
Episodic Control with

Drift Compensation

Master's thesis, Computing Science

January 14, 2019

Student: Michael L. LeKander

Primary supervisor: prof. dr. M. Biehl, Computing Science

Secondary supervisor: dr. M.A. Wiering, Artificial Intelligence



Abstract

The ability to learn to act in complex interactive environments is a vital com-
ponent of human intelligence. Reinforcement Learning is a rapidly growing area
of research which attempts to produce agents which interact in an environment
(e.g. Atari games) to maximize reward (e.g. the final game score). While
"deep" approaches have been highly successful in this domain, they have the
drawback of requiring millions of frames of experience in order to learn. Model
Free Episodic Control is a recently proposed algorithm that addresses this issue
by using nearest-neighbors regression. This algorithm has the desirable prop-
erty of “immediate one-shot learning”, allowing it to quickly latch onto successful
strategies.

In this research, we make three primary additions to the existing work. First,
we devise an efficient online approximate nearest neighbors algorithm, which is
highly important for the overall efficiency of the algorithm. Second, we explore
using a wider spectrum of local regression techniques, of which nearest-neighbors
regression is just a single example. Finally, we explore the use of explicit drift
compensation, to account for changes in the underlying return function.

We ultimately produce the reinforcement learning algorithm termed Episodic
Control with Drift Compensation. Through a series of experiments on a suite of
five classic Atari 2600 games, we demonstrate that this novel algorithm makes
improvements above the state-of-the-art, particularly in expanding the long-
term capacity of the agents.



Acknowledgements

To my advisors, (the other) Michael and Marco, whose advice and supervision
have been truly invaluable.

To all my teachors and mentors, who instilled in me a deep love for learning,
and eventually, a love for deep learning.

And most of all, to Babet and all my other loved ones, who never gave up
on me, and who never passed up an opportunity to persistently ask me how my
thesis was going.



Contents

1 Introduction 4
1.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Approximate Nearest Neighbors . . . . . . . . . . . . . . 6
1.2.2 Local Regression . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 Drift Compensation . . . . . . . . . . . . . . . . . . . . . 7

2 Reinforcement Learning 8
2.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Markov Decision Processes . . . . . . . . . . . . . . . . . 9
2.1.2 Agent-Environment Interaction . . . . . . . . . . . . . . . 10
2.1.3 Return and γ . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Policy and Value . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Comparison with Other Machine Learning Disciplines . . . . . . 11
2.3 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Deep Q Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Model-Free Episodic Control . . . . . . . . . . . . . . . . . . . . 15
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Efficient Nearest Neighbors Search 19
3.1 Batch Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Brute Force Search . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Locality-Sensitive Hashing . . . . . . . . . . . . . . . . . . 20
3.1.3 Neighbor Graph Search . . . . . . . . . . . . . . . . . . . 21
3.1.4 Hierarchical Space Partitioning . . . . . . . . . . . . . . . 21

3.1.4.1 k-d Tree . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4.2 Random Projection Tree . . . . . . . . . . . . . 22
3.1.4.3 Mean Tree . . . . . . . . . . . . . . . . . . . . . 22

3.2 Online Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Online Mean Trees . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 K-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 KForest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.3 Spill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Labels and Data Storage . . . . . . . . . . . . . . . . . . . 29
3.3.5 Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.6 Duplicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



3.3.7 KForest Search . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.7.1 Prototype Distance Search and Plane Distance

Search . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.7.2 Leaf Graph Search . . . . . . . . . . . . . . . . . 32

3.4 SIFT Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 SIFT Benchmark Results . . . . . . . . . . . . . . . . . . 34
3.4.2 Ms. Pacman Benchmark Results . . . . . . . . . . . . . . 36

3.5 MFEC Pacman . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.1 MFEC Pacman Results . . . . . . . . . . . . . . . . . . . 39

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Local Regression 42
4.1 Weighted Square Error . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Weighting Function . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Local Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Kernel Regression . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Locally Weighted Regression . . . . . . . . . . . . . . . . 48

4.4 Alternate Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . 48
4.6 MFEC Pacman . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6.1 MFEC Ms. Pacman Results . . . . . . . . . . . . . . . . . 49
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Drift Compensation 52
5.1 Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Leave-One-Out Drift Compensation . . . . . . . . . . . . . . . . 54

5.2.1 Ascending and Descending Error Ranking . . . . . . . . . 56
5.3 Episodic Control with Drift Compensation: Thresholds . . . . . . 57

5.3.1 Results: ECDCd (Descending Drift) . . . . . . . . . . . . 59
5.3.2 Results: ECDCa (Ascending Drift) . . . . . . . . . . . . . 60

5.4 Episodic Control with Drift Compensation: Exploration . . . . . 62
5.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Full Atari Evaluation 65
6.1 Full Atari Experiments . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Ms. Pacman . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.1.2 Space Invaders . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.3 Qbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.4 Frostbite . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.5 River Raid . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Rank Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Conclusion 74
7.1 Future Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1.1 KForest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.1.2 Local Regression . . . . . . . . . . . . . . . . . . . . . . . 76
7.1.3 Drift Compensation . . . . . . . . . . . . . . . . . . . . . 76
7.1.4 Episodic Control . . . . . . . . . . . . . . . . . . . . . . . 76

2



A Arcade Learning Environment Game Descriptions 83
A.1 Ms. Pacman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
A.2 Space Invaders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.3 Qbert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.4 Frostbite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.5 River Raid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B Approximate k-Nearest Neighbors Algorithms 89

3



Chapter 1

Introduction

Every day, humans interact with their environment in accordance to their needs
and desires. The underlying algorithm guiding human behavior seems to have
the important property of being highly adaptable: the same mental systems
that one uses to learn how to use a new text editor are also employed when
learning how to cook a new dish, implement a new algorithm, or play a new
video game. To write a document, one activates muscle groups to cause their
fingers to move in a coordinated fashion so as to press the desired keys on a
keyboard. This behavior would be entirely foreign to a feral human, yet we
have learned how to perform these actions to the point where we can do so
without conscious thought dedicated to the process. It is clear that humans are
able to learn how to act in environments which could not have been foreseen a
priori. This ability to learn to act in complex interactive environments is a vital
component of human intelligence.

The field of machine learning investigates formal models of learning through
the development and application of algorithms capable of autonomously im-
proving performance on a given task. These machine learning tasks generally
fall into a handful of broad categories based on the availability of data and the
type of desired output Sutton and Barto (1999):

1. supervised learning, which outputs labels according to a fixed rule from
data which has been labeled by a teacher;

2. unsupervised learning, which learns latent structures and patterns from
unlabelled data;

3. and reinforcement learning, which chooses actions to interact with an en-
vironment and only provides data in the form of states and rewards.

In this thesis, we primarily focus on algorithms which address the reinforcement
learning problem, although we do briefly touch on supervised learning for some
sub-problems which are relevant for reinforcement learning.

1.1 Reinforcement Learning
Reinforcement learning (Wiering and van Otterlo, 2012) defines a set of ma-
chine learning problems in which an agent interacts with an environment so as

4



to maximize an external reward. Through a process of exploration and gener-
alization, the agent learns to perform a sequence of actions which results in the
highest cumulative reward (the return) for the agent. One example of a prob-
lem which fits the reinforcement learning paradigm is the task of playing the
classic video game Ms. Pacman in a way that maximizes the score achieved by
the agent (Bom et al., 2013). Indeed, this is an environment which we use as a
testbed throughout this thesis. Examples of other reinforcement learning prob-
lems include 3D environment navigation (Blundell et al., 2016), single-player
video games (Mnih et al., 2015; Hessel et al., 2017; Lillicrap et al., 2015), multi-
player board games (Tesauro, 1995; Silver et al., 2016, 2017), and autonomous
helicopter control (Abbeel et al., 2007).

There are a variety of different approaches that can be used to solve this
problem domain. Planning-based techniques have been successfully applied
in some domains, typically employing search-based algorithms. For example,
alpha-beta search has classically been used to produce professional-level play-
ers in some combinatoric board games, such as in the game of chess (Camp-
bell et al., 2002; Tord Romstad, 2018). Planning-based approaches require an
exact (or incredibly accurate) model of the environment to produce effective
results. However, this is an additional requirement above the general reinforce-
ment learning paradigm, which (in full generality) does not assume that the
agent has a priori access to or knowledge of the environment. Additionally, it
is intractable to produce a suitably accurate model for some (particularly real-
world) environments. We note that model-based methods attempt to learn this
environment model from experience, but this is still an open field of research.

Another technique for addressing reinforcement learning problems involves
estimating the “value” (the expected return) of a state. If an agent can ac-
curately estimate the cumulative reward it will receive after taking any given
action from a given state, then it can optimally act by simply selecting the
action with the highest estimated return from the current state.

In environments with discrete state and action spaces, it is possible to keep
a large table to store an estimate of the future return after taking each action
from each state, producing so-called tabular approaches. However, it is not
feasible to create such a table for environments with large spaces (because of
insufficient memory) or continuous spaces (because it is impossible to enumerate
all possibilities). Another issue is that each state is considered entirely separate
from each other: the value of one state is considered entirely independently of
those from all other states, regardless of how much those two states have in
common. Using tabular methods, a state from a game of Ms. Pacman would be
considered entirely independently from a state with only a single pixel difference.
If an agent discovered a useful strategy from one state, it would not be able to use
this information to update its prediction about the other one. While this level of
skepticism is perhaps warranted in some environments, almost all environments
contain regularities and abstractions over which a skilled agent should learn to
generalize.

Value approximation methods allow the agent to generalize across states
through the use of a regression model (e.g. linear, neural network, or k-nearest
neighbor regression) to produce real-valued outputs which estimate the value
function. In particular, neural network-based value function approximators
have recently been used to great success, achieving state-of-the-art performance
across a wide variety of environments (Mnih et al., 2015; Silver et al., 2017; Lill-

5



icrap et al., 2015; Abbeel et al., 2007). However, although neural networks have
been shown to be highly flexible as value function approximators, they have the
unfortunate drawback of being data-inefficient due to their reliance upon slow
gradient-based updates. Thus, agents employing such approaches are unable to
quickly latch onto and exploit new strategies which are advantageous.

The recently-proposed Model-Free Episodic Control (MFEC) algorithm ad-
dresses this issue through an approach inspired by instance-based learning of
episodic memory in the hippocampus (Blundell et al., 2016). Specifically, this
algorithm uses a variant of k-nearest neighbor regression to estimate the value
function. This regression model has the advantage of rapidly adapting to new
strategies for two reasons: firstly it can recall exact instances stored in its mem-
ory upon encountering an identical state, and secondly it does not require slow
gradient-based steps to interpolate predictions for previously-unseen states. We
describe this algorithm in more detail in Section 2.5.

1.2 Research Questions
In this thesis, we investigate the MFEC algorithm and explore the consequences
of various design choices and improvements to the core algorithm. We explore
three primary areas: the usage of an approximate nearest neighbors algorithm,
the usage of various local regression techniques, and the usage of drift compen-
sation.

1.2.1 Approximate Nearest Neighbors
In order to obtain reasonable performance, MFEC agents employ an approxi-
mate nearest neighbors data structure, which is not guaranteed to return the
exact closest items to the query point. However, the details of this data struc-
ture were not specified in the original paper, and neither were the consequences
of various accuracy settings.

Furthermore, most popular approximate nearest neighbors data implementa-
tions assume a static dataset and have significant construction times. However,
the MFEC algorithm incrementally adds new elements to the dataset as more
experience is gathered. Thus, we would ideally want an online data structure
capable of adding and removing items without having to fully rebuild the entire
data structure.

In this direction, we formulate the following research questions:

• Can an efficient approximate nearest neighbors data structure be defined
which supports online addition and deletion?

• How does the loss of accuracy incurred by using these approximate data
structures impact the performance of the MFEC agent on the reinforce-
ment learning problem?

These questions will be addressed in Chapter 3.

1.2.2 Local Regression
The MFEC agent uses simple k-nearest neighbor regression to interpolate unseen
states, which simply returns the average label of the nearest neighbors to the

6



state. However, this is just the simplest of a family of regression methods known
as local regression.

Simple k-nearest neighbor regression considers the contribution of each neigh-
bor equally. However, local regression methods can be extended to use a kernel
function which weighs the contribution of a neighbor’s label according to how
close that neighbor is to the query point. Thus, such a kernel would cause closer
neighbors to be considered more important than further neighbors.

Additionally, simple k-nearest neighbor regression simply takes the average
of the (weighted) labels of its neighbors. This can be seen as fitting a constant
model to the (weighted) local data. However, more complex local models (e.g.
a linear model) could be employed to better match the local data distribution,
thus making more accurate predictions.

In this direction, we formulate the following research questions:

• Can alternate kernel weightings improve the performance of the agent
above that of the constant weighting of simple k-nearest neighbor regres-
sion?

• Can linear local models improve the performance of the agent above that
of the constant local model of simple k-nearest neighbor regression?

These questions will be addressed in Chapter 4.

1.2.3 Drift Compensation
Although MFEC agents learn to quickly exploit new strategies, they seem to
have problems generalizing in the long run. We hypothesize one cause of this
phenomenon is due to MFEC agents having no ability to "forget" experiences
which are no longer relevant: once a MFEC agent obtains experience from a
state, it retains that exact information. Although there is a mechanism for
deleting old items when the maximum memory size is exceeded, this is not
responsive as is desired for sample-efficient agents.

Thus, we look towards the field of concept drift from online learning as
inspiration to identify when memories should be deleted. Ideally, as the agent
learns new strategies which maximize reward in the environment, the agent
should be able to actively forget old experiences which no longer align with
the agent’s knowledge and abilities. However, just because an experience is
old does not mean it should automatically be discarded: it is possible that
some experiences should be retained while other newer experiences should be
discarded.

In this direction, we formulate the following research questions:

• Can a drift compensation algorithm be designed to only “bad” evict expe-
riences while retaining “good” ones, based on a metric other than age?

• Can this drift compensation improve the performance of the agent?

• Can this drift compensation serve as a form of targeted exploration?

These questions will be addressed in Chapters 5 and 6.

7



Chapter 2

Reinforcement Learning

Reinforcement learning is an important subfield of machine learning where an
agent learns how to take actions in an environment so as to maximize its cumu-
lative reward (known as its return) (Wiering and van Otterlo, 2012).

An agent is situated in an environment and chooses a single action at each
time-step. After an action is chosen, the environment gives the agent a reward
(which can be positive, zero, or negative) dependent on the agent’s action and
environment’s current state. The environment also simultaneously transitions
the agent to a new state, again dependent on the chosen action. The goal of
the agent is to choose actions which maximize the total reward it receives.

The reinforcement learning paradigm can and has been applied across mul-
tiple domains. While we focus primarily on classic Atari video games in this
thesis, reinforcement learning algorithms have been successful in 3D environ-
ment navigation (Blundell et al., 2016), single-player video games (Mnih et al.,
2015, 2016; Hessel et al., 2017), multi-player board games (Tesauro, 1995; Silver
et al., 2016, 2017) and autonomous helicopter control (Abbeel et al., 2007).

In the general reinforcement learning problem, agents should be able to
act in environments with discrete or continuous actions, or any combination
thereof. In this thesis, we only consider environments with discrete actions.
For Atari games, agents choose the vertical and horizontal directions of the joy-
stick (Up/Neutral/Down and Left/Neutral/Right, respectively). Some games
also utilize the action button (Neutral/Pressed), for a total of 18 possible ac-
tions. However, some games do not respond to certain button presses, so the
18 possible actions is simply an upper bound.

An agent may not have perfect information about the current state, and
must rely on observations of the current state. In the Atari environment, for
example, the agent does not know the exact state of the game, but must rely
only on the pixel values displayed on the screen. Observations in the Atari
environment generally map one-to-one to the current state, as explained in the
following section.

8



2.1 Formulation

2.1.1 Markov Decision Processes
Reinforcement learning problems are formally described in terms of a stochastic
Markov Decision Process (MDP), which are defined as the 4-tuple (S,A, p, γ),
where:

• S is the set of all possible states,

• A is the set of all possible actions,

• p(st+1, rt | st, at) defines the probability of transitioning to state st+1 ∈ S
with reward rt ∈ R after taking action at ∈ A from state st ∈ S,

• and γ ∈ [0, 1] is the discount factor, which determines how important
immediate rewards are in comparison to distant ones.

We can slightly simplify this nation for deterministic environments, where
the transitions and rewards are uniquely determined by the current state and
actions. By using functional notation, we thus denote a deterministic MDP with
the 5-tuple (S,A, T, r, γ), where:

• S, A, and γ are identical to that of the stochastic MDP definition,

• T : S ×A→ S is the transition function,

• and r : S ×A→ R is the reward function.

Since we consider only deterministic environments for the remainder of this
thesis, we will use the term MDP to refer strictly to deterministic MDPs.

A Partially Observable Markov Decision Process (POMDP) is a variant of
an MDP where the agent does not have full knowledge of the exact state of
the environment, but instead perceives the environment via observations. This
notion is formalized by the 7-tuple (S,A, T, r,O, φ, γ), where:

• S, A, T , r, and γ are identical to that of the MDP definition,

• O is the set of possible observations,

• and φ : S → O is the observation function.

For example, when playing an Atari game, the state of the game is uniquely
determined by the contents of the machine’s random access memory (RAM).
However, an agent only has knowledge of the pixels on the screen, not the exact
contents of the RAM. In Atari environments, the set of observations O is the
set of all possible values for the 160× 210× 3 RGB pixels, and the observation
function φ maps RAM states to a single image.

As mentioned previously, the screen images of Atari games (which the agent
can observe) generally map one-to-one to the contents of RAM (the true state of
the environment). However, there are some elements which cannot be uniquely
determined from a single screen image, such as the direction of movement and
behavior of enemies in games such as Ms. Pacman, Qbert, and Frostbite.

Additionally, games where the player controls the camera are similarly prone
to having multiple true states mapping to a single static image. This includes

9



three-dimensional games, such as Battlezone or Robotank, as well as games
which feature exploration through a series of rooms, such as Montezuma’s Re-
venge or Pitfall. However, none of the environments we evaluate in this thesis
use an agent-controlled camera.

2.1.2 Agent-Environment Interaction
At any given time step, the environment is situated in a single state, st. An
agent interacts with the environment by selecting an action from the action set,
at ∈ A. The environment provides the agent with reward rt = r(st, at), and
transitions the current state to state st+1 = T (st, at).

Depending on the type of environment, this action-selection process is then
repeated until a terminal state is reached (episodic environments) or ad infini-
tum (continuous environments1). An episodic environment can be thought of
as a special case of a continuous environment, where the terminal state always
transitions to itself with 0 reward.

2.1.3 Return and γ

The return, Rt, describes the discounted future reward during a run after a
given time step:

Rt =

∞∑
i=0

γirt+i. (2.1)

For episodic environments, this is identical to:

Rt =

T−t∑
i=0

γirt+i, (2.2)

where T is the maximum time step of the episode.
Care should be taken not to confuse the return with the reward. The reward

(denoted by lower-case r) is the feedback given to the agent from a single time
step, whereas the return (denoted by upper-case R) is the discounted result
from all future time steps.

Larger values of the discount factor, γ, cause the agent to be more concerned
with the value of future rewards, whereas lower values cause the agent to care
more about immediate rewards. In the extreme case of γ = 0, the agent only
attempts to maximize the reward for the very next time step.

The discount factor is necessary for continuous environments to be tractable,
since it keeps future rewards finite. However, it is also commonly used for
episodic environments, since limiting the reward horizon has proven to be ben-
eficial in assigning credit to action choices.

2.1.4 Policy and Value
An agent’s policy π : S → A describes what action an agent takes when it
encounters a given state. The state-value function V π : S → R (also known as
the V -function) describes the expected discounted return given a specific policy:

1Not to be confused with environments with continuous action- or state-spaces.

10



V π(s) = Eπ
[
Rt | st = s

]
. (2.3)

Similarly, the action-value function Qπ : S × A → R (also known as the
Q-function) describes the expected discounted return if an action is taken (and
then the policy is followed thereafter):

Qπ(s, a) = Eπ
[
Rt | st = s, at = a

]
. (2.4)

Note that V π(s) = Q(s, π(s)); that is, the V -function describes the on-policy
behavior of the agent. The Q-function, on the other hand, can be used to
describe off-policy behavior.

In reinforcement learning, the formal goal of the agent is to devise a policy
which maximizes the value function for each state. The optimal policy (the one
which maximizes the expected return) is typically denoted π∗, and the optimal
value functions are denoted by V ∗ and Q∗.

2.2 Comparison with Other Machine Learning Dis-
ciplines

Reinforcement learning problems are distinct from other well-explored problem
types in machine learning, such as unsupervised learning and supervised learn-
ing. Unsupervised learning problems ask the system to discover latent features
of a dataset without explicitly-defined labels. Identifying clusters in or reduc-
ing the dimensionality of an unlabeled dataset are examples of unsupervised
learning problems. Given that reinforcement learning does make use of a type
of label (in the form of rewards from the environment), it is clearly a different
type of problem.

In supervised learning problems, the goal is to learn from a set of labeled
data so as to correctly predict future unlabeled data. For example, a supervised
learning problem may ask to predict the breed of a dog given an image of the
animal or the selling price of a house given its property and demographic infor-
mation. In any supervised learning problem, the system has immediate access
to the “correct” label for all inputs during training. In contrast, feedback for
reinforcement learning problems is given only through the indirect mechanism
of reward, and typically does not include access to demonstrations of expert be-
havior. Thus, to solve general reinforcement learning problems the agent must
be able to learn from its own behavior.

Further, neither supervised nor unsupervised learning problems typically
involve a trade-off between exploration and exploitation, which is an important
consideration in reinforcement learning.

2.3 Environments
In this thesis, we evaluate our results on the Atari environment, using a collec-
tion of five different Atari games sampled from the Arcade Learning Environ-
ment (Bellemare et al., 2013), as implemented by the OpenAI Gym (Brockman
et al., 2016). We chose these games to be the same as those evaluated in (Blun-
dell et al., 2016), namely Ms. Pacman, Space Invaders, Frostbite, Qbert, and
River Raid.

11



(a) Ms. Pacman (b) Space Invaders (c) Qbert

(d) Frostbite (e) River Raid

Figure 2.1: In-game screenshots from the Atari 2600 versions of environments
used in this thesis.

Various environments challenge agents in different ways. One rough taxon-
omy of environments, proposed by (Bellemare et al., 2016), organizes the suite
of games from the Arcade Learning Environment based on two criteria: the im-
portance of exploration and the type of reward schedule. Of the environments
we explore in this thesis, three fall under the category of “hard exploration” but
“dense reward” (namely, Ms. Pacman, Frostbite, and Qbert), with the other two
falling under “easy exploration” with “human-optimal” rewards (Space Invaders
and River Raid).

We display screenshots from each of these games in Figure 2.1. We give
a basic description and point out some salient features of each of these five
environments in Appendix A.

2.4 Deep Q Networks
Mnih et al. (2013) introduced the Deep Q Networks (DQN) algorithm, which
uses a neural network to estimate the Q-function. This algorithm showed
promising results on a set of 7 classic Atari 2600 games. One defining character-
istic of DQN is that it uses an experience replay buffer to store prior experience.
This replay buffer stores transition tuples: the previous state, the action taken
from that state, the reward received after taking that action, and the next state
after taking that action. During each training phase, the network is trained on
a minibatch of samples from this replay buffer.

