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1.  Introduction 
 
 
To some deeply religious people the theory of evolution is a great evil, to them evolution 
denounces the importance or even the existence of God and, with that, destroys all decent 
morals, imposes the rule of the strongest and turns people into fascists or communists. 
Other people feel the need to merge their traditional religious view of the creation of life 
with those from the scientific community. The most recent effort is Intelligent Design 
(ID), where the basic idea of evolution, that selection and variation can cause shifts in the 
characteristics of a population is accepted but still calls for an Intelligent Designer as a 
start of it all. The people supporting ID try to keep their theories scientific but by 
incorporating an un-falsifiable, supernatural designer they fail to do so, as a recent court 
ruling pointed out (Jones 2005). Other people, most notably Richard Dawkins, see a 
much more positive influence on society from knowledge of the theory of evolution as it 
takes people away from unfounded superstition toward a more scientific and falsifiable 
worldview.  
 
This thesis will not go into this snake pit of religion versus science, although the author’s 
position on these viewpoints may somewhat be guessed.  Instead it will focus on a useful, 
applicable form of evolution: Evolutionary Algorithms (EAs). EAs are computer 
programs which mimic the process of evolution. Over the years many different 
algorithms have been written. Particularly in the last twenty years, research in this field 
has boomed. In most cases these algorithms were intended to solve stationary problems 
or problems with multiple objectives. More recently, researchers have been applying EAs 
to problems that change over time. This is the focus of this thesis as well. We developed 
and tested a new algorithm and compared it to two other algorithms. We tested the 
algorithms on several dynamic, discontinuous optimization problems.  
 
 

1.1  Basic Elements of Evolution 
 
The developers of such Evolutionary Algorithms were inspired by natural evolution, by 
the adaptability of species to changes in the environment and the arms race between 
predators and their prey. One often cited example of this is the adaptation of the peppered 
moth during the onset of the industrial age in Victorian England. As the countryside of 
the industrializing areas grew darker caused by the increasing pollution, the coloration in 
the peppered moth population was darkening as well. At nighttime the moths are active 
and rest during the day. At that time they were preyed on by birds that use vision to 
locate their prey. Because the industrial pollution darkened their surroundings, the moths 
with darker wings became less conspicuous to predating birds than the lighter ones. This 
caused a shift in the gene frequency in the population towards darker wings. Similarly, as 
environmental policy came into effect making the air cleaner, the coloration in the 
peppered moth population became lighter again. This classic example nicely 
demonstrates the adaptive ability of the evolutionary process through natural selection; in 
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this case the selection is done by the predating birds. Nevertheless it can not be seen as 
proof that evolution can actually create new species. Something the more intellectual 
critiques on the theory of evolution will gladly point out. Proponents will most likely 
reply to this by saying that this form of adaptation, combined with geographical 
separation over a long period of time can create different species. But enough about this 
discussion and let us focus more on what this thesis is really about: evolutionary 
algorithms, particularly evolutionary algorithms for dynamic optimization tasks. To 
understand where the research field of EAs comes from we will first look at what 
evolution is, how does this adaptability come about and what is needed to make it 
function? These are important questions that need to be answered if we want to 
implement them into an algorithm.  Here we distill three basic elements for evolution to 
function: 
 

1. A population of structures that can carry information and that can be copied. 
(reproduction) 

2. Methods for exchanging information and inducing new variations within the 
population. (variation) 

3. A form of selecting individuals for reproduction. (selection) 
 
So, for evolution to function, be it in the natural world or as a computer program, these 
basic elements need to be present. In this chapter we will consider how nature has 
resolved these issues.  
 
1. Reproduction 
If you don’t reproduce, you won’t have children who will have children. Since no 
organism lives forever it means that all currently living organisms stem from reproducing 
ancestors. But for the reproduction to be of any real value to the evolutionary process the 
offspring must resemble their parents. For this heredity we need some form of replicable, 
information carrying structure. DNA is obviously the information carrying structure we 
find in nature. All living and reproducing things, from viruses to vertebrate animals are 
built up from the information carried in their DNA and it is the DNA that is handed down 
through the generations. Each individual has its own unique genetic sequence1 which 
defines in a very large part how we are built, what we can learn and even how we behave. 
Of course this end result, or phenotype to put it in biological terms, is influenced by many 
environmental factors as well but no matter how hard you try, you can never become a 
bird, grow a third eye or get an IQ of 500. The importance of reproduction for the 
evolutionary process has left its prints on the organisms that have evolved. Much of the 
behaviors of organisms is not merely aimed at survival but also aimed to fertilize or be 
fertilized. 
 
2. Variation 
For evolution to function it is vital for several reasons that the genetic code doesn’t stay 
the same. Firstly, the diversity is essential so not all individuals in a population are 
susceptible to, for instance, one single virus. Secondly, changing the genetic code allows 
for adaptation on the long run. This allows plants and animals to spread to different 
                                                 

1 With the exception of clones, twins, triplets etc. stemming from a single cell.  
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environments or adapt to climatic or environmental changes. There are several ways 
variation is preserved in nature. 
 

- mutation 

- exchanging genes 

 
Mutation induces new variation within the genetic code. A mutation results from errors 
when genes are copied. Most mutations have a negative effect on the organism as it 
distorts the way it is built or functions. A high copying fidelity therefore is essential for 
offspring to survive but on some rare occasions the error may turn out to be either neutral 
or even positive. 
 
Exchanging genes can be done in very different ways, mostly depending on the way 
organisms reproduce. Sexual reproducing organisms combine their genes when they 
create new offspring. Mammalian parents copy roughly fifty percent of their genes to 
each child thereby creating new phenotypes through new combinations. More on this in 
chapter three where we discuss a diploid genetic algorithm. 
 
Asexual reproducing organisms such as some bacteria have the ability to exchange snips 
of genes during their lifetime through a process called ‘lateral gene transfer’. The 
frequency and the extent of the use of lateral gene transfer is not yet clear. 
 
By recombining genes organisms have the ability to quickly spread the rare positive 
mutations through their population. Also, combining good genes from one parent with 
those from another may result in an even better individual. 
 
3. Selection 
 
Selection is what comes closest to what most people know about evolution, neatly 
captured is the sound bite “survival of the fittest”. This phrase was coined several years 
before the publication of Darwin’s ‘The Origin of Species’ by a philosopher named 
Herbert Spencer but became almost synonymous with evolution. Often this phrase is 
misinterpreted as survival of the strongest but instead should be read as survival of the 
best adapted.  
 
All breeders understand the powerful combination of hereditary trades and selection. By 
picking the plants or animals that show the basic trades he/she likes the breeder can 
create a new organism that shows those features even stronger. Charles Darwin, a 
hobbyist pigeon breeder and naturalist, combined his breeder’s knowledge with things he 
noticed during his voyage on The Beagle. Most notably are his observations of the beaks 
of the finches on the different Galapagos Islands. The beaks had adapted to the differing 
food sources on the different islands. He saw that nature had been doing the breeder’s 
work by selecting the finches with the right type of beak-features and so adapting the 
populations on each of the islands to their surroundings. This ‘Natural Selection’ (as 
opposed to the breeder’s selection) caused the birds to adapt, to fit to their separate 
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environments. Natural selection is somewhat difficult to put into exact terms. There are 
so many different factors that play a role. Basically an organism has to survive to a 
reproductive age and produce fertile offspring who, just like their parents, survive to a 
reproductive age and produce fertile offspring. Any obstacle that has to be overcome for 
this cycle to continue can be seen as a part of the natural selection for that organism.  
 
So, because all living organisms that exist today stem from creatures that had to survive, 
reproduce and adapt, it should be little surprising that they evolved behaviors that 
promote these very aspects of evolution. In general the skills an animal is forced to have 
can be summarized by the four F’s: Feeding, fleeing, fighting and reproducing.     
 
 
 

1.2  Relevance to Cognitive Artificial Intelligence 
 
Now that we have gotten a bit of understanding of what natural evolution is, we will 
move on to the artificial version. This is something which is very much part of the 
research in the field of Artificial Intelligence. Part of the aim of Cognitive Artificial 
Intelligence is to understand what knowledge is, how it is represented and functions 
within natural organisms and, similarly, how we can represent and make it function in 
(computer) models. Evolutionary Algorithms are one way of representing and developing 
knowledge in such computer models. Also, Machine learning plays a major role within 
the computer science tract of AI. Therefore, EAs being part of Machine Learning is part 
of AI as well.  
 
This thesis focuses on EAs as an engineering tool specifically for dynamic optimization. 
We have developed our own algorithm which we tested on tasks with several different 
settings. These results we compared with two other popular algorithms which were tested 
on the same tasks.  
 
In this chapter we tried to give the reader a bit of an understanding of natural evolution 
since it is the source of inspiration for most of the work discussed in this thesis. In 
chapter two and three we discuss how EAs function, we look at some of its history and 
we look at how researchers have adapted them to work on dynamic optimization 
problems. We end chapter three by putting forward our own genetic algorithm designed 
to handle dynamic optimization problems. This algorithm, with the acronym SPA which 
stands for Serial Population Algorithm, was tested on several dynamic versions of the 0/1 
knapsack problem together with two other GAs; Cobb’s successful hypermutation 
algorithm and a version of a diploid genetic algorithm. Chapter four describes several 
characteristics of dynamic environments on which EAs have been used. The experimental 
setup is given in chapter five. In chapter six we discuss the results from the experiments 
followed by chapter seven where we look at what the results tells us about how SPA 
functions. We round it all up in chapter eight where we draw our conclusions on the 
strengths and weaknesses of SPA and propose some future work. 
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2.  Evolutionary Algorithms 
 
 
In the first chapter we stated the basic elements needed for evolution to function, 
furthermore we looked at the forms in which these elements can be found in nature. In 
this chapter we will discuss artificial evolution otherwise known as Evolutionary 
Algorithms (EAs). We will describe how EAs function and how the basic elements of 
evolution relate to the elements of EAs. Furthermore, we will look at some of the history 
of EAs and at some of the different classes that exist in the field of EAs.   
 

