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Abstract

Autonomous systems such as the robots sent on exploratory missions in space or
underwater must have the ability to learn new things and recognize new objects
after they have been deployed, and must take decisions during extended periods
of time within a constantly changing environment. Lifelong machine learning is a
key component for those systems and something we need in order to achieve real
artificial general intelligence. By levering the power of hierarchical reinforcement
learning we can create systems that can effectively and efficiently retain and reuse
knowledge, a key aspect of lifelong machine learning. In this thesis we design a
system that is able to learn new tasks throughout its lifetime, while still being able
to remember how to solve tasks that it had already learnt. We create a simulated
environment in which to test this new system and compare it to a more standard
Q-learning approach. The empirical results confirm that the proposed system is able
to function in the simulated environment and that, with more research involved, it
could become a viable solution for the aforementioned real life systems.

Keywords — Hierarchical Reinforcement Learning; Lifelong Machine Learning;
Autonomous Systems; Machine Learning
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Nomenclature

AGI Artificial General Intelligence

AI Artificial Intelligence

ER Experience Replay

HRL Hierarchical Reinforcement Learning

LML Lifelong Machine Learning

ML Machine Learning

MLP Multi Layer Perceptron

MSE Mean Squared Error

RL Reinforcement Learning
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Chapter 1

Introduction

Artificial intelligence might be one of the most popular topics nowadays. Vast
amounts of resources are being poured into universities and big research labs. Every
company that wants to survive the new decade is trying to incorporate it into their
product line and services. Simply stating that some product uses AI technology sells
more. All this hype around AI has originated cases such as companies claiming to
incorporate AI into their systems when all they do are simple operations.

But, what is intelligence? If there was a simple and intuitive definition we
wouldn’t have cases as the aforementioned. People would be able to judge easily if
something had AI or not. However, it’s not easy to come up with a single consensus
definition of intelligence. Even among experts, there are several different definitions
of that concept. One of the fathers of AI, John McCarthy, defined it as: “Intelli-
gence is the computational part of the ability to achieve goals in the world. Varying
kinds and degrees of intelligence occur in people, many animals and some machines”
(McCarthy, 1998). The definition of intelligence is very much linked to our under-
standing of human intelligence, or equivalently, the human brain. Thus, since our
understanding of the brain is limited, so is our capacity to define the boundaries of
what is and what isn’t intelligent. The term Artificial General Intelligence (AGI)
was coined to refer to the hypothetical intelligence of a machine that has the capacity
to understand or learn any intellectual task that a human being can.

One characteristic that we can observe in organisms with high degrees of intel-
ligence, is their ability to learn continuously throughout their lives. Humans are
exceptionally efficient at storing new skills and reusing them to solve new problems.
If a person learns how to ride a bike, s/he can then learn how to ride a motorbike
much faster, thanks to his/her ability to reuse the skills previously learnt while
learning how to ride a bicycle.

The field of Lifelong Machine Learning (LML) studies systems that can learn
many tasks over a lifetime from one or more domains. These systems should effi-
ciently and effectively retain the knowledge they have learned and use that knowl-
edge to more efficiently and effectively learn new tasks (D. L. Silver, Yang, & Li,
2013). Lifelong machine learning is still a large, open problem and is of great impor-
tance to the development of AGI. Many of the tasks that an agent can encounter in
its lifetime can be decomposed into sub-behaviours or skills. For example, consider
making an omelette. An agent needs to crack the eggs, whisk them and put them in
a pan. However, if a new task appears, such as making a cake for example, the agent
can partially reuse the knowledge it gained from cooking the omelette to learn this
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new task faster. Reinforcement Learning (RL) provides a way to learn skills from
experience. It is a branch of ML well suited for various tasks in lifelong learning.
RL techniques have been used in a wide variety of areas with outstanding results.
Near human-level performance has been achieved in programs that can play games
such as checkers (Samuel, 1959), backgammon (Tesauro, 1994) or Go (D. Silver
et al., 2016; D. Silver et al., 2017). RL has also been used in the field of robotics
(Kerzel, Mohammadi, Zamani, & Wermter, 2018; Kober, Bagnell, & Peters, 2013;
Luo, Kasaei, & Schomaker, 2020).