12



Algorithm 1 Deep Q Networks (DQN)

1: Initialize replay memory, D
2: Initialize the Q-function, a CNN with random weights, θ
3: Initialize the target Q-function, a CNN such that initially θ− = θ
4: Let φ be some state preprocessing function
5: stepCount ← 0
6: for episode← 0, 1, 2, . . . ,numEpisodes− 1 do
7: Observe the initial screen image, o0
8: s0 ← φ(o0)
9: for t← 0, 1, 2, . . . , T − 1 do

10: if rand() < ε then
11: at ← a random action
12: else
13: at ← argmaxaQθ(st, a)

14: Take action at
15: Observe immediate reward, rt, and resulting screen image, ot+1

16: st+1 ← φ(ot+1)
17: Store the tuple (st, at, rt, st+1) in D
18: Sample a random minibatch, (sj , aj , rj , sj+1), of transitions from D
19: Qtarget,j ← rj + γmaxa′ Qθ−(sj+1, a

′)
20: errorj ← max(−1,min(1, Qtarget,j −Q(sj , aj)))

2

21: Perform gradient descent on errorj with respect to θ
22: stepCount ← stepCount+ 1
23: if stepCount%C == 0 then
24: θ− ← θ

The experience replay buffer helps to avoid issues caused by training updates
which contain highly correlated inputs, which is common in most reinforcement
learning problems where each individual action usually only has a minor effect
on the environment. This high degree of correlation breaks assumptions made
by many regression models, causing naive neural network-based approaches to
diverge and making the agent’s policy unstable. Sampling from an experience
replay buffer helps to avoid these correlations and makes agent training much
more stable.

The DQN algorithm uses a convolutional neural network (CNN, (LeCun
et al., 1995)) as a function approximator to predict Q-values based on the 160×
210-pixel screen images. These images are first subjected to a preprocessing
step, which scales the image such that the input to the network is a 84-by-84
greyscale image. Instead of using a separate network for each possible action,
DQN uses a single network whose final layer has a separate output for each
possible action.

At each time step, the agent completes a forward pass of the input through
its network, obtaining a list of predicted Q-values. The agent uses these values to
select an action according to an epsilon-greedy strategy. After each environment
interaction, the agent stores the observed transition (the 4-tuple of previous
state, action, reward, and next state) in its experience replay buffer. The agent
then samples the replay buffer to obtain a minibatch on which to train. DQN

13



uses one-step Q-learning as a target value for training:

Qtarget(s, a) = rt + γmax
a′

Q(s′, a′).

Finally, the RMSProp algorithm (Tieleman and Hinton, 2012) is used to update
the network according to the gradient of the temporal difference errors with
respect to the network weights:

error = Qtarget(s, a)−Q(s, a).

It should be noted that the magnitude of the gradient is “clipped", restricting
all positive rewards to be 1, and all negative rewards to be −1 (zero rewards
remain at 0).

Another feature of DQN is that it uses a frame skip parameter to repeat an
action N times before the agent decides on a new action. Mnih et al. (2013)
state their usage of the frame-skip technique is motivated by computational con-
cerns2, some evidence suggests that this frameskip parameter itself may assist in
learning Atari games by shrinking the effective reward horizon (Braylan et al.,
2015).

In the follow-up paper (Mnih et al., 2015), the DQN algorithm is improved
upon in two primary ways. Firstly, this paper introduces the “target network":
a different set of network parameters which are updated at a slower rate than
that of the active network. The target network is only used to compute the
target value for the error term when training the network. This increases the
stability of training by holding the target values steadier across iterations. The
parameters of the active network are copied over to the target network every
10,000 iterations.

The second improvement found in this paper is that the error term is explic-
itly clipped, in addition to the aforementioned reward clipping. This clipped
error term is thus bounded between the range of −1 and 1:

error′ = max(−1,min(1, Qtarget(s, a)−Q(s, a))).

Both of the reward and error clipping effectively limit the potential range of
the gradients, thus avoiding large updates which risk causing the network to
diverge.

Together, these two papers helped usher in the modern era of (deep) re-
inforcement learning. Since then, more recent improvements have been pro-
posed, such as Double DQN (DDQN, van Hasselt et al. (2016)), Prioritized
Experience Replay (Schaul et al., 2015), Dueling Networks (Wang et al., 2016),
Asynchronous Advantage Actor-Critic (A3C, Mnih et al. (2016)), Distributional
RL (Bellemare et al., 2017), and Noisy Networks (Fortunato et al., 2017). Hes-
sel et al. (2017) integrated these improvements (sans A3C) into a single agent,
considerably improving agent performance across a large selection of Atari
games. The recent Deep Quality-Value (DQV) Learning algorithm simulta-
neously learns the state value function alongside the state-action value function
to accelerate training (Sabatelli et al., 2018).

2“Since running the emulator forward for one step requires much less computation than
having the agent select an action, this technique allows the agent to play roughly N times
more games without significantly increasing the runtime."

14



2.5 Model-Free Episodic Control

Algorithm 2 Model-Free Episodic Control (MFEC)

1: Initialize KNN buffer for each action, buffa
2: Let φ be some state preprocessing function
3: for episode← 0, 1, 2, . . . ,numEpisodes− 1 do
4: Observe the initial screen image, o0
5: s0 ← φ(o0)
6: for t← 0, 1, 2, . . . , T − 1 do
7: if rand() < ε then
8: at ← a random action
9: else

10: at ← argmaxaQuery-MFEC(st, a)

11: Take action at
12: Observe immediate reward, rt, and resulting screen image, ot+1

13: st+1 ← φ(ot+1)

14: RT ← 0
15: for t← T − 1, T − 2, . . . , 1 do
16: Rt ← Rt+1 + rt
17: Update-MFEC(st, at, Rt)
18: function Query-MFEC(s, a)
19: if s ∈ buffa then
20: return buffa(s)
21: else
22: s1, s2, . . . , sK ← buffa.KNearest(s)
23: Rj ← buffa(sj)
24: return 1

K

∑
Rj

25: function Update-MFEC(s, a,R)
26: if s ∈ buffa then
27: buffa(s) ← max(buffa(s), R)
28: else
29: buffa(s) ← R

Although so-called “deep” reinforcement learning methods have produced
impressive results, they often require very many environment interactions before
human-level results can be achieved. Results are typically stated in terms of
performance after 200 million frames of experience, which corresponds to over
38.5 days (926 hours) of experience when played at human speeds3.

The Model-Free Episodic Control (MFEC) algorithm, proposed by Blundell
et al. (2016), explicitly attempts to address the problem of sample inefficiency.
The authors posit that the observed sample inefficiency in DQN is due to the
neural network updates being slow to adapt to new information, preventing
DQN-based agents from rapidly exploiting newly-discovered high-reward tra-
jectories. The authors thus propose to replace the convolutional neural network
with a neurologically-inspired episodic controller, motivated by the instance-
based learning of episodic memory in the hippocampus.

3For human play, the Atari simulator produces 60 frames per second.

15



For states which have been previously visited, the episodic controller oper-
ates identically to tabular reinforcement learning methods. In particular, the
episodic controller maintains a table of state-action tuples as keys which map
onto a single real-valued output, representing the expected return after taking
the specified action from the specified state.

However, the episodic controller differs from tabular methods in its ability
to extrapolate to unvisited states, which is not a capability of (most) tabular
reinforcement learning methods. The episodic controller extrapolates a Q-value
for novel states by using the previously-stored items in the agent’s memory as
elements in a nearest neighbor model. This simple model utilizes the inductive
bias that similar states contribute more to the prediction of a novel state than
those which are dissimilar. When encountering a previously-unseen state, the
episodic controller queries for the k items stored in its memory which are closest
to the state (according to some distance metric) and returns the average of their
associated returns.

It is notable that the regression model MFEC uses for its Q-value approxi-
mation is able to exactly recall a given example after seeing that example only
once. This behavior, known as immediate one-shot learning (Mathy et al., 2015),
does not occur in typical neural network approaches, which require gradually
training over many examples in order to learn. As mentioned previously, this
slowly-adapting learning of neural networks is hypothesized to cause the sample
inefficiency of DQN-based approaches. Due to this property, we expect MFEC
to be more sample-efficient, particularly in early episodes. However, we do note
that MFEC’s Q-value approximation does have limits in its generalization abil-
ity. Thus, we might expect MFEC’s Q-value approximation to have reduced
long-term capacity when compared to DQN approaches.

The episodic controller makes the assumption that its environment is deter-
ministic. That is, taking an action from a state always transitions to the same
state (or, alternatively, that the environment’s transition probabilities for each
state and each action are non-zero for only one output state). In a deterministic
environment it is always possible to recreate an experienced trajectory by replay-
ing the exact same sequence of actions. This assumption allows the agent to be
highly optimistic in its updates: rather than taking a running average of the ob-
served returns (i.e. Q(st, at)← (1− α)Q(st, at) + αRt, as is common in tabular
reinforcement learning methods), it is possible to simply update the table with
the maximum of the new and old values (i.e.: Q(st, at)← max(Q(st, at), Rt),
see Update-MFEC of Algorithm 2). Doing this in a non-deterministic environ-
ment would encourage risky behaviors, such that the agent might over-pursue
a high reward which the environment only rarely transitions to.

Modern computers do not have enough memory capacity to store the ex-
act raw representations of environment observations in sufficient quantities (for
high-dimensional observation spaces). Because of this, the episodic controller
must employ some dimensionality reduction method to project the raw represen-
tation to a lower-dimensional space, thus reducing memory demands. Blundell
et al. (2016) explores two different dimensionality reduction methods: random
projection and variational autoencoder (VAE) latent space.

The random projection method maps the input according to the function
φ(x) = Ax, where x is a D-dimensional vector and A ∈ RF×D such that
F < D and the elements of A are drawn from a standard Gaussian dis-
tribution. According to the Johnson-Lindenstrauss lemma, the distance in

16



this reduced space approximates the relative distances in the original space:
d(x1, x2) ≈ d(φ(x1), φ(x2)) (Johnson and Lindenstrauss, 1984).

The VAE latent space method first takes 1 million random actions in the
environment, and then uses this dataset of observations to train a VAE (Kingma
and Welling, 2013) in an unsupervised manner. VAEs are related to standard
autoencoders, both of which use neural networks to attempt to reproduce a
given input as output while propagating the signal through a comparatively
narrow "bottleneck" layer. The output of this bottleneck layer, known as the
latent space of the autoencoder, is by definition of lower dimensionality than the
input space. Standard autoencoders consist of an encoder, which transcribes an
input to a latent vector, and a decoder, which transforms a latent vector back
to the original input space. However, instead of the encoder producing a single
deterministic latent vector, VAE encoders output a distribution over the latent
space which is then in turn sampled to produce the input for the decoder.

Thus, this latent space presumably represents latent features in the environ-
ment, making it a reasonable candidate to be used for dimensionality reduction.
However, it should be noted that this latent space is trained only in an unsuper-
vised manner and ignores any information present from the known labels (i.e.
the associated returns). It is likely that the VAE will capture extraneous infor-
mation which is relevant for reproducing the image but not for predicting the
future return (e.g. the previously-attained score, which is present in all Atari
screens).

Upon empirical evaluation, Blundell et al. (2016) found that the random
projection reduction method often outperformed the VAE latent space method,
particularly for Atari games. Thus, for the remainder of this thesis, we focus
only on the random projection method.

The authors of Blundell et al. (2016) use a discount rate of γ = 1, making
future rewards entirely undiscounted. Additionally, the authors set the explo-
ration rate for epsilon-greedy exploration to be ε = 0.005, which is an order of
magnitude lower than that used for DQN agents. They found that this lower
exploration rate helped the agent exploit its knowledge better. Despite common
wisdom that such reduced exploration would cause detrimental effects due to
pursuing less route for exploration, their method performs significantly better
than DQN approaches on Atari games and 3D maze navigation.

In practice, the episodic controller employs an approximate nearest neigh-
bor data structure to reduce the computational burden of performing nearest
neighbor lookups for novel states. As a further implementation detail, the con-
troller actually maintains a separate nearest neighbor data structure per-action.
We describe a novel approximate nearest neighbor data structure designed to
accommodate MFEC’s data access patterns in Chapter 3. In this chapter, we
also investigate the effect of noise introduced by these approximate queries on
the performance of MFEC.

The regression method employed in the episodic controller is a simple form
of k-nearest neighbor (kNN) regression. This is the simplest of a family of
regression methods known as local regression. In Chapter 4 we explore other
regression algorithms in this family, and compare their results against the KNN
regression used in the original MFEC model.

However, even after reducing the size of the observation, storing every frame
encountered would still require too much memory. Thus, the storage buffer
containing the previously-seen frames has a fixed memory limit. Once this

17



limit is exceeded, old memories are evicted until the buffer is once again within
the limit. The authors state that the removal of older, less-frequently accessed
memories is a phenomenon also observed in human memory (Hardt et al., 2013).
In Chapter 5, we expand upon this idea and propose a method of actively
identifying and discarding memories which have become outdated in the face of
new information.

2.6 Summary
In this chapter, we formally defined the reinforcement learning problem and gave
descriptions of the environments which we use as testbeds throughout this thesis.
We also gave a brief introduction to the state-of-the-art neural approaches in the
form of DQN and its variants. Finally, we also introduced the MFEC algorithm,
which we explore and expand upon throughout the remainder of this thesis.

18



Chapter 3

Efficient Nearest Neighbors
Search

In many different domains, it is useful to know which data points are closest
to some query point. Such local information can be used for purposes such
as density estimation, clustering, classification, and regression. Of particular
interest for this thesis, MFEC uses this local information to estimate the action-
value function for reinforcement learning.

The k-nearest neighbors problem is to find the k elements in some dataset
whose distance to some query point is the smallest. Nearest neighbor (NN1)
data structures attempt to solve this problem efficiently. For algorithms such
as MFEC, using an efficient NN search algorithm can greatly reduce the com-
putational burden required to select actions.

For high-dimensional datasets, it is exceedingly difficult to find the exact
nearest neighbors, a manifestation of the so-called “curse of dimensionality”. An
intuitive explanation of this phenomenon is that the volume of the hypersphere
of constant radius grows exponentially as the dimensionality increases (V ∝ Rd).

As a result, approximate nearest neighbor (ANN) algorithms are widely used
in practice, since it is often sufficient to simply obtain a representative sampling
of the local neighborhood. ANN algorithms make a trade-off between accuracy
and computation time. In this thesis, we measure accuracy in terms of 10-
nearest neighbor precision (of the actual 10 nearest neighbors, how many were
found?), and we measure computation time in terms of queries per second.

Using NN search for MFEC introduces an additional requirement for the
data structure: new data is constantly added. Many NN data structures assume
that the data is entirely present during initial construction. Such “top-down”
or “batch” algorithms can still be used for MFEC, but would require rebuilding
after every epoch. In practice, we found that such rebuilding was prohibitively
expensive.

An ideal NN data structure for MFEC should be able to incrementally add
data without having to entirely re-index, thus avoiding such expensive rebuilding
steps. Additionally, in Chapter 5 we propose an extension which requires the
deletion of arbitrary data points, a requirement we keep in mind when designing

1In this thesis, the abbreviation NN will always refer to nearest neighbors. If neural
networks are referenced, it will not be abbreviated.

19



our solution.
For the remainder of this chapter, D represents a d-dimensional dataset

(currently) containing N elements. We denote the ith example from dataset D
by the vector Di ∈ Rd, and the query point by the vector q ∈ Rd. We assume
that the distance between two elements is given by the standard Euclidean
distance, denoted as d(·, ·).

We present full algorithm descriptions for all algorithms mentioned in this
chapter in Appendix B. In some algorithm descriptions we use C-style ternary
statements of the form “a ? b : c”, which should be interpreted as “if a is true,
then use b, else c.”

Finally, when we refer to a “max-heap of size k”, we mean a binary tree
data structure with the property each parent’s key is larger than those of its
children. This is sometimes referred to as a priority queue. Whenever the
k + 1th element is added, the max-heap discards the largest item. Thus, the
heap always contains the k elements with the smallest keys.

3.1 Batch Methods
Nearest-neighbor algorithms generally fall into one of four broad families:

• brute force,

• locality-sensitive hashing,

• neighbor graph search,

• and hierarchical (tree-based) space partitioning.

In the following subsections, we describe these various algorithm families.
Since the solution proposed in this thesis takes a tree-based space partitioning
approach, additional emphasis will be placed in its description relative to the
other families.

3.1.1 Brute Force Search
The simplest NN algorithm is brute force search, where each element of the
dataset is compared to the query point. Algorithm 4 gives pseudocode defining
brute force search.

Brute Force does not require a rebuilding step, and thus is equally well suited
for online datasets as it is for offline ones. However, it is extremely slow, with
a complexity of O(N × d).

Some implementations use low-level optimizations (in particular, the BLAS
library) to improve the runtime of brute-force search. Additionally, since the
problem is inherently parallel, GPUs have been used to dramatically improve
performance (Garcia et al., 2008; Johnson et al., 2017).

3.1.2 Locality-Sensitive Hashing
Locality-sensitive hashing (LSH) operates by computing a hash for each element
of the dataset. Algorithms 5 and 6 give pseudocode defining locality-sensitive
hashing search.

20



Each element is then placed into a bucket, according to its hash, analogous
to the classic hash table data structure. However, while hash tables typically
use hashing algorithms which reduce the chance of collision, LSH methods use
hashing algorithms which are similar for items which are close together (as the
name suggests).

An example of such a locality-sensitive hashing algorithm is comprised of
a set of N sub-hashes: H = {h1, h2, . . . , hN}. Each of these sub-hashes uses
different random projections onto a single 1-D real value, and returns 1 if this
projection is positive, and 0 otherwise. That is, hi = 1[a · x > 0], where a is
a vector with elements drawn from a standard Gaussian distribution. Concate-
nating each of the sub-hashes results in a N -bit hash (Wang et al., 2014).

At build-time, each element in the dataset is hashed and then added to
the corresponding bucket in the hash table, as described in Algorithm 5. At
query-time, the query is processed using the same hash function, and all the
contents of the corresponding bucket are added to the output heap, NBR. To
increase search coverage, additional hashes are also computed from the true hash
(e.g. by random bit-flips), and the contents of those buckets are also added to
NBR (Algorithm 6, lines 5-7). For greater coverage, some implementations use
multiple hash tables with different random hashes, and then search through all
those tables at query time.

3.1.3 Neighbor Graph Search
Neighbor graph search algorithms first iterate through the data to build a di-
rected graph data structure. Algorithm 7 gives pseudocode defining neighbor
graph search.

After this construction step, each data point has edges leading from itself
to its (approximate) nearest neighbors within the dataset. Finding the inter-
dataset nearest neighbors for each element can be accomplished through the use
of an external ANN algorithm. Various implementations also propose alternate
algorithms for incrementally building the graph via the previously-constructed
graph itself (Malkov et al., 2014; Malkov and Yashunin, 2016; Fu and Cai, 2016).

Searching requires a set of initial points from which to start the search. Se-
lecting these initial points can either be done randomly, or through an external
(low-accuracy) ANN algorithm. The search itself proceeds similarly to Dijk-
stra’s shortest path algorithm, where at each step the minimum element (in
this domain, the one closest to the query) is visited and expanded. The search
stops once the kth nearest found point is closer than the nearest point in the
frontier.

3.1.4 Hierarchical Space Partitioning
Hierarchical space partitioning algorithms all recursively divide the search space
into one or more contiguous regions at each level, forming a tree structure. The
exact construction and partitioning strategies are what distinguish the various
algorithms from each other.

21



3.1.4.1 k-d Tree

k-d trees (short for k-dimensional trees) attempt to solve the k-nearest neighbor
problem by hierarchically partitioning the search space. Specifically, k-d trees
use axis-aligned splitting hyperplanes: each inner node splits the data according
to a single feature. Since the split point is the median of the dataset, each level
in the tree exactly splits the dataset in two, resulting in trees which are height-
balanced. The k-d tree construction algorithm presented in Algorithm 8 cycles
through the axis of splitting incrementally, but alternate implementations could
choose the splitting axis dynamically (e.g. by selecting the axis of greatest
variance).

The k-d tree search algorithm presented in Algorithm 9 reduces the com-
putational cost of exact searches by pruning branches of the tree which cannot
have closer neighbors than the current contents of NBR. The key observation
is that if the distance from the query point to the splitting hyperplane is dsplit,
then all elements on the other side of the hyperplane must be at least dsplit units
away from the query point. Thus, at any given point in the search, if the dis-
tance to the kth nearest neighbor is less than that to the splitting hyperplane,
it is guaranteed that none of the elements in that branch will be closer.

The ε parameter allows for approximate searches while still preserving some
theoretical guarantees. If the true distance to the kth nearest neighbor is dk,
then all returned elements are guaranteed to be at most dk ∗ (1 + ε) from the
query point.

Since each level of the tree compares just a single dimension, the performance
of k-d trees degrade as the dimensionality grows, as it fails to adapt to the
intrinsic dimensionality of the dataset (Dasgupta and Freund, 2008).

3.1.4.2 Random Projection Tree

Random projection trees (RP trees, Dasgupta and Freund (2008)) are another
type of binary space partitioning tree. Instead of only comparing with a single
dimension at each level, a random splitting hyperplane is used. The direction
of this hyperplane is defined by a random unit vector in d-dimensions, then the
dot products between each element and the hyperplane direction is computed.
The median value of these dot products is chosen to be the bias, shifting the
hyperplane such that it evenly splits the data. Finally, each datapoint is assigned
a child node according to which side of the hyperplane it falls in. Algorithm 10
gives pseudocode defining the construction of a RP tree.

Search in a RP tree is identical to that in a k-d tree, except the distance
calculation to the separating hyperplane is adjusted to account for non-axis-
aligned hyperplanes.

3.1.4.3 Mean Tree

Mean trees (Nister and Stewenius, 2006) maintain a set of cluster centroids at
each level. During construction, a simple clustering algorithm (such as k-means)
is used to divide the space into a predefined number of clusters. The hyperplane
of all points equidistant to two cluster means defines the splitting hyperplane
between those two centers. Each point in the dataset is assigned to the cluster
whose center is closest to that point.

22



Search in mean trees works similarly to that in k-d trees and RP trees, except
for a slight modification to accommodate for the arbitrary branch factor. The
child nodes are first sorted in order of increasing distance from the query point,
and the closest cluster is always searched through first. Then, the remaining
clusters are searched in sorted order, since neighbor points are more likely to
be in close clusters than far away ones. Once the distance to a separating
hyperplane is greater than the distance to the kth nearest neighbor, that cluster
can be safely pruned, for the same reason described in Section 3.1.4.1. Moreover,
further away clusters don’t need to be checked at this point, since it’s guaranteed
that the distance to their hyperplanes will be further away, so we can safely
terminate the search at this point (line 14 of Algorithm 12).2

Mean trees have also been used in the context of compression, where it
is known under the names of “hierarchical vector quantization” (Gersho and
Shoham, 1984; Vishwanath and Chou, 1997) and “tree-structured vector quan-
tization” (Geva, 2000; Wei and Levoy, 2000). Mean trees have been found to be
more adaptive to intrinsic dimension relative to other spatial partitioning trees,
which cause them to produce lower quantization errors and more accurate near-
est neighbor lookups (Ram and Gray, 2013; Verma et al., 2009).

