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ABSTRACT

Draughts is a popular game among many regions in the world. In par-
ticular, international draughts has a game complexity around 1030, which
is currently considered unsolvable. Hence, applying the Monte Carlo Tree
Search (MCTS) algorithm on international draughts and analyzing the play-
ing strength are interesting research objectives.

Besides the baseline MCTS algorithm similar to AlphaZero, three dif-
ferent variations of the MCTS algorithm are compared in our experiment.
Two of them use multiple neural networks inspired by domain-specific
heuristics of draughts or the multiple search tree MCTS. The hybrid algo-
rithm is a combination of both heuristics and multiple search trees.

The results of our experiments show that MCTS is indeed capable of
improving its playing skills of draughts. All MCTS algorithms are capa-
ble of beating a random player, but no algorithms can stably best a player
using the Alpha-Beta algorithm with depth 2. The most dominant param-
eters behind the bad performances are the size of the neural networks and
the number of MCTS simulations. The number of input channels and the
amount of training examples are also considered crucial.

The results of the method with multiple search trees are the best among
all MCTS algorithms, which proves that the coordination of policies and
values between different search trees can improve the performance of the
MCTS algorithm. On the other hand, the usage of domain-specific heuris-
tics is considered insufficient to offset the deficit caused by decreasing the
size of neural networks.

i



ACKNOWLEDGEMENTS

First of all, I would like to extend my greatest appreciation for the excellent
supervision and guidance to Marco Wiering and Matthia Sabatelli during
this project. Meanwhile, I am grateful for the long lasting support and en-
couragement from my family. I also would like to thank the staff from the
AI faculty and Peregrine HPC cluster who provided the necessary support
to my project.

ii



CONTENTS

Abstract i

Acknowledgements ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Rules of Draughts . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 AlphaZero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Baseline Method 7
2.1 MCTS Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Training Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Three-stage Method 15
3.1 MCTS Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Training Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Multiple Policy Value Method 19
4.1 MCTS Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Training Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Hybrid method of Three-stages and MPV 23
5.1 MCTS Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Training Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



CONTENTS iv

6 Game Implementation 25
6.1 Regular Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 MCTS Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Alpha-Beta Player . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Experiment Setups 29
7.1 Training Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 CNN Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Results 33
8.1 Training Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Against Random and Alpha-Beta players . . . . . . . . . . . . . 34
8.3 Comparisons between MCTS Models . . . . . . . . . . . . . . . 38

9 Conclusion 41
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



LIST OF FIGURES

1.1 Initial board position . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 CNN structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8.1 Training loss of the baseline method . . . . . . . . . . . . . . 34
8.2 Training loss of the MPV method . . . . . . . . . . . . . . . . 35
8.3 Training loss of the three-stage method . . . . . . . . . . . . 36
8.4 Training loss of the hybrid method . . . . . . . . . . . . . . . 37
8.5 Elo scores against the random player . . . . . . . . . . . . . 38
8.6 Elo scores against the Alpha-Beta player . . . . . . . . . . . 39
8.7 Elo scores against the baseline player . . . . . . . . . . . . . 40

v



LIST OF TABLES

2.1 Input channels for CNN . . . . . . . . . . . . . . . . . . . . . 13

7.1 Training parameters of MCTS methods . . . . . . . . . . . . 31
7.2 CNN parameters of MCTS methods . . . . . . . . . . . . . . 32

vi



1
INTRODUCTION

Artificial Intelligence (AI) is a research field that studies intelligent agents.
Researchers have tried to define "intelligence" in mathematical formulas
[1], yet the formal definition of universal intelligence did not give quanti-
tative measures about how much an agent can be considered intelligent.
On the other hand, studying intelligent behaviour of agents in games has
been considered useful for gradually advancing towards true understand-
ing of intelligence [2]. Games are in a much narrower scenario of intelli-
gence compared to the complexity of the real world. In a game environ-
ment, there are typically well-defined rules about eligible actions agents
can take under each state, and under what states the game ends in favour
of which side of the players. This entails a limited action space and time
space, making quantitative measures of intelligence applicable. As our
way to study intelligence, the focus of this thesis is on applying the MCTS
algorithm [3] to the game of draughts. Different variations of MCTS are
compared by examining whether they are able to improve the training
process and performances of agents in the draughts game or not.

1.1. RULES OF DRAUGHTS

Draughts refers here to 10×10 international draughts. Illustration pictures
of the draughts board are created using [4]. The 8×8 draughts version is
considered a solved game after it was proven that the game can always
end in a draw if neither side of the players makes mistakes [5]. On the
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other hand, international draughts is not solved and hence more interest-
ing for our research.

In a draughts board, there are black and white sides. The black side
is usually printed at the top of the board. Each player has 20 pieces at
the beginning of the game. An illustration of the initial board position
is shown in Figure 1.1. The pieces can move diagonally and only 50 color
grids of all 100 grids are used. Pieces can jump over the pieces of the other
player. Jumped pieces are captured and later removed from the board.
When players decide a move, they must always select the move that has
the maximal amount of captured pieces. Only if there are multiple moves
having the same capture amount, they can select a move among those.
After a capture move, if the particular piece is able to continue captur-
ing other pieces, the turn is not finished and it then must select a move
among those legal moves. All captured pieces will only be removed after
a sequence of moves is finished.

Figure 1.1: Initial board position

There are two kinds of pieces, ordinary pieces (men) and kings. Men
can only move one distance at one time, but kings can fly at any distance.
Kings can select any legal positions forward if not blocked by other pieces
after a capture move, whereas men can only jump to the next grid. There
are no kings at the beginning of the game. Men can be crowned to kings
when it reaches the other side of the board, with an exception that the
men need to jump backwards away from the last row if there are possible
captures. Men are not crowned in this scenario. Men need to wait until
the next turn to enjoy king’s right, so it is not possible to jump using king’s
move path to capture other pieces immediately after being crowned.
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The game ends whenever one player has no pieces to move, and then
the other player wins. This can happen if one player has no pieces or
all possible moves of pieces are blocked by opponent’s pieces. A draw in
draughts is also possible. The draw terms will be described in our game
implementation.

1.2. THEORETICAL BACKGROUND

In many types of board games such as chess, AI players with Alpha-Beta
search dominated the tournaments before the dawn of AlphaZero. Alpha-
Beta search cuts the search complexity by limiting the search width of
MinMax search [6], while MinMax search is a classic search algorithm in
zero-sum games to find optimal moves by exhaustive search through all
possibilities.

Alpha-Beta search usually performed much worse with neural net-
works because it propagates the maximal errors directly to the root of the
tree. However, there are many optimization methods developed to im-
prove the performance of Alpha-Beta search. Some of them focused on
extra pruning techniques in addition to Alpha-Beta pruning, such as ex-
tended futility pruning. Extended futility pruning builds upon the tradi-
tional futility pruning technique and cuts the complete branch of a search
tree based on mere static criteria, realizing forward pruning [7]. Some
of them relate to the order of the moves, reordering move evaluations by
using domain-dependent knowledge as heuristics. In the case of the fa-
mous chess program Deep Blue [8], an opening book created by human
chess grand masters and a 700,000 game database used as extended book
are utilized to select preferred moves when the game starts. In the game
of draughts, game engines using Alpha-Beta search are also popular, yet
those engines did not show dominant victory against human champi-
ons. There has been a match between the world champion of draughts
Schwarzman and the program Maximus in 2012, in which Maximus lost
against Schwarzman with 5 to 7 [9].

