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Abstract

Evolution by reproduction, selection and mutation has given rise to com-
plexity at many different levels, e.g. at the level of the many different species
in the biosphere and at the level of complex information processing within
individuals. We investigate how these two levels interact in an artificial set-
ting. We investigate how diversification through speciation influences the
evolution of complex information at the level of the individual. We use a
coevolutionary computation model for function approximation. Two pop-
ulations (one consisting of hosts, the other of parasites) co-evolve, their
fitness defined on the interaction with the other population. The model is
in a 2D space, and per generation a host encounters only a small subset of
’evolutionary problems’, i.e. those in its direct neighborhood. This simple
artificial setting allows us to study evolution of information processing, and
integration of information over many generations. We study 2 evolution-
ary scenarios, one in which between generations all hosts and parasites are
randomly distributed over space, and one in which the self induced spatial
patterns of the system are maintained. We show that only in the latter case
the hosts are in the end able to process all parasites correctly: i.e. the evo-
lutionary target is reached. We analyze the evolutionary process by tracing
back the lineages leading up to the final result. We show that in the undis-
turbed spatial system the host and parasite populations speciate in different
subspecies which are adapted to each other and remain in the population
until the target function is reached. In contrast in the well mixed case,
although the diversity of parasites seen during the evolution is even higher
than in the spatial case, we observe typical red queen evolution, in which the
hosts continue to chase the parasites, unable to integrate enough informa-
tion to reach the evolutionary target while only one host lineage survives the
competition. We conclude that multiple levels of complexity reinforce each
other in this coevolutionary setting: in our system spatial pattern forma-
tion and speciation appear to be prerequisites for the evolution of complex
information processing.
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Chapter 1

Introduction

1.1 Biological Evolution

As Newton’s notion of universal gravitation and his laws of motion brought
both structure and innovation for the field of physics, Darwinian selection
brought the biological field in a rapid. Darwin’s concept of natural selection
[Darwin, 1859] and his explanation for the Origin of Species have changed
our view on nature irreversibly. When we look at earth, it is hard to believe
that all present life has originated only from physical interactions and pro-
cesses, operating on and within different populations of species. In its basic
form, i.e. a process of reproduction, mutation and selection, evolution is the
only scientific theory that provides a potential basis for the overwhelming
diversity and complexity that we can observe in nature everywhere. The
chance that someday another theory successfully will refute Darwinian se-
lection as the driving force of evolution, like quantum mechanics did for
Newtonian physics, is highly unlikely. It is the simplicity of the combina-
tion of the basic mechanisms which provide an enormous explanatory power,
making Darwinian selection an extremely appealing and popular theory, sub-
ject to many studies. Although considerable work has been done, a lot of
key features about the nature of evolutionary dynamics are still not properly
understood, giving form to the field of evolutionary biology. The ecologist
E.O. Wilson stated on this matter:

”What we understand best about evolution is mostly genetic,
and what we understand least is mostly ecological. I will go
further and suggest that the major remaining questions of evo-
lutionary biology are ecological rather than genetic in content.
They have to do with selection pressures from the environment as
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revealed by the histories of particular lineages, not with genetic
mechanisms of the most general nature.” [Wilson, 1992]

Maybe somewhat biased being an ecologist and not yet knowing of the
deciphering of genomes, Wilson points out a very important notion in inves-
tigating evolutionary dynamics: evolutionary - and ecological timescales are
heavily intertwined. Therefore our research will concern eco-evolutionary
dynamics, considering the multiple levels of complexity which can reinforce
and influence each other.

1.1.1 Research Question I

In explaining natural history, evolution can be described as a process of
merely adaptation and speciation (see section 2.1.1). Adaptation and spe-
ciation are mainly driven by interactions and dynamics on the ecological
timescale, and they are expressed in the evolutionary timescale, providing
diversification through speciation. The role of adaptation in the process of
speciation is a relatively clear one. When individuals within a species adapt
to different circumstances, specialization of subpopulations can occur. This
specialization can lead to divergence of genetic content within a population,
which can give rise to the origin of different species. The opposite relation
between speciation and adaptation however is still unclear. Therefore the
main covering question of this thesis can be formulated as follows:

How does speciation of a population affect the adaptation of individuals?

1.2 Spatial Coevolution

The renowned phrase survival of the fittest [Spencer, 1864] seems to regard
evolution merely as an optimization process1. This notion of optimizing
gave rise to a whole new field of research: the application of artificial evo-
lution to the field of computational methods [Holland, 1975]. In nature the
fitness of an individual depends in many ways on non-static features; or-
ganisms live in different environments, interacting and (co)evolving with
other organisms. In order to use evolution for optimization, most artifi-
cial evolutionary models include a static fitness evaluation function, which
clearly does not resemble the natural evolutionary process. When using the

1for further discussion see subsection 2.1.4
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terms and definitions of evolutionary computation strictly, probably all nat-
ural evolution has to be considered a coevolutionary process, because of the
strong interconnection between the evolution of species and their environ-
ment. Evolutionary computation disconnects these aspects to be able to use
and control the evolutionary procces in a convenient way. This also points
out why it is obvious that probably none of the artificial evolutionary set-
tings resemble nature; it is clearly not the objective to give a realistic view
on natural evolution. Only in the field of coevolutionary computation, these
coevolutionary dynamics are explicitly taken into account and implemented
in the evolutionary method.
The introduction of coevolutionary methods in the field of evolutionary com-
putation is also not meant to achieve a ’realistic’ model of natural evolution,
it was purely introduced for computational optimization motives. Coevolu-
tion samples the problem domain more efficiently without having to eval-
uate all problems in the domain or defining very specific problem sets. As
a consequence, we have to accept that the arising evolutionary dynamics
in a coevolutionary computation system are much more complex and less
transparant to understand.

Another inspiration from biology is to implement models in an explicit
spatial environment. Evolutionary computation methods tend to neglect the
role of a local environment where individuals live. In the perspective of bi-
ology, a world without space is a huge oversimplification. All organisms are
constrained to the environment where they live. The interactions with other
organisms and with their environment are purely local. In the nineties Hillis
was the first to note that using the concept of space could also bring great
advantage for artifical evolution. His computational coevolutionary process
improved considerably when he placed the coevolving parties in a spatial
environment, forcing the interactions to be local [Hillis, 1990]. How space
really contributed to this success was not investigated until 1997, when Pagie
and Hogeweg used a spatial coevolutionary parasite-host setting. They com-
pared fitness evaluation based on a large static set of problems and fitness
evaluation based on small coevolving sets of problems. With a spatial envi-
ronment in the latter case, very little information is presented to the evolv-
ing hosts regarding the evolutionary target per evolutionary time step. In
other words the fitness evaluation is very sparse. They showed surprisingly
that the case with full fitness evaluation not only produced a better success
rate, the produced solutions were also better generalizable and differed with
respect to mutational stability; in the sparse fitness case, the sparse evalu-
ated programs are less mutational stable than complete evaluated programs,
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which preserves evolutionary freedom and can prevent overspecialization.
Also it was suggested that spatiality causes an advantageous persistence in
the population diversity over the generations and an even better targeting
of weak points in the host-population by means of the coevolving parasites.
These very promising results can probably be explained in terms of the emer-
gence of spatial patterns. Spatial pattern formation creates the opportunity
to form extra levels of selection. This multi-level character [Hogeweg, 1994]
and the self-structuring in biological systems are already considered very
important for natural evolution [Boerlijst, 1991, Pagie and Hogeweg, 1997,
Savill et al., 1997]. Because space is neglected in most traditional studies,
the consequences of these aspects in artificial evolving systems are mostly
omitted.

1.2.1 Research Question II

Despite recent studies [Pagie and Mitchell, 2002, Williams and Mitchell, 2005,
Mitchell et al., 2006] emphasize the importance and improved success of spa-
tial embedding [Pagie and Hogeweg, 1997], the exact role of space and spa-
tial pattern formation is still not fully understood. Therefore we formulate
the next research question as:

What is the role of spatial pattern formation in spatial coevolutonary
function approximation?

1.3 Information Integration

Evolution can be seen as a multi-level informatic process [Hogeweg, 1994].
Information presented to the system has to be integrated in order to be
able to improve performance over the evolutionary timescale. The arising
dynamics of the system are responsible for the way in which the provided
information will be integrated. Information is presented and has to be inte-
grated in the ecological timescale in order to speak of successful information
integration on the evolutionary timescale. On the ecological timescale the
dictating dynamics are determined by the interactions between and within
populations. The interplay of these eco-evolutionary dynamics affect the
information integration considerably.
Information present in a (eco)system can be distributed in roughly two ways.
Individuals can adapt by regulation to ’all’ possible circumstances (or ’prob-
lems’) or the population can split into subpopulations, each specialized to a
subset of circumstances. In terms of information integration, the variation
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of all the information on the problemspace is reflected either in the variety
of species (population based diversity), or present in all individuals within
a species (individual based diversity). These different modes of informa-
tion storage influence in their turn again several aspects of the ecological
dynamics.

1.3.1 Research Question III

In a spatial model with only local interactions and sparse fitness evaluation,
the assumption is made that per generation only a small subset of circum-
stances is encountered. Pagie and Hogeweg(1997) already showed that the
information integration in the evolutionary timescale does work. A spatial
coevolutionary system is able to evolve individual based diversity on the
evolutionary timescale. However, dynamics on the ecological timescale are
mainly caused by a population based diversity. Therefore the last research
question is:

What is the role of population based diversity for the individual
information integration?