Although at first, RL may seem like a plausible approach to solve the AGI prob-
lem (Hutter, 2007), it is prone to suffer from the curse of dimensionality. The curse
of dimensionality is a term coined by Bellman (1961) to refer to the exponential
increase in the state-space with each additional variable or dimension that describes
the problem. It seems unlikely that complex problems can be described by a small
number of variables. Fortunately, the real world is highly structured and most parts
are independent of most other parts. Many large complex systems in nature exhibit
hierarchical structure that allows them to be broken down into smaller sub-problems.
The sub-problems, being smaller, are often solved more easily. A solution to the
original problem can be obtained by the combination of the solutions to the smaller
sub-problems. This approach of decomposing a complex task can have significant
effects in the time and space complexity for both learning and execution. By intro-
ducing a hierarchical structure to RL (Barto & Mahadevan, 2003), we can reduce
complex problems to a more manageable size. As stated by Hengst (2012), “Hier-
archical Reinforcement Learning (HRL) rests on finding good re-usable temporally
extended actions that may also provide opportunities for state abstraction”.

In this work we focus on finding ways to maximise the capacity of an agent
to effectively and efficiently learn new tasks throughout its lifetime. By leveraging
the potential of HRL, we make an agent able to reuse previously learnt skills when
trying to solve a new task. This re-usability of skills is what makes lifelong learning
viable. Learning to solve a new task from scratch requires the allocation of a certain
amount of computing resources. However, if the new task’s action space overlaps
with previously learnt tasks’ action spaces, previously acquired knowledge can be
reused and thus, the allocation for new computing resources is lower. This can
make the total amount of resources that an agent would need throughout its lifetime
orders of magnitude lower. To test and develop this work, we will use a custom-
made environment. The environment consist of a hypothetical domestic robot that
needs to solve common household tasks. For example, some of those tasks can be
making tea for the home owner or making soup.

1.1 Research Questions

With the work presented in this thesis, we aim to provide an answer to the following
research questions.

• Can we design a system that can learn new tasks throughout its lifetime and
effectively and efficiently retains and reuses previously gained knowledge to
solve new problems?

• How does this system perform in a specific scenario where a simulated house-
hold robot needs to solve common tasks?
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• How does this system perform compared to a standard reinforcement learning
algorithm such as Q-learning?

• Is such a system a suitable option for a lifelong learning scenario, such as the
household robot environment?

1.2 Thesis Outline

This thesis is structured in the following manner. In Chapter 2 a theoretical back-
ground suitable for this thesis will be presented. Basic principles of reinforcement
learning are presented, as well as principles of hierarchical reinforcement learning
and past and current approaches. Also, some information about lifelong machine
learning literature is summarized. In Chapter 3 there is a description of the function-
ality and dynamics of the simulated environment created. Additionally, a detailed
description of the architecture of the proposed solution is given. A description of
the most relevant experiments and their results is presented in Chapter 4. In Chap-
ter 5, conclusions drawn from the experiments are presented, as well as potential
shortcomings of this approach. The chapter ends with some ideas for future work
and a brief conclusion.
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Chapter 2

Theoretical Background

There are some concepts that the reader should be familiarised with in order to fully
understand the work described in the following chapters. These concepts are briefly
explained in this chapter in order to contextualize and help the reader understand
the rest of this writing.

2.1 Reinforcement Learning

“Reinforcement learning is simultaneously a problem, a class of solution methods
that work well on the problem, and the field that studies this problem and its so-
lution methods” (Sutton & Barto, 2018). In contrast to other machine learning
paradigms, such as supervised learning, the learner is not told the correct answer
(which actions to take) but it has to learn by interacting with the environment.
Learning, then, becomes a process of discovering which actions yield the most re-
ward. A reinforcement learning system contains two elements: an agent (or agents)
and an environment. An agent must be able to perceive the state of the environment
to some extent and must be able to take actions that affect the environment. The
agent must also have a goal or goals relating to the environment. Beyond these two
key elements, one can identify three main sub-elements: a policy, a reward function
and a value function.

The policy defines the agent’s way of behaving at any given time. It is a mapping
from states of the environment to actions to be taken when in those states.

The reward function defines the goal of a reinforcement learning problem. After
every single action, the environment sends a numeric signal to the agent. The
objective of the agent is to maximize the total reward it receives over the long run.