Deep learning has allowed the computer to play games in a manner
similar to humans, which exhibited its great game-playing technique with
temporal difference learning (e.g. deep Q-network) in games like Atari
[10]. Nonetheless, the MCTS with deep learning method has outperformed
the deep Q-network when playing Atari games, prior to AlphaZero [11].
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AlphaZero is one of the most recent spectacular development in the AI
field that deploys the method of MCTS with deep neural networks [3]. Al-
phaZero has defeated world champions from different game fields such as
chess, Shogi, and Go. Many have believed that the way AlphaZero plays
games is much more similar to humans than any other previous algo-
rithm. AlphaZero has shown more generalized capability compared to its
predecessor, the AlphaGo Zero program, which had previously defeated
Lee Sedol, the world champion of Go. AlphaGo Zero first takes a database
of human game plays as input, whereas AlphaZero trains the neural net-
works purely from the examples of its self-play.

Different from previous Alpha-Beta algorithm studies, there were also
researches focusing on developing reinforcement algorithms based on self-
play prior to the creation of AlphaZero. For instance, [12] studied tempo-
ral difference learning methods by comparing the learning from self-play
and from the plays of experts in the game of backgammon. Those re-
searches also extended to Othello. In particular, the idea of learning from
the opponent’s moves while playing against the player is inspiring [13].
AlphaZero focuses on a pure self-play learning approach and did not de-
ploy domain specific heuristics. On the other hand, those kinds of heuris-
tic techniques might also be found useful when the MCTS algorithms play
draughts.

1.3. ALPHAZERO

The AlphaZero Program searches through the game-tree with MCTS only
using generated simulations of games [3]. MCTS evaluates the value of
each state using a trained neural network. The performance of MCTS im-
proves dramatically as the search tree grows and the number of training
epochs of the neural network accumulates.

Recent MCTS algorithms are typically combined with the Upper Con-
fidence Bounds (UCB) [14] algorithm, which originates from the multi-
armed bandit problem [15]. UCB strives to find an optimal balance be-
tween exploration and exploitation, and agents need to explore new ac-
tions that could lead to more profits but also to exploit empirical experi-
ence of the best actions so far. UCB applied to trees (UCT) [16] is a roll-
out based algorithm that samples episodes from the root of the tree re-
peatedly, and builds the search tree in a way that values from previous
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episodes are taken into consideration. UCT allows MCTS to converge to-
wards optimality and has led to the breakthrough of applying MCTS on Go
[17]. Other optimized algorithms based on probabilities include PUCB,
which utilizes context to bias move decisions [18], and methods to nar-
row the search width based on probability distributions with the use of
domain-dependent patterns [19].

AlphaZero uses a deep neural network, with value and policy networks
as "head", and 19 residual blocks following a rectified batch-normalized
convolutional layer as "body" [20]. Residual blocks are built using iden-
tity mappings that can serve as skip connections and after-addition ac-
tivation. Residual Networks (ResNets) ease the training of deep neural
networks particularly regarding vanishing and exploding gradient prob-
lems, and improve generalization. The CNN takes board representations
as input and returns action probability vectors and the expected game
outcome value (result value). The parameters of the neural network are
trained from random initialization. In each Monte Carlo search, low-frequently
visited moves with a high move probability and value according to the
current neural network are selected. The search returns a policy vector
based on the current state. The CNN is trained using the losses between
the predicted probability vectors, the result value and those returned by
the search tree.

1.4. RESEARCH QUESTION

The research question of our project is whether applying reinforcement
learning (RL) with MCTS to draughts yields promising results similar to
other board games or not. In other words, can it defeat traditional draughts
algorithms with necessary training steps or not? How do the parameter
settings in MCTS influence the performance of the algorithm?

Furthermore, how do the variations of MCTS affect the performance?
Is it useful to create multiple MCTS search trees, or to use multiple neural
networks guided by domain specific knowledge? Can the domain specific
knowledge within draughts improve the performance of MCTS?
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1.5. OUTLINE

The goal of this thesis is to examine the performances when the MCTS
with deep neural networks method is applied to draughts, and to give in-
sights on how different variations and implementations have an effect on
the performances. Chapter 2 will describe our baseline MCTS algorithm
that is similar to AlphaZero. Chapter 3 will describe our rationals to cre-
ate the MCTS with multiple neural networks. Chapter 4 explains the al-
gorithm of multiple MCTS search trees. The hybrid algorithm of multiple
neural networks and multiple trees are described in Chapter 5. The imple-
mentation of our draughts game will be illustrated in Chapter 6. Chapter
7 details the parameter settings of our experiments and the reasons be-
hind. The experiment results are shown in Chapter 8. Chapter 9 draws
the conclusion of this thesis and discusses possible future work.



2
BASELINE METHOD

Our algorithms develop on the AlphaZero General, a lightweight general
implementation of AlphaZero [21]. AlphaZero General provides a frame-
work that can be used to build AlphaZero implementations of various
kinds of games. Their learning algorithm was evaluated on 8 × 8 Oth-
ello and was able to beat random players and greedy players with one
step look-ahead after 30 iterations [22]. In our implementation, the MCTS
method combined with UCB is used to improve the policy that the CNN
learns from the examples generated by self-play [23].

2.1. MCTS POLICY

MCTS searches from the root node sr oot of the tree and two nodes si and
s j can have a directed edge i → j if there is a valid action a that can make
state i transit to state j . The expected rewards of taking an action is de-
noted by Q-values Q(s, a). During the procedure of self-play simulations,
we maintain the numbers of visit counts of states as N (s) and the numbers
of taking an action a from state s as N (s, a). The probability distributions
of taking actions at the state s are denoted by P (s), where P (s) = −→pθ(s) and−→pθ(s) is the prior probability distribution of taking actions at the state s
that the CNN returns. Moreover, P (s, a) is the probability of selecting ac-
tion a in state s according to the probability distribution.

The MCTS search algorithm searches nodes with directed edges in the
search tree by repeatedly selecting the action with the highest UCB value.

7
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Our formula to calculate UCB values is slightly different from [14]. The
formula is shown in Equation 2.1. If Q(s, a) does not exist, then it is ini-
tialized by only N (s) and P (s, a), as shown in Equation 2.2.

U (s, a) =Q(s, a)+Cpuct ∗P (s, a)

p
N (s)

1+N (s, a)
(2.1)

U (s, a) =Cpuct ∗P (s, a)
√

N (s)+EPS (2.2)

Where EPS is the minimal possible value, Cpuct is a hyperparameter
that controls the balance between exploration and exploitation. A higher
Cpuct results in a higher exploration behavior and a lower Cpuct instructs
the MCTS to search more profits according to empirical experiences ob-
tained from previous searches. Q(s, a) is updated each time after one en-
tire MCTS simulation is over. The Q(s, a) value is updated according to
Equation 2.3.

Q(s, a) = N (s, a)∗Q(s, a)+ v

1+N (s, a)
(2.3)

Here, v is the final result backpropagated from the end of the game
to the current player after each game of MCTS simulation is finished. If
Q(s, a) is not initialized yet, then it is simply assigned the value v .