2.1  General functioning of an Evolutionary Algorithm 
 
An Evolutionary Algorithm consists of the following parts: 
 

- a population of individuals or ‘possible solutions’ 

- a method of evaluating these possible solutions 

- a selection method 

- operators to alter the possible solutions 

 
Because we are trying to solve a problem, in this case an optimization problem, we refer 
to the individuals as possible solutions. Each individual in the population is represented 
by a genetic code which is translated to the problem by a mapping from the genotype to 
the solution space2. The aim of an EA is to improve the quality of the solutions over 
several timesteps called generations. A rough pseudo code for a general EA is given in 
figure 2.1. During each generation the EA starts out with a population of possible 
solutions or also referred to as individuals. Often the individuals in the first generation 
are generated at random but this is not always necessarily the case. Once the algorithm is 
running, the individuals in the next generation will be based on individuals from the 
current generation’s population.  
 
The individuals in the population are evaluated on the problem at hand, assigning a value 
to each individual depending on how well they perform during the evaluation. This value 
is commonly referred to as a fitness value. The evaluation process can be very simple and 
fast, as we will see when we discuss the Knapsack Problem in section 5.2 which we use 
in our experiments. Other tasks may take much longer to evaluate. One may have to wait 
on complex simulations to finish which may last for minutes or even days. In such cases 
you may want to avoid many evaluations and for that reason maintain small populations 
or use heuristics for initializing the first population. 
 

                                                 
2 The solution space is the set of all possible solutions, both good and bad. 



 10 

Once the individuals have been evaluated the algorithm starts selecting individuals whose 
descendants will form the next generation. Because usually there exists a genetic 
difference between the individuals in a population, individuals will show a difference in 
the values associated to them. Based on this difference some individuals will have a 
higher chance of being selected than others. When we have selected some good 
individuals we can start transforming them through recombination and mutation. Two 
individuals can be recombined to form one or more offspring. These offspring can then 
be mutated slightly. One may even find it desirable to use only recombination or only 
mutation but this is a designer’s choice. When you have created sufficient offspring you 
can go to the next generation and run through the steps we’ve just discussed. Many of the 
decisions on the exact nature of these steps, such as the size of the population, the 
mutationrate, the kind of selection used etc. are all for the designer to be made.  
 
It is important to notice that each EA is an artifact of the designer who by no means is 
bounded to any natural realistic form of how his EA functions. For instance he may even 
go as far as to incorporate Lamarckian evolution into his algorithm, something that is 
believed not to be possible in nature. 
 

Generate initial population tP  

evaluate tP  

while(stopping_criteria)  
 tP'   = recombine( tP ) 

 tP '' = mutate( tP' ) 

tF = evaluate( tP '' ) 

 1+tP = select( tP '' , tF ) 

 t=t+1 
end 
Figure 2.1 pseudo code for a general EA 
 
We now will take a closer look at the workings of the various parts of an EA. 
 

2.2  Representation  
 
As stated above, by far most Evolutionary Algorithms consist of a population of 
individuals. These individuals are part of the representation space which itself is the set 
of all possible and legal genotypes. The way these individuals represent their solutions is 
dependent on several aspects: 

 
- genetic representation 

- the definition of the search problem  

- the fitness function 
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2.2.1   GENETIC REPRESENTATION 
 
The genetic representation can have several forms. Here we will mention the most 
common: 
 

- Binary  

- Example: genotype: [0,0,1,0,1,0,1,1,0] 

- Real values (Ñ) 

- Example: genotype: [10, 1.5, -2, 4.1, 531] 

 
Many researchers in EA have used the binary coding for their representation (Calabretta, 
R., Galbiati, R., Nolfi, S. & Parisi, 1996, Golberg & Smith, 1987). Some even go as far as 
to transform real valued numbers into binary strings. This transformation is not 
necessarily needed and some researchers even believe it is better to use real valued 
representations when your problem has real values (Giraldez, Aguilar-Ruiz & Riquelme, 
2003).  
 
2.2.2  THE DEFINITION OF THE SEARCH PROBLEM 
 
The definition of the search problem relates your genetic code to the search space. For 
instance, with the 0/1 dynamic knapsack problem you tell which gene belongs to which 
item and what the weight and value of that item is. The story that goes with this problem 
is the following: You have several objects, for instance gold nuggets, each of which has 
its own weight and value. You want to take along as much value as you possibly can, but 
because the total weight of the objects is more than your knapsack can handle, you cannot 
take them all. So now you have to make a choice: which items to take along and which 
item to leave behind. The definition of the search problem in this case tells you:   
 

- which item is linked to which location on the binary genotype 
- the weight and value of each item 
- ‘1’in the genotype means put in knapsack and ‘0’ means leave out 
- The goal of the problem: find a set of items that maximize the total 

value, limited by a maximal weight.  
 
2.2.3  THE FITNESS FUNCTION 
 
The fitness function, or objective function as it is also known, rates the individuals on 
their specific property or properties. In a sense it tells you how ‘good’ an individual is. In 
simple theoretical problems the fitness function can be very simple and straightforward. 
In the max-one problem for instance, where the genetic representation is a binary string 
and the fitness function is simply the summing of the number of ‘ones’ in the genotype. 
The problem definition is almost identical to the actual fitness function. For the 0/1 
Knapsack Problem it is slightly more complex. Here the fitness function is a combination 
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of a penalty function combined with parts of the problem definition, namely the objective 
to find a set of items that maximize the total value, limited by a maximal weight. 
 
In some cases, particularly the simplest theoretical problems it can be difficult to clearly 
distinguish the definition of the search problem from the fitness function. Take for 
instance the simple max-one problem. The genetic representation is binary and the 
objective is to get a binary string with as many ‘ones’ as possible. Here both the 
definition and the fitness function are simply counting the number of occurrences of 
‘one’ in a string.  
 
Because the selection process uses the outcome of the fitness function to decide which 
individuals to use to create the next generation, it is an essential part in guiding the path 
of evolution. If you reward the wrong characteristics of an individual, your EA will never 
end up with the solution you initially intended it to find. In the case of multi-objective 
optimization, where two or more, often opposing, goals are to be met, this can be 
especially difficult. Changing the balance of how important each goal is may give very 
different results.  
 
2.2.4  STRUCTURE OF THE SEARCH SPACE 
 
In most cases an Evolutionary Algorithm is supposed to find the global optimum in the 
search space without getting stuck on local, less good optima. To get a better 
understanding of what we mean when we talk about local and global optima it is useful to 
look at the structure of the search space, or fitness landscape. For this we will use some 
very low dimensional search spaces. If we have a two dimensional search space the 
fitness landscape could look like figure 2.2 
 

 
Figure 2.2 a two dimensional search space, with only one gene ‘x’   

The genotype in this case has only one gene which can have a value ranging from ‘1’ to 
‘100’. Let’s say we want to find the highest point in the landscape. There are several 
peaks to choose from but only one is the highest. All other peaks are optimal only for 
their local area; globally they are dominated by the global optimum.  
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Figure 2.3 a three dimensional fitness landscape (image taken from  

http://nc25.troja.mff.cuni.cz/~soustruznik/GA.html ) 

 
In figure 2.3 we see an example of a landscape based on two genes. The values of these 
genes are set out against the x and z axis whereas the fitness is set out on the y axis. Here 
it is much clearer why it is called a fitness landscape. Again there is one peak that 
globally dominates all others.  
 
The representation space does not necessarily have a one on one match with the solutions 
space. For instance, through using complex genotypes or complex expressions of the 
genotypes, we first create a phenotype from the genotype before relating it to a solution 
space. This may cause different genotypes to have the same location on the fitness 
landscape. An example of this is shown in figure 6.1 where a population of diploid 
individuals often converges to the same phenotype resulting in having the same fitness 
values.  
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2.3  Fitness-based Selection 
Fitness-based selection is the driving mechanism that steers the population to a higher 
average fitness. Individuals are selected from the population to produce offspring. 
Because the selection is based on the genotype’s fitness value, the higher a genotype’s 
fitness is relative to the populations’ average fitness, the more like it is for that genotype 
to have offspring in the next generation.  
 
Here we will mention some of the most common forms of selection systems found in the 
field of EAs followed by a short explanation: 
 

- Fitness proportionate selection 

- Ranking selection 

- Tournament selection 

 
2.3.1  FITNESS PROPORTIONATE SELECTION 
 
Fitness proportionate selection is a rather literal implementation of the selection principle 
described above. The chance that an individual is selected is equal to the individual’s 
fitness relative to the population’s average.  A common example of this form of selection 
is roulette wheel selection where each individual in the population occupies an area of the 
roulette wheel proportionate to its fitness. So whenever an individual has to be selected 
you spin the wheel and pick the individual where the ball lands. A well known problem 
with this form of selection is the loss of diversity in the population. If one individual is 
many times better than all others in the population it will occupy most of the roulette 
wheel, causing it to be selected almost every time. Such individuals are referred to as a 
‘supersolution’ and are generally seen a problem for EAs because after a few generations 
they take over the population resulting in a loss in variation.  
 
