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1. Introduction

To some deeply religious people the theory of enatuis a great evil, to them evolution
denounces the importance or even the existencedfa@d, with that, destroys all decent
morals, imposes the rule of the strongest and fpeogple into fascists or communists.
Other people feel the need to merge their tradiiogligious view of the creation of life
with those from the scientific community. The mostent effort is Intelligent Design
(ID), where the basic idea of evolution, that setecand variation can cause shifts in the
characteristics of a population is accepted blitcstils for an Intelligent Designer as a
start of it all. The people supporting ID try toegetheir theories scientific but by
incorporating an un-falsifiable, supernatural desigthey fail to do so, as a recent court
ruling pointed out (Jones 2005). Other people, motdbly Richard Dawkins, see a
much more positive influence on society from knalge of the theory of evolution as it
takes people away from unfounded superstition tdwamore scientific and falsifiable
worldview.

This thesis will not go into this snake pit of getin versus science, although the author’s
position on these viewpoints may somewhat be gdessestead it will focus on a useful,
applicable form of evolution: Evolutionary Algoritis (EAS). EAs are computer
programs which mimic the process of evolution. heryears many different

algorithms have been written. Particularly in thstltwenty years, research in this field
has boomed. In most cases these algorithms weneded to solve stationary problems
or problems with multiple objectives. More recentigsearchers have been applying EAs
to problems that change over time. This is the $amfuthis thesis as well. We developed
and tested a new algorithm and compared it to teralgorithms. We tested the
algorithms on several dynamic, discontinuous o#tidon problems.

1.1 Basic Elements of Evolution

The developers of such Evolutionary Algorithms wiaspired by natural evolution, by
the adaptability of species to changes in the enment and the arms race between
predators and their prey. One often cited examplbi® is the adaptation of the peppered
moth during the onset of the industrial age in dietn England. As the countryside of
the industrializing areas grew darker caused byritreasing pollution, the coloration in
the peppered moth population was darkening as weilighttime the moths are active
and rest during the day. At that time they wereg/@deon by birds that use vision to
locate their prey. Because the industrial pollutiankened their surroundings, the moths
with darker wings became less conspicuous to preglatrds than the lighter ones. This
caused a shift in the gene frequency in the pojuladbwards darker wings. Similarly, as
environmental policy came into effect making thecéeaner, the coloration in the
peppered moth population became lighter again. dlassic example nicely
demonstrates the adaptive ability of the evolutigqaocess through natural selection; in



this case the selection is done by the predatirtts bNevertheless it can not be seen as
proof that evolution can actually create new sped@®mething the more intellectual
critiques on the theory of evolution will gladlyipbout. Proponents will most likely
reply to this by saying that this form of adaptatioombined with geographical
separation over a long period of time can credferdnt species. But enough about this
discussion and let us focus more on what this $hesieally about: evolutionary
algorithms, particularly evolutionary algorithms fdlynamic optimization tasks. To
understand where the research field of EAs conms fve will first look at what
evolution is, how does this adaptability come alamd what is needed to make it
function? These are important questions that ne&e tanswered if we want to
implement them into an algorithm. Here we dishilee basic elements for evolution to
function:

1. A population of structures that can carry inforroatand that can be copied.
(reproduction)

2. Methods for exchanging information and inducing n&siations within the
population.(variation)

3. A form of selecting individuals for reproductidiselection)

So, for evolution to function, be it in the natunadrld or as a computer program, these
basic elements need to be present. In this cheyatevill consider how nature has
resolved these issues.

1. Reproduction

If you don’t reproduce, you won't have children widl have children. Since no
organism lives forever it means that all currefitiing organisms stem from reproducing
ancestors. But for the reproduction to be of ay value to the evolutionary process the
offspring must resemble their parents. For thigtity we need some form of replicable,
information carrying structure. DNA is obviouslyetinformation carrying structure we
find in nature. All living and reproducing thingsom viruses to vertebrate animals are
built up from the information carried in their DNaiad it is the DNA that is handed down
through the generations. Each individual has its anique genetic sequeriaghich
defines in a very large part how we are built, wisatcan learn and even how we behave.
Of course this end result, or phenotype to put Hiological terms, is influenced by many
environmental factors as well but no matter howdhau try, you can never become a
bird, grow a third eye or get an 1Q of 500. The amtpnce of reproduction for the
evolutionary process has left its prints on theanoigms that have evolved. Much of the
behaviors of organisms is not merely aimed at sahbut also aimed to fertilize or be
fertilized.

2. Variation

For evolution to function it is vital for severaasons that the genetic code doesn’t stay
the same. Firstly, the diversity is essential soatiandividuals in a population are
susceptible to, for instance, one single viruso8dly, changing the genetic code allows
for adaptation on the long run. This allows plaartd animals to spread to different

1 with the exception of clones, twins, triplets etiemming from a single cell.



environments or adapt to climatic or environmentalnges. There are several ways
variation is preserved in nature.

- mutation

- exchanging genes

Mutation induces new variation within the geneticle. A mutation results from errors
when genes are copied. Most mutations have a negztfect on the organism as it
distorts the way it is built or functions. A higbpying fidelity therefore is essential for
offspring to survive but on some rare occasionstiner may turn out to be either neutral
or even positive.

Exchanging genes can be done in very different wagstly depending on the way
organisms reproduce. Sexual reproducing organismbine their genes when they
create new offspring. Mammalian parents copy rou§jftly percent of their genes to
each child thereby creating new phenotypes throwyhcombinations. More on this in
chapter three where we discuss a diploid genegirighm.

Asexual reproducing organisms such as some batiaviathe ability to exchange snips
of genes during their lifetime through a procedkddlateral gene transfer’. The
frequency and the extent of the use of lateral gemesfer is not yet clear.

By recombining genes organisms have the abilityuickly spread the rare positive
mutations through their population. Also, combingepd genes from one parent with
those from another may result in an even bettavichaal.

3. Selection

Selection is what comes closest to what most pdope about evolution, neatly
captured is the sound bite “survival of the fitte$his phrase was coined several years
before the publication of Darwin’s ‘The Origin op&cies’ by a philosopher named
Herbert Spencer but became almost synonymous watlutgon. Often this phrase is
misinterpreted as survival of tls&rongesbut instead should be read as survival of the
best adapted

All breeders understand the powerful combinatiohexeditary trades and selection. By
picking the plants or animals that show the basidds he/she likes the breeder can
create a new organism that shows those featuresstnanger. Charles Darwin, a
hobbyist pigeon breeder and naturalist, combinedfeeder’'s knowledge with things he
noticed during his voyage on The Beagle. Most rigtate his observations of the beaks
of the finches on the different Galapagos Islaiti® beaks had adapted to the differing
food sources on the different islands. He sawnhéaire had been doing the breeder’s
work by selecting the finches with the right tydebeak-features and so adapting the
populations on each of the islands to their surdowgs. This ‘Natural Selection’ (as
opposed to the breeder’s selection) caused the twrddapt, to fit to their separate



environments. Natural selection is somewhat diffituput into exact terms. There are
so many different factors that play a role. Bagycah organism has to survive to a
reproductive age and produce fertile offspring whet like their parents, survive to a
reproductive age and produce fertile offspring. Aimgtacle that has to be overcome for
this cycle to continue can be seen as a part afidhgral selection for that organism.

So, because all living organisms that exist todagndrom creatures that had to survive,
reproduce and adapt, it should be little surprisivag they evolved behaviors that
promote these very aspects of evolution. In gentbeaskills an animal is forced to have
can be summarized by the four F’s: Feeding, fledighting and reproducing.

1.2 Relevance to Cognitive Artificial Intelligence

Now that we have gotten a bit of understanding ledtwnatural evolution is, we will

move on to the artificial version. This is somethwhich is very much part of the
research in the field of Artificial IntelligenceaR of the aim of Cognitive Artificial
Intelligence is to understand what knowledge isy tas represented and functions
within natural organisms and, similarly, how we capresent and make it function in
(computer) models. Evolutionary Algorithms are evesy of representing and developing
knowledge in such computer models. Also, Machiaermg plays a major role within
the computer science tract of Al. Therefore, EAsigp@art of Machine Learning is part
of Al as well.

This thesis focuses on EAs as an engineering peaisically for dynamic optimization.
We have developed our own algorithm which we testethsks with several different
settings. These results we compared with two gibpular algorithms which were tested
on the same tasks.

In this chapter we tried to give the reader a barounderstanding of natural evolution
since it is the source of inspiration for mostlwé tvork discussed in this thesis. In
chapter two and three we discuss how EAs functi@nlook at some of its history and
we look at how researchers have adapted them to @vodynamic optimization
problems. We end chapter three by putting forwandoavn genetic algorithm designed
to handle dynamic optimization problems. This allpon, with the acronym SPA which
stands for Serial Population Algorithm, was tesiadseveral dynamic versions of the 0/1
knapsack problem together with two other GAs; Cslshiccessful hypermutation
algorithm and a version of a diploid genetic altfori. Chapter four describes several
characteristics of dynamic environments on whiclsBAve been used. The experimental
setup is given in chapter five. In chapter six wgedss the results from the experiments
followed by chapter seven where we look at whatéselts tells us about how SPA
functions. We round it all up in chapter eight wanere draw our conclusions on the
strengths and weaknesses of SPA and propose stune fork.



