each other with only few centimeters distance,
after both cars leave the crossroad the distance between the two cars gets bigger
again. Once both cars ran out of data points to follow (the ending point) the
session will stop. The situation described in the example above happens mostly
between 3 and 4 seconds towards the ending point. The windows that cover
this part therefore contain instances that belong to the class safe situation that
have values that are close to the values of instances belonging to the unsafe
situation class. It is therefore likely that after training a model is obtained that
classifies the instances belonging to the unsafe situation as belonging to the
class safe situation causing the true positive rate to drop. After 4 seconds this
phenomenon happens less often causing a di↵erent model and the true positive
rate to increase again.
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6.5.1 Class Dispersion

As explained before in subsection 6.3.2 it is expected that the two classes are less
well separable using data further away in time from the ending point than when
using data closer to the ending point. The figures below show the dispersion of
this data at di↵erent times measured from the ending point.

(a) Dispersion at 0 seconds to ending
point

(b) Dispersion at 1.8 seconds

(c) Dispersion at 3.6 seconds (d) Dispersion at 5.4 seconds

Figure 29: Dispersion of the two principle components with the highest variance
at di↵erent times towards the ending point.

To show this phenomenon principal component analysis has been performed
on the data in di↵erent windows of di↵erent time steps. The two features with
the highest variance are displayed in figure 29 at four di↵erent points in time.
The graphs do indeed show that the two classes become less well separable.
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Chapter 7

7 Discussion & Future Work

The work described in this thesis presents a framework that implements a colli-
sion warning system. In the introduction the following research questions were
asked:

1. Can a SVM predict upcoming dangerous situations?

2. If the answer on question 1 is positive: What is the predictive capacity of
the classifier using the 2 second rule?

The results in section 6.5 show that an SVM can predict an upcoming ac-
cident and therefore a dangerous situation. The predictive power does, as ex-
pected, decrease as predictions are made further away in time from an accident.
As explained in the introduction, the 2-seconds rule is used by governments to
give an indication to the driver of the minimal distance that a car should keep
to a car driving in front of it. Two cars should pass by the same static landmark
with at least a two seconds time di↵erence, this gives the drivers enough time to
react on any sudden changes. At two seconds before the accident happens, the
algorithm can predict the upcoming accident about 94 percent of the time (true-
positive rate at 2 seconds is 0.94). Too many false alarms can lead to annoyance
of the driver, a high true-negative rate is thus important. The true-negative
rate is about 0.98 and stays rather constant. This result is expected because
unlike a dangerous situation, a safe situation does not have to be predicted.
Whenever there is no accident in the near-future, each time step is classified as
safe.

The risk assessment algorithm is trained and tested by using data created by
a simulator. The format of this data is similar to the data that can be obtained
in the real-world. It is likely that the algorithm can perform with about the
same accuracy in the real-world as it does when using simulator data given
that the data obtained by the sensors is noise free. This is however never the
case and the performance of the algorithm is expected to decrease as the noise
in the sensors increases. Di↵erent methods exist that can be used to obtain
real-world training and testing data. One method is explained in chapter 4 of
this thesis, however, image sequences can also be used to obtain information
about dangerous situations and safe situations. These image sequences can be
extracted from dashboard cameras or tra�c surveillance cameras. By using
image processing techniques the required features can be obtained from the
image sequences. Another method is the use of crash reports created by the
police. These reports describe accidents in detail and the features can possibly
be extracted from a number of these reports. Both the use of images or crash
reports are time consuming methods to implement and it was considered more
important to assess the performance of the collision risk assessment algorithm
using simulated data before implementing such data retrieval methods.
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7.1 Human Factors

Human factors are important to bear in mind when developing a driver warning
system. This thesis only focused on the implementation of such a system and
one of the next steps should be the consideration of human factors. A safety
warning system should be of aid to the driver and should not distract the driver
while driving. False alarms caused by faulty sensor measurements can cause
drivers to have an aversion to the safety warning system.