Maintaining diversity in a population is vital to an EA for two reasons:  
 

- Parallel search 

- Selection pressure 

 
Identical individuals occupy the same point in the search space and therefore do not 
search the space in parallel, loosing some of the power of an EA.  
 
When individuals have similar fitness values there is less selection pressure causing the 
algorithm to drift randomly through the search space. This slows down the speed with 
which the algorithm will find the solution. 
 
 



 15 

2.3.2  RANKING SELECTION 
 
With ranking selection the occurrences of supersolutions are eliminated. Here we no 
longer select based upon their relative fitness but proportionate to their rank in the 
population. So the individual with the highest fitness gets the highest rank and 
accordingly the highest chance of being selected. The second best gets a slightly less high 
chance of selection and so on.  
 
2.3.3  TOURNAMENT SELECTION 
 
With tournament selection, every time you want to select one or two individuals, you 
hold a small tournament. The size of the tournament may vary depending on the amount 
of selection pressure the designer wants. With a tournament size of for instance four, you 
randomly select four individuals from the population. This random selection does not 
look at the fitness of an individual so each has an equal chance of being selected. Once 
we have the four individuals we order them according to fitness and we keep the best. A 
smaller tournament size, which has low selection pressure, means that low fit individuals 
have a better chance of surviving. Although this comes at the cost of slower finding the 
optimum it does maintain a higher diversity and so increases the odds of finding the 
actual optimum. The nice thing about tournament selection is, is that with only one 
parameter, namely the tournament size, one can easily control the selection pressure and 
thereby the amount of variation in the population. 
 

2.4  Recombination 
 
The learning ability of an EA is based for a large part on the fact that it uses a population 
of individuals to search the solution space in parallel and by selecting from the population 
better solutions to be combined to find possible better solutions. One example of 
recombination in EAs is one-point crossover.  Say, you have two good individuals IA and 
IB. When the genes that score well for IA are in the first portion of the genotype and for IB 
in the second part cutting the two genes in half and mending the beginning of IA with the 
end of IB together could potentially result in a child IC that has an even higher fitness. 
 

Solve Max-One problem 
IA:  [1,1,1,0,0,0] fitness = 3 

  IB: [0,1,0,0,1,1] fitness = 3 
 
Cut after third number and mend the pieces 
 IC 1: [1,1,1,0,1,1] fitness = 5 
 IC 2: [0,1,0,0,0,0] fitness = 1 
Figure 2.2 Example of one-point crossover.  

 
It is not necessary that the genes are cut exactly in half, as we did in the example. The 
important thing is that the two genes are cut at the same position. This position can be 
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anywhere on the chromosome and is chosen at random. One-point crossover is not the 
only form of recombination in EAs, the designer may want to select more than one place 
to cut the genes (n-point crossover) or swap some elements between the genes (uniform 
crossover). 
As you can tell from this example recombining the two parents does not necessarily result 
in a child with a higher fitness. The same goes for mutating an individual. In fact: most 
changes tend to result in worse individuals. It is for this reason that many algorithms 
incorporate a child population size that is much larger than the original parent population 
size. From this larger child population the best individuals will be selected to go to the 
next generation. 
 
So if:  
Parent population size = N  
Child population size = 3N  
N children will be selected to form the new parent population.  
 
 

2.5  Mutation 
 
Mutation is used in all EAs. Some EAs only use it as a background operator for 
introducing new genetic material, relying mostly on crossover and a large population to 
find solutions (Goldberg, 1987, Holland, 1975). Others rely solely on mutation (Cobb, 
1990). In most cases the rate of mutation is held at a constant mutation rate. This 
mutation rate determines for each gene on the chromosome the chance for it being 
mutated. By putting the mutation rate at 1/L where L is the length of the chromosome 
you have a very good chance that there is on average one mutation on each chromosome. 
The mutation rate is often referred to as being a local search operator as opposed to 
crossover being a global search operator. A mutation changes the individual only very 
slightly. After the mutation the new individual will usually remain in the vicinity of the 
old individual. Crossover on the other hand is more likely to result in bigger changes, 
moving the individuals around over larger areas of the representation space.  
 

2.6  Historical Background of EAs 
 
Now that we have seen some of the basic principles and operators of EAs we will take a 
look at its history and see what the archetypical features of the different classes are. Over 
the years many different forms of EAs have been developed. Usually a distinction is 
made based on the representation used and on their reliance on mutation and crossover. 
Some EAs have very distinct representations, such as Finite State Machines 
(Evolutionary Programming by Fogel 1964) or executable programs (Genetic 
Programming by Koza 1989). Such algorithms are usually seen as independent classes 
within EAs. Others are obvious derivatives from the more standard versions, like for 
instance the hypermutation genetic algorithm which is a GA adapted for dynamically 
changing optimization problems. Along the way the lines between the different classes 
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have blurred, where originally GAs only used binary string representation nowadays it is 
not uncommon to use real values.  
 
 
2.6.1  EVOLUTION STRATEGIES  
 
Already in the 1950’s several researchers with an interest in evolution made (computer-) 
models where they tested out some of the basic principles (Fraser, 1957; Friedman, 
1956). The earliest research that ended up as a part of the EA family is the Evolution 
Strategy (ES), a name taken from the German ‘Evolutionsstrategie’. In 1964 Rechenberg 
and Schwefel of the Technischen Universität Berlin, both with a background in 
aerodynamics, developed ES while searching for the optimal shapes of bodies in a flow. 
Over the years they extended their algorithm to solve optimization problems on 
computers and strengthened its theoretical basis (Rechenberg 1973; Schwefel 1977). 
 
Let’s look at the archetypical features of ES.  ES rely heavily on mutation. From this the 
most noticeable feature is the fact that the size of the mutation itself is subjected to 
evolutionary change. The genetic representation consists of real valued numbers, so 
individual v

r
 is a vector of elementsix ∈Ñ. Every element v

r
( ix ) has a normal 

distribution associated to it that controls how big the mutation of that element will be. By 
controlling the size of the normal distributions you can control the speed with which each 
element evolves. Elements that perform well need only a small normal distribution 
whereas elements that perform not so well can make bigger changes. The size of the 
normal distributions is not controlled by the designer but it too is changed by random 
mutations, albeit using some heuristics for deciding when to change the size. Schwefel 
(1995) gave some implementations of this.  
 
 
2.6.2  GENETIC ALGORITHMS 
 
At the University of Michigan John Holland worked on what we now know as Genetic 
Algorithms (GAs). In 1975 he published a book on adaptation in natural and artificial 
systems. Leaning heavily on a biological basis he described an algorithm with genetic 
operators as selection, crossover, mutation and inversion. Though the last one, inversion, 
is rarely used as it is unclear what its benefits are (Hill, Newell, O’Riordan 2004). The 
standard version of a GA has three archetypical features: 
 

- Binary representation 

- Proportional selection 

- Crossover emphasized for inducing variation 

 
Over the years many researchers altered some of the features of the algorithm, 
particularly the selection method. As we have seen above this form of selection has its 
shortcomings and nowadays ranking and tournament selection seem more popular to use. 
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Holland showed the potential of Genetic Algorithms through examples in game theory, 
control and optimization, economics and artificial intelligence; areas where GAs are still 
used today. Interestingly enough most of these research areas have problems that are 
more of a dynamic nature than static. Furthermore he proposed the schemata theorem; a 
system with which you can observe the dynamics within a population over several 
generations. 
 
A decade past and still little research was being done on EAs. It was not until the late 
eighties when the number of EA researchers rapidly increased. This was also the time the 
first real textbook on GAs appeared, written by David E. Goldberg. Building upon the 
schemata theorem Goldberg developed the Building Block theorem. This theorem gave a 
more mathematical insight into the processes of GAs and thus opened up a road to more 
theoretical research. The general idea is that in the beginning of a search some 
individuals have a combination of genes that have a high fitness. By recombining 
individuals you can bring building blocks together, creating building blocks with even 
higher fitness. The building blocks can be analyzed using the schemata theory and some 
functions Goldberg proposed which consider aspects of the schemata such as length and 
fitness. 
 

2.7  Basic Elements of Evolution in EAs 
 
As one can tell from earlier sections, the basic elements of evolution which we discussed 
in the first chapter are in many cases explicitly defined or otherwise quite obvious. Let’s 
look at the three elements one by one. 
 
1. Reproduction 
The replicable, information carrying structure in EAs are usually strings of numbers. 
Some of these strings are copied to form the next generation. 
2. Variation 
Variation is valued very highly within the field of EAs. Much of the research has focused 
on finding ways to avoid the population to converge to a single solution prematurely. A 
low amount of variation in a population causes the algorithm to learn slower or prevents 
it from finding the best solution.  
3. Selection 
As seen above, selection is an explicit operation in EAs. Several different kinds of 
selection have been developed mainly with the aim of supplying strong selection pressure 
while maintaining sufficient variation.  
 

2.8  To use EAs or not to use EAs, that’s the question. 
 
So far we have seen how EAs function, but this does not tell us what they can be used 
for. EAs can be used for a very wide range of problems. In fact, as long as you can 
formulate the problem mathematically and there are parameters to be tuned, EAs can be 
applied. But as so many things in the world, EAs have their advantages and 
disadvantages. For instance; when the problem is mathematically simple, such as a linear 
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or a convex problem, a classical optimization technique like Dynamic Programming will 
generally outperform most EAs. But when the task is more difficult, such as 
discontinuous or non-differentiable problems or tasks which have multiple criteria to be 
optimized, EAs are much better at finding solutions within reasonable time. 
 