The value function indicates what is good in the long run. For instance, the
value of a state is the total amount of reward that the agent can expect to obtain
starting from said state.

2.1.1 Finite Markov Decision Processes

A Markov Decision Process is intended to include the 3 main sub-elements that con-
stitute a reinforcement learning system: states, actions and goals. Markov decision
processes or MDPs are a formalization of sequential decision making, where actions
not only affect immediate rewards, but also future states and by extension, future
rewards. The agent and the environment continually interact with each other for a
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Figure 2.1: Diagram of the interaction of an agent and its environment in an MDP.
Picture taken from (Sutton & Barto, 2018)

sequence of discrete time steps t = 0, 1, 2, . . . . At any given time step t, the agent
observes the environment’s state St ∈ S, and then chooses to take an action At ∈ A.
In the next time step, t+ 1, the environment sends to the agent a numerical reward
signal Rt+1 ∈ R ⊂ R. The agent then perceives the environment’s state St+1 ∈ S. A
diagram of the interaction can be seen in Figure 2.1. The agent and the environment
thereby produce a sequence in the form of:

S0, A0, R1, S1, A1, R2, S2, A2, R3, . . . (2.1)

In a finite MDP, the sets of states, actions and rewards (S, A and R) all have
a finite number of elements. The random variables Rt and St have well defined dis-
crete probability distributions dependent only on the previous state and action. For
particular values of these random variables s′ ∈ S and r ∈ R, there is a probability
of those values occurring at time t, given particular values of the preceding state
and action:

p(s′, r | s, a)
.
= Pr {St = s′, Rt = r | St−1 = s, At−1 = a} , (2.2)

for all s′, s ∈ S, r ∈ R and a ∈ A(s). The function p defines the dynamics
of the MDP. The dot over the equals sign in the equation reminds us that it is a
definition (in this case of the function p) rather than a fact that follows from previous
definitions. The ‘|’ in the middle of it comes from the notation for conditional
probability, but here it just reminds us that p specifies a probability distribution for
each choice of s and a, that is,∑

s′∈S

∑
r′∈R

p(s′, r | s, a) = 1, for all s ∈ S, a ∈ A(s) (2.3)

Goals and rewards

As mentioned earlier, in a reinforcement learning setup, an agent will try to maximize
the reward over the long run. To formalize it mathematically, it needs to maximize
the expected return Gt, where the return can be written as:

Gt
.
= Rt+1 +Rt+2 +Rt+3 + · · ·+RT (2.4)

In some cases, the interaction between the agent and the environment goes on
without limit (T = ∞). For said cases, Equation 2.4 could easily go to infinite.
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For that particular reason, an additional term is added to that equation to make it
mathematically simpler. With the addition of a discount rate the expected return
Gt becomes bounded as t→∞:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞∑
k=0

γkRt+k+1, (2.5)

where 0 ≤ γ ≤ 1 is the discount rate.

Policies and value functions

In nearly all reinforcement learning algorithms, the agent needs to estimate how
good it is for itself to be in a given state (or how good it is to take certain action
in a given state). We can define the “how good” in terms of the expected return.
The value function gives the notion of how good a certain state (or state-action
pair) is. However, since the future rewards that the agent will receive depend on
what actions it takes, value functions are defined with respect to behaviours, called
policies. A policy is formally defined as,

π(a | s) = Pr{At = a | St = s}, for all s ∈ S and a ∈ A, (2.6)

or in other words, if the agent is following policy π at time t, then π(a | s) is the
probability that At = a if St = s. Essentially, π specifies a probability distribution
for each choice of s, and therefore satisfies∑

a∈A

π(a | s) = 1, for all s ∈ S (2.7)

The state-value function for policy π, denoted as vπ, is the expected return
starting from any state s and then following policy π. Formally, vπ is defined as:

vπ(s)
.
= Eπ [Gt | St = s] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
, for all s ∈ S (2.8)

Similarly, the action-value function for policy π, denoted as qπ, is the expected
return starting from any state s, taking action a and then following policy π. For-
mally, qπ is defined as:

qπ(s, a)
.
= Eπ [Gt | St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s, At = a

]
. (2.9)

Value functions satisfy recursive relationships. That is why we can also write
the state-value function vπ(s) as:

vπ(s)
.
= Eπ [Gt | St = s]