3.2 Online Methods

3.2.1 Online Mean Trees
Encouraged by the results of Ram and Gray (2013) and Verma et al. (2009),
we first attempted to adapt mean trees to be used in an online context. Our
first attempt (which we refer to as online mean trees) uses a simple splitting
behavior: when a leaf node exceeded capacity, it converts itself to an inner node
and creates p new children leaf nodes via k-means. Algorithm 13 describes this
behavior in pseudocode.3

It should be noted that on line 14 of Algorithm 13, for clarity the pseudocode
does not include the exact steps for keeping track of the cluster centers in an
online setting. The implementation has two auxiliary variables for each cluster:
a vector containing the total sum of the positions of all that node’s children,
as well as a count for the number of children contained within the node. By
just adding the input vector to the running sum and incrementing the counter,
the mean position for the node can be computed without having to re-evaluate
every child leaf item.4

One problem with this approach is that the resulting tree is not guaranteed to
be balanced. In practice, we found that online mean trees produced dramatically
lopsided trees, especially for higher dimensions. In some cases, the online trees
devolved to near-linked lists, such that at most levels, all children except one
were leaves. This drastically reduces the performance of the data structure, in
terms of build time, query time, and memory usage.

Batch mean trees also don’t have any guarantees about tree balance, but
in practice the batch trees tend to be rather balanced. This difference between
observed behavior of the batch and non-batch versions is presumably due to the

2This behavior is implemented in lines 623 to 664 of vqtree.cpp of LeKander (2017b).
3This behavior is implemented in lines 835 to 1345 of vqtree.cpp of LeKander (2017b).
4This behavior is implemented in onlineaverage.cpp of LeKander (2017b).

23

https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L623-L664
https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L836-L965
https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/onlineaverage.cpp


lack of data (initially) during each split. Since batch mean trees can split the
entire dataset, they can better match the true distribution of the data. However,
online batch trees have significantly less data at the time of splitting (exactly
maxLeafSize datapoints), and as such they risk not capturing the underlying
distribution of the entire dataset.

As a result of these lopsided trees, we investigated alternate construction
algorithms with stronger balancing guarantees.

3.2.2 K-trees
The K-tree algorithm5 (Geva, 2000) is a Hierarchical Vector Quantization con-
struction algorithm which incorporates B-tree splitting behavior to produce
trees which are height-balanced. The K-tree algorithm is a bottom-up algo-
rithm, incrementally building the data structure by adding each element one
at a time. After each insertion, the tree is guaranteed to have the following
properties:

• All leaf nodes are located at the same level of the tree.

• Each leaf node contains at mostmaxLeafSize (a hyperparameter) elements.

• Each inner node contains at least 1 child, and at most branchFactor (an-
other hyperparameter) children.

• Each inner node maintains the average location of all items in eventual
successor leaf nodes (the cluster centers).

When inserting a new element into an existing K-tree, first a greedy search
(lines 3-6 of Algorithm 14) is performed to find the closest leaf node. The new
element is then appended to the contents of that leaf node. If the leaf node size
is greater than maxLeafSize, then it splits into two new nodes using k-means,
and both are added to the parent node. Similarly, if the parent node contains
more than branchFactor children, it splits, forming clusters based on the centers
of its children.

This process repeats up the tree until either there is enough space to accom-
modate the new node, or until the leaf node is reached. If the root node is full,
then a new root node is created, to which the newly-split nodes are added.

Pseudocode describing the K-tree construction algorithm is given in Algo-
rithm 14.6 In our ad-hoc experimentation, we found that the trees constructed
via this algorithm were far superior to those constructed by the online mean
trees algorithm.

3.3 KForest
As a result of the success of our initial experiments with K-trees, we decided
to expand upon this data structure to use for Episodic Control. We propose a
series of extensions (some inspired by other works, some our own invention) to
increase the quality of search with K-trees. We use the name “KForest” to refer
to our implementation which includes all extensions below.

5Not to be confused with k-d trees.
6This behavior is implemented in lines 978 to 1344 of vqtree.cpp of LeKander (2017b).

24

https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L978-L1344


3.3.1 Forest
Instead of using a single tree, our first extension is to maintain multiple trees.
This collection of trees collectively form a forest (hence, the chosen name of our
implementation). The benefit of using a forest over a single tree is that the
individual trees differ in how they partition the search space. This concept is
similar to the idea of random forests in decision trees (Breiman, 2001).

Adding elements to a forest is a straightforward extension of the single-tree
case: for each tree in the forest, add the new element to that tree. Search in
a forest is likewise similar, except the neighbor queue is shared between search
of successive trees. This slightly benefits search types which compare against
the current kth nearest neighbor (such as Algorithm 12) since later trees have
a better estimate to begin with.

For reasons described earlier, it is necessary that the trees are sufficiently
different from each other for forests to be beneficial. One source of differentiation
is achieved through the k-means splitting. In our implementation (described in
Algorithm 15), the k-means initialization is performed according to the following
heuristic:

1. Both centers are initially placed at the mean of the data.

2. The ordering of the data is randomized (the data is shuffled).

3. Each datapoint is evaluated one at a time, adding itself to the closest
cluster center. In the case of a tie, one center is chosen arbitrarily.

Since the k-means implementation processes each datapoint one at a time, the
initial ordering of the points impacts the final result of the clustering. Thus,
using different random shuffles for each tree causes the structure of the trees to
diverge, even though the data is identical.

In our implementation, the numTrees hyperparameter determines the num-
ber of trees in the forest.

3.3.2 Consistency
One property of any means tree is something we call consistency. A tree is
considered to be consistent if for all Di ∈ d, a greedy search (also known as a
defeatist search) for Diresults in a leaf node containing Di. A greedy search is
the simplest kind of search: starting from the root, the search progresses down
the tree by recursively selecting the closest child node to Diuntil a leaf node
is encountered. Algorithm 17 gives pseudocode defining greedy search in mean
trees.

Thus, a tree is consistent if all of the leaf data is located in the correct “bin”.
Formally, a tree is consistent if and only if Di ∈ greedySearch(root,Di).

While batch mean trees are guaranteed to be consistent, K-trees have no
such guarantees. In inner nodes, online K-tree additions can be thought of as a
form of online k-means with only a single iteration. The cluster centers “drift”
as new data is added, changing the separating hyperplane in the process. This
is done without consulting the data in the leaf nodes, which could potentially
cause them to be placed into the wrong bin.

25



1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

Figure 3.1: Visualization of a 2-dimensional K-tree with 1 level of inner nodes.
The node centers are depicted as diamonds, the data points are labeled by color
according to which node they have been assigned, and the separating hyperplane
is depicted as a black line. (left) Initial consistent tree. (middle) A new point
is added at (1, -1) into the orange cluster. Note that the top-most point in
this cluster now lies on the opposite side of the separating hyperplane from the
cluster center, causing the tree to be inconsistent. (right) The tree is made
consistent again by removing the inconsistent point and then re-adding it to the
tree.

To illustrate this, consider the example in Figure 3.1. In the left side, two
simple clusters are separated according to their respective cluster centers. How-
ever, when a point at (1, -1) is added, the orange cluster center is moved down
and to the right. This causes the top-most point in the orange cluster to no
longer be on the correct side of the separating hyper plane. Thus, we say that
the left and right figures represent consistent trees, whereas the middle figure
represents an inconsistent tree.

To address this issue, we propose a strategy for enforcing consistency in
K-trees. After each addition, we choose previously-added elements from the
dataset and see if that data point is still placed into the correct bin by performing
a greedy search. If that data point is not found by the greedy search, it is
removed from the tree and then re-added. Figure 3.1 (right) depicts a K-tree
after such consistency enforcement.

It is possible to ensure full tree consistency by iteratively checking each data
point according to the above procedure until the tree is entirely consistent. We
refer to this approach as full consistency. However, this approach is prohibitively
expensive because it requires iterating over the dataset potentially many times
after each addition. The second approach uses a limited number of tests per
addition to reduce this computational burden. This does not have the same
theoretical guarantees that the tree will be consistent, but it does assist with
making the tree more accurate while not being an excessive burden. We refer
to this approach as online consistency.

Our KForest does not implement these consistency methods directly. In-
stead, we expose methods which perform consistency checks for a single el-
ement (namely, enforceTreeConsistencyFull, enforceTreeConsistencyAt,
and enforceTreeConsistencyRandom).7 However, the ECDC agent, which

7This behavior is implemented in lines 284 to 310 and lines 425 to 461 of vqtree.cpp of
LeKander (2017b)

26

https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L284-L310
https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L425-L461


uses our KForest implementation, has a tree_consistency_iters hyperparam-
eter which determines the number of online consistency iterations to perform.8

3.3.3 Spill
Thus far, all the trees discussed have assigned each data point to a single leaf
node. However, if a data point is close to a separating hyper plane, it may
be beneficial for these points to be added to both subtrees. This is a concept
known as spill trees (Liu et al., 2005), since the spatial partitionings slightly
“spill over” into each other.

It is not immediately apparent how the amount of spill should be determined.
Liu et al. (2005) use a fixed overlapping size which determines the width of the
region of overlap. If the distance between a new data point and the separating
hyperplane is less than τ (a hyperparameter), then that point is added to both
subtrees.

However, this approach causes inner nodes deeper in the tree to have a
higher percentage of split items than those on the first layers. This is caused
by the nature of the hierarchical space partitioning: by design, later nodes
capture smaller regions of the search space. Each level in the tree progressively
“narrows” the search space more at each level. In practice, the authors of Liu
et al. (2005) use a hybrid tree structure wherein some nodes do not spill if using
spill would make any child contain a large percentage of the dataset. Although
not mentioned explicitly, this hybrid approach does mitigate this narrowing
effect.

The approach used by Liu et al. (2005) uses the usual metric of distance
from a plane. Given two cluster centers wa and wb, the distance from Dito the
separating hyperplane between wa and wb is given by:

planeDist(Di,wa,wb) =

∣∣d(Di,wa)
2 − d(Di,wb)

2
∣∣

2 ∗ d(wa,wb)
. (3.1)

As depicted in the top row of Figure 3.2, this metric gives different results across
different scales. A fixed threshold τ would capture more of the search space for
the left figure (with cluster centers at (−1,−1) and (1, 1)) than for the right
(with cluster centers at (−5,−5) and (5, 5)).

We would instead like the width of the spill regions to be effected by the
spread of the data at each node. In particular, the position of the cluster
centers can be used as one estimate for the variance of the data in that node.
We thus propose an alternate metric: instead of using the absolute distance to
the separating hyperplane, we propose using a metric which scales according to
the distance between two cluster centers. We propose using the relative distance
between the closest center and each sibling center:

relPlaneDist(Di,wa,wb) =

∣∣d(Di,wa)
2 − d(Di,wb)

2
∣∣

d(wa,wb)2
. (3.2)

Intuitively, Equation 3.2 scales Equation 3.1 proportionally to the distance
from each cluster center to the plane. One nice property of this metric is
that the value at the cluster center is always 1: relPlaneDist(wa,wa,wb) =
relPlaneDist(wb,wa,wb) = 1.

8This behavior is implemented in lines 57 to 58 of localreg.py of LeKander (2017a).

27

https://github.com/MLLeKander/ECDC/blob/master/localreg.py#L57-L58


1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0.250
0.250

0.500

0.500

0.750

0.750

1.000

1.000

1.250

1.250

0.250
0.250

0.500

0.500

0.750

0.750

1.000

1.000

1.250

1.250

planeDist, (-1,-1) to (1,1)

4 2 0 2 4

4

2

0

2

4

1.500
1.500

3.000

3.000

4.500

4.500

6.000

6.000

1.500
1.500

3.000

3.000

4.500

4.500

6.000

6.000

planeDist, (-5,-5) to (5,5)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0.150

0.150
0.300 0.300

0.450

0.450

0.600

0.600

0.750

0.750

0.900

0.900

0.150

0.150
0.300 0.300

0.450

0.450

0.600

0.600

0.750

0.750

0.900

0.900

relPlaneDist, (-1,-1) to (1,1)

4 2 0 2 4

4

2

0

2

4

0.150

0.150

0.300

0.300

0.450

0.450

0.600

0.600

0.750

0.750

0.900

0.900

0.150

0.150

0.300

0.300

0.450

0.450

0.600

0.600

0.750

0.750

0.900

0.900

relPlaneDist, (-5,-5) to (5,5)

Figure 3.2: Visualization of the planeDist and relPlaneDist metrics. Cluster
centers (depicted as orange circles) are located at the corners of the figures. The
separating hyperplane between these two centers is given by the line y = −x
(depicted in orange). Each contour line represents an increment of 0.1 units.

relPlaneDist can actually be defined in terms of planeDist. If da and db
denote the distances from the separating hyperplane to cluster centers wa and
wb, respectively, then da = db =

1
2d(wa,wb). Thus:

planeDist(Di,wa,wb)

da
=

∣∣d(Di,wa)
2 − d(Di,wb)

2
∣∣

2 ∗ d(wa,wb) ∗ da

=

∣∣d(Di,wa)
2 − d(Di,wb)

2
∣∣

2 ∗ d(wa,wb) ∗ 1
2d(wa,wb)

=

∣∣d(Di,wa)
2 − d(Di,wb)

2
∣∣

d(wa,wb)2

= relPlaneDist(Di,wa,wb).

The relPlaneDist metric is depicted in the bottom row of Figure 3.2. Note
that the metric scales identically to the scaling of the cluster centers. Namely,
the scale of the axes of the left image is at 1/5th the scale of the one on the
right, but the contour lines are identical.

These trees introduce a new hyperparameter, the spill parameter. This
parameter determines how close to the separating hyperplane you have to be in
order to be added to both subtrees. The setting of this hyperparameter highly
affects the performance of the tree, since it affects the number of duplicates that

28



are present.
It should be noted that some implementation details must be slightly tweaked

in order to accommodate for spill trees. One notable consideration is that the
search procedure must be tweaked slightly to account for duplicates. In our
implementation we use the unordered_set data structure to ensure that no
duplicates are added to the max-heap.9

3.3.4 Labels and Data Storage
Since we are specifically interested in using the KForest implementation for local
regression purposes, we decided to have each datapoint associated with a real-
valued label. For MFEC, this label is the return achieved by the agent after
encountering the observation represented by the data.

It should also be noted that the KForest implementation keeps a copy of
each input datapoint which is shared across trees. The forest maintains two
circular buffers: one which holds the datapoints and another for their associ-
ated labels. The maxSize hyperparameter determines the maximum size of this
circular buffer. The maximum and minimum indices in the circular buffers are
tracked by the headNdx and tailNdx variables.

Instead of storing the full data vector, each leaf node holds just a single index,
indicating where in the forest’s internal storage the associated element can be
found. This reduces the memory requirements, since it would be redundant
for the leaf data to be duplicated for each tree in the forest (and potentially
multiple leaf nodes in a single tree, if spill is used).

Currently, the exact indices for each element can be tracked via the re-
turn values from the various methods which modify the elements contained in
the forest. The add method returns the index of the most-recently added el-
ement (which is guaranteed to be the value of headNdx after the addition).
The nearestNeighborNdxes method returns a list of indices representing the
result of the nearest neighbor search. The values associated with an index can
be obtained via the getData method, and the value can be obtained via that
getLabel method. The clearAndReplace method (explained in the next sec-
tion) returns the index that was promoted as a result of deleting that element.

An example of using this information to maintain additional information for
each item is given in the add and clear methods of localreg.py of LeKander
(2017a). However, this logic is quite tenuous and can be prone to errors. Thus,
a future version of the KForest implementation will likely provide machinery to
abstract away this implementation detail such that client users should not have
to maintain any indices even if they wish to track metadata associated with
each item. Indeed, this future version will support labels beyond simple real
values.

3.3.5 Deletion
Our KForest implementation contains a clearAndReplace method, which pro-
vides the functionality to remove previously-added items from the forest one at
a time.10 This is motivated by an extension to the MFEC algorithm which we

9This behavior is implemented in lines 258 to 266 of vqtree.cpp of LeKander (2017b).
10This behavior is implemented in lines 196 to 239 of vqtree.cpp of LeKander (2017b).

29

https://github.com/MLLeKander/ECDC/blob/591d62e1312c51e7226593fa2edcf904f681b47d/localreg.py#L49-L91
https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L258-L266
https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L196-L239


propose in Chapter 5, which requires the removal of arbitrary elements at any
time.

Removing an element from the tree requires first finding the leaf nodes from
which the datapoint should be deleted. If the tree were guaranteed to be con-
sistent and no spill was used, then a simple greedy search would suffice to find
these leaf nodes. To accommodate for this, the forest maintains a leafLookup,
an auxiliary array of unordered_sets which maps previously-added items to the
leaf nodes which contain that element. When each tree addition procedure (Al-
gorithm 14) reaches a leaf node, that node registers itself at the corresponding
data index.

Once the leaf nodes are found, the to-be-deleted element is removed from
the contents of that node. Then the algorithm traverses up the tree until it
reaches the root, correcting the center positions of each node along the way by
subtracting itself from them. Note that these center updates can be done in
constant time since the centers are stored internally as a sum and a count, as
explained in Section 3.2.1.

Two possible strategies for handling deletion from the circular buffer would
be to either leave unused “holes” in the buffer or to linearly shift all succeed-
ing elements back by 1. This former strategy would be prohibitively memory-
inefficient, whereas the latter could continually shift half of the elements in the
dataset in the worst case. We thus use a strategy which ensures the used memory
is contiguous and deletions occur in constant-time, at the cost of maintaining
strict order: when an item is deleted, the minimum element in the buffer is
promoted to the deleted index and the tail pointer is incremented by one.

This has minor implications on the behavior of the MFEC algorithm. Namely,
the MFEC algorithm specifies that if a new observation is added when the expe-
rience buffer is full (that is, if maxSize unique experiences are currently stored),
then the oldest experience in the buffer is removed. In our KForest implemen-
tation, the experience located at the lowest index is removed. Note that, due
to the buffer not strictly maintaining the order of the experiences, this is not
necessarily the oldest item in the buffer (although it is guaranteed to have been
in the buffer for at least maxSize additions).

It should be noted that when duplicate detection is enforced (see the section
below), the KForest implementation handles this by deleting the old event and
then adding the new one. Thus, removals technically occur quite often, changing
the order of items in the buffer even when the end user does not use this method
specifically.

3.3.6 Duplicates
The MFEC algorithm treats experiences which exactly match previous experi-
ences as a special case. Thus, we provide machinery in the KForest implementa-
tion to perform searches for exact matches. Additionally, special logic is added
to handle collisions when duplicates are added. This behavior is controlled by
the boolean removeDups hyperparameter.

KForset optionally maintains an unordered_map to keep an exact index of
previously inserted data. When adding each element, a lookup is first performed
in the map. If that item exactly matches an item in the map, the matching item
is removed and the label is set to the maximum value of the previous label and

30



Table 3.1: Search algorithm constants

Algorithm Name C++ Constant Python Constant
bruteForceSearch VQSEARCH_BRUTE vqtree.SEARCH_BRUTE
meanTreeSearch VQSEARCH_EXACT vqtree.SEARCH_EXACT
greedySearch VQSEARCH_DEFEATIST vqtree.SEARCH_DEFEATIST
prototypeDistSearch VQSEARCH_PROT_DIST vqtree.SEARCH_PROT_DIST
planeDistSearch VQSEARCH_PLANE_DIST vqtree.SEARCH_PLANE_DIST
leafGraphSearch VQSEARCH_LEAFGRAPH vqtree.SEARCH_LEAFGRAPH

the new label.11 If the new datapoint does not match any item in the map, then
the item is added to all trees as normal.

As noted above, if an exact match is found then the resulting label is taken
as the maximum of the new and old labels. The maximum combinator is chosen
in accordance to the MFEC algorithm, which keeps an “optimistic” estimate for
the estimated return from a state. Future versions of the KForest library will
allow the use of custom combinators, allowing more exotic use-cases.

3.3.7 KForest Search
In our KForest implementation, the search is controlled by three hyperparame-
ters: searchType, exactEps, and minLeaves.

The searchType hyperparameter determines which of the 6 available search
methods should be used. Our KForest implementation allows the user to spec-
ify this value in two different ways. The constructor contains a searchType
parameter, which sets the defaultSearchType variable of the forest. This
defaultSearchType is used by default if no value is given for the optional
searchType parameter to the nearestNeighbors method. On the other hand,
if a value is given to this optional parameter at search-time, then that value
will be used for that search (but the defaultSearchType variable will not be
changed for subsequent searches).

The exactEps and minLeaves hyperparameters both control how accurate
the results from the search will be (making a trade-off between accuracy and
runtime). The real-valued exactEps hyperparameter corresponds to the ε pa-
rameter of Algorithm 12, specifying the upper bound on the distance between
the k furthest returned element and the actual kth furthest element from the
dataset. The integer minLeaves hyperparameter specifies the number of leaf
nodes that will be evaluated during the search (as explained below).

In addition to bruteForceSearch, meanTreeSearch, and greedySearch
(Algorithms 4, 12, and 17, respectively), we implemented three additional search
strategies. The first two algorithms, prototypeDistSearch and planeDist-
Search both traverse through the tree in an order specified by some distance
metric. leafGraphSearch instead uses spill information to jump between leaf
nodes which share at least one element due to spillage.

Our KForest implementation uses predefined constants to switch between
each of the implemented search methods. The mapping between algorithms
and implementation constants is given in Table 3.1.

11This behavior is implemented in lines 141 to 149 of vqtree.cpp of LeKander (2017b).

31

https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L141-L149


3.3.7.1 Prototype Distance Search and Plane Distance Search

Greedy search is perhaps the simplest search algorithm that one could imagine
for a K-tree, in which only the closest leaf node to the query is evaluated. Since
only a single leaf node is evaluated by this, this produces rather inaccurate
results. One might wish to extend this idea such that multiple leaf nodes are
evaluated.

We thus propose two methods to iterate through the search tree such that
multiple leaf nodes are evaluated. These methods have a fixed budget (controlled
by theminLeaves hyperparameter) of leaf nodes to evaluate, and are thus greatly
impacted by the order in which the tree is iterated. Both these methods use
some sort of distance metric to concentrate on “close” nodes while excluding
“distant” ones. These methods differ in which metric they use.

These search methods begin by descending from the root, following the clos-
est cluster center until a leaf node is reached. Along the way, the cluster centers
which were not explored (all those except the closest center) are added to the
frontier min-heap, sorted according to the distance from the query. For the next
iteration, the minimum (closest) element from the frontier heap is chosen, recur-
sively evaluating all its sub-nodes until a leaf is found. Each iteration results in
the evaluation of a single leaf node. Thus, by repeating this process minLeaves
times, the data from exactly minLeaves leaf nodes will be added to the NBR
max-heap.

Note that the frontier min-heap is bounded to contain at most minLeaves
items. This gives a slight speed benefit, since nodes greater than the minLeaves-
th entry in the frontier are guaranteed to never be evaluated. To accommodate
for this functionality, we actually use a sorted std::multimap to support re-
movals from both the head and the tail of the list.