Another interesting aspect of EAs is that no knowledge of the problem is incorporated 
into the algorithm. This means that no full knowledge of the underlying mechanisms of 
the problem is needed to solve the problem. For example when Rechenberg and Schwefel 
were trying to find a shape that would minimize the total drag of three-dimensional 
bodies in a turbulent flow, they used a physical model to evaluate the solutions they 
created using their ES. They ended up with a shape very different from their expectations 
and for which, at the time, no theory existed to explain it. Similar unexpected results have 
been shown by Adrian Thompson (Thompson, 1997) who used a GA to design circuits 
on a FPGA3. Here, some parts of the FPGA were not connected to the functioning circuit 
yet they still influenced the output of the circuit probably through electromagnetic 
coupling.  
 

                                                 
3 FPGA stands for Field Programmable Gate Array. These are chips with an easily modifiable circuitry. 
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3.  GAs for Dynamic Optimization 
 
From here on we will consider only the class of Genetic Algorithms and leave all other 
classes be. We will take a look at how GAs have been adapted to function for dynamic 
optimization and look at some specific algorithms. At the end of this chapter we will 
introduce our own Algorithm: the Serial Population Algorithm or SPA for short. 
 
Dynamic problems change over time as opposed to static problems which stay the same. 
Normally, Genetic Algorithms are designed to find the optimal solution for a static 
problem. The fact that static problems do not change over time makes them very GA-
friendly. Genetic Algorithms need some time to find the optimal solution and many tend 
to loose a lot of diversity in the population along the way. If the problem changes, the 
loss of diversity can cause the algorithm to never be able to find the new optimal 
solution. So, in order to apply Genetic Algorithms to dynamic environments we need to 
make some adjustments to the standard Genetic Algorithms. One can adopt several kinds 
of strategies, each having its own advantages and disadvantages. Jürgen Branke (2003) 
gave a nice overview which we will repeat in short here accompanied by a more in-depth 
look into two algorithms; diploid GA and triggered hypermutation GA. 
 
 

3.1  Strategies for Dynamic Environments 
 
In the literature four broad strategies can be distilled: 
 

- Increase diversity after change 

- Maintaining diversity throughout the run 

- Memory 

- Multiple subpopulations 

 
3.1.1  INCREASE DIVERSITY AFTER CHANGE 
 
Triggered Hypermutation (Cobb, 1990) and Variable Local Search (VLS) (Vavak, Jukes 
& Fogarty, 1998) are two well-known examples of this strategy. Once a change in 
environment has been detected the mutation-rate will be increased. This can happen 
either in one dramatic burst followed by a period of decay as with Hypermutation or by 
gradually increasing the rate as with VLS.  
 
The (Triggered) Hypermutation GA (HMGA) is an elegantly simple algorithm that works 
well on dynamic environments. For most of the time the algorithm works like a regular 
GA using mainly crossover and selection to search for a good solution. When a change in 
the environment is detected the algorithm increases the amount of variation in the 
population by raising the mutation rate to a very high level. Cobb changed the rate from 
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0.001, which is very low, up to rates of 0.5. The increase in mutation rate is followed by a 
period of decay where the rate decreases back to its base rate. Very high mutation bursts 
like 0.5 are similar to reinitializing the population. Lower levels of mutation bursts retain 
some parts of the old solution and so are better capable of adapting to smaller changes.  
Furthermore Morrison and K. de Jong (2000) showed that larger hypermutation bursts 
track the optimum better when the environmental changes are frequent while lower 
hypermutation levels perform better when the changes are less frequent. 
 
Cobb tried detecting the change by monitoring the fitness of the best performer in the 
population. When this value declines over several generations, a burst of hypermutation 
is triggered. Not all changes are detectable this way. Adding peaks in the multiple peaks 
problem or raising the maximum allowed weight in a knapsack problem may go 
undetected leaving the algorithm stuck on a suboptimal solution. 
 
Over the years this algorithm has shown itself not only to work well on continuously 
changing environments but also on discontinuous environments which show large 
changes to the optima (Lewis, et al., 1998; Morrison & K. de Jong, 2000; Simões & 
Costa, 2003b).  Problems may occur when the algorithm fails to detect the change in the 
environment or when the change is too large (Grefenstette, 1992).  
 
3.1.2  MAINTAINING DIVERSITY THROUGHOUT THE RUN 
 
Diversity was already important in GAs used for static environments in order to avoid 
getting stuck in suboptimal solutions. In dynamic environments this importance is 
amplified. If a change occurs, your once optimal solution is destined to become 
suboptimal at best. Diversity maintenance mechanisms such as Fitness Sharing, Random 
Immigrants (Grefenstette, 1992) and Crowding are common examples of this strategy. 
Ensuring the population holds no multiple instances of the same solution is another 
example. 
 
Crowding and fitness sharing are both niching methods. Crowding is a selection 
mechanism which selects individuals for reproduction partly on their similarities. Fitness 
sharing adjusts an individual’s fitness to the number of similar individuals. The more 
individuals are similar the lower their fitness will be. In both cases the effects are such 
that they cause the population to spread out more thus increasing the population’s 
diversity. Without specifying explicit subpopulations the individuals tend to specialize, 
form a niche in certain parts of the fitness space.    
 
The Random Immigrants algorithm by Grefenstette was oddly enough inspired on Cobb’s 
triggered hypermutation algorithm, which uses the diversity introducing strategy. In this 
case the diversity is introduced not after a change but with every generation, making it a 
diversity maintaining algorithm. Another difference with the hypermutation algorithm is 
the way the diversity is maintained. Instead of using high levels of mutation, Random 
Immigrants replaces some of the worst individuals with new randomly generated 
individuals.  
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3.1.3  MEMORY 
 
Applying memory serves two functions: First; it provides diversity by retaining former 
good solutions which otherwise would have been lost in the selection process and 
reintroducing (parts of) these solutions on a later occasion. Second; reintroducing former 
solutions in repetitive environments can enable the algorithm to quickly retrieve the 
previously encountered optimum. 
 
Two types of memory can be distinguished: 
 

- Explicit memory 

- Implicit memory 

GAs incorporating explicit memory usually have strategies for storing solutions and 
reintroducing them on later occasions during the run (Louis & Xu, 1996; Ramsey & 
Grefenstette, 1993; Bendsten & Krink, 2002; Eggermont & Lenaerts, 2002). GAs 
incorporating implicit memory usually incorporate some form of redundancy in their 
genetic representation. The most common example is using a diploid genetic structure. 
(Branke, 2001; Calabretta, Calbiati, Nolfi & Parisi, 1996; Lewis et al., 1998; Ng & 
Wong, 1995)  
 
The Random Immigrants algorithm can be seen as a steppingstone toward many of the 
explicit memory algorithms. Instead of introducing random individuals to the population 
previously fit individuals, which are stored, are reintroduced. In the case of Eggermont’s 
and Lenaerts’ Case Based Memory GA (2002) such individuals are introduced when a 
change is detected. The memory population does not necessarily have to consist of 
individuals from previous generations. Bendsten and Krink (2002) for instance generated 
the memory population randomly at the start and update it during the evolutionary run.  
 
A diploid GA is different from a regular GA by the fact it has a set of two chromosomes 
instead of the common single haploid chromosome. The consequence of this is that two 
genes compete for the same phenotypic trait in the same individual. In order to solve this 
dilemma a dominance mapping is devised, labeling some genes as dominant and others as 
recessive. If a dominant gene is paired with a recessive gene, only the former is expressed 
in the phenotype leaving the recessive gene unexpressed. Dominant genes are thus able to 
protect less fit recessive genes from being discarded by selection. Formerly fit genes can 
piggyback ride the fitter dominant genes they are paired with, hopefully coming into 
expression again when the environment is more favorable. It is this mechanism that is 
thought to give the GA a form of implicit memory.  
 
Apart from this it is also possible for two dominant or two recessive genes to be paired. 
What happens in this case differs between the dominance mappings used by different 
researchers. Although over the years many researchers (Callabretta et al., 1996; Hollstein, 
1971; Ng & Wong, 1995;  Ryan, 1997) have devised their own dominance mappings 
there is one mapping that is commonly referred to; the triallelic dominance mapping.  



 23 

The triallelic dominance mapping was first developed by Hollstein (1971) for static 
environments and made popular by Goldberg and Smith (1987) who first used it for a 
dynamic environment. The genetic strings use a trinary [0,1,2] representation instead of 
the regular binary [0,1]. 
 

Table 1. A schematic view of the triallelic dominance mapping where the first row and column 
denote the genetic values. 

 0 1 2 

0 0 0 1 

1 0 1 1 

2 1 1 1 

  

The first row and column in table 1 show the genetic values (alleles) and the rest of the 
table shows the resulting phenotypic expression. In this mapping there is a clear bias for 
expressing 1’s. Alternative mappings (Ng & Wong, 1995, Ryan, 1997) have been 
proposed to eliminate this bias. Their representations have four alleles where the 
probabilities of generating 0’s and 1’s are equal. Lewis, Hart and Ritchie (1998) showed 
that a diploid structure alone is not enough for a diploid GA to adapt to changing 
environments. Frequently switching the values from dominant to recessive and vice versa 
was needed to give acceptable results.  
 