In each simulation, the MCTS search tree starts from the root node
and continues its search so long as there are edges connecting the cur-
rent node to the next node according to the selection of the highest UCB
value. The search terminates once the arrived new node is not in the ex-
isting search tree and the CNN evaluates on this state, yielding the pre-
dicted prior probability distribution −→pθ(s) and predicted result value v at
the state. The result value v is backpropagated towards the root and all Q-
values that are visited during the search are updated as long as the search
terminates, either by evaluation of the CNN, or by reaching the end of the
game.

Parameter (τ) is a temperature parameter controlling the MCTS search.
The N (s, a) value is expected to give a good policy approximation after
a number of MCTS simulations. To utilize the information provided by

N (s, a) more efficiently, N (s, a)
1
τ instead of N (s, a) is used to generate the

final target policy vector −→π of the tree search. If τ is 0, then the search
algorithm simply selects the action with the highest N (s, a) value and sets
probabilities of other actions as 0.
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The full algorithm of MCTS is shown in Algorithm 1.

Algorithm 1: Bseline MCTS

Function MCTS(nnet , GameSt ate, par ameter s):
Init: Qsa ← empty, N sa ← empty, Ps ← empty, N s ← empty
while i < parameters.numMCTSsims do

while not GameState.GameEnd do
s ← GameSt ate.boar d
if s not in Ns then

Ps[s], v ←
predictNet(nnet ,GameSt ate. f eatur eBoar d)

N s[s] ← 0, Break
end
for a in GameState.ValidMoves do

if (s,a) in Qsa then
u ← Qsa[(s, a)]+par ameter s.C puct ∗

Ps[s][a]∗ sqr t (N s[s]/(1+N sa[(s, a)]))
else

u ← par ameter s.C puct ∗Ps[s][a]∗
sqr t (N s[s]+EPS)

end
if u > curBest then

cur Best ← u, best Acti on ← a
end

end
GameSt ate ← NextBoard(best Acti on)

end
for v,a,s in GameState.steps do

if (s,a) in Qsa then
Qsa[(s, a)]) ←

(N sa[(s, a)]∗Qsa[(s, a)]+v)/(N sa[(s, a)]+1)
N sa[(s, a)] ← N sa[(s, a)]+1

else
Qsa[(s, a)]) ← v , N sa[(s, a)] ← 1

end
N s[s] ← N s[s]+1

end
end
if parameters.temp equals 0 then

return pr obs[ar g maxa(N sa)] ← 1
else

return pr obs ← suma(N sa)1/temp /sum(N sa))
end
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2.2. TRAINING FLOW

The hyperparameter iterations controls the number of training iterations.
During each iteration, the self-play procedure is executed the number of
episodes times. For each episode, the game is initialized and the player se-
lects the action according to the policy vector returned by MCTS. tempThresh-
old is a hyperparameter that controls the τ value, by setting τ to zero if
the current game step exceeds tempThreshold. This entails that a higher
tempThreshold value can result in more opening patterns and a lower
tempThreshold decreases the divergence of opening selections.

After each game, the result value v is assigned to each player together
with its corresponding policy vector −→π at each board state s. v is in the
range of [-1,1], where the sign of v is reversed if its corresponding player
changes as a win of one player is a loss of the other. Those examples are
appended to the total history examples for the later training of the CNN. If
the total number of history examples length exceeds the r etr ai nLeng th,
then examples of the first iteration entry are popped out. The examples
are shuffled before fed into the CNN as input. The current neural network
is saved for backup before the training. The new CNN will be recognized if
it can beat the previous neural network by a percentage of upd ateT hr eshol d
in ar enaCompar e games. Otherwise, the previous neural network will
be restored and the next iteration begins.

The performances of algorithms are evaluated using Elo scores that
give information about the relative skill levels of players in a zero-sum
game [24]. The Elo scores are calculated based on the current expecta-
tions of players winning next games. For example, If there are two players
A and B, with Elo Scores S A and SB . Then the expectation of A winning
the next games is calculated by Equation 2.4. After playing one series of
n games with i draws and j wins, the outcome R for A is calculated by
Equation 2.5. The new Elo score of A is updated by Equation 2.6. K is a
factor of maximal possible adjustment and is set to 32 for our experiment.

E A = n ∗ 1

1+10(SB−S A)/400
(2.4)

RA = n ∗ (0.5∗ i + j ) (2.5)

S A = S A +K (RA −E A) (2.6)
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The flow of the simulation and network training is shown in Algorithm 2.

Algorithm 2: Baseline Algorithm

Function Baseline(nnet , par ameter s):
Init: Tr ai nE xampl es ← empty
while iteration < parameters.iterations do

while episode < parameters.episodes do
GameSt ate ← InitialBoard()
while not GameState.GameEnd do−→π ← MCTS(nnet , GameSt ate, par ameter s)

if GameState.step < parameters.tempThreshold then
acti on ∼ −→π

else
acti on ← ar g maxa

−→π
end
GameSt ate ← NextBoard(acti on)

end
for step in GameState.steps do

exampl es ← append step.v , step.pi , step.s
exampl es ← GetFlips(exampl es)

end
end
Tr ai nE xampl es ← append exampl es
if length TrainExamples > parameters.retrainLength then

Tr ai nE xampl es ← remove first entry
end
pnet ← nnet
nnet ← trainNet(nnet ,Tr ai nE xampl es)
pwi ns, nwi ns, dr aw s ← PlayGames(pnet , nnet ,

par ameter s)
if nwins/(pwins+nwins) < parameters.updateThreshold

then
nnet ← pnet

end
end
return nnet

Here, InitialBoard() is a function that initializes the game board and
NextBoard() returns the next GameSt ate given the action as input. Get-
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Flips() flips the color of the board and rotates the policy matrix accord-
ingly so as to create more examples. PlayGames() is a function in which
the two players play games par meter s.ar enaCompar e times and the
function returns the game results as output.

2.3. NEURAL NETWORKS

An illustration of our CNN structure is shown in Figure 2.1. ResNets are
used to build the neural networks. The residual blocks of our CNN struc-
ture are borrowed from [25]. There are 10 residual blocks following the
first convolutional layer, with the number of channels 64, 3 × 3 kernels
with stride 1, and padding 1 used for those layers. The policy head con-
sists of 1 convolutional layer with 2 output channels and 1 fully connected
layer with action size of output features. This convolutional layer uses
1× 1 kernel with stride 1, padding 0. The value head consists of 1 con-
volutional layer using the same 1×1 kernel with stride 1, padding 0, and
2 fully connected layers. There are 128 output features of the first fully
connected layer and 1 single output feature of the second fully connected
layer. ReLU [26] is used as activation function and all convolutional layers
are with batch normalization [27]. The Adam optimizer is used for train-
ing the loss [28].

The policy loss is calculated by the entropy loss and the value loss is
calculated by the mean square error. The total loss function is defined by
the sum of the policy loss and the value loss as shown in Equation 2.7.

l = (vθ(st )− zt )2 +−→πt l og (−→pθ(st )) (2.7)

Here, st is the current board state, vθ(st ) and pθ(st ) are value and pol-
icy estimations given the current model parameter θ at the state st . zt and−→πt are the game result value and the improved policy vector returned by
tree search for the player at the state st .