= Eπ [Rt+1 + γGt+1 | St = s]

=
∑
a

π(a | s)
∑
s′

∑
r

p(s′, r | s, a)
[
r + γEπ [Gt+1 | St+1 = s′]

]
=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a) [r + γvπ(s′)] , for all s ∈ S,

(2.10)
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and similarly for the action-value function qπ(s, a) as:

qπ(s, a)
.
= Eπ [Gt | St = s, At = a]

= Eπ [Rt+1 + γGt+1 | St = s, At = a]

=
∑
s′

∑
r

p(s′, r | s, a)

[
r + γ

∑
a′

π(a′ | s′)Eπ[Gt+1 | St+1 = s′, At+1 = a′]

]

=
∑
s′,r

p(s′, r | s, a)

[
r + γ

∑
a′

π(a′ | s′)qπ(s′, a′)

]
(2.11)

Equations 2.10 and 2.11 are known as the Bellman equation for vπ and qπ re-
spectively. It expresses a relationship between the value of a state and the values of
its successor states.

Optimal policy

For finite MDPs, there is always at least one optimal policy. The optimal policy
is the one that is always better than or equal to all other policies. The optimal
state-value function, denoted as v∗, is defined as

v∗(s)
.
= max

π
vπ(s), for all s ∈ S, (2.12)

and similarly, the optimal action-value function:

q∗(s, a)
.
= max

π
qπ(s, a), for all s ∈ S and a ∈ A(s), (2.13)

The optimal value function v∗ must satisfy the self-consistency condition given by
the Bellman equation (2.10). We can write the Bellman equation for v∗, or the
Bellman optimality equation

v∗(s) = max
a

∑
s′,r

p(s′, r | s, a) [r + γv∗(s
′)] (2.14)

and the Bellman optimality equation for q∗:

q∗(s, a) =
∑
s′,r|s,a

p(s′, r | s, a)
[
r + γmax

a′
q∗(s

′, a′)
]

(2.15)

We refer to a beautiful and simple explanation of the Bellman optimality equation,
present in the work of Sutton and Barto (2018):

“Intuitively, the Bellman optimality equation expresses the fact that the value of
a state under an optimal policy must equal the expected return for the best action
from that state”
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2.1.2 Exploration–Exploitation Dilemma

Unlike other kinds of learning, one challenge in reinforcement learning is the trade-off
between exploration and exploitation. To maximize the reward, the agent must take
actions that, in the past, were found to be effective. That is called the exploitation
phase. However, it also needs to try actions that it has not selected before in order
to discover the most effective actions. An agent must exploit what it has learned to
obtain reward, but it must also explore so it learns what the best possible action in
each state is.

One commonly used approach to deal with this exploration–exploitation dilemma
is the epsilon greedy or ε-greedy method. With this approach, the probability of
taking an action following the optimal policy π∗ is 1 − ε. A way that is usually
implemented in reinforcement learning algorithms is shown in Algorithm 1.

Algorithm 1: ε-greedy algorithm

In each time step do:
Generate a random number n ∈ [0, 1]
if n < ε then

action ← a ∼ U{A} /* sample a random action */

else
action ← argmaxa∈AQ(s, a)

end
Decrease ε following update rule (Optional) /* e.g. Eq. 2.16 */

To achieve a faster convergence, the value of ε can be slowly decreased during
training. That allows the agent to perform an intense exploration phase at the
beginning, while it does a more exploit-oriented phase towards the end. An update
rule could be simply ε ← ηε, where 0 ≤ η ≤ 1 is a parameter called the decaying
rate. However, this update rule can be defined as anything and another formula
that is commonly used is:

ε = end+ (start− end)e−steps/η, (2.16)

where the start and end are parameters that define the upper and lower limits of
ε respectively, and steps is the total number of steps since the beginning of the
training. This method generates an exponential decay of ε, while also bounding it
to a minimum and maximum values. For instance, if the end value is set to 0.1,
the agent will always take an exploratory action with at least a 10% probability.
Similarly, if the start value is set to 0.9, the agent will explore with at most 90%
probability.