2. Evolutionary Algorithms

In the first chapter we stated the basic elemes¢slad for evolution to function,
furthermore we looked at the forms in which thelsenents can be found in nature. In
this chapter we will discuss artificial evolutiotherwise known as Evolutionary
Algorithms (EAs). We will describe how EAs functiand how the basic elements of
evolution relate to the elements of EAs. Furtheemare will look at some of the history
of EAs and at some of the different classes that @xthe field of EAs.

2.1 General functioning of an Evolutionary Algorithm

An Evolutionary Algorithm consists of the followirgarts:

- apopulation of individuals or ‘possible solutions’
- amethod of evaluating these possible solutions
- aselection method

- operators to alter the possible solutions

Because we are trying to solve a problem, in thgean optimization problem, we refer
to the individuals as possible solutions. Eachviidldial in the population is represented
by a genetic code which is translated to the pralidg a mapping from the genotype to
the solution spaéeThe aim of an EA is to improve the quality of $@utions over
several timesteps called generations. A rough mseade for a general EA is given in
figure 2.1. During each generation the EA startswith a population of possible
solutions or also referred to as individuals. Otfemindividuals in the first generation
are generated at random but this is not alwaysssaciy the case. Once the algorithm is
running, the individuals in the next generation Wwé based on individuals from the
current generation’s population.

The individuals in the population are evaluatedt@nproblem at hand, assigning a value
to each individual depending on how well they parfaluring the evaluation. This value
is commonly referred to as a fitness value. Théuaw@mn process can be very simple and
fast, as we will see when we discuss the Knapsemtd€m in section 5.2 which we use

in our experiments. Other tasks may take much lotmevaluate. One may have to wait
on complex simulations to finish which may last feinutes or even days. In such cases
you may want to avoid many evaluations and for teason maintain small populations
or use heuristics for initializing the first poptiéa.

2 The solution space is the set of all possibletamis, both good and bad.



Once the individuals have been evaluated the dlgorstarts selecting individuals whose
descendants will form the next generation. Becassally there exists a genetic
difference between the individuals in a populatiadjviduals will show a difference in
the values associated to them. Based on this iféer some individuals will have a
higher chance of being selected than others. Whehave selected some good
individuals we can start transforming them throogtombination and mutation. Two
individuals can be recombined to form one or mdfepoing. These offspring can then
be mutated slightly. One may even find it desirdblase only recombination or only
mutation but this is a designer’s choice. When lyave created sufficient offspring you
can go to the next generation and run throughtéqessve’ve just discussed. Many of the
decisions on the exact nature of these steps,asittie size of the population, the
mutationrate, the kind of selection used etc. df®mlthe designer to be made.

It is important to notice that each EA is an adifaf the designer who by no means is
bounded to any natural realistic form of how his fHActions. For instance he may even
go as far as to incorporate Lamarckian evolutiaa ms algorithm, something that is
believed not to be possible in nature.

Generate initial populatioi?,
evaluate P,
while(stopping__criteria
P, =recombing(R,)
P", = mutate( P',)
F.= evaluatg P",)
R..=selec(P",,F,)
t=t+1

end

Figure 2.1pseudo code for a general EA

We now will take a closer look at the workings loé tvarious parts of an EA.

2.2 Representation

As stated above, by far most Evolutionary Algorithoonsist of a population of
individuals. These individuals are part of the esggntation space which itself is the set
of all possible and legal genotypes. The way tledigiduals represent their solutions is
dependent on several aspects:

- genetic representation

- the definition of the search problem

- the fitness function

10



2.2.1 GENETIC REPRESENTATION

The genetic representation can have several fatflere we will mention the most
common:

- Binary
- Example: genotype: [0,0,1,0,1,0,1,1,0]
- Real valuesR)
- Example: genotype: [10, 1.5, -2, 4.1, 531]

Many researchers in EA have used the binary cddintheir representation (Calabretta,
R., Galbiati, R., Nolfi, S. & Parisi, 1996, Golbe&gSmith, 1987). Some even go as far as
to transform real valued numbers into binary ssinthis transformation is not
necessarily needed and some researchers evenebieliebetter to use real valued
representations when your problem has real valdgalflez, Aguilar-Ruiz & Riquelme,
2003).

2.2.2 THE DEFINITION OF THESEARCH PROBLEM

The definition of the search problem relates yamagic code to the search space. For
instance, with the 0/1 dynamic knapsack problemtgdwhich gene belongs to which
item and what the weight and value of that itenTtee story that goes with this problem

is the following: You have several objects, fortaree gold nuggets, each of which has
its own weight and value. You want to take alongnash value as you possibly can, but
because the total weight of the objects is more ytoaur knapsack can handle, you cannot
take them all. So now you have to make a choicéwitems to take along and which
item to leave behind. The definition of the segyobblem in this case tells you:

- which item is linked to which location on the bipa@renotype

- the weight and value of each item

- 'L’in the genotype means put in knapsack and ‘Canseleave out

- The goal of the problem: find a set of items thaiimize the total
value, limited by a maximal weight.

2.2.3 THE FITNESSFUNCTION

The fitness function, or objective function assitiso known, rates the individuals on
their specific property or properties. In a sengelis you how ‘good’ an individual is. In
simple theoretical problems the fitness function ba very simple and straightforward.
In the max-one problem for instance, where the genepresentation is a binary string
and the fitness function is simply the summingh&f humber of ‘ones’ in the genotype.
The problem definition is almost identical to theual fithess function. For the 0/1
Knapsack Problem it is slightly more complex. Here fithess function is a combination

11



of a penalty function combined with parts of thelgem definition, namely the objective
to find a set of items that maximize the total egliimited by a maximal weight.

In some cases, particularly the simplest theorgpigzblems it can be difficult to clearly
distinguish the definition of the search probleonirthe fitness function. Take for
instance the simple max-one problem. The gengbiesentation is binary and the
objective is to get a binary string with as manyes’ as possible. Here both the
definition and the fitness function are simply cbog the number of occurrences of
‘one’ in a string.

Because the selection process uses the outcorhe bfrtess function to decide which
individuals to use to create the next generatitos,an essential part in guiding the path
of evolution. If you reward the wrong charactedstof an individual, your EA will never
end up with the solution you initially intendedatfind. In the case of multi-objective
optimization, where two or more, often opposingglgare to be met, this can be
especially difficult. Changing the balance of hamportant each goal is may give very
different results.

2.2.4 STRUCTURE OF THESEARCH SPACE

In most cases an Evolutionary Algorithm is suppasefthd the global optimum in the
search space without getting stuck on local, lessigptima. To get a better
understanding of what we mean when we talk abaatl land global optima it is useful to
look at the structure of the search space, ordg@ndscape. For this we will use some
very low dimensional search spaces. If we havecadiwiensional search space the
fithess landscape could look like figure 2.2

Fitness

1
a 20 4o ] B0 foo

X
Figure 2.2a two dimensional search space, with only one géne
The genotype in this case has only one gene whicothave a value ranging from ‘1’ to
‘100'. Let’'s say we want to find the highest pamthe landscape. There are several

peaks to choose from but only one is the highdsbther peaks are optimal only for
their local area; globally they are dominated l®y gfobal optimum.
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Figure 2.3a three dimensional fitness landscajpege taken from
http://nc25.troja.mff.cuni.cz/~soustruznik/GA.htnl

In figure 2.3 we see an example of a landscapedb@séwo genes. The values of these
genes are set out against the x and z axis whtredisness is set out on the y axis. Here
it is much clearer why it is called a fitness laca®e. Again there is one peak that
globally dominates all others.

The representation space does not necessarilyshawe on one match with the solutions
space. For instance, through using complex genstgpeomplex expressions of the
genotypes, we first create a phenotype from thetype before relating it to a solution
space. This may cause different genotypes to leeseadme location on the fitness
landscape. An example of this is shown in figudevhere a population of diploid
individuals often converges to the same phenotgpelting in having the same fitness
values.
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2.3 Fitness-based Selection

Fitness-based selection is the driving mechanisihdieers the population to a higher
average fitness. Individuals are selected fronpthpulation to produce offspring.
Because the selection is based on the genotypeés$ value, the higher a genotype’s
fitness is relative to the populations’ averageefis, the more like it is for that genotype
to have offspring in the next generation.

Here we will mention some of the most common foahselection systems found in the
field of EAs followed by a short explanation:

- Fitness proportionate selection
- Ranking selection

- Tournament selection

2.3.1 FITNESSPROPORTIONATESELECTION

Fitness proportionate selection is a rather litengllementation of the selection principle
described above. The chance that an individuadlected is equal to the individual's
fitness relative to the population’s average. Aown example of this form of selection
is roulette wheel selection where each individoahie population occupies an area of the
roulette wheel proportionate to its fitness. So méher an individual has to be selected
you spin the wheel and pick the individual where iall lands. A well known problem
with this form of selection is the loss of diveysih the population. If one individual is
many times better than all others in the populaitievill occupy most of the roulette
wheel, causing it to be selected almost every tBueh individuals are referred to as a
‘supersolution’ and are generally seen a problentfss because after a few generations
they take over the population resulting in a losgariation.