Prototype Distance Search12 (Algorithm 18) ranks the frontier according to
the distance from the query point to the cluster center.13 In contrast, Plane
Distance Search (Algorithm 19) ranks the frontier according to the distance
from the query to the separating hyperplanes.14

For each individual node, these two methods produce the same ranking for a
single node. The differentiation comes when comparing between different levels
of the tree. Prototype Distance Search is more likely to expand lower nodes
than higher nodes, since the cluster centers at these levels are more likely to be
closer together due to the progressively shrinking search space. Plane Distance
Search, on the other hand, may be more likely to identify situations where a
point is at the outlier of a cluster, indicating evaluating a higher-level node
would be more beneficial to evaluate.

3.3.7.2 Leaf Graph Search

Leaf Graph Search15 (Algorithm 20) instead uses the spill property to search
through the tree. The leaf nodes can be viewed as nodes in a graph, such that
two leaf nodes are considered to be adjacent if they share at least one datapoint.
This method does not explicitly traverse the tree during query time (besides the

12This terminology is motivated from the vector quantization literature, which commonly
refers to what we call cluster centers as “prototypes”.

13This behavior is implemented in lines 681 to 711 of vqtree.cpp of LeKander (2017b).
14This behavior is implemented in lines 714 to 748 of vqtree.cpp of LeKander (2017b).
15This behavior is implemented in lines 751 to 778 of vqtree.cpp of LeKander (2017b).

32

https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L681-L711
https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L714-L748
https://github.com/MLLeKander/VQTree/blob/3d67ace98bcef270cb5dd8abaf5074129f07eb78/vqtree.cpp#L751-L778


initial greedy search for the closest leaf node), but instead uses properties from
tree construction to represent a graph directly between leaf nodes.

One important caveat is that this method requires that the spill hyperpa-
rameter is used in order to provide any benefit above greedy search. In our
current implementation, the tree spill is the only mechanism which can cause
the same datapoint end to up in multiple leaf nodes.

The algorithm operates by first finding the nearest leaf node to the query.
For each datapoint in that leaf, the leafLookupmapping is consulted to discover
which other leaf nodes contain that datapoint. As discussed in Section 3.3.5,
the auxiliary variable leafLookup already exists for the purposes of deleting
items from the forest, which means that no additional auxiliary structures are
necessary to support this search. Those adjacent nodes which haven’t been
evaluated yet are added to the frontier, sorted by distance from the query. Note
that an auxiliary visited set is used to determine if the proposed leaf node has
been evaluated previously, to avoid duplicates in the frontier queue. Once the
initial leaf node is exhausted, the next item from the frontier is evaluated.

Similar to the previous section, each iteration evaluates a single leaf node.
Thus, by performing this process minLeaves times, exactly minLeaves distinct
leaf nodes will be evaluated.

3.4 SIFT Benchmark
To test the performance of our KForest implementation, we compared its perfor-
mance against other standard nearest neighbor libraries. Namely, we compared
our KTree implementation against the following algorithms:

• Annoy (Bernhardsson, 2017b),

• BallTree (provided by nmslib) (Boytsov and Naidan, 2013),

• Flann (Muja, 2017),

• HNSW Graph (Malkov and Yashunin, 2016),

• KGraph (Dong, 2017), and

• SW Graph (Malkov et al., 2014).

We compare these algorithms against three versions of our KForest imple-
mentation, to examine the effects of the three proposed consistency strategies
on the algorithm performance (see Section 3.3.2). We used the following three
consistency settings:

• KForest none (no consistency enforcement),

• KForest online (10 online consistency enforcement iterations after each
addition), and

• KForest full (full consistency enforcement).

We expect trees with higher consistency to produce better results, particularly
for lower-accuracy settings where less leaf nodes are evaluated. We are thus
interested in whether or not consistency enforcement improves the algorithm

33



performance at all. Additionally, although we expect full consistency to pro-
duce the most efficient trees at query-time, it has prohibitively expensive con-
struction costs for an online environment. Since online consistency requires less
computation at construction-time, we are particularly interested to see whether
or not the reduced query time of full consistency is worth the construction costs
in an online environment.

We compared the performance of all these algorithms on the SIFT dataset
originally proposed by Jegou et al. (2011), which contains one million 128-
dimensional SIFT features extracted from Flickr images. We split this dataset
into a training and test set with a random 99/1 split. Thus, the training set
consisted of 990,000 elements, and the test set consisted of 10,000 elements.

For each trial, we recorded the average query time (the time required to query
the 10 nearest neighbors) across the 10000 test queries. We likewise recorded
the average 10-nearest neighbor precision (the overlap between the query result
and the actual nearest neighbors) as a measure of the trial’s accuracy.

It’s possible that the performance of the algorithms may differ at various
accuracies: one algorithm may have a comparative advantage for lower accura-
cies while being worse at higher accuracies. To assess the accuracy-computation
trade-off for these algorithms, we tested each algorithm using a variety of hy-
perparameter settings. If a trial produced results which were strictly worse than
any other trial, it was discarded. Note that a trial is considered to be strictly
worse than another trial if both its query time is higher and its precision is
lower. Thus, we retained the Pareto frontier for each tested algorithm.

For the pre-existing algorithms (Annoy, BallTree, Flann, HNSW Graph,
KGraph, and SW Graph), we use the same set of hyperparameter settings as
Bernhardsson (2017a). All experiments were performed on an Intel Core i7-
4720HQ CPU running at 2.60GHz, with 8 gigabytes of RAM. No multithreading
was used for these experiments.

In between KForest trials where only the query parameters differed (not
construction parameters), the previously-constructed data structure was reused.
For example, if the one KForest trial used planeDistSearch and the following
trial used leafGraphSearch (with all other parameters identical), the tree
would not be re-built. For KForest, the searchType, exactEps, and minLeaves
parameters do not affect the tree construction, and changing these parameters
will not force the tree to be rebuilt. On the other hand, changing the maxLeaf-
Size, branchFactor, numTrees, consistencyType, spill, and maxSize parameters
all triggered a tree reconstruction.

3.4.1 SIFT Benchmark Results
The results from this experiment are displayed in Figure 3.3. Note that we plot
the queries per second (the inverse of the query time). As such, results which
are further up and to the right are better.

The most striking result is the performance gap between the graph-based
algorithms (HNSW Graph, KGraph, and SW Graph) and the tree-based ap-
proaches. HNSW Graph performed the best of all tested algorithms, often
producing ten times more queries per second for the same level of accuracy
as our KForest algorithm. Unfortunately, these graph-based libraries do not
support incrementally adding items in an online environment, which disqual-
ifies them from being used with MFEC. Future work should investigate ways

34



0.0 0.2 0.4 0.6 0.8 1.0
10-NN precision - larger is better

101

102

103

104

105

Qu
er

ie
s p

er
 se

co
nd

 (s
1 )

 - 
la

rg
er

 is
 b

et
te

r

Sift Accuracy-Performance Tradeoff
Up and to the right is better

Annoy
BallTree
Flann
HNSW Graph
KForest full
KForest none
KForest online
KGraph
SW Graph

Figure 3.3: Trade-off between accuracy and computation time for various near-
est neighbor algorithms.

35



to incrementally adapt these algorithms to take advantage of these impressive
results.

All versions of our KForest algorithm produced better results than the Ball-
Tree or Flann algorithms. KForest produced better results than Annoy for low
accuracy levels, but worse for high accuracies. We again note that KForest is
the only algorithm investigated which supports online additions: in contrast,
the BallTree, Flann, and Annoy algorithms all build their data structures in a
top-down manner.

We also investigated the differences between the various KForest consistency
settings (full, none, and online). As expected, no consistency (KForest none)
generally performed worse than both online consistency and full consistency.
Thus, we conclude that consistency enforcement does indeed improve the per-
formance of the KForest algorithm.

The discrepancy between full and online consistency enforcement is compa-
rable for the majority of the accuracy levels, with full consistency performing
slightly better at extremely low accuracy levels, as predicted. Surprisingly,
online consistency enforcement appears to perform slightly better than full con-
sistency for higher accuracy levels. One possible explanation might be that, due
to the iterative nature of continuously adding and removing inconsistent data-
points, full consistency enforcement creates trees which are slightly deeper than
online enforcement. Another possible explanation might be that full consistency
enforcement might cause data points to appear in more leaf nodes, causing wide
searches to be less efficient. Regardless, for searches which evaluate many leaf
nodes (such as high-accuracy searches), there seems to be diminishing returns
in enforcing exact consistency. However, since the observed effect seen here is
so small, further experiments are necessary to confirm this.

Overall, we conclude that, for our purposes, the slight query-time perfor-
mance loss associated with online consistency enforcement is outweighed by the
construction-time performance gain. Thus, we decide to use online consistency
enforcement for KForest structures in our MFEC implementations throughout
the rest of this thesis.

3.4.2 Ms. Pacman Benchmark Results
For the best representative comparisons, we wanted to use KForest settings
which were somewhere on or near the Pareto frontier for our MFEC experi-
ments on the Ms. Pacman environment. We thus first needed to gather a base
dataset of frames from the Ms. Pacman environment with which we could test
various KForest settings. However, we found that random exploration generally
produced datasets which were very different from those actually encountered by
the agent. We thus chose a set of KForest parameters which corresponded to
99% accuracy on the Sift experiment from the previous section, and used those
to generate this dataset. We trained our agent with these parameters for 24
hours, and extracted the frames stored in the first action buffer.

This resulted in a dataset of 554,363 64-dimensional vectors. This was split
into a 548,820-element training set, and a 5,543-element test set. The actual
nearest neighbors from the training set to the items of the test set were de-
termined using brute force search. Using this dataset, we tested a variety of
different KForest parameters using the same experimental setup as the previous
section. We tested the following sets of parameters:

36



accuracy searchType branchFactor maxLeafSize spill numTrees minLeaves
12.69% greedySearch 8 32 -1 1 32
47.58% planeDistSearch 64 48 -1 1 5
76.82% prototypeDistSearch 64 48 -1 1 53
79.74% prototypeDistSearch 32 128 -1 1 40
85.10% prototypeDistSearch 32 128 -1 1 60
89.64% prototypeDistSearch 48 64 0.1 1 160
95.17% prototypeDistSearch 48 64 0.1 1 320
98.89% prototypeDistSearch 32 96 -1 1 480
99.88% prototypeDistSearch 24 256 -1 1 640

Table 3.2: Pareto-optimal settings used for MFEC Pacman experiment.

• searchType ∈ {prototypeDistSearch,planeDistSearch}16,

• numTrees ∈ {1},

• branchFactor ∈ {24, 32, 48, 64},

• maxLeafSize ∈ {64, 96, 128, 192, 256},

• spill ∈ {−1, 0.1}17,

• enforceType = online, and

• minLeaves ∈
{⌊

b∗2i
maxLeafSize

⌋
| i ∈ [0, 14), b ∈ {10, 15}

}
18.

After conducting this grid search, we chose the Pareto-optimal KForest set-
tings with accuracy levels closest to 50%, 75%, 80%, 85%, 90%, 95%, 99%, and
99.9% accuracy. We also used the overall quickest setting, which corresponded
to 12.69% accuracy. The exact settings used are listed in Table 3.2.

3.5 MFEC Pacman
As mentioned previously, neither the original MFEC article (Blundell et al.,
2016) nor the follow-up article (Pritzel et al., 2017) investigated the impact
of the nearest neighbor approximation. Although Blundell et al. (2016) does
not mention the specifics of which nearest neighbor algorithm was used, Pritzel
et al. (2017) makes explicit mention of k-d trees, which we describe in Sec-
tion 3.1.4.1. We thus explored various nearest neighbor settings and see how
different accuracy levels impact the performance of the MFEC agent.

We used the Ms. Pacman environment (namely, the MsPacmanNoFrameskip-v4
from the OpenAI Gym Reinforcement Learning library (Brockman et al., 2016))
as a testbed for this experiment. For each run, we ran the algorithm for 16 hours
or 100 million frames, whichever came first. After each episode, we recorded
statistics such as the number of frames, current walltime, cumulative return,

16We found that leafGraphSearch was prohibitively expensive for this exhaustive search,
consistently producing suboptimal results.

17A spill setting of -1 corresponds to no spill.
18The theoretical maximum number of elements to be compared against is b ∗ 2i.

37



amount of time spent acting during the episode (primarily query lookups) and
amount of time spent wrapping up the episode (primarily adding elements to
the respective KForests).

The MFEC agents used experience buffers which held up to 1,000,000 ex-
periences for each possible action. The agents used a transformed version of
the screen pixels as input: the screen was first converted to greyscale and then
rescaled to a 84-by-84 image. These rescaled screen images were then trans-
formed via a sparse Gaussian random projection, which produced a 64-element
vector. These 64-dimensional vectors served as the state representations which
were ultimately stored in the experience buffers.

Although not mentioned in the paper, in private correspondence it was dis-
covered that Blundell et al. (2016) and Pritzel et al. (2017) used max-pooling
between subsequent frames in addition to using a “stack" of the previous 4
frames. Our experiments did not use these specific preprocessing steps.

The KForests underlying the experience buffers used online consistency en-
forcement with 10 iterations. The agents used the K = 11 nearest neighbors
for approximating the values of unseen frames. They used an epsilon-greedy
exploration strategy (ε = 0.005), and the agents repeated their actions for 4
frames between action decisions. We chose to test the Pareto-optimal KForest
settings with accuracy levels closest to 50%, 75%, 80%, 85%, 90%, 95%, 99%,
and 99.9% accuracy, as described in Section 3.4.2.

We conducted three runs for each of these settings, differentiated by the seeds
used for epsilon-greedy exploration, random projections, and KForest splitting
behavior. We compared the results of our experiments using two methods for
time keeping: walltime and frame count. The walltime results were based on the
actual time that elapsed between successive epochs, whereas the frame count
only considered the number of frames processed by the agent.

The frame count metric gives an estimate of the agent’s sample efficiency,
which is especially relevant in environments where environment interaction has
a higher latency, as is the case for real-world environments or complex simu-
lated environments. Given the Atari environment’s relative simplicity, the time
spent on agent decision-making is almost always greater than that spent on
environment simulation.

The walltime metric is perhaps the more practical metric for researchers in-
terested primarily in the Atari environment, as it gives an insight on how long
a researcher must run a simulation in order to obtain a result. However, this
metric is heavily affected by the specific hardware of the host running the exper-
iments, while also producing noisier estimates due to noise from other software
running on the system. We note that a large majority of the literature only
gives results in terms of frame count (likely due to these concerns). Nonethe-
less, we decided to include walltime results here, due to our focus on practically
comparing the computational efficiency between these methods.

As mentioned previously, all approximate nearest neighbor algorithms make
a trade-off between computational efficiency and accuracy. We would expect
lower-accuracy nearest neighbor searches to require less computation time to
chose actions, at the cost of producing less-accurate Q estimates. Thus, we
expect that agents with high-accuracy KNN settings would perform better on
the frame count metric than those with lower accuracy settings.

It is worth reiterating that, for MFEC agents, the KNN search is only per-
formed when looking up the Q-value of a state which is not in the agent’s

38



memory (either due to it being unvisited, or it having been evicted to make
room for other states). If the exact state is already present, then the maximum
observed return from that state is given as a result (this is made efficient by
means of an exact hash table). Thus, the noise induced by inaccurate KNN
settings only effects the Q-function estimates of unseen states.

3.5.1 MFEC Pacman Results
Figure 3.4 displays the results from this experiment. To normalize across trials
and to demonstrate the speed/accuracy trade-off, we show results for all frames,
for just the first 10 million frames, and for the first 16 hours. Each trial is
depicted as a partially-transparent line marking the smoothened return across
episodes, as smoothed by the gam function from the R package mgcv. The bold
lines depict the trails which obtained the median maximum average return of
each type. That is, if we sort the three trials according to the maximum value
of its smoothed return function, the one which produced the middle value is the
one shown in bold.

As expected, agents with lower KNN accuracies encountered more frames
than those with higher accuracies. The fastest agents (those with settings which
produced a 12.69% accuracy on the SIFT benchmark) completed all 100 million
frames in less time than it took the slowest agents (which used brute force search)
to encounter 8 million frames. In this time, the 12.69% agents completed 20,000
epochs, compared to the 1,500 epochs of the brute force agents.

It is very surprising, however, that agents with high-accuracy ANN settings
produced consistently worse results than those with low-accuracy settings across
both metrics. While this may be unsurprising for the walltime metric (since
low-accuracy agents effectively obtain more experience in the same amount of
walltime), this was true even on the framecount metric, which we expected to
be favorable to high-accuracy agents (given that they perform more work per
frame). The median highest-accuracy (brute force) agent averaged scores around
1700 after 5 million frames, whereas the median lowest-accuracy (12.69%) agent
averaged nearly 3100 at the same framecount. Furthermore, the lowest three
accuracy settings produced the best median agents after 10 million frames.

One possible explanation for this counter-intuitive result might be that
MFEC agents benefit from noisy Q-function imputation. As noted previously,
visited states are always perfectly recalled, and the KNN search is only used
for novel states. One would expect a noisy KNN search to produce results
which are too high for some novel states and too low for others. Novel states
whose predicted Q-values are too high are thus more likely to be explored. This
has similarities to technique of “optimistic initialization” which encourages ex-
ploration by intentionally overvaluing unseen states (Singh and Sutton, 1996).
Thus, it is possible that the negative impact of inaccurate imputations for un-
visited states is ameliorated by the benefit of additional (somewhat) guided
exploration.

Future research is necessary to fully explain this phenomenon. In particu-
lar, it would be possible to directly test if the “optimistic initialization”-esque
behavior can explain the performance gap by using a Q-function estimator with

39

http://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/gam.html


2000

4000

6000

0 25 50 75 100

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

accuracy

0.1269

0.4758

0.7682

0.7974

0.8510

0.8964

0.9517

0.9889

0.9988

brute

Smoothed average trial scores

MsPacman (various accuracies)

1000

2000

3000

4000

5000

0.0 2.5 5.0 7.5 10.0

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

accuracy

0.1269

0.4758

0.7682

0.7974

0.8510

0.8964

0.9517

0.9889

0.9988

brute

Smoothed average trial scores (10M frames)

2000

4000

6000

0 5 10 15

Walltime (hours)

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

accuracy

0.1269

0.4758

0.7682

0.7974

0.8510

0.8964

0.9517

0.9889

0.9988

brute

Smoothed average trial scores (16 hours)

Figure 3.4: Ms. Pacman results for various accuracies.

40



an artificial reward for visiting novel states:

Q’(s, a) =

{
Q(s, a) if (s, a) visited
Q(s, a) + α otherwise

It should also be investigated how the performance of MFEC agents is impacted
by the addition of artificial noise to accurate KNN queries, e.g. by adding
Gaussian noise to the Q-function estimate.

3.6 Summary
In this chapter, we described the state-of-the-art in approximate nearest neigh-
bor data structures. We then described our own online data structure, which we
dubbed KForest, and showed that its performance on the SIFT benchmark is
competitive with commonly-used tree-based batch methods which do not sup-
port additions or deletions. However, we think it is important to note that
the graph-based approaches had significantly better performance on the SIFT
benchmark, and that further research should be focused on an implementation
of these algorithms which support online additions and deletions.

We then tested the performance of the MFEC agent on the Ms. Pacman
environment across various accuracy settings. Interestingly, we found that the
agents with the most accurate settings (ranging between 98.9% to 100%) per-
formed worst on our tests. Even when looking at performance with respect to
frame count (discarding the effect of less frames encountered due to increased
processing time), these agents still performed among the worst for the first 5
million frames.

We found that the KForest settings which resulted in 76.82% nearest neigh-
bor accuracy produced the best results on average for this experiment. Thus,
we decide to use these KForest settings throughout all following experiments for
the remainder of this thesis.

41



Chapter 4

Local Regression

One important task in machine learning is regression, where an algorithm pre-
dicts a real-valued label given an input. Regression datasets consist of P labeled
examples, D = {(xi, yi) | i ∈ [0, P )}, such that each example is a d-dimensional
real-valued vector, xi ∈ Rd, and each target is a real value, yi ∈ R.

At test-time, a regression algorithm is given an unlabeled example as input,
and predicts an output which matches the rule underlying the dataset as closely
as possible. We denote this prediction by the function ŷ(xi) : Rd → R.

Many regression algorithms are trained to adapt a global model to predict
the rule which produced the dataset. That is, a single set of parameters are
used no matter what input is given. One example of an algorithm with such a
global model is linear regression, which has the prediction function:

ŷ(x) = a · x+ b, (4.1)

where a ∈ Rd and b ∈ R are trainable parameters which are used globally.
In contrast, in this thesis we explore a class of regression algorithms which

use local models. The defining characteristic of these algorithms is that they use
a different model for each query. This is often done by assigning less importance
to distant examples in the dataset than to close examples. This relies on the
assumption that examples which are close to the query are more contextually
relevant than far away ones.

A simple version of a local regression algorithm is k-nearest neighbors (kNN)
regression. In this scheme, the k training examples closest to the query are
selected and all other examples are given a weight of 0. The prediction function
for kNN regression is thus:

ŷq(x) =
1

k

∑
xi∈NBRk(q)

yi, (4.2)

where NBRk(q) : Rd → P(Rd) is the function which returns the set of k clos-
est examples (the neighbors) to the query point, q. We visually showcase the
difference between a global linear and various local models in Figure 4.1.

For local regression algorithms, we use the notation ŷq(x) to denote the
result of models trained around the query point q evaluated at the point x. For
these algorithms, the local regression prediction (the predicted result for a given

42



/2 0 /2
1.5

1.0

0.5

0.0

0.5

1.0

1.5
global linear

/2 0 /2

kNN kernel, constant model

/2 0 /2

triangle kernel, constant model

/2 0 /2

triangle kernel, linear model

Figure 4.1: Global linear model (left) vs various local models (rightmost three)
for estimating a noisy cosine function (noise sampled from the normal distri-
bution with mean 0 and standard deviation 0.25). Filled blue circles mark
examples that were used by the model, with their size indicating the relative
strength of their contribution. The orange lines indicate the result of the fitted
local model, and the black “X” indicates the local model’s prediction for the
query point, which was q = 2π

3 . The local models used k = 50. The global lin-
ear model estimates a value of 0.18, the kNN kernel estimates 0.035, the triangle
kernel estimates -0.24, and the triangle kernel with local linear model estimates
-0.43. The target value was cos( 2π3 ) = −0.5.

input) is given by:
ŷ(x) = ŷx(x). (4.3)

Making a prediction using these algorithms requires constructing a new
model for each query. As a result, simple models are typically used as a lo-
cal model. We will discuss this in more detail in the following section.

Note that the result of Equation 4.2 is dependent only on q, not x. From
this example, it may not be totally clear why we distinguish between q and x.
To motivate this notation, we first give a formal definition for local regression.

4.1 Weighted Square Error
Most machine learning problems are solved by posing the problem as some
differentiable cost function, which is then minimized. For example, regression
algorithms often minimize the mean squared error between the predicted and
actual targets:

MSE =
1

P

P−1∑
i=0

(yi − ŷ(xi))2. (4.4)

In this thesis we consider local models which minimize a weighted square
error:

WSEq =

P−1∑
i=0

w(xi, q)(yi − ŷq(xi))2, (4.5)

where q ∈ Rd is the query point around which the local model is centered,
and w(xi, q) : Rd × Rd → R is the weighting function which determines the

43



relevance of example i to the query point (Loader, 1999). The weighting function
monotonically decreases (does not increase, but might remain constant) as the
distance between q and xi increases. As a result, errors on distant examples
are penalized less than those local to q.