2.1.3 Q-Learning

One of the early breakthroughs in reinforcement learning, and still used nowadays,
is the algorithm known as Q-learning (Watkins, 1989). It is defined by:

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
, (2.17)

where 0 ≤ α ≤ 1 is the learning rate, a parameter that controls the speed at which
Q converges.
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Q-learning is an off-policy iterative algorithm that tries to find an action-value
function Q, which directly approximates the optimal action-value function q∗ (Equa-
tion 2.15). It has been shown to converge to q∗ with probability 1. The simplest
method to store the calculated Q-values is by using a look-up table. An entry
Q(s, a) exists for each pair of state-action values. These values are dynamically
updated following the update rule shown in equation 2.17. Although it is a good
approach for simple problems, it starts to fail when the state/action spaces get big.
Having the need for a single entry for each state-action pair becomes too expensive
computationally.

Function Approximators are a set of techniques that aim to solve this scalability
issue. Instead of storing a precise value for each state-action pair like in look-up
tables, function approximators approximate the Q(s, a) value. There are different
types of function approximators such as Linear combination of features, Decision
trees, Nearest Neighbour, etc. Nonetheless, by far the most widespread function
approximators nowadays are Artificial Neural Networks or ANNs.

2.1.4 ANNs as Function Approximators

The theory behind Neural networks is extensive and out of the scope of this work. We
refer to works such as McClelland, Rumelhart, et al. (1986) or Goodfellow, Bengio,
and Courville (2016), which cover this field thoroughly. However, we will present a
brief review of one of the simplest neural networks, the Multi-Layer Perceptron or
MLP.

Figure 2.2: Multi-layer Perceptron. Figure taken from (Scikit-learn, 2019)

The Multi-Layer Perceptron (Figure 2.2) is an extended version of the Percep-
tron presented by Rosenblatt (1962), and first studied by Rumelhart, Hinton, and
Williams (1985). In a Perceptron, a certain number of inputs (or input layer) are
connected to a certain number of outputs (output layer), and the strength or weight
of these connections is what determines the output values. The peculiarity of a
Perceptron is that the output can be modified by just changing the weights.
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Each unit in an Perceptron is called a neuron. A neuron is basically a computa-
tional unit. Its output value yj is the result of applying a non-linearity to a weighted
sum of the inputs. It can be formally defined as:

yj = φ (wji · xi + bj) (2.18)

where xi is a vector with the values of the neurons in the ith layer, wji is a vector
with the weights from the ith layer to the neuron j, bj is a bias and φ is a non-
linear operation such as a sigmoid function. Multi-layer Perceptrons are simply
Perceptrons with at least one additional layer in between the input and the output.
Those additional layers are called hidden layers. Multi-layer Perceptrons with at
least 1 hidden layer with enough units have been shown to be able to approximate
any type of function.

Since the output of an MLP can be modified by just changing the weights, we
need a method for finding the optimal weights that can make an MLP approximate
a given function. Nowadays, most artificial neural networks use the method of back-
propagation to find the optimal weights. Back-propagation (Rumelhart, Hinton, &
Williams, 1986) is a gradient descent technique that tries to minimize a cost function
or a loss. One can choose any kind of cost function, depending on the type of model
and data that is being used. Some cost functions can work significantly better with
certain types of data distributions and models. As an example, one of the most
commonly used cost functions is the Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2, (2.19)

where n is the number of predictions generated from a sample of n data points on
all variables, Y is the vector of observed values of the variable being predicted and
Ŷ are the predicted values.

Once the loss has been computed for a particular batch of data, the weights can
be updated following:

w ← w −∆w, (2.20)

where w are the weights of the MLP and ∆w represents the update which, in its
simplest form (Stochastic Gradient Descent), can be written as:

∆w = α∇E(w), (2.21)

where α is the learning rate and ∇E(w) is the gradient of the cost function with
respect to the weights.

2.1.5 Experience Replay

The use of ANNs as function approximators has generated some of the biggest
successes in the field of reinforcement learning. Works such as the studies conducted
by Mnih et al. (2013), Mnih et al. (2015) were a breakthrough in the field. In said
work, they were able to create an agent capable of playing over a 100 different Atari
games, without the need to use handcrafted features for any of them. One particular
component that was key to their success is the experience replay.