The inputs of the CNN are the board features fed into different chan-
nels at the state s, and the outputs are a policy vector −→pθ(s) and the result
value v . The input of each channel is of size 10×5, with each channel rep-
resenting the draughts board. The choices of those channels are shown in
Table 2.1. The first four channels are of binary numbers representing the
men pieces and king pieces of both the black side and the white side. The
fifth channel is also binary numbers representing the pieces that are al-
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Figure 2.1: CNN structure

ready captured but have not yet been removed from the board. The sixth
channel represents the current player, with the value 1 for player 1, or 0
for player -1. The seventh channel represents the total steps of the cur-
rent game and the eighth channel is the number of steps of which there
were no change in the counts of pieces for both players. Both the seventh
channel and the eighth channel use non-negative integers as values.

Channels Number Value
men and kings 4 binary

captured pieces 1 binary
player 1 binary

total step 1 counts
no progress 1 counts

Table 2.1: Input channels for CNN

The action size returned by the CNN is (10×5)2 +1, and each move is
represented by its initial position on a board of size 10×5 and its new po-
sition as destination, no matter if it is a simple move or a jump. The moves
of draughts are always distinct because the simple moves and jumps are
of different board states, and there are no special rules to be taken care
of, which otherwise may lead to ambiguities with actions under the same
board state in other games, such as the underpromotion and the castling
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in chess. The extra 1 action denotes that no action is possible.



3
THREE-STAGE METHOD

A previous research of training neural networks to play draughts [29] con-
sidered three kinds of input features of draughts, one is raw board posi-
tions, one is the structural features, the other is global features. Structural
features are important in draughts, as the exchanges of pieces in certain
setups become frequent. Global features are features that cannot be di-
rectly seen from the board positions, such as the difference between the
numbers of pieces. Their test results have shown that the neural networks
did not necessarily need raw board representations to achieve good per-
formance when applying temporal difference learning methods. This is
different with AlphaZero, where it takes the board channels as inputs and
feeds them into the CNN. Possible structural features and global features
also need to be formalized as channels of the board.

Their selection of features gives us inspirations about using heuristics
of the draughts game itself to extract features and apply those features
to different algorithms and models. As a result, the rules of draughts are
utilized. A whole game of draughts can be divided into three stages. The
first stage is defined as when there are more than 31 pieces and no kings
on the board. The second stage is defined as when there are more than 8
pieces and no kings on the board. The third stage is recognized if there are
less than or equal 8 pieces, or there are kings on the board. The differences
between the first two stages and the third stage are straightforward, as
there are initially no kings on the board and a piece only promotes to the
king only after it reaches the other side of the board.
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The action space is of size (10×5)2+1 for the baseline method, but the
action size can be made much smaller for the stage 1 and stage 2 in the
game of draughts. A smaller action space is selected for the stage 1 and
stage 2, which is 10×5×4+1. The detailed explanation about this choice
of the action space will be described in Section 3.3.

3.1. MCTS POLICY

The three-stage method made some changes in the MCTS policy based on
the baseline method. The MCTS policy uses in total two different CNNs
to generate a predicted prior probability −→pθ(s) and the result value v for
stage 1, 2 and stage 3 separately. The −→pθ(s) returned by the CNN needs to
be rescaled into the larger vector for the tree to use if it is stage 1 and stage
2. The differences between this three-stage algorithm and the baseline
algorithm are shown in Algorithm 3.

Algorithm 3: Three-stage MCTS

Function MCTS(nnet , GameSt ate, par ameter s):...
if s not in Ns then

if stage equals 1 or stage equals 2 then
Ps[s], v ←

predictNet(nnet [′s2′],GameSt ate. f eatur eBoar d)
Ps[s] ← InFlateProbs(Ps[s])

else
Ps[s], v ←

predictNet(nnet [′n1′],GameSt ate. f eatur eBoar d)
end
N s[s] ← 0
Break

end
...

Here, nnet [′n1′] is a CNN with the same structure as the baseline method
that is used to predict the board state of stage 3, and nnet [′s1′] is the
smaller CNN that is used to predict on the board states of the stage 1 and
stage 2. InFlateProbs() is a function that takes a probability vector of size
10×5×4+1 and returns a probability vector of size (10×5)2+1. Each move
in the small probability vector has a unique correspondence in the large
vector given a certain board state.
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3.2. TRAINING FLOW

In the training flow of the three-stage algorithm, the examples obtained
from self-play need to be split into different stages. For the stage 1 and
stage 2, the policy vector −→π in examples needs to be rescaled into the
small action size. This step is necessary for the CNN to use the exam-
ples as inputs. Notably, all the examples are used to train the large CNN
despite the fact that the CNN will only be used to predict on the board
states of the stage 3, in order to gather more examples to train the neural
network. Afterwards, examples for different stages are used to train the
two networks separately. The differences between the training flow of the
baseline algorithm and the three-stage algorithm are shown in Algorithm
4.

Algorithm 4: Three-stage Algorithm

Function Three-stage(nnet , par ameter s):...
for step in GameState.steps do

if step equals stage 1 or step equals stage 2 then
exampl es[1] ← append step.v , step.pi , step.s
step.pi ←Compr essPr obs(step.pi )
exampl es[0] ← append step.v , step.pi , step.s

else
exampl es[1] ← append step.v , step.pi , step.s

end
end
Tr ai nE xampl es[0] ← append GetF l i ps(exampl es[0])
Tr ai nE xampl es[1] ← append GetF l i ps(exampl es[1])
if length TrainExamples > parameters.retrainLength then

Tr ai nE xampl es ← remove first entry
end
pnet ← nnet
nnet [′s2′] ← trainNet(nnet [′s2′],Tr ai nE xampl es[0])
nnet [′n1′] ← trainNet(nnet [′n1′],Tr ai nE xampl es[1])
...

Here, CompressProbs() is a function that takes a probability vector of
size (10×5)2+1 and returns a probability vector of size 10×5×4+1. Each
move in the large probability vector has a unique correspondence in the
small vector given a certain board state and if there are no kings on the
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board.

3.3. NEURAL NETWORKS

The large CNN has the same structure as the baseline CNN. The small
CNN used in the stage 1 and stage 2 has a similar structure but with 5
residual blocks instead of 10 blocks. Three are 64 instead of 128 output
features in the first fully connected layer of the value head.

The action size returned by the policy head of the small CNN is 10×
5 × 4 + 1, each move is represented by its initial position on a board of
size 10× 5 and its 4 directions in which it takes a move or a jump. The
extra 1 action indicates that no action is possible. There are no kings in
the stage 1 and stage 2. The initial positions and directions for which
men pieces move can sufficiently denote all unique actions because men
pieces are not able to move more than one grid at one time in a simple
move and men pieces can only jump to the next empty grid in the direc-
tion of capturing the piece of the opponent. Moreover, simple moves and
jumps always have different board positions. Hence, the CNN is able to
understand whether a move is a simple move or a jump by its input and
10×5×4+1 is a sufficient number of the action size.



4
MULTIPLE POLICY VALUE METHOD

The Multiple Policy Value (MPV) method is a recently proposed algorithm
to improve the MCTS tree search of AlphaZero [30]. The basic idea behind
is to build a different MCTS tree Ts with a smaller CNN fs and a larger
number of MCTS simulations. Meanwhile, the other MCTS tree Tl is gen-
erated by the larger CNN fl with a smaller number of MCTS simulations.
Tl searches with the help of Ts , which serves as a guidance towards the
moves to be searched by Tl at each state s.