4.2 Weighting Function
The choice of weighting function plays a large role in the performance of local
regressors. Indeed, we can see that MSE is actually just a special case of WSE
where the weighting function is uniform (w(xi, q) = 1

P ).
An important class of weighting functions are defined in terms of a monotonic

kernel K : R+ → R+.1 Formally, these kernel weighting functions are defined
as:

wh(q)(xi, q) = K

(
‖xi − q‖
h(q)

)
, (4.6)

where h(q) : Rd → R is the bandwidth hyperparameter which determines the
“width” of the underlying kernel. Although any measure of dissimilarity can be
used in the numerator of Equation 4.6, the Euclidean norm is most commonly
used.

In general, h(q) can either be a fixed constant (h(q) = h), or can vary based
on the query. Smaller bandwidth values produce spikier predictions (higher
variance), whereas larger values risk simply reproducing the mean (higher bias).

One possible bandwidth function, known as the nearest neighbor bandwidth,
is given by:

h(q) = argmax
xi∈NBRk(q)

‖xi − q‖. (4.7)

This sets the bandwidth of the kernel to be equal to the distance from the query
point to the kth closest example.

Multiple types of kernels can be used. Some popular choices for kernels are
given in Table 4.1. However, the bandwidth generally has a larger impact on
the quality of the result than the exact shape of the kernel (Tibshirani, 2014).
A visual comparison between different kernels and bandwidths can be found in
Figure 4.2.

4.3 Local Models
The WSE cost function is differentiable, so it is theoretically possible to use
this cost function to train arbitrarily complex models via gradient descent (e.g.
multilayer neural networks). However, this is prohibitively computationally
expensive, as it would require an intensive training phase for each query. As
a result, simple models with analytic solutions are typically used, such as a
constant estimator (Section 4.3.1) or a linear model (Section 4.3.2).

In particular, two popular choices for local models are the constant local
model (known as Kernel Regression) and the linear local model (known as Lo-
cally Linear Regression).

1“Kernel” is an overloaded term in machine learning. For example, in Support Vector
Machines, “kernels” define an implicit inner product in some (potentially unknown) Hilbert
space. Throughout this thesis, we use the term “kernel” only to describe monotonic functions
from one positive real value to another.

44



1

0

1

Re
ct

an
gl

e

constant, h = /20 constant, h = kNN, k = 6 kNN, k = 30

1

0

1

Tr
ia

ng
le

1

0

1

Bi
sq

ua
re

1

0

1

Tr
icu

be

1

0

1

Ga
us

sia
n

1

0

1

In
vD

ist

/2 0 /2

1

0

1

In
vD

ist
2

/2 0 /2 /2 0 /2 /2 0 /2

Figure 4.2: Comparison of local regression predictions between kernel regressors
with various kernel weighting functions and bandwidths.

45



Rectangle K(x) =

{
1 if x ≤ 1
0 otherwise

Triangle K(x) =

{
1− |x| if x ≤ 1
0 otherwise

Bisquare K(x) =

{
(1− x2)2 if x ≤ 1
0 otherwise

Tricube K(x) =

{
(1− |x|3)3 if x ≤ 1
0 otherwise

Gaussian K(x) = exp(−x2/2)
2
√
π

Inverse Dist K(x) = ε/(x+ ε)

Inverse SqDist K(x) = ε/(x2 + ε)

Table 4.1: Various kernels which can be used to produce kernel weighting func-
tions. The light grey line is placed at x = 1.

4.3.1 Kernel Regression
Kernel regression (also known as kernel smoothing, weighted mean, or Nadaraya-
Watson regression) is perhaps the simplest possible model for local regression.
For each query point, the local model always predicts a constant value bq, regard-
less of the value of x. That is, kernel regression uses the local model ŷq(x) = bq.

One nice property of this model is that when this local model is plugged into
the WSE cost function, it is possible to derive a simple solution which minimizes

46



the local error:

WSEq =

P−1∑
n=0

w(xi, q)(yi − ŷq(xi))2

=

P−1∑
n=0

w(xi, q)(yi − bq)2

=⇒ ∂

∂bq
WSEq =− 2

P−1∑
n=0

w(xi, q)(yi − bq)

=⇒ 0 =− 2

P−1∑
n=0

w(xi, q)(yi − bq)

=⇒ 0 =

P−1∑
n=0

w(xi, q)yi −
P−1∑
n=0

w(xi, q)bq

=⇒
P−1∑
n=0

w(xi, q)bq =
P−1∑
n=0

w(xi, q)yi

=⇒ bq

P−1∑
n=0

w(xi, q) =

P−1∑
n=0

w(xi, q)yi

=⇒ bq =

P−1∑
n=0

w(xi, q)yi

P−1∑
n=0

w(xi, q)

.

Thus, for kernel regression the optimal model is ŷq(x) =
∑
w(xi,q)yi∑
w(xi,q)

.
If we have a constant weight function (w(xi, q) = 1), then this estimate

simply becomes the mean of the dataset:

ŷq(x) =

∑
1 · yi∑
1

=

∑
yi

N
. (4.8)

On the opposite end of the spectrum, consider kernel regression with a kernel
weighting function using a rectangular kernel and a nearest neighbor bandwidth.
Aside from the case where there are ties on the kth nearest example, the pre-
diction becomes:

ŷq(x) =

∑
w(xi, q)yi∑
w(xi, q)

=

∑
xi∈NBRk(q)

yi∑
xi∈NBRk(q)

1
=

1

k

∑
xi∈NBRk(q)

yi. (4.9)

This is exactly the predictor for kNN regression (Equation 4.2).
One useful property of this model is that it is an O(1) operation to com-

pute the leave-one-out prediction. That is, given the weighted sums (which are
necessary for normal predictions), it takes only a constant number of additional
operations to determine what the prediction would have been had that example
not been in the dataset. The leave-one-out prediction is simply given by:

ỹj,q(x) =

∑
w(xi, q)yi − w(xj , q)yj∑
w(xi, q)− w(xj , q)

. (4.10)

47



We make extensive use of this property in Chapter 5 to adapt kernel regression
to online environments with drift.

One important consideration for kernel regression is that the fringes of the
datasets become especially prone to bias. This can be seen in Figure 4.2, which
uses kernel regression with various weight configurations. Many of the curves
in Figure 4.2 have a premature “upward” bend at the extremities, even though
all examples were constrained to the range [−π, π]. This is most evident for
large bandwidths (see the last three rows of the last column), where the local
contribution of the nearest point fades away in favor of the majority near the
mean.

4.3.2 Locally Weighted Regression
In contrast to kernel regression which uses a constant local model, locally
weighted regression (also known as locally linear regression or LOESS) uses a
linear model for each query point. Unlike kernel regression, the locally weighted
regression is affected by x: ŷq(x) = aq · x+ bq.

As is the case with ordinary linear regression, it is possible to use the same
machinery to fit higher-order polynomials through the use of a mapping func-
tion:

φd(xi) = (1, x, x2, · · · , xd)T . (4.11)

Using this notation, the model for locally weighted regression thus becomes:

ŷq(x) = aq · φd(x). (4.12)

From this formulation, we can view kernel regression as a special case of
locally weighted regression, with 0-degree polynomials.

Luckily, when this model is plugged into WSE, the minima can be computed
algebrically by (Loader, 1999):

aq = (XTWX)−1XTWy,

where W is a diagonal matrix with elements equal to w(xi, q), and X is the
design matrix with each example in one row.

4.4 Alternate Criterion
We briefly note that it is possible to extend the general idea of local weighting
to alternate domains by changing the objective criterion. For example, the
squared error in Equation 4.5 could be substituted for cross-entropy loss for
classification tasks. Similarly, the regression can be made robust to outliers by
similarly changing the objective criterion (Loader, 1999).

4.5 Computational Efficiency
Many popular kernels have a finite support, such that for all x ≥ 1, K(x) = 0.
When such kernels are used, all examples more than h(q) away from q can be
ignored without affecting the result. Other kernels, such as the Guassian kernel,
have an infinite support, and thus technically require evaluating every example

48



for each query. Thus, when using finite-support kernels, nearest neighbord data
structures can be used to greatly reduce the computational expense of each
query.

4.6 MFEC Pacman
We wanted to investigate how the choice of kernel and local model affects the
performance of the MFEC agent.

Similar to our experiment in Section 3.5, we conducted multiple trials using
the Ms. Pacman environment from the OpenAI Gym reinforcement learning
library (Brockman et al., 2016). For each trial, we let an agent act in the
environment for 16 hours or 100 million frames, whichever came first. At the
end of each episode, we recorded statistics about that episode.

Our MFEC agent used experience buffers which held up to 1,000,000 ex-
periences for each possible action. The agent used a transformed version of
the screen pixels as input such that each observation was represented as a 64-
dimensional vector, as explained in Section 3.5.

The KForests underlying the experience buffers used the settings which we
previously found to have 76.82% accuracy on Ms. Pacman images (see Table 3.2).
The agents used the K = 11 nearest neighbors for approximating the values of
unseen frames, used an epsilon-greedy exploration strategy (ε = 0.005), and
repeated their actions for 4 frames between action decisions.

We note that it is possible that the choice of local model might have an
interaction effect with the choice of type of kernel used. Thus, we tested all pos-
sible combinations of kernels (constant, inverse squared distance, triangle, and
tricube) and local models (kernel and linear). For each setting, we performed
three trials, for a total of 4× 2× 3 trials in total.

4.6.1 MFEC Ms. Pacman Results
Figure 4.3 displays the results from this experiment. We note that, although the
linear local model requires slightly more computational resources than kernel lo-
cal models, this difference is negligible when compared to the costs of performing
the kNN lookup and environment simulation. Thus, we only compare results
based on frame counts, and not walltime. We show results for all frames (the
16 hour regime) as well as for just the first 10 million frames (the small-data
regime).

As in Section 3.5.1, each trial is depicted as a partially-transparent line
marking the smoothened return across episodes, as smoothed by the gam func-
tion from the R package mgcv. For each agent, we take the maximum value of
this smoothed return, and then sort these maximum values by the agent type.
The bold lines depict the trials which obtained the median of these maximum
returns for each agent type.

In the 16 hour regime, the kernel local models using the inverse square
distance and tricube kernels performed better than the constant or triangle
kernels by the end of the trial. The kernel local model and linear local model
generally performed similarly for the same kernel type, except for the notable
exception of the inverse square distance kernel. For this kernel, the performance

49

http://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/gam.html
http://stat.ethz.ch/R-manual/R-devel/library/mgcv/html/gam.html


2000

4000

6000

0 20 40 60

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

kernel

constant

invSq

triangle

tricube

model

kernel

linear

Smoothed average trial scores

MsPacman (various kernels and models)

2000

4000

6000

0.0 2.5 5.0 7.5 10.0

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

kernel

constant

invSq

triangle

tricube

model

kernel

linear

Smoothed average trial scores (10M frames)

Figure 4.3: Ms. Pacman results for various kernel and local model settings.

50



of the kernel local model performed best overall, whereas the linear local model
with the same kernel performed worst.

In the small-data regime, the constant and inverse square distance kernels
with a linear local model produced the worst median scores for the first 5 mil-
lion frames. However, there was a great deal of variance in this measure: the
highest-scoring individual runs after 10 million frames were from the constant
and inverse square distance kernels with linear local models. The median tricube
agents performed best on the small-data regime, with the linear agent perform-
ing slightly better than the kernel agent at 10 million frames.

Overall, the performance of the median agents does give some indication
that the tricube and inverse square distance kernels with the kernel local model
are superior in the 16 hour regime. While the local model type does not seem
to have a large impact in the 16 hour regime, for the small-data regime there
seems to be a considerable dip in performance when using the linear model with
the constant and inverse square distance kernels. However, the large amount
of variance observed in the individual trials would seem to indicate that the
choice of kernel and local model are not as important as other hyperparameter
settings.

4.7 Summary
In this chapter, we described how simple k-nearest neighbors regression is just
one of a family of regression methods known as local regression. Specifically, we
described that these methods can be categorized based on two orthogonal crite-
ria: the weighting function (kernel) and the local model. The kernel determines
the relative weight of each neighbor based on its distance to the query point.
The local model is the regressor which is ultimately fitted to the data according
to the local weighted square error (Equation 4.5).

We then tested the performance of the MFEC agent on the Ms. Pacman
environment across various kernel and local model settings. In this experiment,
the usage of a linear local model did not improve performance above that of a
constant local model (and actually hurt performance in one case). Additionally,
although it did not make much of an impact in the 10-million frame regime, in
the 16-hour regime the tricube and invSq kernels performed best on average.

51



Chapter 5

Drift Compensation

Many machine learning algorithms make the assumption that the target dataset
is fixed and does not vary over time. These algorithms typically have a single
training phase on a fixed dataset, after which the algorithm only gives static
predictions. However, not all problems match this assumption of a fixed dataset.
The field of online learning focuses on the more general problem of learning on
streams of data: a dataset which can change during the course of learning. In
order to accommodate to new data as it is gathered, online learning algorithms
typically have a periodic or continuous training regimen. These algorithms must
be able to produce predictions in an online fashion, interleaved with receiving
new data. Indeed, human memory has been shown to accommodate for new
information by actively removing old memories (Hardt et al., 2013).

Of particular importance to this thesis, we note that reinforcement learning
is a form of online learning. If a fixed policy were given for some environment1,
then the problem of determining the expected return from following that policy
from a given set of states (known as policy evaluation) is a static problem, since
the actual policy value is fixed and thus serves as a fixed target. Thus, offline
learning algorithms are sufficient for policy evaluation.

However, the full reinforcement learning problem differs from policy eval-
uation in two key ways. Firstly, reinforcement learning requires the agent to
determine an expected return of all states the agent will encounter, which is
potentially unknown a priori. Encountering a new state is akin to adding new
elements to the target dataset. Secondly, and perhaps more importantly, if the
agent’s policy is allowed to change over time then the actual policy value will
change as a result. Agents which use DQN or MFEC (or, indeed, any Q-learning
algorithm) adjust their policies online, as a consequence of updating their beliefs
about the consequences of their actions as they gain additional experience in
their environments.

5.1 Drift
The online learning paradigm introduces a phenomenon not possible with fixed
datasets: the dataset itself may change in some way over time. This phe-
nomenon, known as drift, can occur in many different ways.

1We assume a static environment, whose transition probabilities are fixed.

52



Original Data Virtual Drift Real Drift

Changes in P ( y|X )Changes in P ( X )

Figure 5.1: Illustration of virtual (middle) and real (right) drift types.

A dataset may change smoothly or abruptly. This change may occur only
once, periodically, or continuously.

However, one of the most important distinctions of types of drift are known
as virtual drift and real drift.2 Virtual drift occurs when the distribution of the
inputs change, but not the assigned labels. That is, the probability distribution
P (X) changes. Real drift occurs when the labels themselves change, but perhaps
not the distribution of inputs. That is, the probability distribution P (yi | X)
changes. Figure 5.1 gives a visual depiction of these two drift types.

It is important to note that in reinforcement learning both of these drift
types commonly occur. Virtual drift corresponds to encountering a different
distribution of observations as the agent’s policy changes as a result of inter-
action with the environment. Virtual drift can also occur as a byproduct of
exploration, which explores novel parts of the state space. Real drift occurs
when the agent gains more knowledge about the environment and updates its
Q-value representation as a result. This can occur either by learning a new
strategy or through propagating temporal differences through the Q-function
approximator. Note that, due to the immediate one-shot learning property of
the MFEC’s kNN regressor, this latter case is not as applicable (although the
former definitely is).

Many different strategies for compensating for this drift have been proposed.
There exist two general categories of algorithms for drift compensation: active
algorithms which attempt to identify discrete time points where change occurs,
and passive algorithms which attempt to adapt continuously, without explicit
demarcations. The approach we propose is a passive algorithm, identifying only
when our current model does not match our expectations.

We propose another extension to the locally weighted regression paradigm
which accommodates for online learning with drift. It does this via immediate
leave-one-out comparisons to determine the error a prediction would make had
that item not been included. The general idea is that if the algorithm produces
consistently better results with the item left out, it is beneficial to remove that
item.

2The term real drift simply describes a specific kind of drift, and does not imply that other
kinds of drift are not real or otherwise fake.

53



5.2 Leave-One-Out Drift Compensation
Many drift compensation schemes attempt to compensate for real drift by using
a sliding window to determine a time threshold beyond which data is considered
outdated (Losing et al., 2016). In most approaches using this sliding window
technique, samples older than this threshold are simply forgotten and remain
unused in training future models. This technique makes the implicit assump-
tion that changes in the labels in a dataset occur uniformly across all inputs.
However, this assumption does not necessarily hold true in the reinforcement
learning domain. In particular, in reinforcement learning, it is sometimes ben-
eficial to remove more recent memories while retaining older ones.

To illustrate this, imagine an agent attempting to learn to play Frostbite
from the Atari Learning Environment (for details, see Appendix A.4). During
an early episode, the agent immediately jumps downwards and lands in the
water, resulting in a disadvantageous outcome at the beginning of the episode.
This outcome is inevitable whenever the agent takes this action, and thus the
agent should not forget it. Much later in training, the agent discovers that
it is possible to enter the igloo after collecting 16 ice blocks, giving a large
reward. This new information causes the agent’s evaluation of some previously-
encountered states to be outdated (namely, the value of states from which it
is still possible to reach the igloo should be increased). However, the agent’s
knowledge about the consequences of jumping into the water is still relevant
and should not be forgotten, despite those experiences being older.

We thus would like a drift compensation method which operates on a per-
item basis, rather than a sliding window based on the age of the experience. We
propose the use of a simple signal of drift: the leave-one-out prediction error.
The leave-one-out prediction for a given item simply gives what the prediction
would have been had that item never been added to the dataset, thus providing
a measure of the contribution of an individual element to the overall prediction
of an item, If real drift has occurred relative to a new example, we would expect
that the contribution from outdated items would consistently cause a higher
error, such that the error would be reduced if that element were removed.

The algorithm we propose only enforces consistency when adding new items,
and does not require any explicit consistency-enforcement steps. Whenever a
new example is added, we iterate through each of the previously-encountered
items in the dataset and determine the leave-one-out prediction error for those
items. To limit the computational effort required to compute these leave-one-
out errors, we only consider the k items whose impact on the prediction at the
insertion point is greatest. This also has the side effect of only focusing on the
most relevant candidates for removal.

Instead of recording the direct leave-one-out prediction error, we actually
sort the k items and record the resulting ranks. It should be reiterated that
items which give a high leave-one-out prediction error should be retained, since
those proved to be useful. We sort the leave-one-out prediction error in de-
scending order, such that the first item is most beneficial and the last is most
detrimental. Note that 1 is the best possible rank, and k is the worst. This
rank-based approach has an important benefit: it does not require informa-
tion about the range of possible errors possible. Thus, determining a threshold
is more generalizable than, say, only using the raw leave-one-out error (which
would require a threshold which depends on the domain of the regressor).

54



We keep a moving average of these ranks by using a fixed-size sliding win-
dow. This approach maintains a “first-in, first-out” queue of at most maxHist
elements, such that when the maxHist+1th item is added then the oldest item
gets removed. Whenever a new item is added, the rankings of the leave-one-out
prediction errors of the most impactful items in the dataset are appended to that
item’s sliding window queue. The estimated average for an item is then simply
the average of the elements still within that item’s queue. We note that this
sliding window approach increases the memory requirements by a factor equal
to the size of the sliding window, since at most maxHist of these elements must
be stored. However, we found through informal testing that a sliding window
approach performed better than other more memory-efficient moving average
techniques such as an exponential moving average.

After adding the rankings to the k most-impactful items, we check to see if
the new average rankings for these items exceeds that of the threshold, drift-
Thresh. Those items with an average ranking higher than driftThresh are deleted
from the stored dataset. Once this is completed, the new item is finally appended
to the dataset.

Algorithm 3 describes our proposed method of drift compensation. Note
that we use ŷ(xi) to denote the current prediction for input xi, and ỹj(xi) to
denote element j’s leave-one-out prediction for xi (the value that would have
been predicted for xi if the jth element was never in the dataset).

Algorithm 3 Leave-one-out Drift Compensation

1: function addWithDriftCompensation(xi, yi)
2: mostImpactful ← min-heap of size k
3: for xj ∈ data do
4: mostImpactful.add(

∣∣ỹj(xi)− ŷ(xi)∣∣, xj)
5: errors ← empty list
6: for xj ∈ mostImpactful.values() do
7: errors.add(

∣∣ỹj(xi)− yi∣∣, xj)
8: if ECDCa then
9: errors.sortAscending()

10: else
11: errors.sortDescending()
12: for j ← 1, 2, . . . ,minLeaves do
13: error, xj ← errors[j]
14: histories[xj ].add(error)
15: if histories[xj ].size() ≥ driftLen ∧ histories[xj ].average() > drift-

Thresh then
16: histories.remove(xj)
17: data.remove(xj)
18: data.add(xi, yi)
19: histories.add(xj , new fixed-size queue of length driftLen)

We note that for some models, this approach is computationally intractable.
In particular, if no information is known about the details of the regressor then a
new model must be built for each item in the dataset upon each addition in order
to determine the k most-impactful items. For models with computationally

55



expensive training processes, such as deep neural networks, this would require
days of computation per addition for even a moderately-sized dataset.

However, local regressors with finite-support kernels (those which have a 0-
value for some items) have a desirable property: all items outside the kernel’s
support have no impact on the regressor’s prediction. In particular, for a k-
nearest neighbor regressor, all items besides those k which are nearest to the
query point have no impact. Indeed, our choice of the variable k for both k-
nearest neighbors and the size of the list of most-impactful items is deliberate.
We can simply set mostImpactful to be the list of items returned from the
k-nearest neighbors search, allowing us to skip directly to line 4 of Algorithm 3.

For kernel regression (local regression models with constant local models, see
Section 4.3.1), it is possible to further increase the efficiency of computing the
leave-one-out prediction. As described by Equation 4.10, it is possible to com-
pute the leave-one-out prediction as a single O(1) operation. Thus, computing
all of the k leave-one-out predictions requires only a single linear pass through
the k items. Since this must already be done in order to make predictions, the
overall runtime remains linear.

We note similarities between our proposed approach and that of Losing et al.
(2016), which also proposed the use of drift compensation for a KNN model.
However, we note important distinctions between this work and ours. First,
their method is proposed specifically for usage in a classifier setting, as opposed
to our proposed regression task. Secondly, their method uses a "two-tiered"
system of memory, by which memories move from a “short-term” storage to a
“long-term” one. Finally, their method relies on determining a fixed “window
size”, essentially using a “leave-window-out” strategy as opposed to our “leave-
one-out” strategy: an old but useful memory is evicted if it has enough outdated
neighbors.

5.2.1 Ascending and Descending Error Ranking
We investigate versions of leave-one-out drift compensation which rank the
leave-one-out errors in ascending as well as descending order. We use “ECDCa”
to refer to agents which rank the errors in ascending order, and “ECDCd” to
those which rank in descending order.

By ranking errors in ascending order, the ECDCa strategy effectively evicts
memories with high leave-one-out errors. This should cause more productive
elements to be deleted, while retaining those which were less so.