Maintaining diversity in a population is vital ta &A for two reasons:
- Parallel search

- Selection pressure

Identical individuals occupy the same point in $kearch space and therefore do not
search the space in parallel, loosing some of tlveep of an EA.

When individuals have similar fithess values thsress selection pressure causing the

algorithm to drift randomly through the search spakhis slows down the speed with
which the algorithm will find the solution.

14



2.3.2 RANKING SELECTION

With ranking selection the occurrences of supet&nis are eliminated. Here we no
longer select based upon their relative fitnesgbaportionate to their rank in the
population. So the individual with the highest éi§s gets the highest rank and
accordingly the highest chance of being selectad.Second best gets a slightly less high
chance of selection and so on.

2.3.3 TOURNAMENT SELECTION

With tournament selection, every time you wantdlest one or two individuals, you
hold a small tournament. The size of the tournamet vary depending on the amount
of selection pressure the designer wants. Withueneoment size of for instance four, you
randomly select four individuals from the populatidhis random selection does not
look at the fitness of an individual so each has@uml chance of being selected. Once
we have the four individuals we order them accaydnfitness and we keep the best. A
smaller tournament size, which has low selecti@sgure, means that low fit individuals
have a better chance of surviving. Although thisiee at the cost of slower finding the
optimum it does maintain a higher diversity andrgweases the odds of finding the
actual optimum. The nice thing about tournamergcin is, is that with only one
parameter, namely the tournament size, one caly easitrol the selection pressure and
thereby the amount of variation in the population.

2.4 Recombination

The learning ability of an EA is based for a lapget on the fact that it uses a population
of individuals to search the solution space in pelrand by selecting from the population
better solutions to be combined to find possiblgdbesolutions. One example of
recombination in EAs is one-point crossover. ay, have two good individuala bnd

Is. When the genes that score well fprare in the first portion of the genotype and for |
in the second part cutting the two genes in halfmending the beginning of Wwith the
end of i together could potentially result in a chilgthat has an even higher fitness.

Solve Max-One problem
Ia: [1,1,1,0,0,0 fithess=3
Ig: [0,1,0,0,1,]1 fitness=3

Cut after third number and mend the pieces
lc1l: [1,1,10,1,] fitness=5
lc2: 1[0,1,00,0, fitness=1

Figure 2.2 Example of one-point crossover.

It is not necessary that the genes are cut exachglf, as we did in the example. The
important thing is that the two genes are cut @atsime position. This position can be

15



anywhere on the chromosome and is chosen at rardpaipoint crossover is not the
only form of recombination in EAs, the designer magnt to select more than one place
to cut the genes (n-point crossover) or swap sdameants between the genes (uniform
Crossover).

As you can tell from this example recombining thve parents does not necessarily result
in a child with a higher fithness. The same goesiatating an individual. In fact: most
changes tend to result in worse individuals. forsthis reason that many algorithms
incorporate a child population size that is muchea than the original parent population
size. From this larger child population the bedividuals will be selected to go to the
next generation.

So if:

Parent population size = N

Child population size = 3N

N children will be selected to form the new pangopulation.

2.5 Mutation

Mutation is used in all EAs. Some EAs only usesibdackground operator for
introducing new genetic material, relying mostlyanssover and a large population to
find solutions (Goldberg, 1987, Holland, 1975). @threly solely on mutation (Cobb,
1990). In most cases the rate of mutation is hetdanstant mutation rate. This
mutation rate determines for each gene on the absome the chance for it being
mutated. By putting the mutation rate at 1/L wheis the length of the chromosome
you have a very good chance that there is on agerag mutation on each chromosome.
The mutation rate is often referred to as beingcallsearch operator as opposed to
crossover being a global search operator. A mutatianges the individual only very
slightly. After the mutation the new individual Wilsually remain in the vicinity of the
old individual. Crossover on the other hand is niiedy to result in bigger changes,
moving the individuals around over larger areathefrepresentation space.

2.6 Historical Background of EAs

Now that we have seen some of the basic princatelsoperators of EAs we will take a
look at its history and see what the archetypieatures of the different classes are. Over
the years many different forms of EAs have beereldped. Usually a distinction is

made based on the representation used and omdhairce on mutation and crossover.
Some EAs have very distinct representations, ssedfirate State Machines

(Evolutionary Programming by Fogel 1964) or exebl#gprograms (Genetic
Programming by Koza 1989). Such algorithms areliysseen as independent classes
within EAs. Others are obvious derivatives from here standard versions, like for
instance the hypermutation genetic algorithm wisch GA adapted for dynamically
changing optimization problems. Along the way tines between the different classes
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have blurred, where originally GAs only used binsityng representation nowadays it is
not uncommon to use real values.

2.6.1 EVOLUTION STRATEGIES

Already in the 1950’s several researchers withméerest in evolution made (computer-)
models where they tested out some of the basiciptas (Fraser, 1957; Friedman,
1956). The earliest research that ended up ad afglie EA family is the Evolution
Strategy (ES), a name taken from the German ‘Eiarigstrategie’. In 1964 Rechenberg
and Schwefel of the Technischen Universitat Bedoth with a background in
aerodynamics, developed ES while searching foofienal shapes of bodies in a flow.
Over the years they extended their algorithm teesoptimization problems on
computers and strengthened its theoretical basish@berg 1973; Schwefel 1977).

Let's look at the archetypical features of ES. r&l$ heavily on mutation. From this the
most noticeable feature is the fact that the sizBemutation itself is subjected to
evolutionary change. The genetic representatiosistsof real valued numbers, so
individual v is a vector of elementsLIR. Every element (x ) has a normal

distribution associated to it that controls how thig mutation of that element will be. By
controlling the size of the normal distributionsuycan control the speed with which each
element evolves. Elements that perform well nedg asmall normal distribution
whereas elements that perform not so well can rbajger changes. The size of the
normal distributions is not controlled by the desigbut it too is changed by random
mutations, albeit using some heuristics for degjditnen to change the size. Schwefel
(1995) gave some implementations of this.

2.6.2 GENETICALGORITHMS

At the University of Michigan John Holland worked what we now know as Genetic
Algorithms (GAs). In 1975 he published a book oadtion in natural and artificial
systems. Leaning heavily on a biological basisd¢scdbed an algorithm with genetic
operators as selection, crossover, mutation aretsion. Though the last one, inversion,
is rarely used as it is unclear what its benefies(Blill, Newell, O’Riordan 2004). The
standard version of a GA has three archetypicalifes:

- Binary representation
- Proportional selection

- Crossover emphasized for inducing variation

Over the years many researchers altered some &dhaes of the algorithm,
particularly the selection method. As we have sdmve this form of selection has its
shortcomings and nowadays ranking and tournamésttem seem more popular to use.
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Holland showed the potential of Genetic Algorithttiugh examples in game theory,
control and optimization, economics and artificrdelligence; areas where GAs are still
used today. Interestingly enough most of thesearebeareas have problems that are
more of a dynamic nature than static. Furthermerprioposed the schemata theorem; a
system with which you can observe the dynamicsiw#hpopulation over several
generations.

A decade past and still little research was bemgedn EAs. It was not until the late
eighties when the number of EA researchers rapndiseased. This was also the time the
first real textbook on GAs appeared, written by idév. Goldberg. Building upon the
schemata theorem Goldberg developed the BuildiogkBlheorem. This theorem gave a
more mathematical insight into the processes of @#&bsthus opened up a road to more
theoretical research. The general idea is thatarbeginning of a search some
individuals have a combination of genes that hakigh fithess. By recombining
individuals you can bring building blocks togethemgating building blocks with even
higher fitness. The building blocks can be analyzgidg the schemata theory and some
functions Goldberg proposed which consider aspefdise schemata such as length and
fitness.

2.7 Basic Elements of Evolution in EAs

As one can tell from earlier sections, the basoents of evolution which we discussed
in the first chapter are in many cases explicigfirted or otherwise quite obvious. Let's
look at the three elements one by one.

1. Reproduction

The replicable, information carrying structure iAd€zare usually strings of numbers.
Some of these strings are copied to form the nemérgation.

2. Variation

Variation is valued very highly within the field &As. Much of the research has focused
on finding ways to avoid the population to convetgea single solution prematurely. A
low amount of variation in a population causesdlyorithm to learn slower or prevents
it from finding the best solution.

3. Selection

As seen above, selection is an explicit operatioBAs. Several different kinds of
selection have been developed mainly with the disupplying strong selection pressure
while maintaining sufficient variation.

2.8 To use EAs or not to use EAs, that’s the question.

So far we have seen how EAs function, but this smgell us what they can be used
for. EAs can be used for a very wide range of pwid. In fact, as long as you can
formulate the problem mathematically and thereparameters to be tuned, EAs can be
applied. But as so many things in the world, EAgehtheir advantages and
disadvantages. For instance; when the problem isenmatically simple, such as a linear
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or a convex problem, a classical optimization tégqim like Dynamic Programming will
generally outperform most EAs. But when the tagkase difficult, such as
discontinuous or non-differentiable problems oksashich have multiple criteria to be
optimized, EAs are much better at finding solutiarthin reasonable time.