1.4 CKI Relevance

This thesis is written as a conclusion for Cognitive Artificial Intelligence (in
Dutch: Cognitieve Kunstmatige intelligentie, CKI). CKI is a combination of
philosophical, psychological, linguistic and computational views on artificial
intelligence. A quote which I met in a third year course, reflects in a good
way my view on how to achieve this Artificial Intelligence:

Nature is far more ingenious than we are. The point is, evolution
has already done it, so why not learn how that stupendous ma-
chine, our brain, actually works? [Churchland and Sejnowski, 1990]

In order to achieve AI we have to look at nature how it has to be done,
so biology is probably the most appealing starting point for developing self-
learning systems. The shape of (human) intelligence in present time has
originated from millions of years of evolution. In my opinion, it is therefore
presumptuous to think that we can design intelligence by ourselves. Our
thinking is too much restricted to design a process which we do not yet fully
understand. History has proven that evolutionary dynamics do not have
such restrictions.
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1.5 GECCO ’07

Preliminary to writing this thesis I got the chance of submitting a late break-
ing paper for GECCO ’07, a conference on evolutionary computation. Writ-
ing an article before the actual thesis may appear to be a strange order. In
terms of optimal information integration it probably even is in principle the
wrong order. However the article had to be submitted in the experimental
stage of my research, and therefore I nevertheless adopted this order, think-
ing it would be a nice way to summarize part of my research in a scientific
way. In consequence I chose to write my thesis with this article as a basis.
Our article describes the implications of spatial modelling for the field of co-
evolutionary function approximation with a biological character. The infor-
mation density as well as the assumed preknowledge in the article is high and
maybe hard to understand without the necessary knowledge in the specific
field of evolutionary algorithms and genetic programming. Therefore the
composition of my thesis is constructed in such a way that the rest of the the-
sis is written as a complement for the article ”The Role of speciation in Spa-
tial Coevolutionary Function Approximation”[De Boer and Hogeweg, 2007]
written for GECCO ’07. The content of this article is roughly the same as
the chapters 4 and 5 of this thesis.
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Chapter 2

Evolutionary Computation

2.1 Inspiration from Biology

Evolutionary Computation is the collective name for a range of computa-
tional techniques, inspired by the biological mechanisms of natural evolu-
tion. Darwin’s concept of natural selection [Darwin, 1859] and his view on
evolution are the main elements used in creating an artificial evolutionary
process used for a variety of problems, ranging from practical applications
in industry to a broad area of scientific research.

The vast majority of the history of life can be accounted for by physical
processes operating on and within populations and species [Hoffman, 1989].
These physical processes are: reproduction, mutation, competition and se-
lection. These processes are strongly interwined and difficult to consider
seperately. It is the combination of these simple mechanisms what makes
evolution such a strong process. This combination results again in adapta-
tion and speciation, probably the most important notions of natural evolu-
tion.

2.1.1 Adaptation and Speciation

Adaptation in the biological sense, is a physiological process, a physical
structure or a behavioral trait evolved by an organism as a result of natural
selection such that it increases the expected long-term reproductive success
of the organism. In this way adaptations enable living organisms to cope
with environmental stresses and pressures.
Speciation is the evolutionary process by which new biological species arise.
There are generally three modes of natural speciation considered, based on
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the extent to which speciating populations are geographically isolated from
one another: allopatric, parapatric and sympatric (see figure 2.1).

Figure 2.1: Different modes of speciation.Illustration by Dr. Dana Krempels
2006 1

Probably all these forms of speciation have taken place during the course
of natural evolution, though it still remains a subject of debate as to the
relative importance of each mechanism in driving biodiversity. The empha-
sis in the process of speciation is on biological differences between species.
We speak of a species when a group of actually or potentially interbreeding
individuals are reproductively isolated from other such groups. Thus bio-
logical speciation requires that the two species are unable to produce viable
offspring together or that they simply avoid mating with members of the
other group. However, regarding cloning or asexual reproduction reproduc-
tive isolation is undefined. In computational experiments the same problem
arises. But for example in the case of bacteria, which reproduce mainly
without obligate sexual reproduction, we can truly speak of different bacte-
ria species. Because our model uses cloning for reproduction, the observed
speciation in our model can be considered as an asexual form of sympatric
speciation. Sympatric speciation refers to the formation of two or more new
species from a single ancestral species, all present at the same geographic
location, not separated by an environmental barrier.

1This Illustration is licensed under the Creative CommonsAttribution ShareAlike li-
cense versions.
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The interplay of adaptation and speciation originates in the dynamical re-
lation between mutation and selection. Where mutation (and/or recombi-
nation) provides a wider range of genetic variety in a population, natural
selection reduces this variety again, selecting for useful traits, resulting in
an adaptation to the environment. Sympatric speciation occurs as a conse-
quence of adaptation. When individuals adapt to different circumstances,
the specialization will cause new species to originate, bringing variety in the
system. Allopatric speciation on the contrary, is considered to be caused
mainly by genetic drift due to the isolation of subpopulations after an envi-
ronmental seperation, resulting in different adaptations.
The obtained variety of species has in its turn a positive effect through the
change it brings in the evolutionary pressure. Each species has to main-
tain its niche by adapting even more in order to survive. Competition is
now not only between individuals in a population, there is also evolutionary
pressure through interactions between different populations with different
evolutionary directions. However, the specific feedback of speciation on the
individual adaptation is still unknown. In our experiments we will try to
clarify how speciation of a population affects the adaptation of individuals.

2.1.2 Fitness

Fitness is a central concept in the process of natural (Darwinian) selection.
Modern evolutionary theory defines fitness in terms of reproduction rather
than survival. If an individual lives half as long as others of its species,
but has twice as many surviving offspring, its genes are represented far
more common in the population of the next generation. This so called
differential reproduction expresses the difference in the rates of reproduction
of differently adapted individuals. Therefore in biology, the fitness of an
individual with a certain genotype, is generally considered an estimation
of the capability of this individual to reproduce. Selection ensures that
genotypic traits which provide a higher fitness will become more common in a
population. So, if mutational differences in the individual genotype are said
to affect the fitness, then it will directly affect the chance of reproduction.

Natural selection acts mostly on the differences in physical characteris-
tics of individuals, the so called phenotypic differences. However, the genetic
representation of these characteristics, the genotype, will also have a better
chance for reproduction when associated with a favorable phenotype. Sec-
ondly fitness depends also on the degree of adapation to the environment in
which the individuals live. Thus an important observation is that the fitness
of different individuals with the same genes, is not necessarily equal.For ex-
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ample, residing in different ecological niches causes differences in the rate
of reproduction(different fitness). Within the niche the (sub)species each
increase their fitness again by adaptation, reinforcing the process of spe-
ciation. In short, fitness is a quantitative measurement of the succes of
a species, concerning all different important aspects of evolution and thus
plays an important role in explaining the emergence of new species.

In evolutionary computation the concept of fitness is mostly implemented
as a fitness function, where we can distinguish roughly 2 different classes:
one where the fitness function does not change, as in optimizing a fixed
function or testing on a static set of test cases; and one where the fitness
function is variable, as in coevolving the set of problems as well.

2.1.3 Fitness Landscapes

To get an intuitive idea of the interplay between fitness(functions) and evo-
lutionary dynamics, the relationship between genotypes (or phenotypes) and
their according fitness can be visualized in a fitness landscape. This idea of
studying evolution by using a landscape metaphore for the distribution of
fitness, was first introduced in 1932 by Sewall Wright [Wright, 1932].

In a fitness landscape, or adaptive landscape, the fitness defines the
height of the landscape. Genotypes which are very similar are said to be
close to each other, while those that are very different are far away from
each other. The two concepts of height and distance are sufficient to form
the concept of a landscape. The set of all possible genotypes, their degree of
similarity, and their related fitness values is then called a fitness landscape.
When a genotype mutates, it moves through the landscape. By performing
subsequent rounds of selection, growth, and mutation to a population of
genotypes, the genotype space is searched for genotypes with high fitness
values. This can get misleading when considering multiple mutation oper-
aters, because distance is then hard to define. For instance, when using
crossover mutation, closeness, or the distance between different genotypes
loses its meaning. The landscape metaphore also breaks down without a
fixed fitness criterion. When using a dynamic fitness criterion instead, like
in coevolution, the fitness landscape keeps changing during the course of
evolution.

Fitness landscapes are often conceived of as a mountain range (figure
2.2). The highest peak represents the genotype of a global optimum. Local
peaks are points in the landscape where all directions lead downhill result-
ing in a lower fitness. There can also exist valleys, regions from which most
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Figure 2.2: Sketch of a 2D fitness landscape. The arrows indicate the pre-
ferred flow of a population on the landscape, and the points A, B, and C are
local optima. The red ball indicates a population that moves from a very
low fitness value to the top of a peak. Illustration by C.O. Wilke, 2001.

paths lead uphill to a higher fitness. A fitness landscape with many local
peaks surrounded by deep valleys is called rugged. If genotypes in the same
region have the same fitness, on the other hand, a fitness landscape is said
to be flat.
However, a fitness landscape is generally multidimensional and therefore dif-
ficult to visualize. Reducing the landscape to a 3D-space can therefore be
deceptive. But the key characteristics of a landscape can help in explain-
ing evolutionary dynamics. A rugged landscape is regarded as a difficult
landscape for most optimization algorithms, the chance of ending with a
suboptimal solution is large and the course for an algorithm to keep im-
proving its fitness is not clear. On the other hand, when alterations of the
genotype keep you on a flat plateau, evolution is considered to be neutral,
having no direct influence on the fitness of an individual.

2.1.4 Survival of the Fittest

The British economist Herbert Spencer was the first to use the popular term
survival of the fittest, often used when referring to the process of natural
selection.