To demonstrate the effect of this ranking choice in a controlled environment,
we tested both ECDCa and ECDCd on a synthetic drift problem. We note that
for deterministic reinforcement learning environments and episodic agents, (1)
the value function may have discontinuities, (2) updates to the model occur at
the end of an episode, (3) changes in the value function typically do not affect
all items, (4) changes in the value function only occur at the end of an episode,
and (5) the value function may only monotonically increase. We thus devised a
synthetic drift problem which includes all of these characteristics.

We setup the problem as a 64-dimensional regression with a non-stationary
target function, corresponding to a 64-dimensional observation space for a rein-
forcement learning problem. The model was updated in batches, representing
episodes from a reinforcement learning agent. The size of each episode was
drawn from a uniform random distribution in the range [200, 400]. Each sample

56



of the episode was a 64-dimensional vector with components drawn indepen-
dently from N (0, 1). After each episode we updated the model’s drift compen-
sation data structures (potentially evicting previously-inserted items) and then
added the episode’s samples to the model with the current target value.

The initial target function was set to to be a simple linear function:

f0(x) = 500(x ·w0),

where w0 was a 64-dimensional vector with components drawn independently
from N (0, 1). After every 10 episodes we added an additional piece to the target
function, corresponding to the agent discovering a new advantageous policy via
exploration. On these epochs, we changed the cost function as follows:

ft(x) =

{
ft−1(x) + s if x ·wt > 0
ft−1(x) otherwise ,

where wt was a 64-dimensional vector with components drawn independently
from N (0, 1) and s was drawn from a uniform random distribution in the range
[100, 300]. We note that wt is the normal vector of a random hyperplane passing
through the origin, adding a fixed offset to points on one side of the hyperplane
while not affecting those on the other side. Thus, each occurrence of drift affects
exactly half of the potential observation space.

We simulated 1000 episodes (and thus 100 occurrences of drift) on a k-nearest
neighbors model. The KForest for approximate nearest neighbors used the set-
ting which we previously found to have 76.82% accuracy on Ms. Pacman images
(see Table 3.2), and used the K = 10 nearest neighbors to make predictions.
The models used a fixed kernel for weighting (simple k-nearest neighbors), and
used kernel regression (constant local model).

We tested three types of drift compensation strategies: the ECDCa leave-
one-out strategy, the ECDCd leave-one-out strategy, and no drift strategy. We
noted the error for each sample and then averaged these errors across each
epoch.

As can be seen in Figure 5.2, this ECDCa strategy produced the worst results
on this synthetic environment, being outperformed even by the model with no
drift strategy. Additionally, the average error was 2890.4 for the ECDCa drift
strategy, 2599.7 for no drift strategy, and 1489.9 for the ECDCd drift strategy.
This gives evidence that the ECDCa does indeed delete items which are useful.

However, we strangely found that the ECDCa agents produced markedly
better results in the full reinforcement learning paradigm (as can be seen in
the following sections). We thus present results for both ECDCa and ECDCd
agents in the following section.

5.3 Episodic Control with Drift Compensation:
Thresholds

From here on in this thesis, we refer to RL algorithms using this leave-one-
out drift compensation scheme as Episodic Control with Drift Compensation
(ECDC). All other aspects of the algorithm remain the same as MFEC, except
that ECDC compensates for drift by using the algorithm described in Algo-
rithm 3.

57



1000

2000

3000

4000

5000

0 250 500 750 1000

Episode Number

E
rr

or

strategy

Leave One Out (ECDCa)

Leave One Out (ECDCd)

No Drift Compensation

Error Under Drift

Figure 5.2: Error under drift for the synthetic drift problem described in Sec-
tion 5.2.1 for different drift strategies.

We note one special case for drift compensation which occurs quite regularly
in episodic control: it is undefined what should occur when adding an item which
exactly matches one which is already in our dataset. The MFEC algorithm
prescribes that when making a prediction in such a case, the highest return
observed from that state should be returned, and thus no other items have any
impact. In this view, adding an item with an exact match should not update
any of the rank histories. We describe this type of drift as “NoExact”.

However, an alternate view would be that what we really care about with
drift regression is not what the regressor would predict, but rather about whether
or not nearby data points have an outdated estimate. In this perspective, the
k-nearest neighbors should still be investigated and updated for drift, regardless
of whether or not the data point to be added is an exact match. We describe
this type of drift as “Exact”.

In addition, there is the important hyperparameter of driftThresh which we
expect will have a large impact on the performance of the algorithm. Setting
this too low will result in the algorithm being too eager to delete items, whereas
setting it too high would cause it to never perform any actual drift compensa-
tion. Further, we expect this parameter has an interaction with the chosen drift
type, since DriftExact will result in much more drift compensation steps than
DriftNoExact.

Thus, we tested both of these parameters in tandem. Similar to our ex-
periment in Section 3.5, we conducted multiple trials using the Ms. Pacman
environment from the OpenAI Gym reinforment learning library (Brockman
et al., 2016). For each trial, let an agent act in the environment for 16 hours
or 100 million frames, whichever came first. At the end of each episode, we
recorded statistics about that episode.

Our MFEC agent used experience buffers which held up to 1,000,000 ex-
periences for each possible action. The agent used a transformed version of
the screen pixels as input such that each observation was represented as a 64-
dimensional vector, as explained in Section 3.5.

The KForests underlying the experience buffers used the setting which we

58



2000

4000

6000

8000

0 20 40 60

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

driftType

ECDCd, Exact

ECDCd, NoExact

MFEC (No Drift)

driftThresh

−1

6

7

8

9

10

Smoothed average trial scores

MsPacman (various drift thresholds, ECDCd)

Figure 5.3: Ms. Pacman results for various driftType and driftThresh settings,
with a descending drift strategy.

previously found to have 76.82% accuracy on Ms. Pacman images (see Table 3.2).
The agents used the K = 11 nearest neighbors for approximating the values of
unseen frames, used an epsilon-greedy exploration strategy (ε = 0.002), and
repeated their actions for 4 frames between action decisions. The agents used a
fixed kernel for weighting (simple k-nearest neighbors), and used kernel regres-
sion (constant local model). In the histories list, the agents used driftLen = 10
for each item.

Since we expected there would be an interaction effect between the choice of
drift type and driftThresh settings, we tested all possible combinations of both
drift types and all tested driftThresh values.

As mentioned previously, we investigated two forms of leave-one-out drift
compensation, distinguished by the ordering of leave-one-out error rankings. As
noted above, we use ECDCa to denote ECDC agents which use leave-one-out
ascending error ranking, and ECDCd to denote ECDC agents which use de-
scending leave-one-out error ranking. We present results for the ECDCd agents
in Section 5.3.1, and then present the results for the ECDCa in Section 5.3.2.

5.3.1 Results: ECDCd (Descending Drift)
For this experiment, we explored ECDCd agents with driftThresh settings rang-
ing between 6 and 10, in increments of 1. Since we expected there to be an
interaction effect between the choice of drift type and driftThresh settings, we
tested all possible combinations of both drift types and all 5 driftThresh values.
For reference, we also compare against the results of an agent with no drift
compensation (and thus a driftThresh of -1). For each setting, we performed
three trials, for a total of 3 × (5 × 2 + 1) trials total. Figure 5.3 displays the
results from this experiment.

It is notable that all of the ECDCd agents performed worse than the MFEC
baseline. Indeed, not even a single trial of an ECDCd agent outperformed the

59



worst trial of the MFEC agent. In general, the Exact drift agents performed
slightly better than their NoExact counterparts, but this effect was relatively
small for all driftThresh settings other than 10.

The best-performing ECDCd agent was the one using Exact drift with a
driftThresh of 10, the setting where the drift compensation has least effect.
Under this setting, ECDCd only evicts items which receive the highest rank
for driftLen episodes in a row, making this the most conservative possible drift
compensation setting.

5.3.2 Results: ECDCa (Ascending Drift)
For this experiment, we explored ECDCa agents with driftThresh settings rang-
ing between 7 and 10, in increments of 0.5. Since we expected there to be an
interaction effect between the choice of drift type and driftThresh settings, we
tested all possible combinations of both drift types and all 7 driftThresh values.
For reference, we also compare against the results of an agent with no drift
compensation (and thus a driftThresh of -1). For each setting, we performed
three trials, for a total of 3 × (7 × 2 + 1) trials total. Figure 5.4 displays the
results from this experiment.

We first note that the ECDCa agents as a whole performed much better
than their ECDCd counterparts (compare to Figure 5.3). We consider this a
surprising and unintuitive result. Somehow, it seems as though the fact that the
drift compensation which removes productive memories actually improves the
performance of the agent. Additional investigation is required to explain this
phenomenon. However, given the marked difference in performance between
ECDCd and ECDCa, we only evaluate the performance of ECDCa agents in
future experiments in this thesis.

One prominent result is that for ECDCa agents, the NoExact drift type
consistently produced better scores than the Exact type in almost every drift-
Thresh level. It would appear that in this domain it is not useful to update the
drift statistics for items nearby an item if that item is already in the dataset.
We note that the MFEC algorithm already performs a simple method of drift
compensation for exact matches by using the max operation, so this may be
sufficient on its own to handle this case. Drift compensation only appears to be
useful for novel additions, which do not fall under this domain.

It is also interesting to observe the importance of the exact threshold setting.
For the NoExact drift type, settings of 7.5 and 8 produced significantly better
results than the vanilla MFEC in the long run. We note that one trial of
driftThresh = 7 produced the best results of any trial, although the median
performance of this setting performed similarly to MFEC. Further, the Exact
drift type with driftThresh = 8 produced very similar results as MFEC. However,
in the small-data regime (10 million frames), only NoExact with driftThresh of 8
produced a slightly better median result than MFEC. Given that driftThresh =
8 produced the best results with both NoExact and Exact drift types on both
the small-data and the full 16-hour regimes, we use this setting of drifthThresh
for the remainder of our experiments in this thesis.

Thus, we conclude that the primary benefit of drift compensation comes in
the long run, when exploitation runs its course and MFEC has difficulties find-
ing new advantageous paths. This could be an intuitive result if this weren’t
for ECDCa’s poor results on the synthetic problem, as we could imagine that

60



0

2500

5000

7500

10000

0 25 50 75

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

driftType

ECDCa, Exact

ECDCa, NoExact

MFEC (No Drift)

driftThresh

−1

7

7.5

8

8.5

9

9.5

10

Smoothed average trial scores

MsPacman (various drift thresholds, ECDCa)

2000

4000

6000

0.0 2.5 5.0 7.5 10.0

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

driftType

ECDCa, Exact

ECDCa, NoExact

MFEC (No Drift)

driftThresh

−1

7

7.5

8

8.5

9

9.5

10

Smoothed average trial scores (10M frames)

MsPacman (various drift thresholds, ECDCa)

Figure 5.4: Ms. Pacman results for various driftType and driftThresh settings,
with an ascending drift strategy.

61



drift compensation can help the agent determine when knowledge about some
states is outdated and should be re-explored. However, the fact that ECDCa
so significantly outperformed ECDCd raises doubt towards this interpretation.
Regardless, this does raise an interesting question: does ascending drift com-
pensation have varying impact at different levels of exploration?

5.4 Episodic Control with Drift Compensation:
Exploration

The primary benefit of ECDCa’s drift compensation seems to present itself
in the long run, when exploitation runs its course and MFEC has difficulties
finding new advantageous paths. Thus, we wish to investigate the impact drift
compensation has on agents with various levels of exploration. To reiterate,
ECDCa’s exploration is handled by an epsilon-greedy policy, where a random
action is taken with probability ε.

We explored ε at various orders of magnitude and investigated the relative
performance between MFEC and ECDCa. We expect that the performance
difference between ECDCa and MFEC will be the larger for smaller ε values,
since in these domains drift plays an increasingly large role in the amount of
novel states encountered. Since a lower exploration level means that states are
more likely to be re-visited, we again explored the behaviors of both the Exact
and NoExact drift types.

Given that it produced the best results in the previous section for both drift
types, we used driftThresh = 8.

We explored values of ε between 5 × 10−2 and 5 × 10−5, on a log scale in
increments of negative powers of 10. Note that the previous experiment used
ε = 2× 10−3, which is near the middle of this scale.

All other settings and parameters were identical to those described in the
previous section.

5.4.1 Results
Figure 5.5 displays the results from this experiment. Interestingly, in the low-
data regime the Exact strategy slightly outperformed NoExact for ε = 5× 10−2

and ε = 5×10−5. In the full 16-hour regime, however, NoExact again performed
significantly better than Exact in all ε settings except ε = 5× 10−3, where the
two drift settings performed about as well.

MFEC again performed better in the low-data regime than either NoExact
or Exact in most cases. One notable exception is the case where ε = 5 ×
10−5, in which case the learning curve plateaued a little after 1 million frames.
Presumably, this low of an exploration setting allowed the beneficial effects of
drift compensation to present themselves earlier.

In the 16-hour regime, NoExact produced similar results to MFEC for the
higher ε = 5 × 10−2 and ε = 5 × 10−3 settings. However, in the lower ε set-
tings NoExact showed a considerable performance gain after the MFEC agents
plateaued, presumably due to an over-propensity to exploit rather than explore.

Using ε = 5×10−4 produced the best results overall, with MFEC producing
the best results after 10 million frames and NoExact producing the best after
16 hours.

62



0

2500

5000

7500

0 20 40 60 80

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

epsilon

5e−2

5e−3

5e−4

5e−5

driftType

ECDCa, Exact

ECDCa, NoExact

MFEC (No Drift)

Smoothed average trial scores

MsPacman (various epsilons, ECDCa)

1000

2000

3000

4000

5000

0.0 2.5 5.0 7.5 10.0

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

epsilon

5e−2

5e−3

5e−4

5e−5

driftType

ECDCa, Exact

ECDCa, NoExact

MFEC (No Drift)

Smoothed average trial scores (10M frames)

MsPacman (various epsilons, ECDCa)

Figure 5.5: Ms. Pacman results for various epsilon exploration settings.

63



5.5 Summary
In this chapter, we introduced the topic of concept drift and explained its ap-
plication to reinforcement learning. We then explained a method of drift com-
pensation which uses the leave-one-out error as a signal for determining when
drift occurs for individual elements.

We then implemented this method, producing an algorithm we refer to as
Episodic Control with Drift Compensation (ECDC). However, we discovered
a version of this algorithm, which produced worse-than-baseline results on a
synthetic drift problem, proved to produce significantly better results on our Ms.
Pacman experiments. The benefits of ECDCa primarily showed their effects in
the long term, beyond the small-data regime of 10 million frames.

Given this, we then experimented to determine if the exploration rate af-
fected the impact of the drift compensation. We found that ECDCa agents
generally outperformed their respective MFEC agents in the long run, and that
this discrepancy was larger at lower exploration rates.

64



Chapter 6

Full Atari Evaluation

Thus far in this thesis, all of our experiments have been conducted in the Ms.
Pacman Atari environment. In this section, we explore in addition four other
Atari environments, namely SpaceInvaders, Qbert, Frostbite, and River Raid.
We give a description and a brief overview of the mechanics and reward prop-
erties of each of these games in Appendix A.

We further explore the individual contributions from Chapters 4 and 5.
Namely, in Chapter 4 we found that MFEC with the inverse square distance ker-
nel produced slightly better results than with the constant kernel. In Chapter 5,
we found that a form of leave-one-out drift compensation (ECDCa) produced
better results than vanilla MFEC. However, we only tested the effect of these
two improvements in isolation from one another. In this chapter, we integrate
these two suggestions and explore their relative impacts on learning performance
across all five games.

6.1 Full Atari Experiments
Similar to our experiment in Section 3.5, we conducted multiple trials us-
ing the various environments from the OpenAI Gym reinforcement learning
library (Brockman et al., 2016). For each trial, we let an agent act in the envi-
ronment for 24 hours or 100 million frames, whichever came first. At the end
of each episode, we recorded statistics about that episode.

The agents used experience buffers which held up to 1,000,000 experiences
for each possible action. The agents used a transformed version of the screen
pixels as input such that each observation was represented as a 64-dimensional
vector, as explained in Section 3.5.

The KForests underlying the experience buffers used the setting which we
previously found to have 76.82% accuracy on Ms. Pacman images (see Table 3.2).
The agents used the K = 11 nearest neighbors for approximating the values of
unseen frames, used an epsilon-greedy exploration strategy (ε = 0.0005), and
repeated their actions for 4 frames between action decisions. We note that this
ε exploration value is an order of magnitude lower than in previous experiments,
following the results of Section 5.4.

We explored the MFEC and ECDCa algorithms (with MFEC serving as a
baseline), as well as the constant and inverse square distance kernels (with the

65



constant kernel serving as a baseline). For the ECDCa agents, we chose to set
driftThresh = 8, in accordance to the best-performing agent from Section 5.3.2.
Thus, we tested all four possible combinations of kernels and algorithm types.
For each condition, we performed three trials, for a total of 3× 2× 2 trials per
environment, for a total of 60 trials across all five environments.

Since the MFEC and ECDCa agents maintain a seperate buffer for each
action, the time required for agents to choose an action at each step is propor-
tional to the number of discrete actions. We note that Frostbite and River Raid
have 18 potential actions, as opposed to Qbert’s and Space Invader’s 6 and Ms.
Pacman’s 9. Thus, the agents were able to obtain less experience in these games
over the 24-hour period relative to the other games. This is reflected in the scale
of the x axis in Figures 6.4 and 6.5.

6.1.1 Ms. Pacman

2000

4000

6000

8000

0 25 50 75

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

agentType

ECDCb−Const

ECDCb−InvSq

MFEC−Const

MFEC−InvSq

Smoothed average trial scores

MsPacman

2000

4000

6000

0.0 2.5 5.0 7.5 10.0

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

agentType

ECDCb−Const

ECDCb−InvSq

MFEC−Const

MFEC−InvSq

Smoothed average trial scores (10M frames)

Figure 6.1: Combined results for Ms. Pacman.

66



Figure 6.1 displays the results on the Ms. Pacman environment. The best-
performing individual agent in the full 24-hour regime was an ECDCa-Const
agent, which achieved a score of nearly 8000. This is comparable to the results
of Section 5.4. However, the median ECDCa-Const agent seemed to suffer a
catastrophic loss at around 40 million frames, likely due to the deletion of a
pivotal memory. This demonstrates the potential instability of the drift com-
pensation.

It is interesting to note that the addition of the inverse square distance kernel
to the ECDCa agent made it generally perform worse than the vanilla ECDCa-
Const agent. The performance of the ECDCa-InvSq agent was similar to that of
the MFEC-InvSq agent, despite the fact that the ECDCa-InvSq agents evicted
a similar number of items as the ECDCa-Const agent.

It is also worth noting that the baseline MFEC-Const agents produced the
best median scores on the small-data regime, and also outperformed both types
of InvSq agents in the long run.

6.1.2 Space Invaders
Figure 6.2 displays the results on the Space Invaders environment. The best-
performing individual agent in the full 24-hour regime was an ECDCa-Const
agent. However, we again note an apparent case of catastrophic forgetting
witnessed in one ECDCa-Const agent which went from scoring nearly 3000 to
nearly 0 after around 50 million frames. This further illustrates the potential
instability introduced by drift compensation.

We note that Space Invaders required the most frames of all five tested
environments, averaging 8722 frames per episode across all agents. Given a
fixed ε, we would expect to see larger variances in scores for environments with
a larger number of frames per episode, since it is more likely that an early
deviation from a known good path will have a larger impact down the line.

The ECDCa-InvSq agents produced the second-best median scores. Al-
though these agents did obtain lower high scores than the ECDCa-Const agents,
the ECDCa-InvSq agents seemed to display less catastrophic forgetting than
their ECDCa-Const counterparts. Additionally, the median ECDCa-InvSq agent
scored best for the majority of the low-data regime.

6.1.3 Qbert
Figure 6.3 displays the results on the Qbert environment. The best-performing
individual agent in the full 24-hour regime was an ECDCa-InvSq agent. For
instance, the highest-scoring ECDCa-InvSq agent achieved a score of nearly
10,000 points after only 10 million frames, a feat only matched after 60 million
frames by the best ECDCa-Const and MFEC-InvSq agents. Indeed, ECDCa-
InvSq was the only agent type that produced a median score that exceeded this
threshold.

In comparison to previous environments, there were not many apparent in-
stances of catastrophic forgetting.

The MFEC-InvSq agents in particular had highly variable results. The
worst-performing MFEC-InvSq agent plateaued at around 2,000 points, tied
for worst agent alongside MFEC-Const. Likewise, the median MFEC-InvSq
agent performed worst of all median agents in the long term. However, the

67



1000

2000

0 25 50 75 100

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

agentType

ECDCb−Const

ECDCb−InvSq

MFEC−Const

MFEC−InvSq

Smoothed average trial scores

SpaceInvaders

500

1000

1500

2000

0.0 2.5 5.0 7.5 10.0

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

agentType

ECDCb−Const

ECDCb−InvSq

MFEC−Const

MFEC−InvSq

Smoothed average trial scores (10M frames)

Figure 6.2: Combined results for SpaceInvaders.

best-performing MFEC-InvSq agent was one of only four agents to break the
10,000-point barrier, and in the small-data regime the median MFEC-InvSq
agent performed best overall.

6.1.4 Frostbite
Figure 6.4 displays the results on the Frostbite environment.

As noted previously, the Frostbite environment contains 18 possible input
combinations, and thus requires additional time to select an action compared to
the other environments. Additionally, the Frostbite environment required more
frames per episode, especially for successful agents: for trials where the agent
scored above 1000, the average episode was nearly 19,000 frames long. Due to
both of these facts, agents were able to experience fewer episodes in the Frostbite
environment during the allotted 24 hours than in any other environment.

68



0

5000

10000

15000

0 25 50 75 100

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

agentType

ECDCb−Const

ECDCb−InvSq

MFEC−Const

MFEC−InvSq

Smoothed average trial scores

Qbert

0

2500

5000

7500

10000

0.0 2.5 5.0 7.5 10.0

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

agentType

ECDCb−Const

ECDCb−InvSq

MFEC−Const

MFEC−InvSq

Smoothed average trial scores (10M frames)

Figure 6.3: Combined results for Qbert.

We make note that most of the smoothed fits “curl” downwards in the far tail.
This is unfortunately an artifact of the smoothing algorithm used to summarize
the returns, which unfortunately places high emphasis on late episodes which
achieved a low score. This tail behavior is not indicative of the capabilities
of the agent, but unfortunately is on display here due to the relatively small
number of episodes encountered by the agents.

These caveats aside, in the Frostbite environment the MFEC-InvSq agent
produced the best median and maximum scores, for both the full 24 hours
regime and the 10-million frame regime.

We do note, however, that every agent type had at least one agent which
never made a score above 1000. ECDCa-InvSq produced two such agents, and
every other agent type produced one. Each of these agents plateaued at some-
where between 200 and 290 points. Considering the homogeneity of these un-
derperforming agents, combined with the erratic distribution across agent types,

69



0

1000

2000

3000

0 20 40 60

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

agentType

ECDCb−Const

ECDCb−InvSq

MFEC−Const

MFEC−InvSq

Smoothed average trial scores

Frostbite

0

1000

2000

3000

0.0 2.5 5.0 7.5 10.0

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

agentType

ECDCb−Const

ECDCb−InvSq

MFEC−Const

MFEC−InvSq

Smoothed average trial scores (10M frames)

Figure 6.4: Combined results for Frostbite.

we believe this result is a consequence of exploration, rather than a meaningful
difference between agent types.