Another interesting aspect of EAs is that no knalgkeof the problem is incorporated
into the algorithm. This means that no full knovgedf the underlying mechanisms of
the problem is needed to solve the problem. Fomgi@when Rechenberg and Schwefel
were trying to find a shape that would minimize tbi&l drag of three-dimensional
bodies in a turbulent flow, they used a physicatleido evaluate the solutions they
created using their ES. They ended up with a sliapedifferent from their expectations
and for which, at the time, no theory existed tplai it. Similar unexpected results have
been shown by Adrian Thompson (Thompson, 1997) ugeal a GA to design circuits

on a FPGA Here, some parts of the FPGA were not conneotéukt functioning circuit
yet they still influenced the output of the circpibbably through electromagnetic
coupling.

3 FPGA stands for Field Programmable Gate Array s€tae chips with an easily modifiable circuitry.
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3. GAs for Dynamic Optimization

From here on we will consider only the class of &&nAlgorithms and leave all other
classes be. We will take a look at how GAs havenla®apted to function for dynamic
optimization and look at some specific algorithisthe end of this chapter we will
introduce our own Algorithm: the Serial Populatidigorithm or SPA for short.

Dynamic problems change over time as opposed tic ptablems which stay the same.
Normally, Genetic Algorithms are designed to fihd bptimal solution for a static
problem. The fact that static problems do not ckeamger time makes them very GA-
friendly. Genetic Algorithms need some time to fthe optimal solution and many tend
to loose a lot of diversity in the population alahg way. If the problem changes, the
loss of diversity can cause the algorithm to néeeable to find the new optimal
solution. So, in order to apply Genetic Algorithtaslynamic environments we need to
make some adjustments to the standard Genetic ilgm. One can adopt several kinds
of strategies, each having its own advantages madivhntages. Jurgen Branke (2003)
gave a nice overview which we will repeat in shwte accompanied by a more in-depth
look into two algorithms; diploid GA and triggerégipermutation GA.

3.1 Strategies for Dynamic Environments

In the literature four broad strategies can balldidt

- Increase diversity after change
- Maintaining diversity throughout the run
- Memory

- Multiple subpopulations

3.1.1 INCREASE DIVERSITY AFTER CHANGE

Triggered Hypermutation (Cobb, 1990) and Variabbedl Search (VLS) (Vavak, Jukes
& Fogarty, 1998) are two well-known examples ostkirategy. Once a change in
environment has been detected the mutation-ratd&ihcreased. This can happen
either in one dramatic burst followed by a periddi@cay as with Hypermutation or by
gradually increasing the rate as with VLS.

The (Triggered) Hypermutation GA (HMGA) is an elatg simple algorithm that works
well on dynamic environments. For most of the time algorithm works like a regular
GA using mainly crossover and selection to seanclafgood solution. When a change in
the environment is detected the algorithm increttssmount of variation in the
population by raising the mutation rate to a vaghHevel. Cobb changed the rate from
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0.001, which is very low, up to rates of 0.5. Therease in mutation rate is followed by a
period of decay where the rate decreases back bage rate. Very high mutation bursts
like 0.5 are similar to reinitializing the populari. Lower levels of mutation bursts retain
some parts of the old solution and so are betigatda of adapting to smaller changes.
Furthermore Morrison and K. de Jong (2000) showaed larger hypermutation bursts
track the optimum better when the environmentahgea are frequent while lower
hypermutation levels perform better when the charsge less frequent.

Cobb tried detecting the change by monitoring itme$s of the best performer in the
population. When this value declines over sevesakgations, a burst of hypermutation
is triggered. Not all changes are detectable tlaig. \vikdding peaks in the multiple peaks
problem or raising the maximum allowed weight iknapsack problem may go
undetected leaving the algorithm stuck on a subggtsolution.

Over the years this algorithm has shown itselfardy to work well on continuously
changing environments but also on discontinuousr@mments which show large
changes to the optima (Lewis, et al., 1998; Momni&XK. de Jong, 2000; Simdes &
Costa, 2003b). Problems may occur when the alguoritils to detect the change in the
environment or when the change is too large (Getétte, 1992).

3.1.2 MAINTAINING DIVERSITY THROUGHOUT THE RUN

Diversity was already important in GAs used fotistanvironments in order to avoid
getting stuck in suboptimal solutions. In dynamiwieonments this importance is
amplified. If a change occurs, your once optimdlison is destined to become
suboptimal at best. Diversity maintenance mechangmch as Fitness Sharing, Random
Immigrants (Grefenstette, 1992) and Crowding araroon examples of this strategy.
Ensuring the population holds no multiple instanaiethe same solution is another
example.

Crowding and fitness sharing are both niching mésh&rowding is a selection
mechanism which selects individuals for reproductpartly on their similarities. Fitness
sharing adjusts an individual’s fitness to the namdif similar individuals. The more
individuals are similar the lower their fithess Mae. In both cases the effects are such
that they cause the population to spread out nu®increasing the population’s
diversity. Without specifying explicit subpopulat®the individuals tend to specialize,
form a niche in certain parts of the fitness space.

The Random Immigrants algorithm by Grefenstette edaly enough inspired on Cobb’s
triggered hypermutation algorithm, which uses tivesity introducingstrategy. In this
case the diversity is introduced not after a changevith every generation, making it a
diversitymaintainingalgorithm. Another difference with the hypermutatalgorithm is
the way the diversity is maintained. Instead ohgdiigh levels of mutation, Random
Immigrants replaces some of the worst individuats wew randomly generated
individuals.
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3.1.3 MEMORY

Applying memory serves two functions: First; it pides diversity by retaining former
good solutions which otherwise would have beenilotite selection process and
reintroducing (parts of) these solutions on a latarasion. Second; reintroducing former
solutions in repetitive environments can enableallgerithm to quickly retrieve the
previously encountered optimum.

Two types of memory can be distinguished:
- Explicit memory
- Implicit memory

GAs incorporatingxplicit memory usually have strategies for storing sohgiand
reintroducing them on later occasions during thre(kwuis & Xu, 1996; Ramsey &
Grefenstette, 1993; Bendsten & Krink, 2002; Eggerm&Lenaerts, 2002). GAs
incorporatingmplicit memory usually incorporate some form of redundandieir
genetic representation. The most common exampising a diploid genetic structure.
(Branke, 2001; Calabretta, Calbiati, Nolfi & Pari996; Lewis et al., 1998; Ng &
Wong, 1995)

The Random Immigrants algorithm can be seen asppisigstone toward many of the
explicit memory algorithms. Instead of introduciragndom individuals to the population
previously fit individuals, which are stored, aegntroduced. In the case of Eggermont’s
and Lenaerts’ Case Based Memory GA (2002) suclvithals are introduced when a
change is detected. The memory population doeseu#ssarily have to consist of
individuals from previous generations. Bendsten kanak (2002) for instance generated
the memory population randomly at the start andatgd during the evolutionary run.

A diploid GA is different from a regular GA by thact it has a set of two chromosomes
instead of the common single haploid chromosome.cdmsequence of this is that two
genes compete for the same phenotypic trait irséinee individual. In order to solve this
dilemma a dominance mapping is devised, labelimgesgenes as dominant and others as
recessive. If a dominant gene is paired with aggige gene, only the former is expressed
in the phenotype leaving the recessive gene unss@de Dominant genes are thus able to
protect less fit recessive genes from being diszhly selection. Formerly fit genes can
piggyback ride the fitter dominant genes they aiegal with, hopefully coming into
expression again when the environment is more &bler It is this mechanism that is
thought to give the GA a form ahplicit memory.

Apart from this it is also possible for two domin@n two recessive genes to be paired.
What happens in this case differs between the damoi mappings used by different
researchers. Although over the years many resaar(@allabretta et al., 1996; Hollstein,
1971; Ng & Wong, 1995; Ryan, 1997) have devised thwwn dominance mappings
there is one mapping that is commonly referrede;triallelic dominance mapping.
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The triallelic dominance mapping was first develbpg Hollstein (1971) for static
environments and made popular by Goldberg and Sit@87) who first used it for a
dynamic environment. The genetic strings use atyif0,1,2] representation instead of
the regular binary [0,1].

Table 1.A schematic view of the triallelic dominance magpwhere the first row and column
denote the genetic values.

The first row and column in table 1 show the genedilues (alleles) and the rest of the
table shows the resulting phenotypic expressiothisimapping there is a clear bias for
expressing 1's. Alternative mappings (Ng & Wong939Ryan, 1997) have been
proposed to eliminate this bias. Their represesrathave four alleles where the
probabilities of generating 0's and 1's are egualis, Hart and Ritchie (1998) showed
that a diploid structure alone is not enough fdipdoid GA to adapt to changing
environments. Frequently switching the values fdominant to recessive and vice versa
was needed to give acceptable results.