The main advantage of MPV is to make the algorithm perform more
MCTS simulations with the same amount of computational budget. Their
results have shown that MPV has bested the original AlphaZero search al-
gorithm when applied on NoGo and the two algorithms have the same
amount of computational budget. This makes the algorithm interesting
in our MCTS implementation on draughts since we have a limited com-
putational budget and MPV can potentially improve the performance of
our MCTS within the budget.

4.1. MCTS POLICY

The interactions between Tl and Ts are related to the asynchronous policy
value MCTS [31], in which the rollout and the value network are combined
for the MCTS to obtain better evaluations than by each strategy alone.
To realize the idea of MPV that the Ts can facilitate the search of Tl and
meanwhile Tl gives better predictions over the nodes Ts guides towards,
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the exchanges of the information between Ts and Tl during the execution
of MCTS simulations need to be subtle. How the small tree Ts and the
large tree Tl interact when the prior probabilities P (s) and the result value
V (s) are predicted at the state s by both Tl and Ts are shown in Equation
4.1 and Equation 4.2.

V (s) =αVTs (s)+ (1−α)VTl (s) (4.1)

P (s) =βPTs (s)+ (1−β)PTl (s) (4.2)

Here, α and β are constants that control the balance between fl and
fs . They should be set smaller if the fl to generate Tl is more reliable.
Because fl is the larger net that has more accurate predictions, the MPV
method follows the settings of the asynchronous policy value MCTS and
uses α= 0.5 and β= 0.

Tl needs to expand the tree following the guidance of Ts , and mean-
while it has to share more reliable predictions with Ts through the above
equations. Hence, the selection of the action during the expansion of Tl

prioritizes the nodes that are mostly visited by Ts , to help Ts correct the
predictions of P (s) and V (s) at each state s. If the selected search tree is
Ts , or if the selected search tree is Tl but the current node is not expanded
by Ts yet, the algorithm selects the best action using the UCB criteria that
were shown in Equation 2.1 and Equation 2.2.

The number of MCTS simulations for Tl is given by numMC T Ssi ms.
We have an extra parameter bud g et to control the number of MCTS sim-
ulations that are used to generate Ts , which is numMC T Ssi ms∗bud g et .
The total amount of MCTS simulations is numMC T Ssi ms∗(bud g et+1).
Before an MCTS simulation starts, we decide whether to expand Ts or to
expand Tl . Our approach is different with the method used in the original
MPV, where the expansion is on a randomized basis. Randomly choos-
ing the tree out of Ts and Tl could be problematic when we have a small
number of numMC T Ssi ms, because during the expansion of Tl , it might
have scarce knowledge about what nodes Ts would like to visit most fre-
quently. If the simulations of Tl run at the start or at the end of all the
simulations, both trees will lose the opportunity to optimize the search
through shared prior probabilities and result values. Thus, we utilize the
current step of iterations as an index so that we can insert the expansions
of Tl evenly across the total number of simulations.
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The returned probability vector −→π is generated using the visit counts
over N (s, a) in Ts , as the number of visit counts in Ts is larger and Tl has
already shared its more reliable predictions with Ts by Equation 4.1 and
Equation 4.2.

The differences between the MPV algorithm and the baseline algo-
rithm are shown in Algorithm 5.

Algorithm 5: MPV MCTS

Function MCTS(nnet , GameSt ate, par ameter s):...
while i < parameters.numMCTSsims*(parameters.budget+1)

do
Tr ee ← i % par ameter s.numMC T Ssi ms == 0? Tl : Ts

...
if s not in Ns[Tree] then

Ps[Tr ee][s], V s[Tr ee][s] ←
predictNet(nnet [Tr ee],GameSt ate. f eatur eBoar d)
if s in Ns[Ts] and s in Ns[Tl ] then

V s[Tl ][s] ← 0.5∗V s[Tl ][s]+0.5∗V s[Ts][s]
V s[Ts][s] ← 0.5∗V s[Tl ][s]+0.5∗V s[Ts][s]
Ps[Ts][s] ← Ps[Tl ][s]

end
...

end
...
for a in GameState.ValidMoves do

if Tree is Tl and (s,a) in Nsa[Ts] then
u ← N sa[Ts][(s, a)]

else...
end

end
end
if parameters.temp equals 0 then

return pr obs[ar g maxa(N sa[Ts])] ← 1
else

return pr obs ← suma(N sa[Ts])1/temp /sum(N sa[Ts]))
end
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4.2. TRAINING FLOW

The training flow in MPV is basically the same as in the baseline method,
except that an extra neural network f (s) is initialized and is trained using
the same examples as f (l ).

4.3. NEURAL NETWORKS

The structure of f (l ) is the same as the CNN in the baseline method. f (s)
has a similar structure with f (l ) but is smaller. The body of f (s) only has 5
residual blocks instead of 10 blocks. The first fully connected layer of the
value head has 64 output features instead of the 128 output features as in
f (l ).



5
HYBRID METHOD OF

THREE-STAGES AND MPV

A hybrid approach of three-stage and MPV methods is designed as an ex-
tra variation of the MCTS algorithm. Our particular interest is in whether
the hybrid method gives better performance than either of the combined
methods alone, namely, whether the hybrid method can outperform the
three-stage method and whether the hybrid method can outperform the
MPV method.

5.1. MCTS POLICY

In case of the hybrid method, a slightly different MCTS search policy is
used. For the stage 1 and stage 2 of the game, we use a smaller network
to predict the prior probability distributions −→pθ(s) and the result value
V (s) as in the three-stage method. The predictions are directly assigned
to both trees Ts and Tl . In the stage 3 of the game, however, −→pθ(s) and V (s)
are predicted separately for each of the trees. Those predictions in stage 3
are shared using Equation 4.1 and Equation 4.2, as in the MPV algorithm.

The rational behind this implementation is that the smaller neural
network used for the stage 1 and stage 2 in the three-stage method is al-
ready significantly small for both Ts and Tl , and thus there is no need to
add an extra smaller network for the small tree. On the other hand, it is
necessary, in stage 3, to create a different CNN so that the smaller CNN is
used to predict on Ts and the larger CNN is used to predict on Tl .
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The highlights of the hybrid method are shown in Algorithm 6.

Algorithm 6: Hybrid MCTS

Function MCTS(nnet , GameSt ate, par ameter s):...
if s not in Ns then

if stage equals 1 or stage equals 2 then
Ps[Tr ee][s], V s[Tr ee][s] ←

predictNet(nnet [′s2′],GameSt ate. f eatur eBoar d)
Ps[Tr ee][s] ← InFlateProbs(Ps[Tr ee][s])
V s[Tl ][s] ← V s[Tr ee][s]
V s[Ts][s] ← V s[Tr ee][s]
Ps[Tl ][s] ← Ps[Tr ee][s]
Ps[Ts][s] ← Ps[Tr ee][s]

else
Ps[Tr ee][s], V s[Tr ee][s] ←

predictNet(nnet [Tr ee],GameSt ate. f eatur eBoar d)
end
...

end
...