”This survival of the fittest, which I have here sought to express
in mechanical terms, is that which Mr. Darwin has called ’natu-
ral selection’, or the preservation of favoured races in the struggle
for life.” [Spencer, 1864]
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”Survival of the fittest” was introduced to clarify the principles of natural
selection and the struggle for life. However this is a somewhat misleading
description for the moving forces of evolution. It can be interpreted that
only the individuals of a population that are fittest (eg. best in surviving)
survive to generate offspring, enabling their genetic content to be passed on
into the next generation. Because of this reasoning it is sometimes claimed
that the phrase is a tautology. However when the full picture is considered,
no tautology exists: the fittest individuals are the ones that fit the best in
their environment, the best adapted. So, the complete mechanism leading
from genetic differences, through differential reproductive success (”survival
of the fittest”), to the actual evolutionary adaptation is a valid, informative
reasoning, already confirmed by the actual existence of genetic variations.
Individuals in a population surviving and generating offspring are by defi-
nition the fittest, which indeed is stated. However, ”survival of the fittest”
stays ambigious and maybe confusing. Therefore it is not generally used by
biologists, who prefer to just use natural selection.

2.2 Artificial Evolution

2.2.1 Computational Application of Evolution

In most scientific research, evolutionary computation is not meant to model
evolution best, rather evolution is used as a metaphor to solve or optimize
all sorts of problems. Although the basic evolutionary principles are easy to
understand, much is unclear about evolutionary mechanisms and the spe-
cific role of selective forces by which natural species evolve. The controlled
and well-understood conditions from evolutionary models can possibly help
to bring insight into the details of how life and intelligence evolved in the
natural world.

The three main fields of research in simulated evolution are genetic algo-
rithms, evolution strategies and evolutionary programming. Each method
emphasizes a different facet of natural evolution. Genetic algorithms stress
chromosomal operators. Evolution strategies emphasize behavioral changes
at the level of the individual. Evolutionary programming stresses behav-
ioral change at the level of the species [Fogel, 1994]. Our methods cannot
be classified solely under one of these methods, but uses techniques mostly
associated with genetic algorithms and evolutionary (or genetic) program-
ming(see section 2.3).
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2.2.2 Problem Solving and Optimization

As mentioned, the phrase survival of the fittest already suggests that natu-
ral evolution can be seen as merely a process of optimization. The variation
within a population in combination with selection pressure, leads to an ’im-
proved’ fitness in the subsequent populations; the individuals in a population
are being ’optimized’. This notion of optimizing gave rise to a whole new
field of research: the application of artificial evolution to the field of com-
putational methods [Holland, 1975]. Evolutionary computation utilizes the
biological idea that the level of adaptation determines the chance for repro-
duction of an individual. In artificial evolution only those individuals in a
population that are adapted best, are kept in the population and given a
chance to reproduce. The rest will be removed, leaving the population with
an increased average level of adaptation. Optimization does not imply per-
fection, yet evolutionary computation can in this way discover highly precise
functional solutions, with only the need to define the particular problems in
an environment.

2.2.3 Direction

Because natural evolution is an apparently undirected mechanism, selection
pressure originates solely from the interactions with other individuals and
environmental influences. These influences and interactions change all the
time, thus there is no predefined global evolutionary target. Individuals live
up only to the objectives which are important for them: surviving and pass-
ing on genetic material. The course of evolution depends on the direction
caused by pursuing those aims in life. By defining a fitness criterion one
can force a system to evolve in a pre-determined direction, enabling evolu-
tionary computation methods to solve or optimize specific problems. The
use of natural selection already eliminates one of the greatest difficulties of
problem solving: specifying in advance all the features of a problem and the
actions a program should take to deal with them, is no longer necessary. Us-
ing evolution, it is possible to find solutions that solve problems even when
no person can fully understand the structure of the solution. No knowledge
of the problem has to be incorporated into the algorithm; the boundaries of
problemspace and an evolutionary direction are enough to solve problems
without full knowledge of the underlying mechanisms.

13



2.2.4 General Scheme of Evolutionary Computation

Usually, the initial population is formed by randomly generated candidate
solutions. Koza compares this initial population to an army of parachutists
dropping onto the landscape of a problem’s search space, with each one
being given orders to find the highest peak [Koza, 2003]. Small mutations
enable each individual to explore its immediate neighborhood, while selec-
tion enforces progress, guiding the subsequent generations uphill to more
promising parts of the solution space.
The solution for a problem or the performance to be optimized can act as
the global evolutionary target. The ”environmental pressure” forces evo-
lution in the desired direction towards a better solution. Each generation
all individuals are evaluated with a fitness function on how well they are
’adapted’. When fitness is assigned, the individuals are stochasticly selected
to provide the genetic material, forming the individuals in the next genera-
tion. Selection is stochastic in the sense that a higher fitness of an individual
will bring a greater chance for this individual to reproduce. In this way indi-
viduals with a very low fitness still have a (small) possibility of reproducing
in order to increase the exploration rate(see next subsection). Then varia-
tion operators are random applied on the genetic material of the selected
individuals. Usually the variation operators are mutation, randomly modi-
fications of the genotype, and recombination or crossover, whereby existing
genetic material is exchanged, between or within a genotype. After apply-
ing these variation operators, the population is replaced and competition
between individuals begins all over again. It differs per method if a gener-
ation as a whole is replaced with a total new generation or if only certain
(outcompeted) individuals are replaced, giving subsequent generations the
possibility to compete with each other.

Begin
INITIALIZE first generation
Repeat until Termination condition is met
EVALUATE all individuals (assign fitness)
SELECT individuals
APPLY variation operators (recombination and mutation)
REPLACE population

end

Table 2.1: general scheme of evolutionary computation
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2.2.5 Exploration vs. Exploitation

One of the appealing qualities of using artificial evolution for computational
purposes is said to be the good tradeoff between exploration and exploita-
tion [Eiben and Smith, 2003]. These concepts are best understood with the
fitness landscape metaphore in mind. Exploration means that in every gen-
eration new individuals are localised in new untested regions of the search
space. Exploitation means that individuals concentrate in the vicinity of
already known good solutions. The trade-off between these concepts is im-
portant because too much exploration leads to an inefficient search and
too much exploitation leads to premature convergence, possibly trapping
the population on a local peak, representing a suboptimal solution. Evolu-
tionary computational methods are able to prevent premature convergence
because they can explore a far greater range of potential solutions to a
problem than do conventional methods. This exploration of the landscape
is done by random mutations providing a wider range of genetic variety in a
population. Selecting for useful characteristics, stochastic selection reduces
the variety again, resulting in the exploitation of potential good candidate
solutions with a fitness advantage. Changing the ratio between selection
pressure and random mutations, enables the adjustment of the trade-off be-
tween exploration and exploitation. Whereas classical algorithms like hill
climbing often get stuck on a local optima, evolutionary algorithms can in
this way be effective in escaping local optima and discovering the global
optimum in even a very rugged and complex fitness landscape.

2.3 Genetic Algorithms and Genetic Programming

Just as a child creates magnificent fortresses through the ar-
rangement of simple blocks of wood [building blocks], so does a
Genetic Algorithm seek near optimal performance through the
juxtaposition of short, low-order, high-performance schemata, or
building blocks [Goldberg, 1989].

Although Genetic algorithms, evolutionary strategies and genetic pro-
gramming are all different methods and used for various objectives, they es-
sentially are all different variants of population-based generate-and-evaluate
algorithms. Therefore they share more similarities than differences.

Genetic Algorithms (GA) originated mainly from the work of John Hol-
land [Holland, 1975, Holland, 1992] and later David Goldberg [Goldberg, 1989].
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GA’s are said to be the most obvious mapping of natural evolutionary pro-
cesses into a computer system. Genetic algorithms involve encoded strings
(chromosomes) that represent particular candidate solutions to a problem.
The evolutionary emphasis is on the role of recombination or crossover, try-
ing to create a robust, adaptive system. GA’s try to evolve a solution by
the rearrangement of building blocks. The chromosomes are evaluated and
the best strings are mixed to form a new generation.

The recent unraveling of whole genomes, shows that duplication is prob-
ably one of the most important mutational processes in nature. Despite
genes have a meaning and some fitness consequences in GAs, this duplica-
tion of genes is not possible in a traditional GA. Therefore they are still
quite constrained in their evolutionary potential and it seemed quite desir-
able to have a more flexible coding to create more evolutionary freedom. For
this Koza developed genetic programming(GP) to indicate the application of
GAs to the evolution of computer programs [Koza, 1992]. Where GA’s can
be seen merely as an evolutionary search for the best parameters, genetic
programming strives towards a system which is implememented without
too much predefined meaning, but with an interesting genotype-phenotype
mapping. Instead of encoding a representation of a solution(just being a
chromosome), GP incorporates genomes as computer code and allows mu-
tational operators to expand and contract this code, thus leading to a great
deal of flexibility. These computer programs are traditionally represented
as tree structures (see figure 2.3).

Figure 2.3: Tree representation of x− 1−x3. LISP-representation would be
(- (- x 1) (* x (* x x)))

Trees can be easily evaluated in a recursive manner. Every tree node
has an operator function and every terminal node has an operand, making
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mathematical expressions easy to evolve and evaluate. Therefore tradition-
ally GP favors the use of programming languages that naturally embody
tree structures; functional programming languages. Koza used the LISP
programming language for this. LISP has the generality and power of a
general program language, however there is no a priori distinction between
the program itself and the data the program is running on. That brings a
requirement: each list should have a meaning, so dividing by zero needs to
be defined in order to get closure of the system. The primary (LISP) coding
structure is expanded and contracted by adding genetic operators which can
change and make modifications in the tree: point mutations, branch swap-
ping, branch copying and deletion (see figure 2.4). Genetic operators act
directly on the tree itself and, although at first sight this might appear ad-
vantageous, it also limits this technique because the genetic operators must
be very carefully applied so that only valid structures are formed.

Figure 2.4: In crossover, the most used operator in GP, selected branches
are exchanged between two parent trees to create offspring.