3.1.4  MULTIPLE SUBPOPULATIONS 
 
When using multiple populations, researchers usually use one population to track the best 
solution and the rest to track suboptimal peaks in the fitness landscape. One has to make 
sure that two subpopulations do not cover the same area but that each subpopulation 
tracks a different peak. Branke developed a strategy called exclusion to avoid this 
problem. The best individuals of each subpopulation are compared to each other spatially. 
If the distance between them is smaller than a predefined amount r the worst scoring 
population is marked for re-initialization (Branke, Klaussler, Schmidt & Schmeck, 2000; 
Ursem, 2000).  
 
More often than not you will find that algorithms incorporate combinations of these 
strategies, making clear-cut distinctions difficult. Saying that many forms of multiple 
subpopulations could be classified as a form of niching or diversity maintenance 
wouldn’t be all wrong.  
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3.2  Serial Population Algorithm 
 
Now that we have seen some of the strategies and algorithms used for dynamic 
optimization problems we will introduce our own algorithm: The Serial Population 
Algorithm or SPA. The strategy we use in SPA is a combination of multiple 
subpopulations and memory. In our case we do not use the subpopulations in parallel as 
with other researchers but we use them in series, thus creating a form of memory. In this 
section we describe how SPA functions and which mechanism we have used. In chapter 5 
we give some specific details on the parameters we’ve used and in chapter 6, where we 
show and discuss the results form the experiments, we will draw our conclusions on how 
well these choices worked out.  
 
The pseudo code of SPA is shown in figure 3.1. At the start of an evolutionary run a 
population is created and initialized randomly.  The population is divided into a 
predefined number of subpopulations. All subpopulations are evaluated and the best4 
subpopulation is selected. Until a change in environment is detected only this 
subpopulation will be used. When a change has been detected all subpopulations will be 
evaluated on the new environment and again the best subpopulation will be selected. It is 
through this serial use of the subpopulations that we hope to create a form of memory. 
This memory-function will perform optimally when the number of subpopulations is 
equal to the number of optima.  
 
For the detection of environmental changes we use a system similar to what Eggermont 
and Lenaerts (2002) used for their algorithm. We temporarily store the best individual 
and its fitness value at the end of each generation. We then evaluate this individual again 
at the beginning of the next generation. If its fitness value has changed we know a change 
in environment has occurred and in our case it triggers the algorithm to reevaluate all the 
subpopulations. We then select the population which contains the individual with the 
highest fitness. 
 
When SPA has decided on which subpopulation to use, a child population will be created. 
To generate the child population we repeatedly select two parents from the subpopulation 
through tournament selection. These parents are recombined using two point crossover 
with chance Pc followed by mutation. The resulting two children are placed in the child 
population.  
 
From the child population the next generation of this subpopulation is selected, once 
again using tournament selection. By using elitist selection on both the parent and child 
population we ensure both the best parent and the best child are added to the new 
subpopulation. This new subpopulation is not allowed to contain any double instances 
thus ensuring the needed diversity in the population.  
 
 

                                                 
4 The best subpopulation is either the subpopulation containing the individual with the highest fitness or the 

subpopulation with the highest average fitness. Either qualification seems to work fine. 
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until  maximum number of generations: 

if  change detected  
  evaluate total population; 

choose best subpopulation; 
 end 
 else continue with same subpopulation; 
 
 until  child population is full: 

select two parents with tournament selection; 
  perform: 

crossover with chance Pc;  
 mutation; 

  add kids to child population; 
end  
add the best parent and the best child to new subpopulation; 
until  new subpopulation is full: 
 select child with tournament selection; 
 add child to new subpopulation; 

remove any double instances;  
end    
replace the old subpopulation with the new; 

end  
Figure 3.1 Pseudo code for SPA 
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4.  Dynamic Environments 
 
 
Dynamic environments come in many different flavors that can have dramatic effects on 
the functionality of the algorithms used. Therefore it is important one first gets an idea of 
what the problem looks like and how it behaves before deciding on what algorithm and 
genetic operators to use. Here we will discuss two important distinctions and two further 
characteristics of dynamic environments followed by two examples of commonly used 
dynamic environments. 
 

4.1  Characteristics of Dynamic Environments 
 
We now give two distinctions by which you can characterize the dynamics and we will 
discuss their consequences for what type EA to use: 
 

Recurrent   vs. Non-recurrent 

Continuous   vs. Discontinuous 

 
Recurrent environments, like all dynamic environments, change their settings during the 
evolutionary run resulting in having different environments. What makes a recurrent 
environment different from a non-recurrent environment is that it has a limited number of 
such settings and these settings are revisited during the evolutionary run. This can happen 
either periodically/cyclic or a-periodically. If the environment changes periodically the 
states are visited in a specific, repeating order. If the environment changes a-periodically 
there is no specific order and any possible repetitions are accidental. In general you could 
say that a recurrent environment, be it periodic or a-periodic, is well suited for GAs that 
incorporate some form of memory.  
 
Non-recurrent environments have no states that are revisited or at most merely by 
accident. Here, applying memory will serve little more function than adding some 
diversity to the population. GAs that either maintain or introduce diversity seem to have 
better chances of succeeding. 
 
Continuous environments, in a strict sense, change every timestep by a small margin. 
They require only small genetic changes to be made to the previous found optimum in 
order to find the next. Such environments are state dependent functions where the next 
state is dependent on the previous state. Maintaining diversity throughout the run seems 
to be a good strategy to handle this problem. If the environment is both continuous and 
recurrent the amount of related yet distinct states may be too large for a memory system 
to be a feasible option (Cobb, 1990). 
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Discontinuous environments switch from one state to the next in relatively large steps. 
This may cause problems for some diversity maintenance GAs and diversity introducing 
GAs when the adjustments are too big (Grefenstette, 1992). Combined with a recurrent 
environment the amount of states to be found is likely to be small thus a paradise for 
memory incorporating GAs including SPA. 
 
Additional to these two distinctions there are two more characteristics to consider: 
 

- Frequency of changes  

- Detectable changes 

 
The more frequent the optimum changes the more difficult it will be for the EA to track 
the optimum. All EAs need several generations to find the optimum. If your goal is not to 
find the optimum but merely track a good solution EAs are still an option. A diploid GA 
(Goldberg 1989) for instance, performs better on an environment that switches between 
two optima every other generation than a standard GA. Although the optima will not be 
found it will give a smaller average error. 
 
Some algorithms need to detect a change in environment to function. It may be the signal 
to increase the diversity as with the triggered hypermutation or search for a better 
subpopulation as with SPA. 
 
Detecting a change is not always as straightforward as it may seem. Commonly, 
monitoring a possible change in fitness value is used to detect the change but this does 
not necessarily always work. If, for instance, you compare the fitness value of an 
individual over two generations you will detect a change if the maximum allowed weight 
for a knapsack problem is reduced. But, on the other hand, if the allowed weight is 
increased it may very well go undetected. In addition, a negative change does not 
necessarily mean a change of environment. It could also mean a temporary loss of fitness 
during the EA’s search. As with most machine learning algorithms, GAs have to find a 
tradeoff between exploration and exploitation. Staying too long in the exploration phase 
slows down your speed of learning, doing too much exploitation may cause the algorithm 
to get stuck in a local optimum. So, to find the global optimum of a problem and not get 
stuck in a local optimum it is important to search the environment well. This may mean 
that sometimes you have to take a temporary loss in fitness for granted while moving 
away from a local optimum to a global optimum. By using elitist selection you can ensure 
the best individual remains in the population but this may also cause the algorithm to 
remain on the local optimum. Some researchers therefore use a ‘repeated loss of fitness’ 
rule to trigger the algorithm (Cobb 1990). They track the fitness of the current best 
individual in the population. If this fitness lowers over several generations, say five 
generations, they conclude a change in the environment has occurred. However, this of 
course slows down the reaction of the EA thus lowering the average fitness over the 
entire run and making the algorithm less suitable for frequent changes in environment. 
 



 28 

 

4.2  Dynamic 0/1 Knapsack Problem 
 
The Dynamic 0/1 Knapsack Problem is an oscillatory version of the standard 0/1 
Knapsack Problem. The task is to fill a ‘knapsack’ with a subset of items. Each item has 
both a weight and a value. The aim is to maximize the value of the content of the 
knapsack without exceeding the maximum allowed weight W .  
Mathematically, the standard knapsack problem can be described as: 
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genetic representation of ‘0’ and ‘1’ where ‘1’ means ‘put the item in the knapsack’ and 
‘0’ means ‘leave the item out’. 
 
The weight constraint is enforced by a penalty function identical to the one used in Smith 
and Goldberg (1987): 
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W∆ = the overweight of the individual:  
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So by combining Eq. 4.1 and Eq. 4.3 we end up with the fitness function:  
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Negative scores on the fitness function are rated as zero. 
 