3.1.4 MULTIPLE SUBPOPULATIONS

When using multiple populations, researchers uguek one population to track the best
solution and the rest to track suboptimal peakbeanfitness landscape. One has to make
sure that two subpopulations do not cover the sanee but that each subpopulation
tracks a different peak. Branke developed a styatatiedexclusionto avoid this

problem. The best individuals of each subpopulatiencompared to each other spatially.
If the distance between them is smaller than agireeld amount the worst scoring
population is marked for re-initialization (Brankdaussler, Schmidt & Schmeck, 2000;
Ursem, 2000).

More often than not you will find that algorithmecorporate combinations of these
strategies, making clear-cut distinctions difficdaying that many forms of multiple
subpopulations could be classified as a form dfing or diversity maintenance
wouldn’t be all wrong.
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3.2 Serial Population Algorithm

Now that we have seen some of the strategies godthims used for dynamic
optimization problems we will introduce our own @lghm: The Serial Population
Algorithm or SPA. The strategy we use in SPA i®mbination of multiple
subpopulations and memory. In our case we do r@thessubpopulations in parallel as
with other researchers but we use them in sehes,dreating a form of memory. In this
section we describe how SPA functions and whichhaeism we have used. In chapter 5
we give some specific details on the parametersevesed and in chapter 6, where we
show and discuss the results form the experimemsyill draw our conclusions on how
well these choices worked out.

The pseudo code of SPA is shown in figure 3.1hatdgtart of an evolutionary run a
population is created and initialized randomly.eopulation is divided into a
predefined number of subpopulations. All subpopaitet are evaluated and the Best
subpopulation is selected. Until a change in emvirent is detected only this
subpopulation will be used. When a change has detatted all subpopulations will be
evaluated on the new environment and again thesbégtopulation will be selected. It is
through this serial use of the subpopulationsweahope to create a form of memory.
This memory-function will perform optimally whenagmumber of subpopulations is
eqgual to the number of optima.

For the detection of environmental changes we wsest@m similar to what Eggermont
and Lenaerts (2002) used for their algorithm. Weperarily store the best individual

and its fitness value at the end of each generafienthen evaluate this individual again

at the beginning of the next generation. If itad#s value has changed we know a change
in environment has occurred and in our case igéng the algorithm to reevaluate all the
subpopulations. We then select the population wbattains the individual with the
highest fitness.

When SPA has decided on which subpopulation toaishild population will be created.
To generate the child population we repeatedlycs@eo parents from the subpopulation
through tournament selection. These parents acemgioed using two point crossover
with chancePc followed by mutation. The resulting two childrare placed in the child
population.

From the child population the next generation & Hubpopulation is selected, once
again using tournament selection. By using elidection on both the parent and child
population we ensure both the best parent andebiedhild are added to the new
subpopulation. This new subpopulation is not alldwecontain any double instances
thus ensuring the needed diversity in the populatio

* The best subpopulation is either the subpopulatiomtaining the individual with the highest fitness the
subpopulation with the higheateragefitness. Either qualification seems to work fine.
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until maximum number of generations:

end

if change detected
evaluate total population;
choose best subpopulation;

end

elsecontinue with same subpopulation;

until child population is full:
select two parents with tournament selection;
perform:
crossover with chandec;
mutation;
add kids to child population;
end
add the best parent and the best child to new swlb@ion;
until new subpopulation is full:
select child with tournament selection;
add child to new subpopulation;
remove any double instances;
end
replace the old subpopulation with the new;

Figure 3.1Pseudo code for SPA
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4. Dynamic Environments

Dynamic environments come in many different flavibrgt can have dramatic effects on
the functionality of the algorithms used. Therefibie important one first gets an idea of
what the problem looks like and how it behaves teetteciding on what algorithm and
genetic operators to use. Here we will discussitwmortant distinctions and two further
characteristics of dynamic environments followedwy examples of commonly used
dynamic environments.

4.1 Characteristics of Dynamic Environments

We now give two distinctions by which you can cltaéeaize the dynamics and we will
discuss their consequences for what type EA to use:

Recurrent vs. Non-recurrent

Continuous vs. Discontinuous

Recurrent environments, like all dynamic environteeohange their settings during the
evolutionary run resulting in having different emnments. What makes a recurrent
environment different from a non-recurrent envir@miis that it has a limited number of
such settings and these settings are revisitedglthie evolutionary run. This can happen
either periodically/cyclic or a-periodically. Iféhenvironment changes periodically the
states are visited in a specific, repeating ordléine environment changes a-periodically
there is no specific order and any possible rapasitare accidental. In general you could
say that a recurrent environment, be it periodia-periodic, is well suited for GAs that
incorporate some form of memory.

Non-recurrent environments have no states thataisited or at most merely by
accident. Here, applying memory will serve littlem function than adding some
diversity to the population. GAs that either maimtar introduce diversity seem to have
better chances of succeeding.

Continuous environments, in a strict sense, changey timestep by a small margin.
They require only small genetic changes to be niadee previous found optimum in
order to find the next. Such environments are stafeendent functions where the next
state is dependent on the previous state. Mainigigiversity throughout the run seems
to be a good strategy to handle this problem.dfeéhvironment is botbontinuousand
recurrentthe amount of related yet distinct states maybddrge for a memory system
to be a feasible option (Cobb, 1990).
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Discontinuous environments switch from one statinéonext in relatively large steps.
This may cause problems for some diversity mainte@&As and diversity introducing
GAs when the adjustments are too big (Grefenste®@?). Combined with a recurrent
environment the amount of states to be found &\liko be small thus a paradise for
memory incorporating GAs including SPA.

Additional to these two distinctions there are twore characteristics to consider:

- Frequency of changes

- Detectable changes

The more frequent the optimum changes the moreudlifiit will be for the EA to track
the optimum. All EAs need several generationsrid the optimum. If your goal is not to
find the optimum but merely track a good solutiokstare still an option. A diploid GA
(Goldberg 1989) for instance, performs better oemrironment that switches between
two optima every other generation than a stand#&dARhough the optima will not be
found it will give a smaller average error.

Some algorithms need to detect a change in enveanto function. It may be the signal
to increase the diversity as with the triggereddmgputation or search for a better
subpopulation as with SPA.

Detecting a change is not always as straightfonaard may seem. Commonly,
monitoring a possible change in fitness value edus detect the change but this does
not necessarily always work. If, for instance, yompare the fitness value of an
individual over two generations you will detectrenge if the maximum allowed weight
for a knapsack problem is reduced. But, on therdthad, if the allowed weight is
increased it may very well go undetected. In addjta negative change does not
necessarily mean a change of environment. It calglol mean a temporary loss of fithess
during the EA’s search. As with most machine leagralgorithms, GAs have to find a
tradeoff between exploration and exploitation. 8tgyoo long in the exploration phase
slows down your speed of learning, doing too mugbiatation may cause the algorithm
to get stuck in a local optimum. So, to find thel@ll optimum of a problem and not get
stuck in a local optimum it is important to seaticl environment well. This may mean
that sometimes you have to take a temporary loBmass for granted while moving
away from a local optimum to a global optimum. Bymng elitist selection you can ensure
the best individual remains in the population Inig thay also cause the algorithm to
remain on the local optimum. Some researchersfirerese a ‘repeated loss of fitness’
rule to trigger the algorithm (Cobb 1990). Theyck#he fitness of the current best
individual in the population. If this fithess lovgeover several generations, say five
generations, they conclude a change in the envieohims occurred. However, this of
course slows down the reaction of the EA thus lawgethe average fitness over the
entire run and making the algorithm less suitabidriequent changes in environment.
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4.2 Dynamic 0/1 Knapsack Problem

The Dynamic 0/1 Knapsack Problem is an oscillat@nsion of the standard 0/1
Knapsack Problem. The task is to fill a ‘knapsagkh a subset of items. Each item has
both aweightand avalue The aim is to maximize the value of the contdrthe
knapsack without exceeding the maximum allowed vy .

Mathematically, the standard knapsack problem eaddscribed as:

Eq. 4.1 max> v,
i=1
Constrained by:
n
Eq. 4.2 D WX <W
i=1

Wherev andw are the value and weight vectors respectivelyh edsizenand X is the
genetic representation of ‘0’ and ‘1’ where ‘1’ medput the item in the knapsack’ and
‘0’ means ‘leave the item out'.

The weight constraint is enforced by a penalty fismcidentical to the one used in Smith
and Goldberg (1987):

Eq. 4.3 Pen=C(AW)?
Where:

C=20.

AW = the overweight of the individual:

Eq. 4.4 AW =) wx -W =0

i=1

So by combining Eqg. 4.1 and Eq. 4.3 we end up thighfitness function:
Eq. 4.5 D v,x —Penz0
i=1

Negative scores on the fitness function are rasexkeo.