5.2. TRAINING FLOW

The training flow in the hybrid method is similar to that of the three-stage
method, except for that there is an extra small CNN initialized and trained
by the same examples for the large CNN.

5.3. NEURAL NETWORKS

There are in total three neural networks used in this method. The first two
are a large CNN and a small CNN with the same structures as in the three-
stage method. The third is a small CNN that has the same structure as the
small CNN in the MPV method.



6
GAME IMPLEMENTATION

We implemented our game of draughts according to the draughts rules,
but also made some small adjustments for the purpose of smoothed MCTS
tree search.

6.1. REGULAR PROCEDURE

Referring to Algorithm 1 and 2, the GameSt ate is initialized by Initial-
Board() at the start of each game. All the valid moves are shown to the
player by a vector GameSt ate.V ali d Moves. V ali d Moves is given by
searching all the moves that are possible for each movable piece. Whether
the piece needs to make mandatory consecutive jumps or not is also to
be tested. After the player chooses an action, NextBoard() returns the
next GameSt ate and we check whether the game has reached its end us-
ing GameSt ate.GameEnd . The game continues if the GameEnd is not
giving a value indicating the end. Otherwise, GameEnd gives the result
value of the game and the game ends.

6.2. MCTS SPECIFICATIONS

For the implementation of MCTS, each board is represented by the feature
board GameSt ate. f eatur eBoar d , which includes 8 channels of differ-
ent features. During the proceedings of the game, necessary values for
each state are stored in GameSt ate.steps, which includes the action a,
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the state with current player s, and the backpropagated result value v
from the end of the game. Those values are used to update the Q-values
after each MCTS simulation finishes. In the training flow, the policy vector−→π is recorded instead of the action a and those values are used to generate
example files for training.

During the game steps and especially those steps with consecutive
jumps, it happens that there is only one valid move possible in the vector
GameSt ate.V ali d Moves for the player to take at that state. There is no
reason to search those states and to use the CNN to predict a prior prob-
ability distribution. Thus, those states are directly omitted in the MCTS
search and the player will automatically take the only possible move. The
training files also do not include the examples from those states. This
speeds up both the training and the tree search. However, this imple-
mentation also introduces a problem that the CNN will not be able to re-
turn a result value prediction v at those states when the new leaf expands.
To prevent the case that the update of Q-values has no game result, the
GameEnd value is used as a heuristic for the game result.

We have set the maximal game steps to 150, as a typical draughts game
would not exceed this number. A search depth limitation of MCTS is set to
50, as such deep search trees given our small number of numMC T Ssi ms
indicate repetitions of game states. The number of steps where there is
no progress for both players is also used to set a limitation. The game
ends if this number is larger than 20. Those specifications adapt slightly
different draw conditions compared with the draughts rules. The values
of those game endings indicate draws for game plays in the arena, but not
for games in MCTS simulations and training episodes. Those values are
used for the tree search and to generate example files in order to search
and train faster.

The values of GameEnd are in the range of [-1, 1], -1 indicates the
winning of player -1 and 1 indicating the winning of player 1. Any value
other than -1 and 1 indicates a draw. For all the situations that the game
does not play to its end but was discontinued, a heuristic value is assigned
to GameEnd according to Equation 6.1.

v =
∑

men ∗pl ayer +∑
ki ng s ∗pl ayer +∑

captur ed

numPi eces
(6.1)

Here, pl ayer is a value of either 1 for the current player or -1 for the
opponent player, men is the value of men pieces, which is 1, ki ng is the
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value of king pieces, which is 2, and captur ed is the value represent-
ing the captured pieces yet not removed from the board, which is 1. The
value of king pieces is also possible to set to 3 in some other practices.
captur ed indicates that the current player is on a consecutive jump, which
will certainly have advantages at the current state. numPi eces is the total
number of pieces, which is 40 for 10×10 draughts.

6.3. ALPHA-BETA PLAYER

A random player and an Alpha-Beta player have been built to play against
the models [6]. The Alpha-Beta algorithm is shown in Algorithm 7.

Algorithm 7: Alpha-Beta Algorithm

Function Alpha-Beta(GameSt ate, depth, α, β, pl ayer ):
if GameState.GameEnd not 0 or depth equals 0 then

return GameState.GameEnd, -1
end
for move in GameState.ValidMoves do

GameSt ate ← NextBoard(move)
if GameState.Player not equals player then

newDepth ← depth −1
end
temp ← Alpha-Beta(GameSt ate, newDepth, α, β

GameSt ate.Pl ayer )[0]
if player equals 1 and temp > α then

best Act ← move, α ← temp
end
if player equals -1 and temp < β then

best Act ← move, β ← temp
end

end
if player equals 1 then

return α, bestAct
end
if player equals -1 then

return β, bestAct
end

The basic idea of the Alpha-Beta algorithm is to trim the branches
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which are not searched but it is known that there are no optimal values
in those branches according to the limit constraints of value α and β.

Due to the special rules of draughts, the definition of depth 1 here is
not per move, but a combination of moves. The number of depth changes
only if the pl ayer switches. The depth will not change if the player is
performing consecutive jumps.

The evaluation function of the Alpha-Beta algorithm also uses the heuris-
tics from Equation 6.1 because those heuristics are based on the current
situation of the pieces and give a good approximation of the evaluation.



7
EXPERIMENT SETUPS

As the training of MCTS with deep neural networks is time-consuming,
a balance must be made between the performance of the model and the
time cost of training. The authors of [32] have experimented on the in-
fluences of those parameters and categorized them as time-sensitive or
time-friendly parameters. The performance of MCTS is related to time-
sensitive parameters heavily and the performance can be worse if we set
time-sensitive parameters lower. On the other hand, setting time-friendly
parameters lower does not significantly influence the performance of MCTS.
Hence, it was best of our interests to set time-friendly parameters lower
when we tried to determine the hyperparameters for our models. Con-
siderations of trade-offs between the time cost and the performance were
also made when tuning hyperparameters that are time-sensitive.

7.1. TRAINING PARAMETERS

The settings of training hyperparameters for the training process and MCTS
are shown in Table 7.1. Those parameters are:

tempThreshold sets a threshold and if the game step is larger than
tempThreshold, it will make τ zero. which in turn makes the model per-
form the search only on moves with the largest visiting count. We set the
value of tempThreshold to 10 as it is a time-friendly parameter. However,
low tempThreshold might lead to less opening patterns for the examples.