The equations 4.1 to 4.5 define the standard 0/1 knapsack problem. There are several 
ways to turn this into a dynamic 0/1 knapsack problem. The most common way is to alter 
the maximum allowed weight W  (Goldberg & Smith, 1987; Smith & Goldberg, 1992; 
Lewis, et al., 1998; Simões & Costa, 2003b). Another way is to use different sets of items 
and alternate between them during the evolutionary run (Zwanepol Klinkmeijer, de Jong 
& Wiering, 2006). 
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4.3  Moving Peaks 
In 1999 a dynamic environment was proposed independently by two groups of 
researchers (Branke, 1999; Morrison, K. de Jong 1999) which Branke refers to as: 
Moving Peak Benchmark and Morrison as DF-1. It is a multidimensional environment 
consisting of several peaks. These peaks can be changed in various ways such as their 
location, height and slope. Furthermore one can choose to add or remove peaks in the 
environment. The environments have been built with the objective to make them easily 
expandable so any form of dynamic characteristic can be applied. 
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5.  Experimental Setup 
 
 
For our experiments we compared three different algorithms: a diploid GA using the 
triallelic dominance mapping, a Hypermutation GA and our Serial Population Algorithm. 
We tested these algorithms on several different environments. The environment we used 
for the bulk of our experiments was a dynamic 0/1 knapsack problem that can be 
classified as a recurrent, discontinuous optimization problem. Additionally we used a 
dynamic 0/1 knapsack problem where we swapped two items for a slightly more 
continuous and non-recurrent environment. 
 

5.1  Dynamic 0/1 Knapsack Problem 
 
In order to investigate SPA’s basic characteristics we perform several different 
experiments using a dynamic knapsack problem. Each experiment consists of ten 
evolutionary runs lasting for 2000 generations each. For the bulk of our experiments we 
use three different set sizes containing 17, 50 or 150 items. With each set size we altered 
two conditions:  
 

- The amount of sets used; using 2 and 5 sets of items each containing weights and 
values. 

- The duration of the stationary period; P = 10, P = 25 or P = 50 generations. 

Additionally we perform experiments using 15 sets with size 50 to see how well the 
algorithm performs with many optima. These experiments last for 3000 generations and 
have stationary periods of again; P = 10, P = 25 or P = 50 generations. These tasks can be 
described as recurrent and discontinuous. Furthermore, we perform experiments using 
only one set with size 50 where we generated a change by swapping two items in the sets. 
This creates a genotypic difference with a hamming distance5 of size 2 while leaving the 
optimal knapsack value unchanged. Our aim is to create a somewhat more continuous 
environment by having state dependent changes although it is not continuous in the strict 
sense for it doesn’t change every timestep. Again these experiments consist of ten 
evolutionary runs lasting for 2000 generations with stationary periods of P = 10, P = 25 
or P = 50 generations. Finally we perform experiments with 5 sets of size 50 but every 
time we revisit the set we swap two items so the optimum is slightly different each time. 
These experiments again last for 2000 generations with again stationary periods of P = 
10, P = 25 or P = 50 generations. 
 
 
 
 

                                                 
5 Hamming distance = number of differences between two binary strings. 
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5.2  The Algorithms 
For each of the three algorithms we use the same genetic operators as much as possible in 
order to keep things as equal as possible. The only differences are: a triallelic encoding 
for the diploid algorithm, a hypermutation phase for the Hypermutation algorithm and the 
use of serial subpopulations for SPA. The parts that are equal are: child- and parent 
population sizes, tournament sizes, crossover probability, mutation rate, and not allowing 
multiple instances in the parent population. In the case of five sets with size 50 we also 
ran an additional ‘basis GA’ that used only these operators. 
 
5.2.1  GENERAL SETTINGS 
 
We set the following parameters for all algorithms: 

- (sub) population size  = 50 

- child population size = 150 

- tournament size: 

o mating selection  = 4 

o replacement selection  = 8 

- crossover probability Pc = 0.9 

- mutation rate = 1/setsize 

 
These settings were found to give good results on preliminary tests. We do not claim that 
these settings are optimal for any of the different environments we test the algorithms on.  
Using these settings it means that if SPA uses five subpopulations, its total population 
size will be 250. It appears to give SPA a major advantage over the other algorithms but 
in reality this is limited. As we mentioned in section 2.1 the evaluations usually take the 
longest time of the entire process, particularly in real world applications. The following 
three equations give the average number of evaluations per generation for each algorithm: 
 
Eq. 5.1:  ECI
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*)1(  SPA 

 
Eq. 5.2: ECI =++1   HMGA  
 
Eq. 5.3: ECI =+   Diploid GA 
 
Where:  
S = number of subpopulations used in SPA. 
I = number of individuals in each (sub-) population. 
C = number of individuals in each child population. 
P = duration of stationary period, measured in generations. 
E = average number of evaluations in each generation. 
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After each detected change SPA’s entire population will be evaluated. On average this 
results in Eq. 5.4 evaluations per generation. The detection system itself accounts for one 
extra evaluation per generation and evaluating the parent- and child populations are equal 
for all GA’s (Eq. 5.3). The Hypermutation Algorithm does not have the subpopulations 
but it does have the detection system, resulting in Eq. 5.4 fewer evaluations per 
generation than SPA.  
 

Eq. 5.4:  
P
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The Diploid GA has no detection system nor does it use the subpopulations resulting in 
Eq. 5.5 fewer evaluations per generation than SPA. 
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This means that if SPA uses five subpopulations and the stationary period is fifty 
generations, it will have four more evaluations than HMGA and five more than the 
Diploid GA. The number of evaluations per generation will go up either by increasing the 
number of subpopulations or by increasing the frequency of environmental change. To 
counterbalance this advantage of SPA we increased the populations of the Hypermutation 
GA and the Diploid GA by the appropriate numbers. So for this example HMGA would 
have 54 individuals and the Diploid GA 55. 
 
5.2.2  THE HYPERMUTATION ALGORITHM 
 
We altered the Hypermutation algorithm slightly compared to what is common. 
Normally, between mutation bursts, HMGA uses a very low base mutation rate and 
depends mostly on crossover and a large population size to find solutions. In our 
experiments we used the base rate of 1/L where L is the length of the chromosome. 
Because our population is smaller than normally used in hypermutation experiments the 
extra mutation is needed to compensate the loss of variation due to the population size. 
The mutation burst is set to be roughly 35%. This is comparable to the burst size used in 
Lewis et al. (1998) and to the theory that high frequencies require high mutation rates 
(Morrison, K. de Jong, 2000). The burst is followed by a period of linear decay. Two 
generations after the initial burst the mutation rate is back on the base rate. Also the 
detection system is different than the one used by Cobb. Our detection system has a 
100% chance of detecting a change in environment. This is in part caused by the way we 
change our environment. If we would have altered the maximal allowed weight there 
would have been a chance that the change would go unnoticed. For these experiments we 
used the same detection system as SPA that we described earlier.  
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5.2.3  THE DIPLOID GENETIC ALGORITHM 
 
The diploid genetic algorithm uses Hollstein’s triallelic dominance scheme as described 
earlier. Apart from this and the fact it doesn’t use any subpopulations the algorithm is the 
same as SPA. 
 

5.3  The Performance Measures  
 
We use two criteria to measure the performances of the algorithms; Accuracy (Acc) and 
Adaptability (Ada) as described by Simões & Costa (2003a & 2003b) but with a slight 
alteration. Accuracy measures the difference between the optimal value of that period and 
the best individual in the last generation before the change. We altered this slightly by 
taking this difference as a percentage of the optimum. This is especially useful when 
comparing results of tests with large differences in set size what can result in large 
differences in optimal values.  
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p = the number of generations between each change. 
K = the number of changes in each evolutionary run. 
R= the number of evolutionary runs per experiment. 
 
Adaptability is similar to what is commonly known as the mean fitness error. We 
measure the difference between the best individual of each generation with the optimum 
value of that period. It gives us an indication of the speed of recovery of the algorithm. 
These two measurements should be as close to zero as possible. The values that are 
shown in the tables are the averages over 10 evolutionary runs per experiment.  
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6.  Results 
 
 
Until now we have seen what the algorithms we use look like, what type of environments 
we use and the performance measures. In this chapter we discuss the results of our 
experiments and draw our conclusions from them for our Serial Population Algorithm on 
how it functions on such tasks. The tables which we refer to are given in the appendix.  
 

6.1  Recurrent, discontinuous tasks with set size 17 
 
The results for these experiments are shown in tables 2, 3, 11, 12. 
The optimization problem with set size 17 is apparently rather easy to find for both 
HMGA and SPA. In all cases the accuracy is either zero or near zero. In table 3 we see 
that SPA has a small error with P=50 where HMGA does not. Here SPA was not able to 
find one of the optima on one run. An error of 0.009% is hardly significant.  
The Diploid algorithm on the other hand even has significant problems finding this 
simple solution. It has an incredibly low adaptability, resulting in a low accuracy. 
Probably the main reason for this lies in the redundancy in its genetic code. If we look in 
figure 6.1 at the lines for the best individual and the average of the population we notice 
that even though all individuals in the population are genetically unique, they still are 
able to have the same phenotype. The redundancy in the triallelic mapping allows for 
many different genotypes to have the same phenotype. This means that all individuals are 
located on the same location in the search space, thereby loosing the power to search the 
space in parallel. This may be resolved by using a much larger population but that would 
result in doing many more evaluations. It does not mean that triallelic diploid algorithms 
are useless. They may have potential where evaluation time is hardly an issue and where 
population sizes can be large and where genetic diversity combined with phenotypic 
singularity is needed. But in our case, where the number of evaluations and the speed of 
adaptation do matter, they seem to be misplaced.  
 
Probably the most noticeable result of the experiments with set size 17 can be seen in 
table 12 where SPA scored worse on the longest period than on the two shorter periods. 
Because this is, of all the experiments we’ve done, the only occasion this occurs we feel 
that we can say that it was an exception on the rule.  
 