The equations 4.1 to 4.5 define #tandard0/1 knapsack problem. There are several
ways to turn this into dynamic0/1 knapsack problem. The most common way isté& al
the maximum allowed weighW (Goldberg & Smith, 1987; Smith & Goldberg, 1992;
Lewis, et al., 1998; Simbes & Costa, 2003b). Anpthay is to use different sets of items
and alternate between them during the evolutionamy(Zwanepol Klinkmeijer, de Jong
& Wiering, 2006).
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4.3 Moving Peaks

In 1999 a dynamic environment was proposed indepahdby two groups of
researchers (Branke, 1999; Morrison, K. de Jon@L@ich Branke refers to as:
Moving Peak Benchmark and Morrison as DF-1. It iswdtidimensional environment
consisting of several peaks. These peaks can lmgetlan various ways such as their
location, height and slope. Furthermore one cao®hto add or remove peaks in the
environment. The environments have been built Wi¢ghobjective to make them easily
expandable so any form of dynamic characteristichmapplied.
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5. Experimental Setup

For our experiments we compared three differerdrétyns: a diploid GA using the
triallelic dominance mapping, a Hypermutation GAlamur Serial Population Algorithm.
We tested these algorithms on several differenirenments. The environment we used
for the bulk of our experiments was a dynamic Gidpgsack problem that can be
classified as a recurrent, discontinuous optimizegiroblem. Additionally we used a
dynamic 0/1 knapsack problem where we swappedtemasi for a slightly more
continuous and non-recurrent environment.

5.1 Dynamic 0/1 Knapsack Problem

In order to investigate SPA’s basic characteristiegperform several different
experiments using a dynamic knapsack problem. Egplriment consists of ten
evolutionary runs lasting for 2000 generations e&cin the bulk of our experiments we
use three different seizescontaining 17, 50 or 150 items. With each set sigaltered
two conditions:

- Theamountof sets used; using 2 and 5 sets of items eadaicary weights and
values.

- Thedurationof thestationary periogP = 10, P = 25 or P = 50 generations.

Additionally we perform experiments using 15 seithwize 50 to see how well the
algorithm performs with many optima. These expentadast for 3000 generations and
have stationary periods of again; P = 10, P = 28 o150 generations. These tasks can be
described as recurrent and discontinuous. Furthrexme perform experiments using
only one set with size 50 where we generated agehby swapping two items in the sets.
This creates a genotypic difference with a hamndistance of size 2 while leaving the
optimal knapsack value unchanged. Our aim is tatera somewhat more continuous
environment by having state dependent changesugjthiv is not continuous in the strict
sense for it doesn’t change every timestep. Adasd experiments consist of ten
evolutionary runs lasting for 2000 generations sititionary periods of P = 10, P = 25
or P =50 generations. Finally we perform experitaavith 5 sets of size 50 but every
time we revisit the set we swap two items so thierapn is slightly different each time.
These experiments again last for 2000 generatidgihsagain stationary periods of P =
10, P = 25 or P = 50 generations.

® Hamming distance = number of differences betwaentinary strings.
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5.2 The Algorithms

For each of the three algorithms we use the sametigeoperators as much as possible in
order to keep things as equal as possible. Thedfirences are: a triallelic encoding

for the diploid algorithm, a hypermutation phasetfee Hypermutation algorithm and the
use of serial subpopulations for SPA. The partsah@mequal are: child- and parent
population sizes, tournament sizes, crossover pifityamutation rate, and not allowing
multiple instances in the parent population. In¢hse of five sets with size 50 we also
ran an additional ‘basis GA'’ that used only thegerators.

5.2.1 GENERAL SETTINGS

We set the following parameters for all algorithms:

- (sub) population size =50
child population size =150
tournament size:
0 mating selection =4
o replacement selection =8
crossover probabilitPc = 0.9
mutation rate = 1/setsize

These settings were found to give good resultsrelinpinary tests. We do not claim that
these settings are optimal for any of the diffeemtironments we test the algorithms on.
Using these settings it means that if SPA usessiiNgopulations, its total population
size will be 250. It appears to give SPA a majaraaiage over the other algorithms but
in reality this is limited. As we mentioned in geat2.1 the evaluations usually take the
longest time of the entire process, particularlyeal world applications. The following
three equations give the average number of evalumper generation for each algorithm:

EQ.5.1: 69*1 .., .cog SPA
P

Eqg. 5.2:1+1+Cc=E HMGA
Eq.5.3:1+c=E Diploid GA
Where:

S = number of subpopulations used in SPA.

| = number of individuals in each (sub-) population

C = number of individuals in each child population.

P = duration of stationary period, measured in gerns.
E = average number of evaluations in each generatio
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After each detected change SPA'’s entire populatiiirbe evaluated. On average this
results in Eq. 5.4 evaluations per generation.détection system itself accounts for one
extra evaluation per generation and evaluatingérent- and child populations are equal
for all GA’s (EqQ. 5.3). The Hypermutation Algorithdoes not have the subpopulations
but it does have the detection system, resultireqn5.4 fewer evaluations per
generation than SPA.

Eq.5.4: 87D
a P

The Diploid GA has no detection system nor doesé the subpopulations resulting in
Eq. 5.5 fewer evaluations per generation than SPA.

Eq. 5.5:@+1

This means that if SPA uses five subpopulationsthedtationary period is fifty
generations, it will have four more evaluationstkMGA and five more than the
Diploid GA. The number of evaluations per generatmll go up either by increasing the
number of subpopulations or by increasing the feagy of environmental change. To
counterbalance this advantage of SPA we incredmeddpulations of the Hypermutation
GA and the Diploid GA by the appropriate numbesf@& this example HMGA would
have 54 individuals and the Diploid GA 55.

5.2.2 THEHYPERMUTATION ALGORITHM

We altered the Hypermutation algorithm slightly gared to what is common.
Normally, between mutation bursts, HMGA uses a Vewbase mutation rate and
depends mostly on crossover and a large populaizento find solutions. In our
experiments we used the base rate of 1/L whereahei¢ength of the chromosome.
Because our population is smaller than normallylusénypermutation experiments the
extra mutation is needed to compensate the logar@ition due to the population size.
The mutation burst is set to be roughly 35%. Teisdmparable to the burst size used in
Lewis et al. (1998) and to the theory that higlyérencies require high mutation rates
(Morrison, K. de Jong, 2000). The burst is followsda period of linear decay. Two
generations after the initial burst the mutatiae ia back on the base rate. Also the
detection system is different than the one use@diyb. Our detection system has a
100% chance of detecting a change in environmdns. i$ in part caused by the way we
change our environment. If we would have alterednfaximal allowed weight there
would have been a chance that the change wouldgaticed. For these experiments we
used the same detection system as SPA that wealmksearlier.

32



5.2.3 THEDIPLOID GENETIC ALGORITHM

The diploid genetic algorithm uses Hollstein’s ltahc dominance scheme as described
earlier. Apart from this and the fact it doesn’e @y subpopulations the algorithm is the
same as SPA.

5.3 The Performance Measures

We use two criteria to measure the performancésecalgorithms; Accuracy (Acc) and
Adaptability (Ada) as described by Simbes & Co&@0@a & 2003b) but with a slight
alteration. Accuracy measures the difference betwee optimal value of that period and
the best individual in the last generation beftwet¢hange. We altered this slightly by
taking this difference as a percentage of the aptimrhis is especially useful when
comparing results of tests with large differencesat size what can result in large
differences in optimal values.

1&1&
Acc: =>» |—)> E
optimum. , —best. |

optimum. ;
p = the number of generations between each change.

K = the number of changes in each evolutionary run.
R = the number of evolutionary runs per experiment.

Where: E, =

Adaptability is similar to what is commonly knowa the mean fitness error. We
measure the difference between the best individluaach generation with the optimum
value of that period. It gives us an indicatiortled speed of recovery of the algorithm.
These two measurements should be as close to g@asaible. The values that are
shown in the tables are the averages over 10 emo&ury runs per experiment.

1&)18
Ada: =) | =>'E,
R j=1 i=1
optimum — best
optimum
g = the number of generations in each evolutionany ru

Where: E, =
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6. Results

Until now we have seen what the algorithms we aek like, what type of environments
we use and the performance measures. In this chaptdiscuss the results of our
experiments and draw our conclusions from thenoforSerial Population Algorithm on
how it functions on such tasks. The tables whichrefer to are given in the appendix.

6.1 Recurrent, discontinuous tasks with set size 17

The results for these experiments are shown iesabl 3, 11, 12.

The optimization problem with set size 17 is apptyerather easy to find for both
HMGA and SPA. In all cases the accuracy is eitleeo or near zero. In table 3 we see
that SPA has a small error with P=50 where HMGAsdoat. Here SPA was not able to
find one of the optima on one run. An error of @@0is hardly significant.

The Diploid algorithm on the other hand even hgsificant problems finding this
simple solution. It has an incredibly low adaptipilresulting in a low accuracy.
Probably the main reason for this lies in the reldunty in its genetic code. If we look in
figure 6.1 at the lines for the best individual dhe average of the population we notice
that even though all individuals in the populataoe genetically unique, they still are
able to have the same phenotype. The redundaribg imiallelic mapping allows for
many different genotypes to have the same phenolyps means that all individuals are
located on the same location in the search spaereliy loosing the power to search the
space in parallel. This may be resolved by usinguah larger population but that would
result in doing many more evaluations. It doesmean that triallelic diploid algorithms
are useless. They may have potential where evafuaitne is hardly an issue and where
population sizes can be large and where genetarsity combined with phenotypic
singularity is needed. But in our case, where talver of evaluations and the speed of
adaptation do matter, they seem to be misplaced.