Cpuct controls the calculation of UCB when using Equation 2.1 and
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Equation 2.2. A large value of Cpuct favors more exploration over ex-
ploitation. It is also a time-friendly parameter and we set it to 1.

numMCTSsims is the parameter that controls the number of tree searches
and thereby affects the depth of tree searches. It is time-sensitive and
is crucial to improve the policy −→π . A large numMCTSsims is typically
needed for a game with a large action space. The numMCTSsims for the
baseline and MPV algorithms are set to 50, which might not be sufficient
for the tree search but higher numMCTSsims makes the time cost not af-
fordable.

budget is the parameter that controls the numMCTSsims of Ts for the
MPV and hybrid methods. A budget value of 8 gives the best performance
according to [30]. In order to make the baseline and MPV algorithms have
similar time cost, we set numMCTSsims of Tl to 10 and budget to 8, so it
has a total of 10+10∗8.

retrainLength is the total number of history files that is kept for train-
ing. This parameter is time-sensitive and a larger retrainLength value can
lead to more stabilized training with less fluctuations. However, setting
retrainLength low can accelerate learning speed. retrainLength is set to 5
for all algorithms.

arenaCompare is the number of times the new CNN and the previous
CNN play against each other in order to determine which side is more
favorable. This parameter is time-sensitive and can usually be set smaller
if updateThreshold is large. arenaCompare is set to 20 for our experiment.

updateThreshold is the win rate threshold of updating a new CNN.
This parameter is required to be larger than 0.5 so it can help avoid us-
ing a worse CNN. The parameter updateThreshold is set to 0.55 for our
experiment.

episodes is the total number of games the rollout plays to generate
training examples in each iteration. This number is time-sensitive and is
set to 100 for our experiment.

iterations is the total number of steps. For each step, the rollout runs
epi sodes times and then the CNNs are trained. This number is not fixed
for our experiment as we run as much as it can. Thus, the numbers of
iterations might also be different for the four algorithms.
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Parameter Type Value
tempThreshold time-friendly 10

Cpuct time-friendly 1
numMCTSsims time-sensitive 50

budget time-sensitive 8
retrainLength time-sensitive 5

arenaCompare time-sensitive 20
updateThreshold time-sensitive 0.55

episodes time-sensitive 100
iterations time-sensitive -

Table 7.1: Training parameters of MCTS methods

7.2. CNN PARAMETERS

The settings of hyperparameters for the CNN are shown in Table 7.2. Those
parameters are:

learningRate: The learning rate of the model. A smaller learning rate
is typically desired to avoid falling into a local optima. Meanwhile, the
number should not be too small so as to let the model learn slow. This
parameter is time-friendly and we set it to 0.001.

dropout is a parameter that controls the percentage of randomly drop-
ping some of the weights during the training to prevent overfitting [33].
This parameter is time-friendly and is set to 0.3.

weightDecay is a parameter together with dropout to obtain better
generalization of the model [34]. This parameter is time-friendly and is
set to 0.0001.

epochs is the number of training epochs of the CNN. A large number
of training epochs can lead to overfitting yet a small training epochs can
lead to underfitting. This parameter is time-sensitive and we set it to 10.

batchSize is the batch size during the training. Larger batchSize typ-
ically decreases the performance of CNN. Meanwhile, a smaller batch size
increases the number of batches and hence results in slower training. batch-
Size is time-sensitive and is set to 64.

numChannels is the number of channels outputted by each convolu-
tional layer. This number is time-sensitive and is set to 64.
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Parameter Type Value
learningRate time-friendly 0.001

dropout time-friendly 0.3
weightDecay time-friendly 0.0001

epochs time-sensitive 10
batchSize time-sensitive 64

numChannels time-sensitive 64

Table 7.2: CNN parameters of MCTS methods



8
RESULTS

To compare different algorithms in our experiments, all algorithms are
tested against the random player and the Alpha-Beta player. Three-stages,
MPV, and hybrid methods also need to play against the baseline algo-
rithm separately in order to make a straightforward illustration of their
strengths. During each comparison of games, two players play against
each other for a total amount of 20 games and Elo scores are calculated by
Equation 2.4, 2.5, and 2.6. All players start the comparison with the same
Elo scores of 0 and the search depth of the Alpha-Beta player is set to 2. All
models are trained with similar time cost for each training iteration except
for the hybrid method. The hybrid method takes more time cost because
it has more networks to train than either method alone. Only neural net-
works that are updated by exceeding upd ateT hr eshol d are included in
the arena comparisons. Notably, most results only include at most 50 it-
erations of training, as only the training iterations of the baseline method
and the MPV method exceed this limitation and more training iterations
do not provide obvious improvements to their performances.

8.1. TRAINING LOSSES

The training losses of four methods in the initial 50 iterations are shown in
Figure 8.1, 8.2, 8.3, and 8.4. Losses of all training iterations are recorded,
including iterations where the new CNNs do not update by not winning
more than the percentage of upd ateT hr eshol d .
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It is clear that the large CNN and the small CNN with the same action
size (10×5)2 +1 have similar loss curves. Meanwhile, the small CNN with
the smaller action size 10×5×4+1 has a lower curve due to smaller losses
in policy vectors, but with the same trends.

Losses from all methods decrease sharply at the beginning, and their
decreasing speed decelerates over the training period. The MPV method
has the slowest loss decreasing speed, which might be caused by its re-
liance on accurate predictions of the large CNN while the large CNN is
randomly initialized at the beginning. The hybrid method has a faster loss
decreasing speed than the MPV method, as the first and second stages of
the hybrid method in the game do not use the coordination between two
trees and hence rely less on the strength of the large CNN.

Figure 8.1: Training loss of the baseline method

8.2. AGAINST RANDOM AND ALPHA-BETA PLAYERS

The results of MCTS algorithms playing against the random and Alpha-
Beta players are shown in Figure 8.5 and 8.6. We can see that all MCTS
algorithms are capable of beating the random player at the beginning of
training. Elo scores of baseline and MPV algorithms continue rising to an
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Figure 8.2: Training loss of the MPV method

amount where winning all 20 games against the random player only gives
a marginal boost on Elo scores, due to the estimation calculated by Equa-
tion 2.4. The hybrid algorithm, with slower training speed, gives promis-
ing prospects to perform as well as those two algorithms during the time
of training. On the other hand, the three-stage algorithm alone does not
keep increasing the Elo scores as fast as the other three, but maintains a
relatively stable score at around 300.

While playing against the Alpha-Beta player, all MCTS algorithms start
with losing to the Alpha-Beta player significantly and with Elo scores around
-300. The baseline player then keeps losing to the Alpha-Beta player until
it reaches the lowest Elo score around -500. Afterwards, the performance
of the baseline player increases and reaches the peak around -150 at it-
eration 20. Meanwhile, this performance is not increasing any more with
more iterations and fluctuates around -250.

The MPV method follows a similar curve shape to the baseline method,
but is able to beat the Alpha-Beta player after 27 iterations, with a margin
around 100. Afterwards, there is a dip in performance and the Elo scores
are not able to further improve, and they finalize around -100. This result
is better than the baseline since it has a higher finalized score and can



8.2. AGAINST RANDOM AND ALPHA-BETA PLAYERS

8

36

Figure 8.3: Training loss of the three-stage method

beat the Alpha-Beta player during training.
The hybrid method shows a similar pattern to the MVP method, yet

the three-stage method gives much worse performances and shows no
sign of beating the Alpha-Beta player. The hybrid method and the three-
stage method also require a much larger number of iterations to train
a new network that has the a winning rate passing upd ateT hr eshol d ,
which in turn yields less iterations than the baseline and MPV methods in
those plots.

The reasons that those algorithms are capable of beating the random
player but not beating the Alpha-Beta player are possibly due to the in-
sufficient amount of training, as we set some time-sensitive hyperparam-
eters to small numbers due to the limitation of computational power. This
is particularly true for the size of the neural networks and the parameter
numMC T Ssi ms, which are prominent time-sensitive parameters that
have influences towards the strength of MCTS algorithms.