6.2  Recurrent, discontinuous tasks with set size 50 

 
The results for these experiments are shown in tables 4, 5, 13, 14. 
For the optimization problem with set size 50 we performed experiments with one extra 
algorithm. This ‘basis GA’ is not to be confused with Holland’s GA, using proportionate 
selection etc. (see chapter 2) but this algorithm forms the basis for all other algorithms we 
used. So it basically is SPA without the subpopulations or the HMGA without a 
hypermutation burst or the Diploid GA with a haploid representation. By comparing the 
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results of this ‘basis GA’ with the others we get some more insight in the effects of the 
add-ons of the other GAs. Both SPA and HMGA improve over the ‘basis GA’ but the 
diploid encoding makes it perform worse.  
 
For this problem SPA outperforms the HMGA significantly on almost all fronts. It is only 
that the HMGA gets a near perfect score on the P = 50 that we see a small difference. It is 
interesting to notice that the HMGA’s score hardly varies whether we use two optima or 
five. Any change for the HMGA is equally disrupting and neither the adaptability score 
nor the accuracy is really affected by the number of optima. SPA on the other hand does 
show a strong difference. The more optima are to be found and the more subpopulations 
there are, the longer it takes for SPA to stabilize. More often one subpopulation will be 
used for different optima before settling for one single optimum as illustrated in figure 
6.2.  
 

6.3  Recurrent, discontinuous tasks with set size 150 
 
The results for these experiments are shown in tables 6, 7, 15, 16 
The HMGA makes a remarkable jump in adaptability when we compare the P=50 with 
the other two periods. A possible answer is that the algorithm starts to reach the optimum 
somewhere after 25 generations thus lowering the adaptability considerably. Once the 
optimum is found there is nothing to adapt to anymore. Again we can see that SPA’s 
performance improves when the problem has only two optima unlike HMGA adaptability 
which is not affected by the number of optima.  
 

6.4  Non-recurrent, small changes 
 
The results for these experiments are shown in tables 8, 17. 
The HMGA performs much better on this task than on the tasks with large jumps. SPA 
still performs well although it is worse than when we compare it to the results from our 
discontinuous changing environment. As we can see from figure 6.3 SPA uses in this 
case only one subpopulation. Apparently the changes are not big enough to force the 
algorithm to use multiple subpopulations. This means that SPA performs equal to the 
Basis GA on this task. Because no multiple subpopulations are used, which is SPA’s 
identifying feature, SPA becomes useless for this case. Any additional subpopulation 
only increases the number of evaluations that need to be performed without adding any 
functionality.  
 
A small caution is in place here when considering the performance differences between 
the algorithms. The performance of all algorithms can be improved upon when the 
different settings of the algorithms are better tuned to the problem. All algorithms used 
the same settings in the small changes task as with the discontinuous tasks. Adding the 
hypermutation phase here apparently worsened the performance as we know that in this 
case the Basis GA performs exactly the same as SPA. Adjusting the duration of the 
hypermutation phase and the height of the mutation rate may cause the algorithm to 
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improve beyond the basis GA performance. But we can still safely say that SPA performs 
much better on the discontinuous task than either of the other two algorithms we tested.  
 
 

6.5  Recurrent, discontinuous tasks with set size 50 with small 
changes 

 
The results for these experiments are shown in tables 9, 18. 
SPA is still able to stabilize and attach its subpopulations to the different optima although 
in some cases this linkage is sometime disturbed after a stable period. (see figures 6.4 and 
6.5) This is something that is expected when we consider the findings of SPA’s 
behaviour on our regular discontinuous tasks and the small changes task. The fact that 
SPA is capable of finding the old optimum even when the old optimum is changed 
slightly is probably more caused by the fact that all individuals are unique. This is a 
powerful method which keeps the diversity high while keeping the number of 
individuals, thus also the number of evaluations, low.   
 

6.6  Recurrent, discontinuous tasks with set size 50 using 15 
sets 

 
The results for these experiments are shown in tables 10, 19. 
Even with fifteen different sets the SPA algorithm does remarkably well. This is mainly 
due to the fact that some of the subpopulations do converge to a single optimum. This 
already gives a big improvement on the performance because their accuracy is (near) 
perfect.  
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Figure 6.1 A close-up of an evolutionary run with the Diploid GA. The average of the population 
(depicted by the red dots) often has the same fitness as the best individual (green crosses) 
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Figure 6.2 SPA finding the different optima. The green crosses depict the current best individual. 
The dashed blue line shows where the optimum lies. The remaining circle, stars etc. show the 
subpopulations’ average fitness. 

 
 
Figure 6.3 When the optimum changes by a only small margin SPA always uses the same 
subpopulation. 
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The figures 6.1 – 6.5 are best viewed in color 
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Figure 6.4 The optima are slightly different each time they are revisited. This causes extra 
adaptations. 

 
Figure 6.5 The small changes sometimes can cause SPA to become unstable. 
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7.  Discussion 
 
So what can we conclude based upon the results discussed above for the functioning of 
SPA?  
 

7.1  Stabilization Period 
 
The experiments show that the use of serial subpopulations has the effect of each 
subpopulation tending to converge toward a single optimum. This enables SPA to quickly 
regain the former solution in recurrent problems. This linking of a subpopulation with an 
optimum is not explicitly encoded in the algorithm but results from SPA’s inner 
workings. By using only one subpopulation during a stationary period we cause the 
subpopulation to converge to that optimum. This convergence increases the likelihood of 
the subpopulation to contain an individual which is closer to the optimum than any other 
individual in the entire population. At the same time it reduces the chance that the 
subpopulation contains an individual which is closer to one of the other optima. Because 
we select the subpopulation based on the presence of the individual that is nearest to the 
current optimum, the longer a subpopulation has been used for one optimum the more 
likely it will be selected next time that optimum comes around. The time between the 
start of the algorithm and the time each subpopulation is linked with one optimum we call 
the ‘Stabilization Period’. In figure 7.1 you can see subpopulation 1 first being used to 
search for two different optima before settling for the third and final optima. 
 
The duration of this stabilization period is mainly influenced by the number of sets and 
subpopulations. As we can see in figure 7.1, when there are many different optima, it is 
likely some of the subpopulations will be used multiple times for different optima before 
settling for one optimum. In figure 7.2 there are only two optima and the stabilization 
period is very short. An additional influence is the amount of time a subpopulation gets to 
converge to an optimum. If the stationary periods are short, it may not have enough time 
to learn the specifics of that optimum and it turns out to be the best for a different 
optimum as well.  
 

7.2  Exploitation Period 
 
After the stabilization period both the adaptability and the accuracy will almost always 
remain at zero, given a simple recurrent, discontinuous task. All subpopulations are 
linked with their own unique optimum and the best individual is located at that optimum. 
It is from this point on that SPA really takes off and the longer an evolutionary run lasts 
the better its overall performance will be. The continuing exploitation is not guaranteed 
as the factors which influence the duration of the stabilization period may cause some 
instability later on.  
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7.3  Subpopulations and Optima 
 
When the number of subpopulations is equal to the number of optima the algorithm will 
end up assigning a single subpopulation to each optimum. When there are more 
subpopulations than optima these extra subpopulations will not be used.  This surplus will 
not be used for any of the optima as can be seen in figure 7.3. Although it doesn’t affect 
the learning speed of the algorithm it does cause extra evaluations every time the entire 
population is evaluated. When applying genetic algorithms to real world problems you 
want to keep the number of evaluations as low as possible because generally the 
evaluations take up most of the algorithm’s time. 
 
When the number of subpopulations is smaller than the number of optima the algorithm 
becomes less stable. Some of the subpopulations may still be associated to a single 
optimum but others will switch from one optimum to the next. Figure 7.4 shows you a 
case where we have four subpopulations and five optima.  
 

7.4  The Detection System Revisited 
 
In chapter 3 we briefly touched upon SPA’s detection system. Because of the way we 
change our optimization task we can see whether a change has occurred simply by 
checking whether the best individual’s fitness (any other individual would do too) has 
changed. This lets us respond without delay whenever a change occurs. But the success 
of this detection system is dependent on the way the task is changed. If we would change 
the maximum allowed weight, like most other researchers have done (Goldberg & Smith, 
1987, Simões & Costa, 2003) the lowering of the weight would be detected without many 
problems. This is because the total weight of the items will very likely be more than the 
new allowed maximum, thus dropping the fitness. Raising the allowed weight on the 
other hand won’t result in a different fitness because the penalty function does not come 
into play. It simply allows more room in the knapsack meaning that a different, larger 
combination of items can be put into the knapsack.  
 
When this detection system is used on the Moving Peaks Benchmark it will detect a 
change when the peak has relocated or changed its height. But when the old best peak 
stays the same while another peak grows and becomes the highest point in the fitness 
landscape, this change will not be detected.  
 
If the fitness function or environment is very noisy, the detection system will no longer 
function properly. This is because it needs an individual to always have the same fitness 
in the same environment. If this is not the case, as with noisy environments, it will falsely 
detect a change and have SPA evaluate its entire population.  
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7.5  Expandable Core Value 
 
The real core value of SPA is the serial use of the subpopulations. They serve as the 
memory of the algorithm. By trying to use them for one optimum only we ensure good 
memory and later exploitation. Another good thing about using serial populations is that 
it can easily be expanded with other methods. It can be used in combination with 
diversity maintenance methods such as crowding and fitness sharing or in combination 
with a diploid encoding. Where you should be hesitant is using it in combination with 
diversity introducing methods, especially hypermutation. The reason is that diversity 
introducing methods disturb the memory function of the algorithm.  
 