GP also uses populations of individuals, selects them according to fit-
ness, and introduces genetic variation using genetic operators, just like GA’s.
Thus, the fundamental difference between GP and GAs lies in the nature
and behavior of the individuals and, consequently, in the way they are re-
produced and mutated to allow adaptation. In contrast to GAs, GP trees
may assume different sizes and shapes in the process of evolution. As such,
populations evolve and may discover solutions of greater complexity. The
use of such a flexibel coding instead of a predefined meaning, GP enables the
altering of the fitnesslandscape (see subsection 2.1.3) by the genotype itself.
The choice and structuring of the genes that form the genotype, determines
the fitness landscape that has to be searched, and defines thereby the ease
of exploring.
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Chapter 3

Eco-evolutionary Dynamics

3.1 Evolutionary and Ecological Dynamics

Evolutionary computation is often based solely on evolutionary dynamics;
ecological processes are excluded or neglected. How an evolutionary process
acts relative to a fitness criterion can be evaluated because most methods use
an artificial predefined fitness function. In this way evolution is forced in the
desired direction(see subsection 2.2.3). However, this can also be considered
as a constraint for the evolutionary process; the possibilities of the system
are restricted and the ’freedom’ of evolution is limited for computational
purposes. Despite the focus is mainly on just solving the predefined prob-
lem, problems are still allowed to be solved in many different ways. Thus in
the course of evolution there will be several partial solutions, coexisting in
the population. This variety of different possible solutions can be considered
as some sort of ecosystem diversity. As in nature, an important mechanism
in maintaining this ’ecosystem diversity’ can be the evolutionary process
of continuous adaptation through mutations, which indeed is incorporated
and evaluated in the artificial setting. However, the role of the dynamics
within the ecosystem itself are excluded. And the various dynamics within
a ecosystem influence not only the diversity and individual interactions, but
also the stability of the system as a whole. Therefore it is difficult to see
both processes separated, so maybe we should take both evolutionary and
ecological dynamics in consideration.
The most striking difference between ecological and evolutionary models, is
the total separation of timescales. Ecological models, mostly used for popu-
lation dynamics, assume that evolution is slow enough that it will not influ-
ence ecological processes, and evolutionary models mostly assume that ecol-
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ogy is fast enough for a population to be in an equilibrium or a Quasi Steady
State. However, ecological processes are not necessarily fast and evolution-
ary processes are not by definition slow [van der Laan and Hogeweg, 1995].
The necessary interlocking of the processes occuring on ecological and evolu-
tionary timescales, i.e. the interaction between ecology and evolution, can’t
be neglected.

Therefore in this chapter we will focus not only on the evolutionary dy-
namics within and between populations; also the important dynamics within
the ecosystem formed by individuals of different (sub)populations are con-
sidered. Despite the fixed population size in our experiments make the ’eco-
logical’ dynamics somewhat misleading in a traditional sense, the dynamics
between the subpopulations within our fixed population can be regarded as
ecological dynamics. In short, we will discuss the eco-evolutionary dynamics
which are accountable for the behaviour of our coevolutonary computational
model.

3.2 Population Based vs. Individual Based Diver-
sity

As discussed in subsection 2.1.1 the main concepts in evolution are adap-
tation and speciation. In an evolving population, individuals can adapt by
regulation to all encountered circumstances or the population can split up
into subpopulations, each specializing to a subset of the possible circum-
stances. This is called individual based diversity and population based diver-
sity, respectively. Pagie and Hogeweg(2000a) studied under what conditions
individual- and population based diversity evolve, using a model based on
the restriction-modification(RM) system in bacteria.
Bacteria have RM-systems to protect themselves from foreign DNA, such
as bacteriophages. A bacteria can have different plasmids coding for the
RM-systems, however having a RM-system affects the growth of the bac-
teria in a negative way, restricting its use. Phages on the other hand can
become immune to specific RM-systems, causing the defense system to fail.
In their model, Pagie and Hogeweg(2000a) coevolved a population of bac-
teria, with a fixed number of possible RM-systems, and viruses which can
infect the bacteria. The results of this model show that the system, more
or less arbitrarily, goes to one of two attractors:

• An individual based diversity where every bacteria has as many plas-
mids as possible for maximum individual defense. In this system in-
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vading virus populations can survive easily besides the bacteria popu-
lation.

• A population based diversity where each individual has only one plas-
mid and therefore only a weak defense against the different viruspop-
ulations. The different bacterial plasmids are spatially spread over
different regions in the population. Population dynamics in this mode
result in only a few viable viruses populations, outcompeted by the
bacteria population.

Under some circumstances the system can switch from individual based
to population based diversity in order to gain stability on the level of the
population. This population based stability is due to the formation of a
static pattern of subpopulations, each specialized with a different plasmid.
The result is an invasion resistent, stable population, consisting of different
subpopulations. In spite of the difference in how the information is inte-
grated, both modes cause a viable stable population with almost the same
amount of informaton integrated, i.e. almost the same amount of plasmids
is present in both modes. In the one mode this information is divided over
different individuals while in the other mode all plasmids are present in every
individual.

In our study we look at the role of a population based diversity in the
process of individual adaptations in a population. Can population dynamics
lead to information integration on the individual level?

3.3 Sparse Fitness Evaluation

3.3.1 Biological Ground

The standard biological dogma on fitness is that it should bring immediate
benefits. However there are several examples of evolving species which can
cope with all sorts of problems, even if they haven’t seen those problems
every generation. The selection for those traits has to be on the longer,
evolutionary timescale. The ability to cope with situations seen only once
in a long time tends to negate the idea of immediate benefits. Two examples:

• Bacteria often use a flagellum to move. A flagellum is a long slender
projection from the cell body which can propel the cell by beating in a
whip-like motion. Bacteria spend several generations to develop such
a flagellum. There is no immediate fitness advantage in doing this.
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• E. coli is one of the main species of bacteria living in the lower in-
testines of mammals. E. coli bacteria spend many generations in the
gut, however they can also live for many generations in an external
environment outside of the gut. The regulation for survival in both
environments retains through all generations. The long term benefits
are prefered above the immediate benefits.

These two examples show that selection over the evolutionary time scale
with no selection pressure for immediate benefits, cannot be neglected. How
can sparse information, encountered in the short timescale, lead to integra-
tion of information on the long time scale?

For what we know the first organisms in early evolution had a pretty
short life span. Therefore they probably encountered only a limited amount
of circumstances to cope with per generation. This is called sparse fitness
evaluation. Later in time the life span of organisms expanded and the num-
ber of circumstances encountered within a lifetime also increased. However
the environmental variation on the longer time scale, which whole ecosys-
tems have to handle, always persisted.

3.3.2 Geological Grounding

In geology the so called Snowball Earth hypothesis as it currently stands,
proposes that the Earth was entirely covered by ice for several periods in
earth history. The cold climate periods were cyclical, punctuated with
well defined warm-humid interglacial periods [Rieu et al., 2007]. In spite
of these harsh climate changes, fossil records reveal little change during
the glacial interval and do not show the expected eco-evolutionary fluctua-
tions [Corsetti et al., 2006], i.e. evolution allows ecosystems to handle not
only seasonal variation, ecosystems are also robust against (extreme) climate
variation.

3.3.3 Sparse Fitness in an Experimental Setup

In our experiments we make the assumption that per generation only a
small subset of the whole problemspace is encountered. A host ’sees’ only
the problems present in his spatial neighborhood. By embedding the model
in space(see section 3.7), sparse fitness evaluation is induced. Pagie and
Hogeweg(1997) already studied the role of such sparse fitness evaluation on
information integration in the evolutionary timescale. This was done in the
same coevolutionary setting we use for our experiments. They compared
sparse fitness evaluation with complete fitness evaluation. In the setting

21



with complete fitness evaluation each individual sees all the possible prob-
lems in problemspace every generation. In the setting with sparse fitness
evaluation each individual sees only a few of the possible problems per gen-
eration. The fitness of each individual is then based on how well it solves
the problems seen that generation.
After evolving the system, the sparse evaluated setting produces individuals
with a simpler genotype, better coping with all circumstances. The evolved
genotypes were better generalizable to circumstances never seen before and
as most important result the success rate on finding an appropriate solution
for the whole problem space was found with a much higher success rate than
in the complete evaluation scheme. One important evolutionary mechanism
in reaching these results, is a lower mutational robustness in the sparse fit-
ness setting. When using a fixed target, evolution will select for robust (neu-
tral) solutions, while in coevolutionary sparse setting, there is selection for
solutions in which mutations have extra effect [Pagie and Hogeweg, 1997].
Selection of the system for this lower mutational robustness causes greater
mutational effects when the phenotype is not yet generalizable. This allows
fast and easy adaptation to new problems, forcing the final adaptation to
the complete set of possible problems to be highly generalizable and more
compact in comparison with the complete evaluation case. When all the
possible problems are encountered every generation (a static evolutionary
target), the system will try to adapt to all the circumstances simultane-
ously, trying to code for a very rugged fitness landscape. This brings a great
risk for evolution to get stuck on the local (sub)optima. The pitfall is that
evolution in this setting does not really ’adapt’ to the circumstances, it tries
only to extend to other local optima by adding more genetic material. This
causes great mutational robustness with almost no generalizability. As a
result the evolved genotypes are very complex and overfitted to the local
optima. Adaptation to new problems can only be reached by adding even
more genetic material, resulting in a population of overspecialized individu-
als.

3.4 Coevolution

3.4.1 Mutual Selective Pressure

In biology, coevolution is the mutual evolutionary influence between two
species. Each party in a coevolutionary relationship exerts selective pres-
sure on the other, thereby affecting each other’s evolution. The exerting
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of selective pressure on each other, forces both of the coevolving parties to
keep evolving at higher rates than they would do solitary. This intrinsic
property of influencing each other’s evolution is also the base for the success
in applying coevolution in the field of evolutionary computation.