Ben-Yaacov et. al. state in [7] that there are two human factor issues that
need to be kept in mind when developing a safety warning system. The first
issue consists of the interface between the safety warning system and the driver,
the second issue involves an analysis of the interaction between the driver and
the safety warning system when both are capable of error. Their paper states
that both a visual interface and an auditory interface are e↵ective to some
degree. The influence of a safety warning system was tested by evaluating
the distance that drivers maintain to other drivers with and without using the
warning system. They found that the use of a more reliable system will improve
safety when the driver performance with the system increases. They also found
that the safety warning system can help drivers to maintain proper distance to
other cars.

Parasuraman et. al. state in [36] that poorly designed warning systems in
aircraft encourages a pilot to not use the system due to a high false alarm rate
and that this phenomenon is also apparent among drivers. They state that
the need for an early detection need to be balanced with the avoidance of false
alarms to prevent nuisance by the warning systems.

In [45], Seiler et. al. state that a collision warning system should be accepted
by the driver. They state that an increase in warning frequency might desensitize
the driver and that the driver might ignore future warnings. Thereby, sudden
warnings can cause the driver to get distracted by the warning system during
critical situations. Instead of giving out random warnings, a gradually changing
interface should be used to get the driver acquainted with the warning system.
Also, a safety warning system should adapt to the driver. A warning system
fit for a passive driver will give many warnings to an aggressive driver which,
as mentioned above, will desensitize the driver. A warning system fit for an
aggressive driver might not alarm a passive driver in time.

7.2 Communication

Communication e↵ectively aids the collision warning system by increasing the
range at which moving objects can be detected. Moving objects that would
normally have been invisible to a tra�c user are now shared over a network.
Communication can however also be used for malicious purposes. A tra�c user
can broadcast malicious data that indicates the locations of moving objects that
do not exist. This will cause the safety warning system to give false alarms.
When investigating a crash between two tra�c users, a communication log can
be used. However, a fake position of a tra�c user can be broadcasted to a↵ect
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the log on all tra�c users involved in the accident, therefore manipulating the
outcome of the investigation. More scenarios are possible in which breaking in on
the communication network can be appealing. It is therefore likely that people
are not willing to communicate data to others. It is thus important to increase
the safety of such communication networks. Golle et. al. describe an approach
in [18] to evaluate the validity of data broadcasted in a VANET. When receiving
data, a node (such as a tra�c user) tries to find an explanation for the received
data keeping in mind that malicious nodes might be apparent. When one of
the explanations of the data is consistent with the node’s model of the VANET
it will give this explanation a higher score. Yan et. al. describe a VANET
security system in [51]. Their system uses a radar system to detect neighboring
vehicles to confirm their broadcasted location. They furthermore assume that
a majority of the tra�c users is honest and broadcast their measured location.

7.3 Future Work

The framework described in this thesis is developed and tested at di↵erent
stages: the communication part, the localization and tracking part and the
collision risk assessment algorithm. At the moment of writing, the localization
and tracking part, and the communication part are integrated. The collision
risk assessment algorithm does however still rely on data obtained from the
simulator. A next step towards the safety warning system is the integration of
all parts into one system. Due to time limitation this was not possible during
this project. When the system proves to be e↵ective on the test robots it can
be installed and tested on other transportation methods such as cars.

The e↵ects of the system on human drivers should also be determined. After
initial testing on the system on cars it should be evaluated how warnings should
be given to the tra�c users. The system can learn to adjust to the tra�c user
and give appropriate warnings depending on the vehicle and the person itself.

The safety warning system should become available for multiple types of
vehicles, therefore, size and ease of installation is of concern. Not all tra�c
users can bear a laser scanner. Also, the present computing power should be
packaged to fit small vehicles or even pedestrians. Other than the user interface,
the system should be as invisible as possible. Therefore, as a last step the system
should be packaged as small and as universal as possible.
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