 

 
Figure 7.1 close-up of SPA’s stabilization period. 
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Figure 7.2 a close-up of an evolutionary run using SPA with two subpopulations and two optima 

 
Figure 7.3 SPA with two optima and five subpopulations 
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The figures 7.1 – 7.4 are best viewed in color 
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Figure 7.4 SPA with five optima and four subpopulations. 
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8.  Conclusions 
  
 

8.1  Summary 
 
For this thesis we set out to develop a new Genetic Algorithm which can handle dynamic 
optimization problems, specifically problems that change in a recurrent, discontinuous 
fashion. We tested our new algorithm, dubbed Serial Population Algorithm (SPA), on a 
dynamic knapsack problem with several different settings. The settings differed among 
others in speed of change and size of the search space. SPA’s performance was compared 
to two other genetic algorithms: a hypermutation algorithm and a diploid algorithm which 
used a triallelic dominance mapping. SPA showed very good results on these tests and 
outperformed the other two algorithms on nearly all tasks. We will end this thesis with a 
list of strengths and weaknesses of SPA, look at how its weaknesses can be overcome and 
suggest some future work. 
 
 

8.2  Strengths and Weaknesses of SPA 
 
Strengths: 

- The dedication of a single subpopulation to an optimum has very positive effects 
on both the accuracy and the adaptability measures. Because little information 
gets lost, there is less adaptation needed as with other algorithms, something that 
rubs off on the accuracy of the algorithm.  

- The way SPA uses multiple subpopulations is not limited to GA only, most other 
classes of EAs can benefit from this system too in cases of discontinuous, periodic 
environments. 

- The way SPA uses multiple subpopulations is expandable with other evolutionary 
methods like fitness sharing.  

 
Weaknesses: 

- Higher frequency of change causes an increase in the average number of 
evaluations per generation.  

- Larger numbers of subpopulations cause an increase in the average number of 
evaluations per generation. 

- Fitness landscapes which are very similar may make it more difficult to link one 
subpopulation to one optimum.  

- The efficiency of SPA is dependent on whether the number of optima and 
subpopulations match. 

- The detection mechanism has limitations on two types of environments it can 
functionally be used on. 
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8.3  Countermeasures to SPA’s Weaknesses 
 
To reduce the number of evaluations after a change has been detected you could sample 
the subpopulations instead of evaluating them entirely. The probable effects are that there 
is a higher chance you don’t pick the best subpopulation. But by sorting the 
subpopulation at the end of each generation on their fitness you could take the top X %, 
ensuring the previous best are selected. If you take their average you still may improve 
the chances of picking the best subpopulation. 
 
Fitness landscapes which are difficult to distinguish can cause the stabilization period to 
last longer. A countermeasure may be to have the population spread out less over the 
representations space. This could be done by allowing multiple instances of individuals in 
the population or by simply using smaller populations. This will make it less likely that 
the subpopulations contain individuals that are good solutions for other optima but at the 
cost of making it harder to find a good solution at all due to the lack of diversity. 
 
The biggest problem SPA faces is the fact you need to know in advance the number of 
optima you will encounter during the evolutionary run. This is in many cases not 
possible. To counter this we propose an expansion of SPA in the future work section. 
 

8.4  Future Work 
 
If one doesn’t know the number of optima in advance so one can match the number of 
subpopulations, SPA will become less effective. As future work we will give a 
description for an expansion of SPA with an explicit memory function. 
 
 
At the beginning we create only one (sub) population and a memory vector.  
 
At the start of each generation, except for the first generation, we test for changes in the 
environment using our detection system.  
 
If no change is detected we continue to use the same subpopulation, just as with SPA.  
 
At the end of the generation we store the best individual and its fitness as a tuple in the 
memory vector, replacing the former best individual of that subpopulation. 
 
If a change is detected we evaluate all the individuals in the memory vector on the 
changed environment. If none of the individuals stored in the memory vector come close 
to their old fitness value, say score less than 80% of their former fitness, a new 
subpopulation is created together with an extra space in the memory vector. This new 
subpopulation will be used until a change is detected.  
 
At the end of each generation the best individual and its fitness are stored in the memory 
vector.  
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So to be clear: the memory vector stores the last best individual of each subpopulation. 
So if there are S subpopulations the memory vector will contain S tuples.  
 
This algorithm is as yet untested but we can make some predictions based on our 
experiments with SPA. The serial uses of the populations will very likely stay intact. So 
those advantages will remain. But now, because after each change we only evaluate the 
memory vector instead of the entire population, we greatly reduce the number of 

evaluations. Where SPA has on average 
P

IS *)1( −  more evaluations per generation than 

the hypermutation GA, the memory enhanced SPA has only 
P

S )1( −  which is an 

enormous reduction. This allows the memory enhanced SPA to handle many more 
optima, much shorter stationary periods and larger subpopulation sizes.  
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Appendix 
Accuracy: 

Table 2. Accuracy (%) on 5 sets of size 17 

 P = 10 P = 25 P = 50 
Diploid 0.8515 0.5484 0.3646 
HMGA 0.1087 0.0010 0.0000 

SPA 0.0222 0.0011 0.0355 

 
Table 3. Accuracy (%) on 2 sets of size 17 

 P = 10 P = 25 P = 50 
Diploid 1.1878 0.3108 0.1261 
HMGA 0.0128 0 0 

SPA 0.0021 0 0.009 

 
Table 4. Accuracy (%) on 5 sets of size 50 

 P = 10 P = 25 P = 50 
Diploid  7.988 1.8547 0.7381 
HMGA 3.65 0.2609 0.0151 

SPA   0.305   0.045 0.0059 
Basis GA 5.701 0.40087 0.0354 

 
Table 5. Accuracy (%) on 2 sets of size 50 

 P = 10 P = 25 P = 50 
Diploid 6.4238 2.0139 0.8077 
HMGA 4.0406 0.2884 0.0151 

SPA 0.0565 0.0122 0.0015 
 
Table 6. Accuracy (%) on 5 sets of size 150 

 P = 10 P = 25 P = 50 
Diploid 21.414 8.333 3.440 
HMGA 9.985 3.985 2.020 

SPA 1.789 1.194 0.688 

 
Table 7. Accuracy (%) on 2 sets of size 150 

2 optima P = 10 P = 25 P = 50 

Diploid 15.1685 4.1251 2.1364 

HMGA 9.6863 3.5759 1.8728 

SPA 0.6822 0.4651 0.3254 

 
Table 8. Accuracy (%) for small changes on size 50  

 P = 10 P = 25 P = 50 

HMGA 0.6907 0.0347 0.0048 

SPA 0.3108 0.0246 0.0021 
 
 

Adaptability :  
 
Table 11. Adaptability (%) on 5 sets of size 17 

 P = 10 P = 25 P = 50 
Diploid 11.6612 5.8761 3.4162 
HMGA 4.6372 1.8022 1.0003 

SPA 0.3821 0.2250 0.2233 
 
Table 12. Adaptability (%) on 2 sets of size 17 

 P = 10 P = 25 P = 50 
Diploid 9.3527 5.2123 2.9160 
HMGA 3.7169 1.5001 0.7430 

SPA 0.0586 0.0523 0.0785 
 

Table 13. Adaptability (%) on 5 sets of size 50 
 P = 10 P = 25 P = 50 

Diploid 19.16 15.56 9.37 
HMGA 13.56 6.73 3.45 

SPA 0.73 0.60 0.48 
basis GA 15.26 5.29 5.28 

 
Table 14. Adaptability (%) on 2 sets of size 50 

 P = 10 P = 25 P = 50 
Diploid 19.33 16.91 10.96 
HMGA 15.28 7.30 3.71 

SPA 0.15 0.16 0.17 
 
Table 15. Adaptability (%) on 5 sets of size 150 

 P = 10 P = 25 P = 50 
Diploid 23.3179 24.039 21.8521 
HMGA 10.8078 10.2988 7.2905 

SPA 1.9312 1.9982 1.7655 
 
Table 16. Adaptability (%) on 2 sets of size 150 

 P = 10 P = 25 P = 50 
Diploid 15.7225 15.7520 17.1179 
HMGA 10.5597 9.7956 6.9827 

SPA 0.7167 0.7323 0.6807 
Table 17 Adaptability (%)  small changes on size 50 

 P = 10 P = 25 P = 50 

HMGA 1.3635 0.5520 0.3275 

SPA 0.7235 0.3234 0.1813 
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Table 9 Accuracy (%) Size 50, 5 sets + small changes 

acc P = 10 P = 25 P = 50 
HMGA 3.8704 0.3219 0.0184 

SPA 0.7365 0.0908 0.0103 

Table 10  Accuracy (%) size 50, using 15 sets 

 P=10 P=25 P=50 
HMGA 4.3123 0.4179 0.0751 

SPA 0.8921 0.1790 0.0420 
 
 

 

Table 18 Adaptability (%) Size 50, 5 sets + small 
changes 

 P = 10 P = 25 P = 50 
HMGA 9.6976 4.7099 2.2612 

SPA 1.5224 0.9935 0.9635 

Table 19  Adaptability (%) size 50, using 15 sets 

 P=10 P=25 P=50 
HMGA 10.9991 5.5424 2.9359 

SPA 1.6580 1.2717 1.1623 

 
 
 