Experience Replay (ER) is a method first studied by Lin (1992). This method
saves the agent’s experience at each time step and stores it in a replay memory that
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can be accessed any time to perform the weight updates. The common implemen-
tation of experience replay goes like this. After an agent performs a certain action
At in a state St, and the environment returns the reward signal Rt+1 and the next
state St+1, the tuple (St, At, Rt+1, St+1) is added to the replay memory. This replay
memory accumulates many experiences of the same environment. At each time step,
several Q-learning updates —in the form of a mini-batch update— are performed
using data randomly sampled from the replay memory.

The effects of sampling experiences uniformly at random are very consequential.
In a normal RL setup, consecutive experiences are strongly temporally correlated.
However, gradient descent techniques —the de facto technique to train ANNs— do
not perform as well when the data used is correlated. Randomly sampling the data
reduces the variance of the updates because consecutive updates are not correlated
with one another. Moreover, ER got rid of one source of instability by eliminating
the dependence of successive experiences on the current weights.

2.2 Hierarchical Reinforcement Learning

Many complex systems in nature exhibit hierarchical structure. In this context,
hierarchical structure means that systems can be usually decomposed into smaller
sub-systems, which can also be decomposed into smaller sub-systems and so on.
A common approach for problem-solving is decompose and recombine or as the
common saying goes divide and conquer. Big complex problems can be tackled by
solving smaller sub-problems, which tend to be easier to solve. A solution to the
original large problem can be found by recombining the solutions to the smaller sub-
problems. An additional reason that hierarchy can simplify problem-solving is that
the same sub-problem or task can appear in different contexts. If a learning agent
is not aware of this, it will relearn the same task in various contexts. Optimally,
the agent only needs to learn the task once and then it can reuse that knowledge
in other contexts. Bringing a hierarchical structure to reinforcement learning is the
field of study of Hierarchical Reinforcement Learning.

“In many ways hierarchical reinforcement learning (HRL) is about structuring
reinforcement learning problems much like a computer program where subroutines are
akin to subtasks of a higher-level reinforcement learning problem. Just as the main
program calls subroutines, a higher level reinforcement problem invokes subtasks.”
(Hengst, 2012)

There are numerous works on the field of HRL. Since earlier works such as, Dayan
and Hinton (1993), Sutton, Precup, and Singh (1999), Wiering and Schmidhuber
(1997) or Dietterich (2000), to more recent publications in this field such as Levy,
Platt, and Saenko (2018), Nachum, Gu, Lee, and Levine (2018), Niel and Wiering
(2018), Vezhnevets et al. (2017) or Watters, Matthey, Bosnjak, Burgess, and Lerch-
ner (2019). One particular issue with most of these approaches is that the hierarchy
needs to be defined a priori, and the success of the algorithm depends greatly on the
correct division of the problem into appropriate sub-tasks. Some research (Hengst,
2002; Moerman, Bakker, & Wiering, 2007) tries to find ways of splitting a task
into sub-tasks automatically. While these approaches lift the burden of having to
predefine the hierarchy, they might be sub-optimal for a number of situations.
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Most of the above mentioned algorithms try to solve a particular task and need
to be retrained to solve a new task. Some reuse some elements, like the vision
module in Watters et al. (2019). Others can train shared sub-policies that can solve
multiple tasks (Frans, Ho, Chen, Abbeel, & Schulman, 2017). A very interesting
work was done by Tessler, Givony, Zahavy, Mankowitz, and Mannor (2016), where
they present an HRL approach to lifelong learning, in which sub-policies or skills
are partially reused to solve new tasks. They propose two methods of achieving
effective and efficient skill re-utilisation and storing.

2.3 Lifelong Machine Learning

Lifelong machine learning is a sub-field of machine learning that focuses on the study
of systems that can learn continually during the span of their lifetimes. As stated
by D. L. Silver et al. (2013):

“Lifelong Machine Learning, or LML, considers systems that can learn many
tasks over a lifetime from one or more domains. They efficiently and effectively
retain the knowledge they have learned and use that knowledge to more efficiently
and effectively learn new tasks”.

It is believed that the following are essential elements for an LML agent: (1) the
retention of learned task knowledge; (2) the selective transfer or use of prior knowl-
edge when solving new tasks; and (3) a systems approach that ensures the effective
and efficient interaction of the aforementioned retention and transfer elements.