Probably the most noticeable result of the expenimwith set size 17 can be seen in
table 12 where SPA scored worse on the longesighéinan on the two shorter periods.
Because this is, of all the experiments we’ve dtime pnly occasion this occurs we feel
that we can say that it was an exception on thee rul

6.2 Recurrent, discontinuous tasks with set size 50

The results for these experiments are shown iresabl 5, 13, 14.

For the optimization problem with set size 50 wefgrened experiments with one extra
algorithm. This ‘basis GA'’ is not to be confusedwolland’s GA, using proportionate
selection etc. (see chapter 2) but this algoritormsé the basis for all other algorithms we
used. So it basically is SPA without the subpopoitest or the HMGA without a
hypermutation burst or the Diploid GA with a haploepresentation. By comparing the
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results of this ‘basis GA’ with the others we get® more insight in the effects of the
add-ons of the other GAs. Both SPA and HMGA improver the ‘basis GA’ but the
diploid encoding makes it perform worse.

For this problem SPA outperforms the HMGA signifidg on almost all fronts. It is only
that the HMGA gets a near perfect score on thébP that we see a small difference. It is
interesting to notice that the HMGA'’s score handlyies whether we use two optima or
five. Any change for the HMGA is equally disruptiagd neither the adaptability score
nor the accuracy is really affected by the numlb@ptima. SPA on the other hand does
show a strong difference. The more optima are timbed and the more subpopulations
there are, the longer it takes for SPA to stahillere often one subpopulation will be
used for different optima before settling for omegke optimum as illustrated in figure
6.2.

6.3 Recurrent, discontinuous tasks with set size 150

The results for these experiments are shown iresahl 7, 15, 16

The HMGA makes a remarkable jump in adaptabilityewlve compare the P=50 with
the other two periods. A possible answer is thataligorithm starts to reach the optimum
somewhere after 25 generations thus lowering thetadility considerably. Once the
optimum is found there is nothing to adapt to anggmégain we can see that SPA’s
performance improves when the problem has onlydptona unlike HMGA adaptability
which is not affected by the number of optima.

6.4 Non-recurrent, small changes

The results for these experiments are shown iresaf)l 17.

The HMGA performs much better on this task tharhentasks with large jumps. SPA
still performs well although it is worse than whe&a compare it to the results from our
discontinuous changing environment. As we can s®® figure 6.3 SPA uses in this
case only one subpopulation. Apparently the chaagesot big enough to force the
algorithm to use multiple subpopulations. This neetimat SPA performs equal to the
Basis GA on this task. Because no multiple subpaipris are used, which is SPA’s
identifying feature, SPA becomes useless for thggcAny additional subpopulation
only increases the number of evaluations that teéeé performed without adding any
functionality.

A small caution is in place here when considerimgperformance differences between
the algorithms. The performance of all algorithras be improved upon when the
different settings of the algorithms are betteretiito the problem. All algorithms used
the same settings in the small changes task aghattiscontinuous tasks. Adding the
hypermutation phase here apparently worsened tiierpence as we know that in this
case the Basis GA performs exactly the same as A&jAsting the duration of the
hypermutation phase and the height of the mutattenmay cause the algorithm to
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improve beyond the basis GA performance. But westi#éirsafely say that SPA performs
much better on the discontinuous task than eithdreoother two algorithms we tested.

6.5 Recurrent, discontinuous tasks with set size 50 viitsmall
changes

The results for these experiments are shown iresaf)| 18.

SPA is still able to stabilize and attach its syfgations to the different optima although
in some cases this linkage is sometime disturbied afstable period. (see figures 6.4 and
6.5) This is something that is expected when wesiden the findings of SPA’s

behaviour on our regular discontinuous tasks aadthall changes task. The fact that
SPA is capable of finding the old optimum even wttenold optimum is changed

slightly is probably more caused by the fact thiahdividuals are unique. This is a
powerful method which keeps the diversity high whieeping the number of

individuals, thus also the number of evaluatioos; |

6.6 geetgurrent, discontinuous tasks with set size 50 umgg 15

The results for these experiments are shown iresabl, 19.

Even with fifteen different sets the SPA algoritdoes remarkably well. This is mainly
due to the fact that some of the subpopulationsotiwerge to a single optimum. This
already gives a big improvement on the performademause their accuracy is (near)
perfect.
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Figure 6.1A close-up of an evolutionary run with the Dipl@d\. The average of the population
(depicted by the red dots) often has the samesftae the best individual (green crosses)
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The figures 6.1 — 6.5 are best viewed in color
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Figure 6.4The optima are slightly different each time theg aevisited. This causes extra
adaptations.
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7. Discussion

So what can we conclude based upon the resultsstied above for the functioning of
SPA?

7.1 Stabilization Period

The experiments show that the use of serial sudptpns has the effect of each
subpopulation tending to converge toward a singtevmm. This enables SPA to quickly
regain the former solution in recurrent problemisisTinking of a subpopulation with an
optimum is not explicitly encoded in the algorittut results from SPA’s inner
workings. By using only one subpopulation duringtaionary period we cause the
subpopulation to converge to that optimum. Thisveongence increases the likelihood of
the subpopulation to contain an individual whicllsser to the optimum than any other
individual in the entire population. At the sanmadiit reduces the chance that the
subpopulation contains an individual which is ctageone of the other optima. Because
we select the subpopulation based on the presénibe mdividual that is nearest to the
current optimum, the longer a subpopulation has lsed for one optimum the more
likely it will be selected next time that optimurarnes around. The time between the
start of the algorithm and the time each subpojmras linked with one optimum we call
the ‘Stabilization Period’. In figure 7.1 you cagessubpopulation 1 first being used to
search for two different optima before settling thoe third and final optima.

The duration of this stabilization period is maim§luenced by the number of sets and
subpopulations. As we can see in figure 7.1, wheretare many different optima, it is
likely some of the subpopulations will be used ripldttimes for different optima before
settling for one optimum. In figure 7.2 there andyawo optima and the stabilization
period is very short. An additional influence ig timount of time a subpopulation gets to
converge to an optimum. If the stationary periogssiort, it may not have enough time
to learn the specifics of that optimum and it tuons to be the best for a different
optimum as well.

7.2 Exploitation Period

After the stabilization period both the adaptapiiind the accuracy will almost always
remain at zero, given a simple recurrent, discowtirs task. All subpopulations are
linked with their own unique optimum and the bestividual is located at that optimum.
It is from this point on that SPA really takes affd the longer an evolutionary run lasts
the better its overall performance will be. Thetomrng exploitation is not guaranteed
as the factors which influence the duration ofdtabilization period may cause some
instability later on.
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7.3 Subpopulations and Optima

When the number of subpopulations is equal to theber of optima the algorithm will
end up assigning a single subpopulation to eadmapt. When there are more
subpopulations than optima these extra subpopuaktall not be used. This surplus will
not be used for any of the optima as can be sefgure 7.3. Although it doesn't affect
the learning speed of the algorithm it does cau@ evaluations every time the entire
population is evaluated. When applying genetic @lgms to real world problems you
want to keep the number of evaluations as low asipte because generally the
evaluations take up most of the algorithm’s time.

When the number of subpopulations is smaller themtumber of optima the algorithm
becomes less stable. Some of the subpopulationstitidye associated to a single
optimum but others will switch from one optimumth@ next. Figure 7.4 shows you a
case where we have four subpopulations and fivienapt

7.4 The Detection System Revisited

In chapter 3 we briefly touched upon SPA’s detectgstem. Because of the way we
change our optimization task we can see whethaaage has occurred simply by
checking whether the best individual’s fitness (attyer individual would do too) has
changed. This lets us respond without delay wherewhange occurs. But the success
of this detection system is dependent on the wayakbk is changed. If we would change
the maximum allowed weight, like most other reskars have done (Goldberg & Smith,
1987, Simbes & Costa, 2003) the lowering of theghewould be detected without many
problems. This is because the total weight of tias will very likely be more than the
new allowed maximum, thus dropping the fithesssRaithe allowed weight on the
other hand won’t result in a different fithess hesmthe penalty function does not come
into play. It simply allows more room in the knaplsaneaning that a different, larger
combination of items can be put into the knapsack.

When this detection system is used on the MovirakP8enchmark it will detect a
change when the peak has relocated or changeeigisthBut when the old best peak
stays the same while another peak grows and bedbmésghest point in the fithess
landscape, this change will not be detected.

If the fitness function or environment is very ngithe detection system will no longer
function properly. This is because it needs anviddal to always have the same fithess
in the same environment. If this is not the caseyigh noisy environments, it will falsely
detect a change and have SPA evaluate its enfingaton.
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7.5 Expandable Core Value

The real core value of SPA is the serial use oftligpopulations. They serve as the
memory of the algorithm. By trying to use them éoxe optimum only we ensure good
memory and later exploitation. Another good thibguat using serial populations is that
it can easily be expanded with other methods.rteaused in combination with
diversity maintenance methods such as crowdinditmabss sharing or in combination
with a diploid encoding. Where you should be hesitsuusing it in combination with
diversity introducing methods, especially hyperrtiota The reason is that diversity
introducing methods disturb the memory functionhaf algorithm.