When species coevolve, their respective levels of fitness depend not only
on their own genetic structure and their level of adaptation, but on the de-
velopment of another species as well. The gene pool of one species creates an
extra selection pressure on the other species. Mutual evolutionary influence
between populations does of course not necessarily imply mutual depen-
dence. The host of a parasite, or the prey of a predator, does clearly not
depend on its enemy for survival, however they truly influence each other’s
evolutionary direction. This exerted pressure leading to coevolutionary dy-
namics can either be described as positive or negative pressure.

Certain plants, which have evolved valuable food sources in order to at-
tract insects are an example of exerting positive coevolutionary pressure. The
attracted insects, such as bees, provide a good means to distribute pollen
for the plant, far more efficient than the distribution of pollen by wind. The
coevolutionary process has led to deep flowers which fit the tongue-length
of specific species of bees. The flowers are sturdy and irregularly-shaped
and can even have a specifically-designed landing platform. For example,
snapdragons will only open for a bee of the right weight. The bees on the
other hand have nectar as their main food source. Bees have evolved a long
proboscis (a complex sort of ”tongue”) that enables them to obtain the nec-
tar from flowers and they are totally specialized for feeding on nectar and
pollen.
The danger of this positive kind of coevolution is that both species could
evolve into a position of total dependency through increased specialization,
increasing the risk of extinction if either species declines or ’cheats’ in the co-
evolutionary relation by changing the mutualistic role into a parasitic one.
In some cases mutual coevolution is quite more specific, for example be-
tween two cellular functions. Current day mitochondria and chloroplasts
were once free-living unicellular individuals. The mitochondrial genomes
coevolved with some of the nuclear genes that now function within the mi-
tochondria. During this coevolutionary relationship, these cells entered the
cytoplasm of other cells and melted together, with the combination of genes
now regarded as eukaryote mitochondria as a result. This endosymbiotic
transition from multiple cells, each representing a different function, to one
cell with the combined functions can be considered as a case of population
based diversity, which has led to individual based diversity (see section 3.2).
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Strange as it sounds, negative coevolutionary pressure can be considered
more constructive. In order to survive, prey species will continuously have
to adapt defensive or evasive systems to avoid predation. Predators in their
turn, respond by developing mechanisms to evade these defences. Both
species are evolving and luckily in nature neither of the strategies will ever
be perfect. Due to variation in the population some prey are always more
vulnerable, and some predators in the population will be less efficient. The
effect of selection pressure within the populations will therefore be high,
forcing a higher rate of selection for preferable traits and thereby faster
adaptation for both species. The likelihood of extinction in the negative
case is limited, because this kind of evolution mostly does not lead to a
total dependency on each other.

3.4.2 A Coevolutionary Relationship

Several factors influence the likelihood and strength of a coevolutionary re-
lationship. Of course it is necessary to have a certain level of co-occurrence
in order to coevolve; species have to reside at least partly in the same envi-
ronment to interact. The type of the relationship between the two species
before we can speak of coevolution, is also important. Will coevolution bring
mutualistic advantage for both species, strengthen the existing predator-
prey dynamics, or will it only push on the competition? Species that have
intimate relationships, such as a specialistic predator and its prey or a host-
specific parasite, already interact more actively and thus are more likely to
influence each other’s selection pressure. Species that do not directly en-
counter each other but interact through competition for resources, are less
likely to coevolve, but if the strength of the competition is high enough, an
indirect form of coevolution can occur.
Most species experience natural selection from many environmental aspects
(see subsection 2.1.2). It seems therefore unlikely that in nature one species
would act as the sole or even the primary selection pressure on another.
Nonetheless, there are good examples of tightly coevolved relationships
where two populations have a highly specialized interaction. In these cases,
the selective advantages gained by responding to only one source of selection
outweighs other environmental factors.

3.5 Arms Races

In a coevolutionary relationship, an adaptation in one species changes the
selection pressure on the other species, giving rise to a counter-adaptation.
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If this keeps occuring reciprocally, these refined mutual counter-adaptations
may result in an escalation of adaptations from both species, called an ’arms
race’ [Dawkins and Krebs, 1979]. An arms race is mostly considered to be a
negative unstable runaway of the driving force which is generally responsible
for the improvement of species by subsequent adaptations. A nice example of
a (chemical) arms race is the coevolutionary case of the rough-skinned newt
and the common garter snake. The rough-skinned newts produce a potent
nerve toxin that concentrates in their skin, meant for deterring predators.
Garter snakes have evolved resistance to this toxin through a set of genetic
mutations, and prey upon the newts where no other animal is capable of
preying on this newt without adverse effects. The relationship between
the rough-skinned newt and the common garter snake has resulted in an
evolutionary arms race that has driven toxin levels in the newt to extreme
levels.

Dawkins(1979) described the occuring dynamics on the different timescales
of this phenomenon, in terms of a metaphor. He compares a fox chasing a
rabbit with a particular submarine and the ship it is trying to sink. This
race of individuals is on the behavioural time scale. But on the evolution-
ary time scale another kind of race takes place. Submarine designers learn
from earlier failures. As technology progresses, later submarines are bet-
ter equipped to detect and sink ships, and later-designed ships are better
equipped to resist. This ’arms race’ takes place in the longer, historical
time scale and leads to improvement of the design of both submarines and
ships. Similarly, over the evolutionary time scale the fox population may
evolve improved adaptations for catching rabbits, and the rabbit population
improved adaptations for escaping.

3.5.1 Red Queen Evolution

Evolutionary arms races can end in several ways. The most drastic way is
when one species drives the other to extinction. In case of overspecialization
or advanced adaptation, this can mean the end for both species. Another
possibility, exemplified by the still existing flower-bee coevolution, is that
both sides reach a mutual local optimum. Lastly, arms races may have no
stable end at all, when counter-adaptations keep cycling continuously with-
out integrating any new information. This is also known as Red Queen
Evolution [van Valen, 1973].
The fitness of individuals is highly dependent on the environmental influ-
ences (see subsection 2.1.2). So when two (coevolving) species keep adapting
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to each other, the effective environmental selection pressure on the other
changes repeatedly. When species are unable to maintain the integrated
information in the evolutionary time, we speak of a Red Queen evolution:
The populations must continuously adapt to maintain the same level of fit-
ness. Preventing a Red Queen evolution is one of the major dificulties in
coevolutinary computation.

Figure 3.1: Red Queen: ”In this place, it takes all the running you can do
to stay in the same place.”

3.5.2 Life Dinner Principle

Between coevolving populations, Dawkins(1979) argues that as a predator
develops offensive adaptations, the prey will have to counter with defensive
adaptations. This results in a selection pressure that is unequal, because as
Dawkins puts it ”if the predator loses the race, he simply loses a meal. If the
prey loses the race, he loses his life”. This is called the life-dinner principle.
The selection pressure on the prey to evolve new adaptations is higher. Thus
in predator-prey coevolution there is a built-in imbalance between predator
and prey with respect to the penalty of failure. ”Mutations that make foxes
lose races against rabbits might therefore survive in the fox gene pool longer
than mutations that cause rabbits to lose races” [Dawkins and Krebs, 1979].
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3.6 Coevolutionary Computation

Being inspired by biology, it was a logical next step for evolutionary com-
putation to incorporate coevolutinary dynamics into computational meth-
ods. Nowadays, more and more coevolution is regarded as a very suc-
cessful method to strongly improve evolutionary computation [Hillis, 1990,
Juillé and Pollack, 1996, Pagie and Hogeweg, 1997], but it is still a great
minority in the field of evolutionary methods. Coevolution is considered to
be a very efficient method to guide the development of a population of prob-
lems in the best way, enabling the population of candidate solutions to solve
the predefined problem. The exerting of selective pressure on each other(see
subsection 3.4.1) forces both of the coevolving parties to keep evolving and
keeps the problems optimally challenging for evolving candidate solutions
at different stages of evolution until the evolutionary target is reached.

Coevolution is implemented in many ways, however roughly three main
forms of coevolutionary models can be distinguished [Pagie and Hogeweg, 1997]:

• Host-parasite models in which candidate solutions are evaluated on
the basis of small subsets of the total problemset which defines the
evolutionary target. The subsets of evaluated problems coevolve with
the population of candidate solutions [Hillis, 1990].

• Competitive evolutionary models have candidate solutions competing
with each other in game-like tournaments. The fitness of the solutions
depends on the ratio of wins and losses in these tournaments. The
coevolutionary dynamics operate solely within one population, the
evolutionary target can be either predefined or dynamically defined
in terms of the behavior of the opponent [Angeline and Pollack, 1993,
Sims, 1994, Juillé and Pollack, 1996, Rosin and Belew, 1997].

• Cooperative evolutionary models use individuals of several different
(coevolving) species. Individuals from the different populations are
combined before they are evaluated with respect to an evolutionary
target [Husbands, 1994, Potter and De Jong, 1994].

In our experiments we use the same general setup as [Pagie and Hogeweg, 1997],
which uses the first option, the host-parasite implementation, in a model for
coevolutionary function approximation. Therefore the term ’coevolution’
is used in our experiments for the coevolutionary dynamics between two
populations of different ’species’.
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3.6.1 Hosts and Parasites

In order to get coevolutionary dynamics, the evolutionary goals of individ-
uals in the one population are opposed to those in the other population
(fig 3.2. Because these are nevertheless dependent on each other, Hillis
called them in describing his coevolutionary model, hosts and parasites
[Hillis, 1990]. These terms reffering to a population of solvers or candi-
date solutions and a population of problems respectively, can give rise to
confusions because of the counter intuitive meaning of parasites and hosts,
when compared to the biological perspective. The sometimes used notions
predator and prey would maybe already be a more fitting description in
the biological sense of our model. The most unambigious in the sense of
evolutionary computation still keeps to be problems and solvers. However,
because we use the same general setup as [Pagie and Hogeweg, 1997], we
also adopted the parasite-host terminology.