In this context, talking about knowledge retention is done with a knowledge
representation perspective. Any learned knowledge can be represented in various
forms. The simplest form can be simply storing training examples. Storing the raw
training data has the advantage of accuracy and purity of the knowledge (knowledge
retention). However, it is likewise inefficient due to the large amount of storage that
it requires. Alternatively, a representation of an accurate hypothesis developed from
the training examples can be stored. The advantages of representational knowledge
are its small size compared to the space required for the original training data and
its ability to generalize beyond the training examples.

Talking about knowledge transfer is done from the machine learning perspective.
Representational transfer involves the assignment of a known task representation to
a learning system with a new target task. By doing so, the new model is initialized
in a particular region of the hypothesis space of the modeling system. Represen-
tational transfer often reduces the training time of the new model (efficient) with
no significant loss in the generalization performance of the resulting hypotheses. In
contrast to representational transfer, functional transfer employs the use of implicit
pressures from training examples of related tasks, the parallel learning of related
tasks constrained to used a common internal representation, or the use of histori-
cal training information from related tasks. These pressures reduce the hypothesis
space in which the learning system performs its search. This other form of transfer
tends to develop a more accurate hypothesis (effective).

The systems approach emphasizes the necessary interaction between knowledge
retention and transfer learning, and that lifelong machine learning is not just an
algorithm. LML can benefit from new research on learning algorithms and training
techniques, but it also involves the retention and organization of knowledge.
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Advances in the field of LML can be applied to systems such as autonomous
robots and intelligent web agents. Robots such as the ones sent on exploratory
missions in space or under the sea must have the ability to learn new things and
recognize new objects after they have been deployed, and must take decisions during
extended periods of time within a constantly changing environment. Same goes for
web agents and personal assistants. These agents need to be able to adapt to changes
in people’s behaviours. The ability to retain an reuse knowledge is very attractive
to researchers designing such systems.
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Chapter 3

Methodology

In the previous chapter, concepts such as Q-learning, experience replay and Hierar-
chical Reinforcement Learning were briefly introduced to the reader.

In this chapter, we present a new approach that could potentially thrive in a
lifelong machine learning scenario. Such a system was designed by combining several
reinforcement learning techniques. The architecture and the training process of this
novel approach will be explained.

Moreover, since this approach is oriented towards lifelong learning, a new sim-
ulated environment was created. The simulated environment devised is one that is
able to represent a lifelong learning scenario where an agent is able to solve several
tasks, and it is one where new unseen tasks can always occur.

3.1 Environment

As it was briefly discussed in Chapter 2, the environment is a key component of any
reinforcement learning system. It contains everything that the agent can sense and
interact with. Having a well-defined environment is a key component for finding
a successful solution. If an environment provides very little information about its
state, it might be impossible for the agent to solve any task. Likewise, if the reward
function is erratic or inconsistent, it can confuse any learning algorithm and the
agent might find it impossible to solve the task too.

A completely new simulated environment was created for this thesis. It tries to cap-
ture the idea of a hypothetical household assistant robot that needs to do common
household chores. An RL agent can interact with this environment as seen in Fig-
ure 2.1 and thanks to the reward function it can learn to solve predefined household
tasks.

3.1.1 Layout and Dynamics

First, a hypothetical household blueprint was designed (Figure 3.1a). It contains
all the common components of a regular household such as tables, beds, kitchen
appliances, etc.

Based on this blueprint a simulated RL environment was created. It uses the
OpenAI’s Gym framework (Brockman et al., 2016). The Gym framework is a build-
ing block frequently used within the reinforcement learning community. It was one
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(a)

(b)

Figure 3.1: (a) Blueprint of a hypothetical regular household. (b) Simulated envi-
ronment used in this work
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of the first frameworks that allowed users to: a) Access a repository of different en-
vironments to easily develop, test and compare new algorithms, b) Tools to create
new RL environments that have a common, easy-to-use interface. This framework
makes it extremely easy for one researcher to use an environment created by another
researcher. That is the main reason for choosing the Gym framework for this thesis.

The simulated environment created is a grid-like map that represents Figure
3.1a. A screen capture of it is shown in Figure 3.1b. The dimensions are 20 × 20
unit-squares. Each piece of furniture or appliances has a distinct color, while the
walls are dark grey. Each time step, the robot can freely move and perform actions
inside the white area. The environment is set to terminate each episode after 1000
time steps.