: = subFopl
: % subPop2
2600 ; subPopd
: + subPopd
: subPops
2400 ¢ — - optimum
2200 |
2000 F
1800 |
1600
. —— S O U OO UUUOE SUUUUE SUSRE USRS ]
1ij|:":I: . : : : : : : . :
-
- : -_— ; 5 : 5 : : 5
12]:":]-—-; ......... TR R ..L ......... ......... P e e ......... _
i

| | | | | | | | | |
a 100 200 300 400 500 BOO f00 500 500 1000

Figure 7.1close-up of SPA’s stabilization period.
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The figures 7.1 — 7.4 are best viewed in color
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8. Conclusions

8.1 Summary

For this thesis we set out to develop a new Gerdgjorithm which can handle dynamic
optimization problems, specifically problems thasnge in a recurrent, discontinuous
fashion. We tested our new algorithm, dubbed S@agiulation Algorithm (SPA), on a
dynamic knapsack problem with several differentisg$. The settings differed among
others in speed of change and size of the seaede sSBPA’s performance was compared
to two other genetic algorithms: a hypermutatiagoathm and a diploid algorithm which
used a triallelic dominance mapping. SPA showeg gend results on these tests and
outperformed the other two algorithms on nearlytagks. We will end this thesis with a
list of strengths and weaknesses of SPA, look atit®weaknesses can be overcome and
suggest some future work.

8.2 Strengths and Weaknesses of SPA

Strengths:

- The dedication of a single subpopulation to anmpin has very positive effects
on both the accuracy and the adaptability measBessause little information
gets lost, there is less adaptation needed asoividr algorithms, something that
rubs off on the accuracy of the algorithm.

- The way SPA uses multiple subpopulations is notdidito GA only, most other
classes of EAs can benefit from this system tomases of discontinuous, periodic
environments.

- The way SPA uses multiple subpopulations is explaledaith other evolutionary
methods like fithess sharing.

Weaknesses:

- Higher frequency of change causes an increaseiawrage number of
evaluations per generation.

- Larger numbers of subpopulations cause an inciaake average number of
evaluations per generation.

- Fitness landscapes which are very similar may nitakere difficult to link one
subpopulation to one optimum.

- The efficiency of SPA is dependent on whether tnalper of optima and
subpopulations match.

- The detection mechanism has limitations on two $ygfeenvironments it can
functionally be used on.
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8.3 Countermeasures to SPA’s Weaknesses

To reduce the number of evaluations after a chhagéeen detected you could sample
the subpopulations instead of evaluating them @gtiiThe probable effects are that there
is a higher chance you don't pick the best subpdjmri. But by sorting the

subpopulation at the end of each generation on fitreess you could take the top X %,
ensuring the previous best are selected. If yoe takir average you still may improve
the chances of picking the best subpopulation.

Fitness landscapes which are difficult to distisyucan cause the stabilization period to
last longer. A countermeasure may be to have tpalption spread out less over the
representations space. This could be done by alpwiultiple instances of individuals in
the population or by simply using smaller populasioThis will make it less likely that
the subpopulations contain individuals that aredgemlutions for other optima but at the
cost of making it harder to find a good solutiormtdue to the lack of diversity.

The biggest problem SPA faces is the fact you ne&dow in advance the number of
optima you will encounter during the evolutionamnr This is in many cases not
possible. To counter this we propose an expandi&Pa in the future work section.

8.4 Future Work

If one doesn’t know the number of optima in advase®ne can match the number of
subpopulations, SPA will become less effectivefutare work we will give a
description for an expansion of SPA with an explemory function.

At the beginning we create only one (sub) poputatind a memory vector.

At the start of each generation, except for th& fieneration, we test for changes in the
environment using our detection system.

If no change is detected we continue to use the sarpopulation, just as with SPA.

At the end of the generation we store the bestviddal and its fithess as a tuple in the
memory vectorreplacingthe former best individual of that subpopulation.

If a changas detected we evaluate all the individuals in thenmoe vector on the
changed environment. If none of the individualsesian the memory vector come close
to their old fitness value, say score less than 80%eir former fitness, a new
subpopulation is created together with an extraepathe memory vector. This new
subpopulation will be used until a change is detct

At the end of each generation the best individuadl its fithess are stored in the memory
vector.
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So to be clear: the memory vector stores the kst ibdividual of each subpopulation.
So if there are S subpopulations the memory vegilbcontain S tuples.

This algorithm is as yet untested but we can makeespredictions based on our
experiments with SPA. The serial uses of the pdjauia will very likely stay intact. So
those advantages will remain. But now, because afteh change we only evaluate the
memory vector instead of the entire population gneatly reduce the number of

-1 * . .
evaluations. Where SPA has on averége% more evaluations per generation than

the hypermutation GA, the memory enhanced SPA htys@ which is an

enormous reduction. This allows the memory enha®é®dl to handle many more
optima, much shorter stationary periods and lasgepopulation sizes.
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Appendix

Accuracy: Adaptability :
Table 2.Accuracy (%) on 5 sets of size 17 . .
Table 11 Adaptability (%) on 5 sets of size 17
P=10 P=25 P =50 P=10 P=25 P =50
Diploid 0.8515 0.5484 0.3646 Diploid 11.6612 5.8761 3.4162
HMGA 0.1087 0.0010 0.0000 HMGA 4.6372 1.8022 1.0003
SPA 0.0222 0.0011 0.0355 SPA 0.3821 0.2250 0.2233
Table 3.Accuracy (%) on 2 sets of size 17 Table 12 Adaptability (%) on 2 sets of size 17
P=10 P =25 P =50 P=10 P=25 P =50
Diploid 1.1878 0.3108 0.1261 Diploid 9.3527 5.2123 2.9160
HMGA 0.0128 0 0 HMGA 3.7169 1.5001 0.7430
SPA 0.0021 0 0.009 SPA 0.0586 0.0523 0.0785
Table 4.Accuracy (%) on 5 sets of size 50 Table 13 Adaptability (%) on 5 sets of size 50
P=10 P=25 P =50 P=10 P =25 P =50
HMGA 3.65 0.2609 0.0151 HMGA 13.56 6.73 3.45
SPA 0.305 0.045 0.0059 SPA 0.73 0.60 0.48
Basis GA 5.701 0.40087 0.0354 basis GA 15.26 5.29 5.28
Table 5.Accurac|); (E/")lgn 2 Se§ stge o0 5-gg Table 14 Adaptability (%) on 2 sets of size 50
Diploid 6 4_238 2 (;139 0 8_077 P10 P =25 P =59
'plol : : : Diploid | 19.33 16.91 10.96
HMGA 4.0406 0.2884 0.0151 HMGA 15.28 730 371
SPA 0.0565 | 0.0122| 0.0015 SPA 0.15 0.16 0.17
Table 6.Accuracy (%) on 5 sets of size 150 Table 15 Adaptability (%) on 5 sets of size 150
P=10 P=25 P =50 P=10 P=25 P =50
Diploid | 21.414 8.333 3.440 Diploid | 23.3179| 24.039| 21.8521
HMGA | 9.985 3.985 2.020 HMGA | 10.8078| 10.2988  7.290§
SPA 1.789 1.194 0.688 SPA 1.9312| 1.9982] 1.765%
Table 7.Accuracy (%) on 2 sets of size 150 Table 16 Adaptability (%) on 2 sets of size 150
2 optima P=10 P=25 P =50 P=10 P =25 P =50
Diploid | 151685 | 4.1251| 2.1364 Diploid | 15.7225| 15.7520  17.1179
HMGA | 96863 | 35759 18728 HMGA | 10.5597 | 9.7956| 6.9827
SPA 0.6822 0.4651 0.3254 SPA 0.7167 0.7323 0.6807
Table 17Adaptability (%) small changes on size 50
Table 8.Accuracy (%) forsmall changes on size 50
P=10 p =25 P=50 P=10 P=25 P =50
HMGA | 0.6907 | 0.0347 | 0.0048 HMGA | 13635 | 0.55201 0.3275
SPA 0.3108 0.0246 0.0021 SPA 0.7235 0.3234 0.1813
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Table 9 Accuracy (%) Size 50, 5 sets + small change

acc P=10] P=25 P=50
HMGA | 3.8704| 0.3219 0.0184
SPA 0.7365] 0.0908 0.0103
Table 10 Accuracy (%) size 50, using 15 sets
P=10| P=25| P=50
HMGA | 4.3123| 0.4179| 0.0751
SPA | 0.8921] 0.1790| 0.0420

Table 18 Adaptability (%) Size 50, 5 sets + small

changes
P=10 | P=25| P=50
HMGA 9.6976 4.7099 2.2612
SPA 1.5224 0.9935 0.963%
Table 19 Adaptability (%) size 50, using 15 sets
P=10 | P=25] P=50
HMGA | 10.9991| 5.5424| 2.9359
SPA 1.6580| 1.27171.1623
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