Figure 3.2: the evolutionary goal of the host-population is opposed to the
parasite-population

3.6.2 The Ideal Trainer

The adaptation of a host population in order to solve certain problems can
be considererd a process of learning. Optimal learning is a complex notion.
In evolutionary computation a system evolves by learning to cope with dif-
ferent circumstances or by solving different problems. Solving a problem,
individuals try to improve their ’knowledge’ on the problem domain. In this
way the system gathers information which finally has to lead to a solution,
which can account for all the problems.
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As in most learning processes, both human and machine, the level of
training difficulty is highly important. When the problems are too easy or
too difficult, there is generally no progress whatsoever. The nice aspect of
using coevolution for computational learning is that not only the learners
evolve to become better, the problems also evolve, trying to pinpoint the
weak spots of the learner. It is, however, not enough to just point out
the weaknesses of the system, for improving its overall performance. In or-
der to gain the most progression, the learning individuals need problems
which fit their current ’knowledge’ the best. Pagie and Hogeweg(2000) al-
ready pointed out that in the case of the majority-problem the best way
to evolve good solutions is to give the system such a fitness-advantage that
easy problems were first evaluated and only when those ’easy’ problems
where solved, the system proceeded, trying to solve the more difficult cases.
In [Epstein, 1994, Juillé and Pollack, 1998, Pagie and Hogeweg, 2000b] and
[De Jong and Pollack, 2004] is an ideal trainer described. They all describe
such as a trainer which presents problems of increasing difficulty. This is
often done with such a learning gradient or a domain specific fitness evalu-
ation.
We will demonstrate in our experiments that spatial pattern formation can
force the system dynamics in such a way that it can be considered as a
general guide to ideal learning.

3.7 Spatial Coevolution

In the perspective of biology, a world without space is not possible. All
organisms are constrained to the environment where they live. The interac-
tions with other organisms and with their environment are purely local. A
species cannot have a direct influence on the evolution of another species,
located somewhere else in space.
In evolutionary computation, spatial embedded models weren’t considered
useful until the nineties of the last century. The calculation time of all
the necessary parallel computations are a great problem for serial comput-
ers. Hillis produced the first massive parrallel computer as a huge Cellular
Automata, a so called connection machine, enabling a different use of com-
putation. Using his connection machine, he was in 1990 the first to use
space in a coevolutionary optimization proces, confining the interactions
of coevolving individuals to their local neighborhood. Hillis already noted
that the coevolutionary process improved when he placed the two coevolving
populations in a spatial environment, forcing the interactions to be local. In
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his model on the evolution of sorting algorithms, this spatial induced sparse
fitness evaluation gave rise to very good results [Hillis, 1990].
Pagie and Hogeweg also used a spatial environment in their function ap-
proximation model [Pagie and Hogeweg, 1997] and already noted that spa-
tial embedded models had some important features which in a non-spatial
system had to be explicitly declared by the use of different heuristics. More
genetic diversity is naturally preserved in the population and the weak spots
in the population of candidate solutions are targeted more effectively. Their
results are repeated several times and the role of space is more and more
accepted as an effective method to improve coevolutionary computation
[Pagie and Mitchell, 2002, Williams and Mitchell, 2005, Mitchell et al., 2006].

How spatiality exactly contributes to the success of coevolutionary func-
tion approximation is still unknown. The formation of spatial patterns is
probably the most important feature brought in by a spatial environment
[Boerlijst, 1991, Savill et al., 1997], also descibed in [Pagie and Hogeweg, 1997,
Johnson and Boerlijst, 2002]. Spatial patterns give the coevolutionary sys-
tem a better chance to organize itself in a convenient way, forcing the nec-
essary information for evolutionary improvement to be presented at the ap-
propriate timescales and in the right subsequent order(see subsection 3.6.2).
These self-organised spatial structures can form a new level of selection
[Boerlijst, 1991] acting on (sub)populations, increasing competitive pressure
on the individuals. The spatial patterns also effectively constrain the evolu-
tionary dynamics in such a way that the information can be integrated with-
out sliding down into a Red Queen evolution as discussed in subsection 3.5.1
or other problems associated with coevolution [Cartlidge and Bullock, 2004,
De Jong and Pollack, 2004, Paredis, 1997].
In contrast to the belief that the persisting diversity and the targeting of
weak spots in the population of hosts are the main reason for superior perfor-
mance of coevolutionary computation [Williams and Mitchell, 2005], we will
conclude that the success crucially depends on the selforganizing dynamics
of spatial patterns.

3.7.1 Cellular Automata

In order to investigate the role of space we implemented our model in a
two dimensional Cellular Automata (CA). A CA consists of a regular grid
of cells, each one with a finite number of states. Time is discrete, and the
state of a cell at time t is based on the values in its neighbourhood at time
t − 1. When the rules are applied to the whole grid a new generation is
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created. Behavior of a subclass of Cellular Automata is considered to be
’on the edge of chaos’ in the sense that the only way to predict the state of
the whole population at a certain time is by means of going through all the
subsequent preceding states. A well-known example of a two dimensional
CA is Conway’s game of life. In this game local interaction in combination
with only 3 simple rules already leads to ’complex’ macro-scale behavior. In
this way a variety of spatial patterns can emerge on such a grid as meso-scale
patterns.
Our CA consists of a 50 ×50 2-D toroidal square lattice, with one host and
one parasite per grid cell.
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Chapter 4

Experimental Setup

4.1 The Model

For our experiments we use the same general setup as [Pagie and Hogeweg, 1997].
This setup uses coevolutionary optimization in order to approximate a cer-
tain predefined function. This predefined function acts as the global evo-
lutionary target. The system consists of two coevolving populations. One
population of candidate solutions, the hosts, coevolves with a population of
problems, the parasites. Populationsize is kept the same. Each host has a
mathematical equation as a genotype, which codes for a corresponding func-
tion, the phenotype. The problems consist of an (x,y)-value as a genotype,
which code for a phenotypic unique value, comprised to the global evolu-
tionary target. The coevolutionary dynamics arise because the ’evolutionary
goals’ of the parasites are opposed to the global evolutionary target of the
hosts, but fitness is assigned depending on each other (see subsection 3.6.1).
The hosts try to evolve the phenotypic form of the global evolutionary target
and the parasites evolve within this global evolutionary target trying not to
be solved.

A good biological metaphore is to regard the (x,y)-values of the parasites
as circumstances in which the host resides. The degree of adaptation to a
particular circumstance is defined as the host’s given approximation of the
unique solution based on the (x,y)-value. When a host can solve all possible
problems, the host is considered to be adapted to all possible circumstances,
having a phenotypic structure identical to the predefined function. This will
give maximum fitness for all the possible problems; the global evolutionary
target is reached.
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In our experiments we will describe the role of spatial pattern formation,
comparing it with a well mixed system. Both the systems are modeled in
Cellular Automata. Our CA consists of a 2-D toroidal square lattice, with
one host and one parasite per grid cell. The size of the lattice is 50 ×50
cells, defining the population size at 2500. Competition for growth is local
in space. Each individual has to compete within their 3 × 3 neighborhood
for reproduction. A selected individual will grow into the central cell of
the nine cells under consideration. In our well mixed counterpart the whole
population of hosts and parasites is mixed after each timestep in order to
exclude spatial pattern formation. Note that this well mixed model differs
only in spatial pattern formation. Competition is still local, evaluation is
asymmetric and sparse.

4.1.1 Technical Aspects

We used the CASH2-library for implementing a spatial environment in our
model. This is all done with the C++ programming language. Like in
genetic programming the solvers consist of a tree like representation of func-
tions, i.e LISP-functions. We used DrScheme for the functional program-
ming part of our model. With Guile, a Scheme-interpreter for C++, we
could use both the power of CASH2 in simulating CA’s and a practical func-
tional representation of the genetic functions. Despite of the problems which
arise when using different programming languages and interfaces simultane-
ously in one model, the overall usage of the model and the possibilities to
substract data were sufficient.

4.2 Global Evolutionary Targets

As global evolutionary target we evolved our system towards two different
functions:

Target(x, y) = x3 + y3 + 5x2 + x (4.1)

Target(x, y) =
1

1 + x−4
+

1
1 + y−4

(4.2)

Model #1 reffers to our model with function 4.1 as a global target. This
function has a landscape which is monotonously rising through the domain,
slightly skewed into one dimension. Because of this particular landscape we
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Figure 4.1: functionlandscape of functions 4.1 and 4.2

can better follow the evolutionary process and therefore study what role the
appearance of a function has on the process.

Model #2 uses the same target function which [Pagie and Hogeweg, 1997]
used, function 4.2. This function is considered to be a nice benchmark for
coevolutionay function approximation and is thoroughly used investigating
spatial coevolution. [Pagie and Mitchell, 2002, Williams and Mitchell, 2005,
Mitchell et al., 2006]

4.3 Fitness Evaluation

The problems on which fitness of the host is evaluated, are based on X,Y-
values. For both functions there are 26 x 26 problems regularly distributed
over the corresponding domain. For function 4.1 the domain is X =0.2, 5.0
and Y = 0.2, 5.0 with an interval of 0.2. For function 4.2 the distribution
is in the domain X= -5.0, 5.0 and Y= -5.0, 5.0 with an interval of 0.4. The
coevolving parasites can only adopt these values.