6.1.5 River Raid
Figure 6.5 displays the results on the River Raid environment. In the River
Raid environment, the best-performing median agent was MFEC-InvSq, which
produced the highest median scores in both the full 24-hour and 10-million
frame regimes.

Similarly to the Frostbite environment, the River Raid environment also
has 18 possible input combinations. Because of this, the agent with the most
experience in this environment still had less than 40 million frames of experience.
Thus, even though the MFEC-InvSq agents produced the best median scores in
both regimes, there is not as much discrepancy between the two regimes as in

70



2000

2500

3000

3500

4000

4500

0 20 40 60

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

agentType

ECDCb−Const

ECDCb−InvSq

MFEC−Const

MFEC−InvSq

Smoothed average trial scores

Riverraid

2000

3000

4000

0.0 2.5 5.0 7.5 10.0

Millions of frames

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

agentType

ECDCb−Const

ECDCb−InvSq

MFEC−Const

MFEC−InvSq

Smoothed average trial scores (10M frames)

Figure 6.5: Combined results for River Raid.

previous environments. There was differentiation in the Frostbite environment
despite this phenomenon, but that was mostly due to the difficulty of exploring
to find a good initial strategy to latch onto. Additionally, the number of frames
per episode was much smaller on average than those for Frostbite, so agents
were able to experience more episodes while experiencing fewer frames.

There was not many apparent instances of catastrophic forgetting, although
the relatively limited number of frames of experience may have limited the
opportunity for such forgetting to take place.

6.2 Rank Analysis
In addition to the environment-by-environment results analysis, we also give a
general overview of the performance across all agents by ranking the maximum

71



Table 6.1: Maximum score achieved by best, median, and worst agents across
agent types and games (full 24-hour regime).

MFEC-Const MFEC-InvSq ECDCa-Const ECDCa-InvSq
Ms. Pacman Best (24 hours) 7090 (2) 5870 (3) 9930 (1) 5500 (4)

Ms. Pacman Median (24 hours) 6500 (2) 4980 (4) 8800 (1) 5100 (3)
Ms. Pacman Worst (24 hours) 5090 (1) 4760 (2) 3880 (4) 4650 (3)

Frostbite Best (24 hours) 4370 (2) 5450 (1) 3810 (3) 3700 (4)
Frostbite Median (24 hours) 3480 (3) 3800 (1) 3760 (2) 290 (4)
Frostbite Worst (24 hours) 280 (2) 200 (4) 240 (3) 290 (1)

Qbert Best (24 hours) 8000 (4) 14400 (2) 13325 (3) 24175 (1)
Qbert Median (24 hours) 6925 (3) 4150 (4) 10750 (2) 19725 (1)
Qbert Worst (24 hours) 3125 (3) 2400 (4) 6775 (2) 7550 (1)

River Raid Best (24 hours) 5910 (1) 5180 (2) 4940 (3) 4910 (4)
River Raid Median (24 hours) 4610 (2) 4910 (1) 4510 (3) 3740 (4)
River Raid Worst (24 hours) 4130 (2) 4090 (3) 4270 (1) 3320 (4)

Space Invaders Best (24 hours) 4165 (1) 4120 (2) 3965 (3) 3335 (4)
Space Invaders Median (24 hours) 3520 (2) 3380 (3) 3930 (1) 3270 (4)
Space Invaders Worst (24 hours) 3150 (4) 3300 (2) 3670 (1) 3155 (3)

Average Rank (24 hours) 2.27 2.53 2.20 3.00

score achieved by each agent across all games and all agent types. Table 6.1
displays these scores for the full 24-hour regime, and Table 6.2 displays those
for the small-data 10-million frame regime. Note that these tables depict the
actual highest score achieved by the agent, unlike the smoothed averages which
were presented previously. These smoothed averages will by necessity always
under-represent the maximum score achieved by the agent since they take into
account all trials, including those with detrimental exploration.

On a whole, agents had similar relative performances across the 24-hour and
10-million frame regimes. ECDCa-InvSq produced the worst average ranking
of all agent types, followed by MFEC-InvSq. MFEC-Const produced slightly
better average rankings than ECDCa-Const in the 10-million regime, whereas
ECDCa-Const performed better than MFEC-Const on the 24-hour regime.

The 24-hour regime produced more polarized results than the 10-million
frame regime. ECDCa-InvSq, the worst-performing agent across both regimes,
had an average ranking of 2.60 on the 10-million frame regime and 3.00 on
the 24-hour regime. Meanwhile, the best-performing agent produced an aver-
age ranking of 2.37 on the 10-million frame regime and 2.20 on the 24-hour
regime. This widening performance gap indicates that the manipulations have
more prominent effects if the agents are allowed to have more experience, as is
expected.

It is striking that agents which used the InvSq kernel always produced worse
results than their Const kernel counterparts. That is, MFEC-Const outper-
formed MFEC-InvSq, and ECDCa-Const outperformed ECDCa-InvSq. This is
even the case for the Ms. Pacman environment in the 24-hour regime, despite
our results presented in Section 4.6.1 which seemed to show InvSq outperform-
ing Const on median. The only difference between these two experiments was
the reduction of ε by a factor of 10, as described in the introduction to this

72



Table 6.2: Maximum score achieved by best, median, and worst agents across
agent types and games (small-data regime).

MFEC-Const MFEC-InvSq ECDCa-Const ECDCa-InvSq
Ms. Pacman Best (10M frames) 7000 (1) 5710 (2) 3640 (4) 4130 (3)

Ms. Pacman Median (10M frames) 4920 (1) 4120 (2) 3070 (4) 3230 (3)
Ms. Pacman Worst (10M frames) 3820 (1) 2580 (4) 3010 (3) 3020 (2)

Frostbite Best (10M frames) 3480 (3) 4020 (1) 3760 (2) 3280 (4)
Frostbite Median (10M frames) 2730 (2) 3800 (1) 1840 (3) 290 (4)
Frostbite Worst (10M frames) 230 (3) 200 (4) 240 (2) 280 (1)

Qbert Best (10M frames) 5200 (4) 5650 (3) 6700 (2) 10350 (1)
Qbert Median (10M frames) 2400 (2) 3250 (1) 1725 (4) 2400 (2)
Qbert Worst (10M frames) 1775 (2) 1825 (1) 1100 (4) 1300 (3)

River Raid Best (10M frames) 4020 (4) 4910 (2) 4940 (1) 4910 (2)
River Raid Median (10M frames) 3860 (3) 4230 (2) 4270 (1) 3380 (4)
River Raid Worst (10M frames) 3300 (2) 3180 (4) 4250 (1) 3210 (3)

Space Invaders Best (10M frames) 2680 (2) 2545 (4) 3725 (1) 2665 (3)
Space Invaders Median (10M frames) 2500 (1) 1910 (4) 2065 (3) 2175 (2)
Space Invaders Worst (10M frames) 1005 (4) 1795 (3) 2030 (2) 2160 (1)

Average Rank (10M frames) 2.37 2.57 2.47 2.60

chapter. This would seem to suggest an unforeseen interaction between the rate
of exploration and the choice of kernel type. However, we do note the notable
exception of Qbert with the 24-hour regime, which produced the best median
agent by a substantial margin.

The environments on which ECDCa agents produced the worst average re-
sults on the 24-hour regime, Frostbite and River Raid, were those in which the
agents had the least amount of experience in (as described previously). We
are particularly interested in re-running these experiments with a larger time
allocation so that a full 100 million frames could be completed.

6.3 Summary
In this chapter, we combined suggestions from previous chapters and performed
experiments on five different Atari environments. There were some instances of
ECDCa agents experiencing catastrophic forgetting, likely due to the deletion
of a key memory. While there was a great deal of variability within each game,
analyzing the performance of the median agents across environments portrayed
a clearer picture.

In the small-data regime, the MFEC agents with a constant kernel performed
best, with the MFEC agents with a inverse square distance kernel performing
nearly as well. In the full 24-hour regime, the ECDCa agents with a constant
kernel performed best, despite the fact that two of the environments were not
able to be thoroughly explored due to computational restrictions. This gives us
more evidence that the drift compensation algorithm is most useful for increas-
ing the long-term capacity of episodic control agents.

73



Chapter 7

Conclusion

In this thesis, we investigated and proposed improvements to a state-of-the-art
reinforcement learning algorithm which uses k-nearest neighbor regression.

In Chapter 3, we designed and implemented a tree-based data structure
for online approximate nearest neighbor queries, and then showed that it was
competitive relative to other offline state-of-the-art tree-based data structures.
We then discovered that some inaccuracies in the nearest neighbor data struc-
ture actually improved agent performance (to a point), and that the brute-force
nearest neighbor search (which had 100% nearest neighbor accuracy) actually
produced the worst results for the reinforcement learning agent.

In Chapter 4, we explored additional local regression techniques by using
various kernel weightings and local models. Although there was not a huge
difference, we found that the invSq and tricube kernel weightings produced
slightly better results. Additionally, we generally found the linear local models
produced worse results than their constant (kernel) counterparts.

In Chapter 5, we developed a method of using the leave-one-out prediction
error upon addition to determine which memories to evict based on consistency,
rather than age. Incorporating this method into the MFEC agent produced bet-
ter results. However, a version of drift compensation which evicts useful mem-
ories proved to be beneficial. We found that this drift compensation scheme
especially improves agent performance in longer evaluation regimes. The ben-
eficial effect of this drift compensation also became more pronounced as the
agent’s random exploration rate became lower. We also found that the positive
effect of this drift compensation typically showed itself later in the trials.

Finally, in Chapter 6, we performed a full evaluation across 5 different Atari
games, and integrated prior results to explore their interaction. By comparing
results from a small-data and full 24-hour testing regime, we found additional
evidence that the drift compensation was much more beneficial in the long-
term than in the short-term. However, there were a concerning amount of
instances of catastrophic forgetting witnessed in the agents which employed drift
compensation. The agent which combined the two earlier recommendations
(the use of a invSq kernel and the use of drift compensation) produced the
worst results overall, when averaged across games. Overall, in the long-term
evaluation, the agent with drift compensation produced the best median agents
when averaged across all games, while the base MFEC model produced the best
results in the small-data regime. Additionally, we found more evidence that

74



would indicate that ECDCa has a more pronounced effect in the long run of the
trials.

7.1 Future Perspectives
The explorations and findings in this thesis raises many questions and avenues
for further research in many different directions.

7.1.1 KForest
One puzzling result we discovered is that the brute-force nearest neighbor search
produced the worst agents, with a relatively inaccurate setting producing the
best results of those tested. The explanation for this intriguing behavior remains
an open question, and should be addressed in future research. In particular, in
Section 3.5.1 we described a potential experimental setup to test the effects of
artificial added noise on agent performance.

We found a significant performance gap between the graph-based and tree-
based algorithms, with graph-based algorithms drastically out-performing tree-
based ones. Thus, future research should focus on adapting existing graph-based
approaches for an online environment.

Nevertheless, there are multiple areas upon which the KForest algorithm
could potentially be improved. One such improvement could see the tree use
lower-dimensional random projections, potentially using a smaller dimensional-
ity for distance comparison of nodes close to the root and gradually increasing
the dimensionality as the tree works its way to the leaves.

Another area to potentially improve the KForest algorithm for local regres-
sion would be to use the labels as a splitting criterion. In its current state, the
KForest structure splits nodes based solely on its size. However, an alternate
scheme would be to only split those nodes in which there is a large disagreement
among the labels. Such a scheme could potentially be similar to that proposed
by Mathy et al. (2015).

Finally, the speed of KForest modifications could be increased by paralleliz-
ing the addition and deletion of items. This would exploit the fact that MFEC
and ECDCa add to the tree in relatively large batches. It is also possible to
parallelize the query interface so that multiple queries can be processed at once,
potentially allowing for multiple agents to operate using the same KForest back-
ing.

Lastly, we note that when benchmarking approximate nearest neighbor al-
gorithms in high-dimensional spaces, the majority of the computational time
is spent computing distances. Thus, for increased accuracy, it may be bene-
ficial for benchmarks to explicitly count the number of distance computations
made rather than measuring the wall time. Additionally, these benchmarks
need to test multiple different search settings, sometimes without changing the
construction of the graph. Rather than performing multiple searches of various
depths, it would likely be faster to simply perform a single wide search and note
when the correct items are added to the result. While both of these sugges-
tions require additional effort from each library, decreasing the time required to
perform a benchmark would tighten the feedback loop for the development of
future algorithms.

75



7.1.2 Local Regression
Our experiments only investigated linear and constant local models, but other
higher-order (polynomial) models could also be investigated. Additional re-
search could be conducted to determine the effect of higher-order local models
on algorithm performance, specifically to see if the general trend of more com-
plex local models being out-performed by simpler ones still holds true.

Additionally, as pointed out in Section 6.2, there does seem to be some sort
of interaction between the choice of kernel and ε on agent performance. It is
possible that the choice of local model has a similar dependency. Thus, future
research should explicitly investigate this phenomenon.

7.1.3 Drift Compensation
One puzzling result was the effectiveness of the drift compensation method
which used ascending error ranking (ECDCa), and the ineffectiveness of the
method with descending rankings (ECDCd). Although ECDCd outperformed
ECDCa on a synthetic drift problem, the opposite was the case when tested on
the Atari environment. The explanation for this intriguing behavior remains an
open question, and should be addressed in future research.

One highly promising direction for future research is to incorporate the drift
compensation of ECDCa to the Neural Episodic Control algorithm (Pritzel
et al., 2017). This paper expands upon MFEC by using a neural network to
learn a state representation, rather than relying upon a fixed random projection.
We believe that our method of drift compensation would be especially compli-
mentary to this adaptive state representation, since this effectively introduces
a new form of drift. By incorporating drift compensation, a Neural Episodic
Control agent could detect and actively remove “old” or “stale” states whose
representations have drifted.

7.1.4 Episodic Control
Unfortunately, due to lack of computational resources, we were only able to
perform a full evaluation on 5 of the 54 environments used as a standard bench-
mark in the Arcade Learning Environment (Bellemare et al., 2013). And even
of the 5 environments we did test, some environments required more time than
others to evaluate (as explained in Chapter 6). Moreover, we performed all our
hyperparameter searches on the Ms. Pacman environment, leading to potential
overfitting issues. Given additional resources, we would like to perform more
thorough testing and evaluation on the full suite of Atari games.

In our experiments, agents performed the entire episode, as defined by the
default “end-of-episode” indicator provided by the OpenAI Gym (Brockman
et al., 2016). However, it is possible to instead train agents until a single life
is lost. Although this makes some environments more difficult (particularly
environments like Montezuma’s Revenge, where interactions resulting in death
permanently affect the episode), terminating on life loss would be a useful setting
to increase training speed. This would be in line with the training scheme
described by Hessel et al. (2017).

It should be possible to reduce the computational burden for local regression
agents to choose actions. Instead of having separate KForests for each possible

76



action, one could simply allow multi-dimensional labels for each item. Thus, the
KForest query (the computational bottleneck) would only need to be performed
once, and the action values could be filtered appropriately after the query is
complete. Doing this would avoid the additional computation time to query
multiple different KForest buffers for environments with larger action spaces,
such as Frostbite and River Raid. This would be similar to most deep rein-
forcement learning approaches, which use a single neural network with multiple
outputs to simulate multiple Q-functions.

Finally, we believe that it is possible to use a similar local regression for
continuous control problems. Such a scheme would involve storing action-return
pairs as labels, instead of simply the return values. Then, one could find the
nearest neighbors whose states are most similar to the query point, and then
perform gradient ascent on the labels of those neighbors to find an action which
maximizes the predicted return.

77



Bibliography

Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. (2007). An application of
reinforcement learning to aerobatic helicopter flight. In Advances in neural
information processing systems, pages 1–8.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos,
R. (2016). Unifying count-based exploration and intrinsic motivation. In
Advances in Neural Information Processing Systems, pages 1471–1479.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional per-
spective on reinforcement learning. In International Conference on Machine
Learning, pages 449–458.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279.

Bernhardsson, E. (2017a). ann-benchmarks. https://github.com/erikbern/
ann-benchmarks. version:2655c44979c06b95d52051febb6f65e46662c60e.

Bernhardsson, E. (2017b). annoy. https://github.com/spotify/annoy. ver-
sion:76718ef62477f593b47042c7e0372ea3d536d9d7.

Blundell, C., Uria, B., Pritzel, A., Li, Y., Ruderman, A., Leibo, J. Z., Rae, J.,
Wierstra, D., and Hassabis, D. (2016). Model-free episodic control. arXiv
preprint arXiv:1606.04460.

Bom, L., Henken, R., and Wiering, M. (2013). Reinforcement learning to train
Ms. Pac-Man using higher-order action-relative inputs. In Proceedings of
IEEE International Symposium on Adaptive Dynamic Programming and Re-
inforcement Learning.

Boytsov, L. and Naidan, B. (2013). Engineering efficient and effective non-
metric space library. In Similarity Search and Applications - 6th International
Conference, SISAP 2013, A Coruña, Spain, October 2-4, 2013, Proceedings,
pages 280–293.

Braylan, A., Hollenbeck, M., Meyerson, E., and Miikkulainen, R. (2015). Frame
skip is a powerful parameter for learning to play atari. In AAAI-15 Workshop
on Learning for General Competency in Video Games.

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

78

https://github.com/erikbern/ann-benchmarks
https://github.com/erikbern/ann-benchmarks
https://github.com/spotify/annoy


Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,
J., and Zaremba, W. (2016). Openai gym.

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. (2002). Deep blue. Artificial
intelligence, 134(1-2):57–83.

Cartwright, S. (1983). Frostbite Bailey’s Arctic Architect’s Handbook. Activi-
sion, Inc.

Dasgupta, S. and Freund, Y. (2008). Random projection trees and low dimen-
sional manifolds. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 537–546. ACM.

Dong, W. (2017). kgraph. https://github.com/aaalgo/kgraph. ver-
sion:3a870c926434cdb8ff8689417f37e885c2689f38.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., Mnih,
V., Munos, R., Hassabis, D., Pietquin, O., et al. (2017). Noisy networks for
exploration. arXiv preprint arXiv:1706.10295.

Fu, C. and Cai, D. (2016). EFANNA: An extremely fast approximate
nearest neighbor search algorithm based on kNN graph. arXiv preprint
arXiv:1609.07228.

Garcia, V., Debreuve, E., and Barlaud, M. (2008). Fast k nearest neighbor
search using GPU. In Computer Vision and Pattern Recognition Workshops,
2008. CVPRW’08. IEEE Computer Society Conference on, pages 1–6. IEEE.

Gersho, A. and Shoham, Y. (1984). Hierarchical vector quantization of speech
with dynamic codebook allocation. In Acoustics, Speech, and Signal Process-
ing, IEEE International Conference on ICASSP’84., volume 9, pages 416–
419. IEEE.

Geva, S. (2000). K-tree: a height balanced tree structured vector quantizer. In
Neural Networks for Signal Processing X, 2000. Proceedings of the 2000 IEEE
Signal Processing Society Workshop, volume 1, pages 271–280.

Hardt, O., Nader, K., and Nadel, L. (2013). Decay happens: the role of active
forgetting in memory. Trends in cognitive sciences, 17(3):111–120.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dab-
ney, W., Horgan, D., Piot, B., Azar, M., and Silver, D. (2017). Rainbow:
Combining improvements in deep reinforcement learning. arXiv preprint
arXiv:1710.02298.

Jegou, H., Douze, M., and Schmid, C. (2011). Product quantization for nearest
neighbor search. IEEE transactions on pattern analysis and machine intelli-
gence, 33(1):117–128.

Johnson, J., Douze, M., and Jégou, H. (2017). Billion-scale similarity search
with GPUs. arXiv preprint arXiv:1702.08734.

Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of Lipschitz mappings
into a Hilbert space. Contemporary mathematics, 26(189-206):1.

79

https://github.com/aaalgo/kgraph


Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
3361(10):1995.

LeKander, M. (2017a). ECDC. https://github.com/MLLeKander/ECDC. ver-
sion:591d62e1312c51e7226593fa2edcf904f681b47d.

LeKander, M. (2017b). VQTree. https://github.com/MLLeKander/VQTree.
version:e1f57553a6d9bb132bdd2b9520d8f46d334c8b5d.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. (2015). Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971.

Liu, T., Moore, A. W., Yang, K., and Gray, A. G. (2005). An investigation
of practical approximate nearest neighbor algorithms. In Advances in neural
information processing systems, pages 825–832.

Loader, C. (1999). Local Regression and Likelihood. Springer Science & Business
Media.

Losing, V., Hammer, B., and Wersing, H. (2016). KNN classifier with self
adjusting memory for heterogeneous concept drift. In Data Mining (ICDM),
2016 IEEE 16th International Conference on, pages 291–300.

Malkov, Y., Ponomarenko, A., Logvinov, A., and Krylov, V. (2014). Approx-
imate nearest neighbor algorithm based on navigable small world graphs.
Information Systems, 45:61–68.

Malkov, Y. A. and Yashunin, D. (2016). Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. arXiv
preprint arXiv:1603.09320.

Mathy, C., Derbinsky, N., Bento, J., Rosenthal, J., and Yedidia, J. S. (2015).
The boundary forest algorithm for online supervised and unsupervised learn-
ing. In AAAI, pages 2864–2870.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Sil-
ver, D., and Kavukcuoglu, K. (2016). Asynchronous methods for deep rein-
forcement learning. In International conference on machine learning, pages
1928–1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
and Riedmiller, M. (2013). Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al.
(2015). Human-level control through deep reinforcement learning. Nature,
518(7540):529.

80

https://github.com/MLLeKander/ECDC
https://github.com/MLLeKander/VQTree


Muja, M. (2017). FLANN. https://github.com/mariusmuja/flann. ver-
sion:06a49513138009d19a1f4e0ace67fbff13270c69.

Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary
tree. In Computer vision and pattern recognition, 2006 IEEE computer society
conference on, volume 2, pages 2161–2168. Ieee.

Pritzel, A., Uria, B., Srinivasan, S., Badia, A. P., Vinyals, O., Hassabis, D.,
Wierstra, D., and Blundell, C. (2017). Neural episodic control. In Interna-
tional Conference on Machine Learning, pages 2827–2836.

Ram, P. and Gray, A. (2013). Which space partitioning tree to use for search?
In Advances in Neural Information Processing Systems, pages 656–664.

Sabatelli, M., Louppe, G., Geurts, P., and Wiering, M. A. (2018). Deep quality-
value (DQV) learning. arXiv preprint arXiv:1810.00368.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experi-
ence replay. arXiv preprint arXiv:1511.05952.

Shaw, C. (1982). River Raid Plan of Operation. Activision, Inc.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.
(2016). Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,
A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al. (2017). Mastering the
game of go without human knowledge. Nature, 550(7676):354.

Singh, S. P. and Sutton, R. S. (1996). Reinforcement learning with replacing
eligibility traces. Machine Learning, 22(1):123–158.

Sutton, R. S. and Barto, A. G. (1999). Reinforcement learning. Journal of
Cognitive Neuroscience, 11(1):126–134.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Commu-
nications of the ACM, 38(3):58–68.

Tibshirani, R. (2014). Course notes for Advanced Methods for Data Analy-
sis: Kernel regression. http://www.stat.cmu.edu/~ryantibs/advmethods/
notes/kernel.pdf. Accessed 2017-07-25.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude. COURSERA: Neural networks
for machine learning, 4(2):26–31.