In our algorithms, the structure of large neural networks are typically
with 10 residual blocks. 10 residual blocks are considered to be sufficient
for most of the games, while the usage of small CNNs with 5 residual
blocks in MPV and three-stage algorithms yields quite different results.
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Figure 8.4: Training loss of the hybrid method

At the same time, our baseline method has a numMC T Ssi ms of 50 and
this amount is considered insufficient for most games with a large num-
ber of actions. The small tempT hr eshold of 10 might enlarge this dis-
advantage given by numMC T Ssi ms, since it will generate less opening
patterns.

It is notable that the input channels of CNNs include board represen-
tations from the previous 7 time steps in [3], while only one current board
is fed into the CNNs in our experiment, in order to train and run CNNs
faster. This might be another reason why our algorithms cannot stably
beat the Alpha-Beta algorithm with depth 2.

However, it is also crucial that the performance of our Alpha-Beta al-
gorithm in draughts with depth 2 can be much more powerful than in
other games with the same depth. Two combinations of moves could eas-
ily unfold more than five jumps in draughts, whereas the search in MCTS
needs to stop whenever a new leaf expands, no matter if this is during a
consecutive jump or not, even if with only 1 possible current move. This
gives the asymmetries between the depth in the Alpha-Beta algorithm
and the numMC T Ssi ms in MCTS algorithms. In general, the real search
depth of Alpha-Beta player with depth 2 can be deeper, though unstable,
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Figure 8.5: Elo scores against the random player

than the deepest expanded leaves of MCTS algorithms with numMC T Ssi ms
50.

8.3. COMPARISONS BETWEEN MCTS MODELS

In order to make straightforward comparisons between four MCTS mod-
els, the baseline model is made to play against the other three models
separately. The results are shown in Figure 8.7. We can see that the MPV
method starts the comparison with the highest initial score around 200
yet this margin is not increasing stably during the whole training period,
and there is a trend to make this margin slightly lower. Meanwhile, the
hybrid method starts with an initial score 100 and the trend of decreasing
this score is more significant than that of MPV. After certain iterations, the
hybrid player is not capable of winning against the baseline player any-
more. On the other hand, the three-stage method loses to the baseline
method since the beginning and the Elo score keeps decreasing during
the period of training, which indicates a worse performance.

As a result, the MPV method gives the best performance out of all
models, and the three-stage method gives the worst performance. The
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Figure 8.6: Elo scores against the Alpha-Beta player

three-stage method and the hybrid method also take more actual itera-
tions, although not visible from the figure, to make an update of CNNs.
The hybrid method gives a better performance than the baseline method
at the beginning, but soon the performance becomes worse. The reason
why this happens for the hybrid method might be that it is a combination
of the good performance from the MPV method and the bad performance
from the three-stage method.

The MPV method utilizes a smaller CNN fs with 5 residual blocks to
generate a tree Ts with more numMC T Ssi ms. The numMC T Ssi ms for
Ts and Tl in MPV are 80 and 10, respectively. The distinct MCTS policy not
only gives it advantages during training, but also gives it higher starting
Elo scores. On the other hand, the three-stage method also uses a smaller
CNN fs with 5 residual blocks, but for the training of stage 1 and stage
2, where the game has a smaller action space. The results in Figure 8.7,
hence, entail that the larger number of numMC T Ssi ms for Ts and the
coordination between two MCTS trees could overcome the side-effects of
the less prediction strength caused by smaller neural networks, whereas
the usage of domain-specific heuristics in the three-stage method, un-
fortunately, cannot offset the effects of less prediction strength caused by
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Figure 8.7: Elo scores against the baseline player

the smaller CNN. The shortage of training examples for the small neural
networks might also play a role in the less capable performance in the
three-stage method.

Nonetheless, our main hypothesis is that the three-stage method should
be able to reach a better performance by using a large neural network with
10 residual blocks for the stage 1 and stage 2 in the game of draughts. This
should be tested in future work.
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CONCLUSION

9.1. CONCLUSION

The conclusion of our experiment is that MCTS methods with CNNs can
indeed perform well on the game of draughts when playing against ran-
dom players after a few training iterations. Meanwhile, the MPV method
that utilizes two search trees performs the best out of all tested varia-
tions of MCTS methods. MPV plays almost as well as traditional prevailing
methods, such as the Alph-Beta search.

On the other hand, the three-stage method does not show improved
results, possibly due to the insufficient small CNN of the stage 1 and stage
2. The hybrid method of three-stage and MPV, shows more strength than
the three-stage method alone but is not significantly superior than the
MPV method. The domain-specific heuristics have shown less strength
against the multiple search trees coordinating their policies and values.

9.2. DISCUSSION

There are also other possible explanations for our algorithms not stably
besting the Alpha-Beta player, except for the mentioned assumptions such
as numMC T Ssi ms and the size of CNNs. The authors of AlphaZero state
that the training time and results can both significantly improve by ex-
ploiting symmetries of Go [35]. However, the positions of the board in
draughts are not rotationally and reflectionally invariant, which indicates

41
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that the board of draughts is asymmetrical. The only thing we can do
about examples without changing results in draughts is to switch the color
of players and rotate the board accordingly. The number of examples in
draughts is only one eighth that of games with symmetries. Meanwhile,
our hyperparameter epi sodes was only set to 100 due to limited com-
putational budget, which might result in worse performance and conver-
gence for our algorithms.

Our experiment with different variations of the Monte Carlo tree search
algorithm on draughts broads the understanding towards both the field
of draughts and the algorithm itself, especially in terms of the connec-
tions among multiple neural networks, search trees, and draughts heuris-
tics. Meanwhile, it is clear that MCTS is capable of learning how to play
draughts and the MPV method has significantly improved the performance
of MCTS with a similar time budget. The research results have added
more material to the choices among different variations of MCTS meth-
ods. The research also contributes to the generalization of MCTS and the
development of RL as a whole.

9.3. FUTURE WORK

There are criticisms about that AlphaZero cannot explain itself even though
it can play those great moves in the game of Go and Shogi [36]. There are
also questions about what humans could learn from such powerful AI and
from its plays. Thus, managing to explain MCTS with CNN methods in
more mathematical ways and coaching human playing those games are
considered important directions in future research.

Meanwhile, current MCTS algorithms have limited generalization abil-
ities towards common decision tasks. Those algorithms cannot handle a
realistic scenario where there are a large number of decision examples but
not a well-implemented simulator engine. The current methods of solv-
ing this scenario are often to use human knowledge to find Bayesian rules
from empirical experience, and to build a simulator based on those ex-
tracted rules. This means that the quality of MCTS models might heavily
depend on the soundness of a simulator if MCTS models are not playing
a well-defined game.

CNNs have shown their strength with end-to-end learning in object
detection tasks. It might also be possible to make the training of MCTS
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an end-to-end process since there are plenty of similarities in CNNs be-
tween RL and image recognition/object detection. For example, when the
Regions with CNN features method (R-CNN) was initially proposed, the
Selective Search method and Support Vector Machines (SVMs) had to be
used together with the CNN in order to perform an object detection task
[37]. However, Faster R-CNN was invented soon and makes a complex ob-
jection task an end-to-end process by using the Region Proposal Network
(RPN) and ROI Pooler [38]. This gives us inspirations to make MCTS an
end-to-end process, which can be a creative future work in the field of RL.
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