The fitness of a host is based on minimizing the distance between the
function solution and the target of the nine parasites in its neighborhood.
The parasite fitness is defined as maximizing the distance between target
function and solution of just one host (further explained below). This asym-
metry is found to give better results with respect to optimization than a
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symmetric evaluation [Pagie and Hogeweg, 1997]. The host’s fitness is less
affected by changes in a parasite, the parasite however can react directly to
fluctuations in the host. These asymmetric dynamics can also be seen in
nature as Dawkins life-dinner principle shows (see subsection 3.5.2). The
built-in imbalance between host and parasitie with respect to penalizing
failure, is even strengthened in our model, using a worst case scenario for
the parasites. Pagie and Hogeweg(1997) based the fitness of a parasite on
the host in the same grid cell. In our model the fitness of parasites is based
upon the best given approximation of a host in the 3 × 3 neighborhood.
Because the evolutionary goals of both populations are opposed, this is the
worst case scenario for the parasite. In this way the selection-pressure for
parasites is increased even more.
Note also that the sparse fitness evaluation has in this way an important ex-
tra feature. Because each host has his own neighborhood with corresponding
parasites, competition is between hosts which have a fitness assigned from
a different subset of the problem space. This increases the effectiveness of
sparse fitness evaluation by, in a way, comparing the different parasites on
distinguishing capability.

The selection of hosts is proportional. Each fitness of all the hosts in
a neighborhood are summed and a random value in between is generated,
selecting the corresponding host for reproduction. With this method the
chance of reproduction is increased proportionally with the fitness and the
selection pressure can be conveniently adjusted by using an exponential fac-
tor. Selection is done simultaneously in order to prevent overlap in genera-
tions.
Parasites are ranked according to their fitness and the ith ranked parasite
is selected1 with probability

(
1
2

)i.
The fitness for the host is defined as

Fitness(host) = e−n∗d

where distance d is defined as

d =
9∑

i=1

|T (pi)− h(pi)|
M

and M = 1 for absolute and M = T (pi) for relative evaluation.
T (pi) is the target of parasite i subjected to the global evolutionary target.

1to ensure
∑i=max

i=1 probability = 1 the two last ranked parasites use the penultimate
rank.
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h(pi) is the host’s approximation of T (pi) based on the X,Y value of parasite
i. The term n normalizes the distance. In all our experiments n = 3

4 .
To prevent the solutions of the hosts getting too large, we added a small

size penalty. When the length of the solution passes 65 nodes (which is far
above the necessary number of nodes in a correct solution) an exponential
penalty is substracted from the fitness. This penalty has a maximum of 1

9 th
of the maximal fitness. This is sufficient to highly improve calculation time
and keep the solutions short. This penalty is biologically justified in terms of
the error threshold. In nature there is also a ’penalty’ on increasing a genome
size, because the chance for a mutation is per position, not per genome.
When increasing the genome size, the chance for a mutation somewhere in
the genome also increases. In our model mutation is defined per genome
instead of per position. In simulations without some sort of restriction
on the genome size, it can be advantageous to evolve redundant code in
order to reduce the change of getting a ’lethal’ mutation in the important
part of the genome. Without disadvantages an extreme long genome-part
can be evolved and multiplied with zero. With our small size penalty, this
phenomenon is excluded.

4.4 Genetic Representation

The genetic representation of the solutions is based on genetic programming
and is essentially the same as proposed by [Pagie and Hogeweg, 1997]. The
genotype of the host is a hierarchal list-representation(LISP) of a function
tree. The function set consists of the operators {+,−, ∗,%} where we use
the protected division operator % ,such that division by zero gives 1.0. The
possible terminals are {x, y,<}, where < is a constant. This constant is
defined at declaration as a random constant between -1.0 and 1.0. Note
that almost in all cases the system prefers to make a constant by dividing
one variable by itself. Constants are kept as a possibility to extend the
possibilities of the system and maintain the ’freedom’ of the evolutionary
process. The genotype of the parasite represents one problem in problem
space, specified by only one X,Y-value. Hosts selected after evaluation are
subject to point mutations and crossover, with a 20% and 40% chance, re-
spectively. In order to use an ancestor trace (explained in section 4.5), we
use clonal reproduction with gross chromosomal rearrangements. This kind
of internal crossover replaces a randomly chosen sub-tree in the selected host
with a randomly chosen subtree of a copy of itself. In our experiments we
observed that this internal crossover has the same success rate as external
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crossover. Next to the fact that the fundamental mechanism is the same,
deletion and duplication in combination with point mutation seem powerful
enough for fully integrating the necessary information in an evolutionary
run. In this way we can easily examine the information flow within the
genomes of candidate solutions through evolution. Every time step also
10% of the parasite-population are mutated. This means that one of the
variable values is changed into an adjacent value(.e.g plus or minus 0.4).
The genotypic space is not toroidal. When a value of a parasite is on the
border of the problem domain, it can only mutate in one direction.
A solution is considered completely ’correct’ if the sum of the absolute dif-
ferences with the target in evaluating all 676 problems in the domain is less
than 0.01. In practice all our evolved correct solutions exactly matched the
evolutionary target, giving no difference in evaluation. A solution is only
marked as ’correct’ when the solution stays in the population for at least
50 time steps. In practice we observed a total domination of the solution,
causing it to spread through the whole population in a couple of genera-
tions. Each run is started with small, randomly created functions for hosts
of maximum depth 3. Because initialization with random values for the
parasites gives considerably better results, this will be the case when not
mentioned otherwise. When no solution is found within 1000 timesteps the
simulation will be stopped, otherwise simulations are stopped after reaching
the solution and staying in the population 50 time steps.

4.5 Observables

In order to observe the spatial pattern formation we output the different
values present in each grid-cell of our CA with a color palette. We can plot
the fitness of the parasite, the fitness of the host and the X,Y value of each
parasite (divided in 2 separate plots) in space.

In our comparison between coevolution with and without pattern forma-
tion, we use an ancestor trace. All new individuals entering the population,
originating by mutation, get an identifier and a list of its ancestors. In this
way it is possible to trace back all differentiation and speciation leading to
an individual in a time step. Every time step 60% (40% internal crossover
and 20% point) of the whole population mutates, so constructing a tree
with all the mutations in one time step gives a representative view on the
mutational branches leading to all the hosts in that population.
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Chapter 5

Experimental Results

5.1 Efficacy of the Optimization

Figure 5.1: Spatial patterns in problem space of model #1. Left for X, right
for Y. Red denotes a high value, black denotes zero. Intermediate values are
in between.

As in most spatial coevolutionary processes, pattern formation is an im-
portant feature [Boerlijst, 1991, Savill et al., 1997, Pagie and Hogeweg, 1997].
Figure 5.1 and 5.2 visualize the pattern formations from parasites in both
our models, showing waves of parasites with alternating high X,Y values.
This pattern formation is the driving force in the dynamics in both systems.

Considering the results for model #2, table 5.1 shows that the well-
mixed system fails in almost all simulations in finding a correct solution. In
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Figure 5.2: Spatial patterns in problem space of model #2. Left for X, right
for Y. Red denotes a high value, black denotes zero. Intermediate values are
in between.

our system with pattern formation however, 90% of the runs gives a correct
solution, almost always within 300 time steps. This dramatic difference in
performance can be totally attributed to the occurrence of pattern forma-
tion.

Method Success rate
Spatial patterns 27/30(90%)

Well mixed 3/30(10%)

Table 5.1: Success rates of model #2

5.1.1 Variation

In contrast to expectation we see a higher parasite diversity in the well
mixed model than in the spatial model (Shannon diversity is 15% higher at
all levels of course graining). Also the distance between observed parasites
at one location of the grid in subsequent time steps is higher in the mixed
case. In the spatial model more than 50% are the same in subsequent time
steps (see figure 5.3), which corresponds to the observed waves of similar
parasites. The hosts observe even less variation because they travel along
with the waves. Intuitively, one would expect this lack of information to
harm the coevolutionary optimization. Our results show the opposite effect.
The scale of the waves is a selforganizing property, which depends on the
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rate of adaptation. In this way, in combination with the right fitness eval-
uation, the interconnecting subpopulations organize themself into an ’ideal
learner/trainer’ system.

Figure 5.3: Distance between subsequent parasites at random position.
Black denotes the spatial system, grey the well mixed.

5.2 Coevolutionary Dynamics Depend on Fitness
Evaluation

As discussed in 3.6.2 an ideal trainer is described by many as a trainer which
presents problems of increasing difficulty [Epstein, 1994, Juillé and Pollack, 1998,
Pagie and Hogeweg, 2000b, De Jong and Pollack, 2004]. This is often done
with a learning gradient or a domain specific fitness evaluation. Can we
demonstrate that spatial pattern formation can force the system dynamics
in such a way that it can be considered as a guide to ideal learning? In order
to grasp the full dynamics of coevolutionary function approximation, we first
test on model #1 in which the landscape is monotonously rising through the
domain, slightly skewed into one dimension. At first sight it seems that this
function has to be far more easy to solve for our coevolutionary system, but
this is not the case. It even turned out that the parameters which give a
90% performance in model #2, cannot find any solution for this polynomial
function. In order to get correct solutions in model #1 the fitness evaluation
has to be relative instead of absolute. This can be understood if we examine
the parasite behavior induced by the fitness evaluation. When the prob-
lem domain is monotonously rising and the evaluation is absolute, all the
parasites clump in the highest part of the domain, X=5.0,Y=5.0. Here the
absolute fitness advantage for parasites is highest. Because of this clump-
ing, hosts can only evaluate one instance out of all problems. Variation is
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minimized and the solution cannot be found through the coevolutionary pro-
cess. Relative fitness evaluation for function 4.2, in contrast, will result in
all the parasites clumping in the lowest part of the problem domain. Small
inaccurate approximations of the hosts compared to the small target give
a relatively high fitness advantage for the parasites. Because this is also
the most difficult part of the landscape to solve, information integration is
stopped. Only when the preferred problems are solved, the parasites will
evolve to other regions of the problem space enabling the host to integrate
enough information over the generations to solve the complete problem. In
combination with the spatial properties of the system, this is the case for
relative evaluation in the polynomial function and absolute for function 4.2.
For similar reasons [Pagie and Hogeweg, 2000b] found that for the majority
voting task, fitness for solving easy problems(the extreme densities) had to
be larger than for harder problems.