Tord Romstad, Marco Costalba, J. K. (2018). Home - stockfish - open source
chess engine. https://stockfishchess.org/.

van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning
with double Q-learning. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, pages 2094–2100. AAAI Press.

81

https://github.com/mariusmuja/flann
http://www.stat.cmu.edu/~ryantibs/advmethods/notes/kernel.pdf
http://www.stat.cmu.edu/~ryantibs/advmethods/notes/kernel.pdf
https://stockfishchess.org/


Verma, N., Kpotufe, S., and Dasgupta, S. (2009). Which spatial partition
trees are adaptive to intrinsic dimension? In Proceedings of the twenty-
fifth conference on uncertainty in artificial intelligence, pages 565–574. AUAI
Press.

Vishwanath, M. and Chou, P. (1997). Video image compression using weighted
wavelet hierarchical vector quantization. US Patent 5,602,589.

Wang, J., Shen, H. T., Song, J., and Ji, J. (2014). Hashing for similarity search:
A survey. arXiv preprint arXiv:1408.2927.

Wang, Z., Schaul, T., Hessel, M., Van Hasselt, H., Lanctot, M., and De Freitas,
N. (2016). Dueling network architectures for deep reinforcement learning. In
Proceedings of the 33rd International Conference on International Conference
on Machine Learning-Volume 48, pages 1995–2003. JMLR. org.

Wei, L.-Y. and Levoy, M. (2000). Fast texture synthesis using tree-
structured vector quantization. In Proceedings of the 27th annual confer-
ence on Computer graphics and interactive techniques, pages 479–488. ACM
Press/Addison-Wesley Publishing Co.

Wiering, M. and van Otterlo, M. (2012). Reinforcement Learning: State of the
Art. Springer.

82



Appendix A

Arcade Learning Environment
Game Descriptions

A.1 Ms. Pacman

Figure A.1: In-game screenshot from the Atari 2600 version of Ms. Pacman.

In Ms. Pacman, the player controls the eponymous character, shown in
yellow in the middle of the screen in Figure A.1. Directly above Ms. Pacman is
the starting area for four “ghosts” which chase after Ms. Pacman as she moves
through the maze. The player can control Ms. Pacman only by moving in one of
the four cardinal directions. It is impossible for Ms. Pacman to stay still: if the
player does not provide input, then Ms. Pacman continues in the most-recently
given direction.

The player has 3 spare lives, and loses a life once a ghost catches Ms. Pac-
man. The game ends if the player loses all their lives.

Spread throughout the level are dots and pellets which must be collected
before advancing to the next level. These items are collected by moving Ms.
Pacman on top of the item. Collecting a dot gives an immediate reward of
10 points. Collecting a pellet gives an immediate reward of 50 points, and
also causes the ghosts to become temporarily vulnerable. When Ms. Pacman

83



collects the first, second, third, and fourth ghosts during this period, the player
is given a reward of 200, 400, 800, and 1600 points, respectively. Finally, food
items such as cherries, strawberries, and pretzels will intermittently appear in
the maze for a limited amount of time. Collecting these items gives a substantial
reward ranging between 100 and 5000 points, depending on the level.

No immediate reward is given for advancing levels, and no immediate pun-
ishment is given for losing a life.

A.2 Space Invaders

Figure A.2: In-game screenshot from the Atari 2600 version of Space Invaders.

In Space Invaders, the player controls a spaceship located at the bottom of
the screen in Figure A.2. The top half of the screen contains “invaders” which
slowly advance towards the bottom of the screen while firing shots towards the
player. The player can move the ship left and right, but not vertically. The
player can also fire a slowly-moving shot towards the invaders, but only one
shot from the player may be on the screen at a time.

The player has 3 spare lives, and loses a life once hit by an invader’s shot.
The game ends if the player loses all their lives or if the invaders reach the
bottom layer of the screen.

Each level begins with a set of barriers which take damage when hit by an
invader’s shot, providing temporary cover for the player. Once the invaders
reach the same level as the barriers, the barriers disappear. Once all invaders
are cleared, the player advances to the next level, which resets the barriers.

The player is given an immediate reward for each shot that contacts an
invader. Invaders in the bottom row gives a reward of 5 points, and this reward
increases by 5 for each layer. Thus, hitting an invader the top (sixth) row is
worth 30 points. A flying saucer will intermittently fly across the very top of the
screen. Hitting this saucer will give a large immediate reward of 200 points. No
immediate reward is given for advancing levels, and no immediate punishment
is given for losing a life.

84



A.3 Qbert

Figure A.3: In-game screenshot from the Atari 2600 version of Qbert.

In Qbert, the player controls the eponymous character, shown in red at the
top of the screen in Figure A.3. Qbert is situated in a pyramid, and can move
in one of the four diagonal directions. Each horizontal tile in the pyramid is a
colored square which changes when Qbert jumps on it. The goal of the game is
to turn each tile in the level to some goal color.

Enemies intermittently appear on the pyramid. Some enemies, such as the
green ball and Sam, can be defeated by occupying the same square as them.
However, other enemies, such as the red and purple balls, cannot be defeated
in this manner. Indeed, coming into contact with these enemies damages the
player. Thus, the agent should be able to distinguish between the differently-
colored balls to maximize its points.

Once a purple ball reaches the bottom of the pyramid, it becomes a spring-
like creature known as “Coily”. This is the only enemy which can jump up from
a lower level to a higher one. It is possible to perform a maneuver which causes
Coily to jump off the pyramid, giving a large reward. This maneuver requires
somewhat precise timing after a relatively long waiting period and requires
an elevator platform (which disappears after being used), making it somewhat
unlikely that an agent will stumble upon this strategy.

The player loses one life if the player character comes into contact with a
damaging enemy or falls off of the pyramid. The player starts with 3 spare lives,
and the game ends if the player loses all their lives.

The player is given the following rewards for performing each of the following
actions:

• 25 points for changing a block to the goal color.

• 100 points for catching the green ball.

• 300 points for catching Sam.

• 500 points for luring Coily off the pyramid.

• 3100 points for completing the level (turning all blocks to the goal color).

85



The reward for completing the level is not immediate and instead is given in
an animation during which the player’s input has no impact. After completing
the level, the player is given a reward of 100 every 5 frames for 31 iterations.
No other rewards are given in this animated fashion and are given as a single
lump sum.

No immediate punishment is given for losing a life.

A.4 Frostbite

Figure A.4: In-game screenshot from the Atari 2600 version of Frostbite.

In Frostbite, the player controls a bear character (known as Frostbite Bailey)
who is initially located at the top of the screen, as seen in Figure A.4. Below
the starting location is a water area, across which sheets of ice drift horizontally
in four rows. The player can jump on these rows of ice sheets to collect an ice
block to construct an igloo. Once 16 ice blocks are collected, the igloo is fully
constructed and the player can enter it to advance to the next level.

The player may move horizontally or jump between rows by moving ver-
tically. It is also possible to switch the direction of the ice sheet the player
character is currently standing on, at the cost of one previously-collected ice
block. Since this sheet-switching action directly detracts from the ultimate goal
of completing the level, the optimal strategy is to use this only very rarely.
Indeed, the official Frostbite manual advises the player to “learn to use the
[sheet-flipping action] sparingly” (Cartwright, 1983).

There are various obstacles (e.g. Polar Grizzlies, Killer Clams, and Snow
Geese) which appear in some levels. However, Green Fish, which the player can
collect for a small reward, sometimes appear in the same location as some of
these obstacles. Thus, a high-scoring agent should learn to distinguish between
obstacles and rewards.

The top of the screen contains a temperature monitor, which starts at 45
degrees and drops by one degree every second. The player loses one life if the
player character comes into contact with an obstacle, falls into the water, or if
the temperature reaches zero (i.e. 45 seconds elapse). The player starts with 3
spare lives, and the game ends if the player loses all their lives.

86



On the first level, an immediate reward of 10 points is given for collecting an
ice block, and an immediate reward of 160 points is given for entering the igloo
(and thus completing the level). These two reward sources are both affected
by a level-based reward multiplier. This multiplier begins a 1, and each level
increases the reward multiplier by 1, up to a maximum of 9. Thus, collecting
an ice block gives a reward of 10 points on level 1, but 90 points on levels 9 and
above.

The player is also given an immediate reward for each degree (second) re-
maining when the player enters the igloo. For each degree remaining, the player
is given degree × level points. This level multiplier is unbounded, unlike the
multiplier for collecting ice blocks or entering the igloo.

An immediate reward of 200 points is given for collecting a Green Fish. This
reward is the same for all levels.

It is worth noting that the igloo, degree, and fish rewards are not actually
given in a single lump sum. When these are awarded, an animation is played
during which the player’s inputs have no impact. When a fish is collected, the
screen freezes and the player is given a reward of 10 points every 1.33 frames.
When the igloo is entered, every 11 frames the player is given a reward of
10 × max(level, 9) points and one ice block is removed from the igloo. Once
this animation is completed, the degree animation begins, giving a reward of
10× level points every 3 frames until the temperature counter reaches 0.

No immediate punishment is given for losing a life.

A.5 River Raid

Figure A.5: In-game screenshot from the Atari 2600 version of River Raid.

In River Raid, the player controls a fighter jet, shown in yellow at the bot-
tom of Figure A.5. The player must navigate their jet across a river canyon,
destroying or otherwise avoiding obstacles long the way. The player can control
their jet by moving left or right, by increasing or decreasing the jet’s speed, or
by firing missiles.

The river canyon contains a variety of objects, most of which are enemies
and damage the player jet upon collision. The enemy objects include Tankers,

87



Helicopters, Jets, and Bridges. The only destructible object which does not
damage the jet are Fuel Depots, which refuel the player’s jet on contact.

It is important to note that although it is necessary to refuel to progress
far into the game, no immediate reward is given for refueling. In fact, a small
reward is actually given for destroying Fuel Depots. Thus, an agent must learn
to sometimes not target these objects in spite of them offering a short-term
reward. Indeed, the official River Raid manual advises the player to “concentrate
on flying to the next fuel depot, and don’t try to destroy every object” (Shaw,
1982).

The player loses one life if the player character comes into contact with an
enemy object, crashes into the surrounding walls, or runs out of fuel. The player
starts with 3 spare lives, and the game ends if the player loses all their lives.

Points are only gained by destroying objects in the river. Destroying each
type of object gives the following rewards:

• Tanker for 30 points,

• Helicopter for 60 points,

• Fuel Depot for 80 points,

• Jet for 100 points,

• and Bridge for 500 points.

When the player runs into an enemy object, both the player’s plane as well
as the enemy object are destroyed. Thus, it is sometimes possible to gain points
while losing a life.

88



Appendix B

Approximate k-Nearest
Neighbors Algorithms

Algorithm 4 Brute Force Search

1: function bruteForceSearch(D, q, k)
2: NBR ← max-heap of size k
3: for i← 0, 1, 2, . . . , N − 1 do
4: NBR.add(d(q,Di), Di)
5: return NBR.values()

Algorithm 5 LSH Construction

1: function lshBuild(D, hash)
2: table ← hash-table mapping hashes to sets of points
3: for i← 0, 1, 2, . . . , N − 1 do
4: table.insert(hash(Di), Di)
5: return table

Algorithm 6 LSH Search

1: function lshSearch(table, q, hash)
2: NBR ← max-heap of size k
3: for Di ← table.get(hash(q)) do
4: NBR.add(d(q,Di), Di)
5: for nearbyHash← nearby(hash(q)) do . e.g. random mutation
6: for Di ← table.get(nearbyHash) do
7: NBR.add(d(q,Di), Di)
8: return NBR.values()

89



Algorithm 7 Neighbor Graph Search

1: function NeighborGraphSearch(graph, q, initialDs)
2: NBR ← max-heap of size k
3: visited ← set of datapoints
4: frontier ← min-heap
5: for Di ← initialDs do
6: frontier.append(d(q, Di), Di)
7: visited.add(Di)
8: while NBR.size() < k or NBR.maxKey() > frontier.minKey() do
9: c ← frontier.removeMin()

10: NBR.add(d(q, c), c)
11: for Di ← graph.neighborsOf(c) do
12: if not visited.contains(Di) then
13: frontier.append(d(q, Di), Di)
14: visited.add(Di)
15: return NBR.values()

Algorithm 8 k-d Tree Construction

1: function kdTreeBuild(D, maxLeafSize)
2: function kdTreeNode(D, axis)
3: if D.size() ≤ maxLeafSize then
4: node.isLeaf ← True
5: node.data ← D
6: else
7: node.isLeaf ← False
8: node.split ← median of {Di[axis] |Di ∈ D}
9: leftD ← {Di |Di ∈ D ∧Di[axis] < node.split}

10: rightD ← D − leftD
11: node.lChild ← kdTreeNode(leftD, axis+ 1 mod d)
12: node.rChild ← kdTreeNode(rightD, axis+ 1 mod d)
13: return node
14: return kdTreeNode(D, 0)

90



Algorithm 9 k-d Tree Search

1: function kdTreeSearch(rootNode, q, ε)
2: NBR ← max-heap of size k
3: function kdTreeSearchNode(node, axis)
4: if node.isLeaf() then
5: for Di ← node.data do
6: NBR.add(d(q,Di), Di)
7: else
8: aNode ← (q[axis] < node.split) ? node.lChild : node.rChild
9: bNode ← (q[axis] < node.split) ? node.rChild : node.lChild

10: kdTreeSearchNode(aNode, axis+ 1 mod d)
11: splitDist ←

∣∣q[axis]− node.split
∣∣

12: maxNBRDist ← NBR.maxKey() ∗ (1 + ε)
13: if NBR.size() < k ∨maxNBRDist > splitDist then
14: kdTreeSearchNode(bNode, axis+ 1 mod d)
15: kdTreeSearchNode(rootNode, 0)
16: return NBR.values()

Algorithm 10 RP Tree Construction

1: function rpTreeBuild(D, maxLeafSize)
2: function rpTreeNode(D)
3: if D.size() ≤ maxLeafSize then
4: node.isLeaf ← True
5: node.data ← D
6: else
7: node.isLeaf ← False
8: node.direction ← random unit direction ∈ Rd
9: node.bias ← median of {Di · node.direction |Di ∈ D}

10: leftD ← {Di |Di ∈ D ∧Di · node.direction > node.bias}
11: rightD ← D − leftD
12: node.lChild ← rpTreeNode(leftD)
13: node.rChild ← rpTreeNode(rightD)
14: return node
15: return rpTreeNode(D)

91



Algorithm 11 Mean Tree Construction

1: function meanTreeBuild(D, maxLeafSize, p)
2: function meanTreeNode(D)
3: if D.size() ≤ maxLeafSize then
4: node.isLeaf ← True
5: node.data ← D
6: else
7: node.isLeaf ← False
8: node.centers ← list of p cluster centers, as computed by k-means
9: for j ← 0, 1, 2, . . . , p− 1 do

10: subD ← {Di | j == argmink d(node.centers[k],Di)}
11: node.children[j] ← meanTreeNode(subD)
12: return node
13: return meanTreeNode(D)

Algorithm 12 Mean Tree Search

1: function meanTreeSearch(rootNode, q, ε)
2: NBR ← max-heap of size k
3: function meanTreeSearchNode(node)
4: if node.isLeaf() then
5: for Di ← node.data do
6: NBR.add(d(q,Di), Di)
7: else
8: sort node.centers and node.children by distance from q
9: meanTreeSearchNode(node.children[0])

10: for j ← 1, 2, . . . , N − 1 do
11: split ← planeBetween(node.centers[0], node.centers[j])
12: maxNBRDist ← NBR.maxKey() ∗ (1 + ε)
13: if NBR.size() == k ∧maxNBRDist < d(q, split) then
14: break
15: meanTreeSearchNode(node.children[i])
16: meanTreeSearchNode(rootNode, 0)
17: return NBR.values()

92



Algorithm 13 Online Mean Tree Add

1: function onlineMeanTreeAdd(node, Di)
2: if node.isLeaf then
3: node.data.append(Di)
4: if node.data.size() > maxLeafSize then
5: node.isLeaf ← False
6: node.centers ← list of p cluster centers, as computed by k-means
7: for j ← 0, 1, 2, . . . , p− 1 do
8: child ← new node
9: child.isLeaf ← True

10: child.data ← {Di | j == argmink d(node.centers[k],Di)}
11: node.children[j] ← child
12: else
13: k ← argmink d(node.centers[k],Di)
14: node.centers[k].append(Di)
15: onlineMeanTreeAdd(node.children[k], Di)
16: return node

Algorithm 14 K-tree Add

1: function ktreeAdd(root, Di) . returns resulting root node
2: node ← root
3: while !node.isLeaf() do . find leaf closest to Di

4: node.center.add(Di)
5: node ← argminchild∈node.children d(child.center,Di)

6: node.center.add(Di)
7: node.data.append(Di)
8: if node.data.size() > maxLeafSize then
9: splitA, splitB ← 2Means(node.data) . k-means with k=2

10: ktreeRemoveChild(node.parent, node)
11: ktreeAddChild(node.parent, splitA, root)
12: return ktreeAddChild(node.parent, splitB, root)
13: return root
14:
15: function ktreeAddChild(node, newChild, root)
16: node.children.append(newChild)
17: if node.children.size() > branchFactor then
18: splitA, splitB ← 2Means(node.children)
19: if node != root then
20: ktreeRemoveChild(node.parent, node)
21: ktreeAddChild(node.parent, splitA, root)
22: return ktreeAddChild(node.parent, splitB, root)
23: else
24: newRoot ← new node
25: newRoot.children.append(splitA)
26: newRoot.children.append(splitB)
27: return newRoot
28: return root

93



Algorithm 15 2Means Splitting

1: function 2Means(d)
2: centerA ← data.center
3: centerB ← data.center
4: labels ← list of length d.size, filled with -1
5: data.shuffle()
6: flag ← True
7: while flag do
8: flag ← False
9: for i← 0, 1, 2, . . . , d.size()− 1 do

10: newLabel ← d(centerA,Di) < d(centerB,Di) ? 0 : 1
11: if labels[i] != newLabel then
12: if labels[i] == 0 then
13: centerB.remove(Di)
14: else if labels[i] == 1 then
15: centerA.remove(Di)
16: (newLabel == 0 ? centerA : centerB).add(Di)
17: flag ← True
18: labels[i] ← newLabel
19: splitA ← {Di | labels[i] == 0}
20: splitB ← {Di | labels[i] == 1}
21: return splitA, splitB

Algorithm 16 Forest Add and Forest Search

1: function forestAdd(forest, Di)
2: for tree← forest do
3: tree ← treeAdd(tree, Di)
4:
5: function forestSearch(forest, Di)
6: NBR ← min-heap of size k
7: for tree← forest do treeSearch(tree, Di, NBR)

Algorithm 17 Greedy Search (for Mean Trees)

1: function greedySearch(rootNode, q)
2: NBR ← max-heap of size k
3: while !node.isLeaf() do
4: node ← argminchild∈node.children d(child.center,Di)

5: for Di ← node.data do
6: NBR.add(d(q,Di), Di)
7: return NBR.values()

94



Algorithm 18 Prototype Distance Search

1: function prototypeDistSearch(rootNode, q, minLeaves)
2: NBR ← max-heap of size k
3: frontier ← max-heap of size minLeaves
4: frontier.add(0, rootNode)
5: for j ← 1, 2, . . . ,minLeaves do
6: node ← frontier.removeMin()
7: while !node.isLeaf() do
8: closest ← argminchild∈node.children d(q, child.center)
9: for child← node.children \ {closest} do

10: frontier.add(d(q, child.center), child)
11: node ← closest
12: for Di ← node.data do
13: NBR.add(d(q,Di), Di)
14: return NBR.values()

Algorithm 19 Plane Distance Search

1: function planeDistSearch(rootNode, q, minLeaves)
2: NBR ← max-heap of size k
3: frontier ← max-heap of size minLeaves
4: frontier.add(0, rootNode)
5: for j ← 1, 2, . . . ,minLeaves do
6: node ← frontier.removeMin()
7: while !node.isLeaf() do
8: closest ← argminchild∈node.children d(q, child.center)
9: for child← node.children \ {closest} do

10: plane ← planeBetween(closest, child)
11: frontier.add(d(q, plane), child)
12: node ← closest
13: for Di ← node.data do
14: NBR.add(d(q,Di), Di)
15: return NBR.values()

95



Algorithm 20 Leaf Graph Search

1: function leafGraphSearch(rootNode, leafLookup, q, minLeaves)
2: NBR ← max-heap of size k
3: leafNode ← rootNode
4: while !leafNode.isLeaf() do
5: leafNode ← argminchild∈leafNode.children d(q, child.center)
6: frontier ← max-heap of size minLeaves
7: visited ← empty set
8: frontier.add(0, node)
9: for j ← 1, 2, . . . ,minLeaves do

10: node ← frontier.removeMin()
11: for Di ← node.data do
12: NBR.add(d(q,Di), Di)
13: for neighbor← leafLookup[Di] do
14: if neighbor 6∈ visited then
15: visited.add(neighbor)
16: frontier.add(d(q, neighbor), neighbor)
17: return NBR.values()

96


	Introduction
	Reinforcement Learning
	Research Questions
	Approximate Nearest Neighbors
	Local Regression
	Drift Compensation


	Reinforcement Learning
	Formulation
	Markov Decision Processes
	Agent-Environment Interaction
	Return and 
	Policy and Value

	Comparison with Other Machine Learning Disciplines
	Environments
	Deep Q Networks
	Model-Free Episodic Control
	Summary

	Efficient Nearest Neighbors Search
	Batch Methods
	Brute Force Search
	Locality-Sensitive Hashing
	Neighbor Graph Search
	Hierarchical Space Partitioning
	k-d Tree
	Random Projection Tree
	Mean Tree


	Online Methods
	Online Mean Trees
	K-trees

	KForest
	Forest
	Consistency
	Spill
	Labels and Data Storage
	Deletion
	Duplicates
	KForest Search
	Prototype Distance Search and Plane Distance Search
	Leaf Graph Search


	SIFT Benchmark
	SIFT Benchmark Results
	Ms. Pacman Benchmark Results

	MFEC Pacman
	MFEC Pacman Results

	Summary

	Local Regression
	Weighted Square Error
	Weighting Function
	Local Models
	Kernel Regression
	Locally Weighted Regression

	Alternate Criterion
	Computational Efficiency
	MFEC Pacman
	MFEC Ms. Pacman Results

	Summary

	Drift Compensation
	Drift
	Leave-One-Out Drift Compensation
	Ascending and Descending Error Ranking

	Episodic Control with Drift Compensation: Thresholds
	Results: ECDCd (Descending Drift)
	Results: ECDCa (Ascending Drift)

	Episodic Control with Drift Compensation: Exploration
	Results

	Summary

	Full Atari Evaluation
	Full Atari Experiments
	Ms. Pacman
	Space Invaders
	Qbert
	Frostbite
	River Raid

	Rank Analysis
	Summary

	Conclusion
	Future Perspectives
	KForest
	Local Regression
	Drift Compensation
	Episodic Control


	Arcade Learning Environment Game Descriptions
	Ms. Pacman
	Space Invaders
	Qbert
	Frostbite
	River Raid

	Approximate k-Nearest Neighbors Algorithms