5.3 Parasite Speciation

Figure 5.4: parasite speciation in model #1 (function 4.1).

To truly understand the role of pattern formation in our system we have
to look at the parasite behavior. Within model #1 we observe parasite spe-
ciation, originating in the spatial pattern formation. A wave like pattern
of subsequent alternating subpopulations travels through the whole space.
These waves are separated subpopulations of parasites within the popula-
tion. As can be seen in figure 5.4 we observe separate subpopulations of
parasites in the population in the whole simulation until a correct solution
is found. Because these subpopulations target different weaknesses in the
host population, they form the wavelike patterns and can in this way coexist,
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maintaining parasite-variation. The present parasite phenotypes plotted in
an intermediate time step show that the parasites have speciated into very
specific regions. These regions are the same for every simulation of model
#1. When function 4.2 is the evolutionary target (and the evaluation is
absolute), we also observe speciation in the parasite population(figure 5.5).
Again specific regions in problem space are targeted by the speciated par-
asites. Because of the symmetry of the landscape, the regions differ per
simulation, however always out of a small subset of the problem space.

Figure 5.5: parasite speciation in model #2 (function 4.2).

In both cases the parasites speciate within the first 25 steps of evolution
into different subpopulations. The whole parasite population exists only of
these subpopulations. Although the regions where the subpopulations linger
differ per time and subpopulations do travel to other regions, great parts of
the problem space will not ever be covered during the simulation. However,
correct solutions are found.

5.4 Host Speciation

In the well mixed scheme (figure 5.4 ) all the offspring comes from only one
ancestor. If in contrast we look at (fig. 5.4) the most striking difference
is that in the spatial model, within all colored time steps there is offspring
traceable back to two different ancestors present at initialization.

The above described parasite pattern formation is only one side of the
coevolutionary coin. The wavelike patterns of the parasites force the hosts to
adapt to different subpopulations, competing in space, which results in wave-
like patterns of subsequent host-subpopulations. In model #1 we observe
subpopulations of hosts speciating into a different dimension of the target
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Figure 5.6: combined ancestor trace in system with spatial patterns shows
Multiple sustaining lineages:genetic variation maintained
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Figure 5.7: combined ancestor trace in well mixed system shows only one
sustaining lineage
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function, in order to specialize towards one of the parasite-subpopulations.
In space we can again distinguish the subsequent waves of different subpopu-
lations alternating each other. These patterns fit the parasite patterns, each
subpopulation almost entirely on top of each other, following each other
through the space. The spatial patterns we also observe in model #2, again
indicating speciation. Only the waves are more difficult to distinguish be-
cause of the faster dynamics and different amount of subpopulations. In
order to verify the host-speciation in model #2, we used the ancestor trace.
In this way we can nicely see the evolutionary path and the mutational
branches leading to the final population. To identify the role of space in this
process, we constructed trees from the ancestor traces, both in the pattern
formation case of model #2 as in the well mixed case1. These trees consists
of the whole mutated population at three different time steps, indicated by
different colors. Evolution takes place in the direction of the arrows, so the
outmost branches are the present population at the time indicated by the
corresponding color. The hosts present at t = 1 are indicated.

A second observation here is that the different mutational branches keep
expanding in the different time steps, indicating different genetic branches
present in the same population. In the tree from the well mixed model
we observe only one sustaining lineage leading to the final population. At
the intermediate colored time steps the tree seems to expand its branches,
however only one single branch takes care for the whole population in the
next depicted time step. This difference in ancestor trees shows exactly the
influence of spatial pattern formations. In the spatial model subpopulations
adapt to different subpopulations of the parasite, so that genetic variation
only diminishes when a genotype with the correct solution comes into exis-
tence and naturally dominates and takes over the population. The different
branches are forced to compete with each other and force the different sub-
populations to adjust to the parasite subpopulations, sustaining progressive
evolution. In the well mixed model, all variation originates from the same
ancestor. The differentiated branches at t, are gone at time step t = t + 50
and the whole population at t = t + 50 originated out of only one genotype
present at t. This is the typical pattern, known as Red Queen evolution
(subsection 3.5.1), which is observed in many host/virus interactions like
Influenza in humans.

1These two ancestor traces are randomly taken samples of both methods. However,
we did observe ancestor traces with the expected corresponding clear cut patterns in
almost all randomly examined simulations(5/6 in the spatial case, 4/6 in the wellmixed
counterpart).
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Chapter 6

Conclusion

6.1 Summary and Conclusion

In this thesis three research questions were postulated. In answering the
first question How does speciation of a population affect the adaptation of
individuals? we compared a coevolutionary model including spatial pattern
formation with a variant where all the individuals were spatialy mixed after
each timestep. This well mixed model differs only in the lack of the emer-
gence of spatial patterns. The competition is still local and the evaluation is
still asymmetric and sparse. The difference in behavior as well as the success
rate can in this way be subscribed to the presence or absence of space. The
results are clear on the matter of success rate: In 90% of the simulations, our
spatial model produced a global solution against an unsatisfactory success
rate of 10% in the well mixed case. Thus, the success of spatial coevolution-
ary function approximation can almost entirely be ascribed to the presence
of spatial pattern formation. Where the spatial embedding enables specia-
tion, the spatial patterns are formed by this speciation of the population,
suggesting that the speciation of the population has a positive effect on the
individual adaptation.
How this advantage is reached by the emergence of spatial patterns is adressed
in the second research question:What is the role of space in spatial coevolu-
tonary function approximation? The behavior and emergence of spatial pat-
terns is best explained, beginning within the parasite population. In both
models we see clear speciation in problemspace within the population of
parasites, only the behavior of the subpopulations differs per model. In the
spatial variant the different subpopulations are quite stable, quite smoothly
travelling through problem space and only gradually changing in number
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of individuals within the different subpopulation. On the contrary, the well
mixed case displays major fluctuations in the number of individuals per sub-
population. As a result, in the spatial model it is possible for the spatial
distributed host population to adapt to different subpopulations of parasites,
each lingering in another part of problemspace. Due to this specialization,
the host population also splits into subpopulations. The combination of an
ancestor trace and the use of clonal reproduction with gross chromosomal
rearrangements instead of traditional crossover, make it possible to visualize
speciation within the population of hosts, showing the mutational branches
leading to the final population. Where the ancestor tree of the well mixed
model only shows one lineage sustaining through the course of evolution,
in the spatial model multiple lineages can keep expanding. Through these
multiple lineages the genetic variation is maintained in the population over
the long timescale.
Concerning information integration we now can observe a population based
diversity. The different subpopulations are specialized on different subsets of
problemspace and hence have integrated different parts of the information.
Due to this self structuring of the system, a new level of selection arises at
the level of the subpopulations. This newly obtained multilevel character
of our system is probably the key element in answering our last research
question, namely What is the role of population based diversity for the in-
dividual information integration? The population based diversity results in
competing subpopulations in space and the resulting spatial patterns are
formed in such a way that the system has to compete within- and between
emerged subpopulations. The patterns ’guide’ the learning process in space
and provide in combination with the right fitness evaluation a sufficient
learning gradient, presenting problems of different difficulty in the right or-
der, necessary for adaptation of the host population. Relevant information is
also presented at multiple timescales, guiding the coevolving subpopulations.
Therefore, due to the selfstructuring of the system, the selforganizing dy-
namics of spatial patterns and multiple levels of selection, population based
diversity can lead to individual information integration. We conclude that
the influence of space cannot be attributed to local competition, or higher
diversity alone, but depends on the selforganizing dynamics of the spatial
patterns formed by the speciation of the population, and the appropriate
timescales for adaptation generated.
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6.2 Discussion and Future Work

After the work on spatial coevolutionary computation from Pagie and Hogeweg(1997),
the role of space is more and more accepted as an effective method to im-
prove coevolutionary computation. However there still is a lack of basic
research on the fundamental mechanisms of space in a coevolutionary set-
ting. The results shown in this thesis are at least promising and hopefully
will revive the interest in the spatial variant of coevolutionary computation.
A lot of work still has to be done. Upcoming research will include a sta-
tistical analysis in order to reinforce our results. The exact role of space is
still not entirely explained, so future research may focus on investigating as
many facets of space as possible.
A different important aspect which is still relatively unknown is to which
extent the spatial location of a mutational branch over time is important
to evolve into a global solution. We have to investigate where the lineage
leading to the global solution originates and lingers in space through the
evolutionary course. Is it advantageous for a mutational lineage to dwell on
the borders of subpopulations in order to fully experience all levels of selec-
tion or does the global solution originates in the ’safe’ center of a competing
subpopulation?
A very surprising result is the fact that the encountered diversity of problems
at a random position in space seems to be higher in the well mixed system.
We have to investigate if this is also the case for the encountered diversity of
individuals, when individually followed in space and time. Related to this,
it might also be interesting to study the role of sparse fitness evaluation in
this context. However, because of the sparse fitness evaluation each host has
its own neighborhood with corresponding parasites, therefore competition
is between hosts which have a fitness assigned from a different subset of the
problem space. This increases the effectiveness of evaluation by comparing
the distinguishing capabilities of the different parasites, maybe compensat-
ing for a lower variety. We think that only if the problems speciate such
that ’easy ones’ are first evaluated, the coevolutionary process is successful.
Can we consider space to be in some senses an ideal trainer?
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