As it was introduced in Chapter 2, an agent must have a way to perceive the
state of the environment. In order to have a simple state space, most of the state
of the environment is represented as a binary-like type of question. For instance,
one input to the agent indicates the state of the cabinet door with a binary input
0/1 for closed/open. All the possible information that will be available to the agent
throughout the training is shown in Table 3.1. The last component in the table

Input Min Max

Position x 0 19
Position y 0 19

Cabinet door open 0 1
Has tea in inventory 0 1

Has soup jar in inventory 0 1
Has cleaning cloth in inventory 0 1

Has cleaning product in inventory 0 1
Has pasta in inventory 0 1
Has sauce in inventory 0 1
Has eggs in inventory 0 1
Has milk in inventory 0 1

Has pancake mix in inventory 0 1
Pasta drained 0 1

Whisked 0 1
Rinsed 0 1

Item cooked 0 1
Fire turned on 0 1

Tap open 0 1
Saucepan in hand 0 1

Frying pan in hand 0 1
Saucepan full 0 1

Heated up 0 1
Has boiling water 0 1

Stove cleaned 0 1
Task encoding (n = d log2m e) 0 1

Table 3.1: Input features that the agent can access. Total of 29 inputs. (The task
that needs to be done is binary encoded, so the number of task inputs n is defined
by the total number of possible tasks m.)

16



(Task encoding) is not one, but several inputs. That is because the task that the
agent needs to learn is encoded before presenting it to the agent. More will be
discussed about tasks in Section 3.1.3, but the reason behind encoding it is because
a learning system such as an MLP can wrongly infer that there is an ordering among
the tasks, where actually the index numbering is just completely arbitrary.

In addition to the ability of perceiving the state of the environment, the agent
must have the capacity to interact with it. That means that actions executed by the
agent have a direct impact on the state of the environment. All the actions that the
agent can execute are listed in Table 3.2. It is important to note that the actions
will not always change the state of the environment. For example, if the agent tries
to open a door while it is already opened, nothing will change in the state of the
environment. Likewise, if the agent tries to open a door when it’s not in front of
one, the door will remain closed. Moreover, the state of the environment does not
change unless the agent interacts with it or the episode ends. For instance, if the
kitchen tap is open, it will remain like that until the agent closes it or the episode
concludes.

Actions

Move up Open door Fill Heat up
Move down Close door Add & mix Drain
Move left Open tap Turn on fire Scrub
Move right Close tap Turn off fire Rinse and dry
Get saucepan Get tea Get soup jar Get pasta
Get sauce Get cleaning cloth Get cleaning product Get eggs
Get milk Get pancake mix Get frying pan Whisk
Flip

Table 3.2: Possible actions that the agent can perform in this environment; Total of
29 actions.

3.1.2 Rewards

Another key component of any reinforcement learning system is the reward function.
It is what enables the agent to learn how to solve a task. The agent receives a small
negative reward for moving and a slightly lower negative reward for taking wrong
actions and whenever it collides with an object or a wall. A positive reward of 100
is given whenever it manages to solve a particular task.

Reward type Numerical value

Move -0.1
Bump into a wall/furniture -3

Inadequate action -3
Adequate action 0

Task (intended) completed 100

Table 3.3: Reward function numerical values

Actions are considered inadequate when they’re taken from a state of the envi-
ronment that does not allow it. For instance, trying to open a door when the agent
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is not in front of it or trying to open the tap when it’s already opened. Similarly,
actions are considered adequate when they are taken from a state of the environment
that allows it. For example, turning the stove on when the agent is in front of it
and it was previously off.

It must be noted that it only receives a reward for solving a task if that task was
the one that it was meant to solve from the beginning. A more in-depth explanation
is given in Section 3.1.3, but mainly the agent should only be rewarded if it solves
the task that it was asked for. If, for example, a user wants a cup of tea, the robot
should only be rewarded if it makes a cup of tea. Solving a different task in that
situation, for example making pancakes, would not yield a positive reward. Table
3.3 displays the kind of rewards and their numerical values.

3.1.3 Tasks

As it has been briefly introduced in previous sections, the goal of this reinforcement
learning agent is to learn how to solve multiple tasks. A regular household has
numerous tasks that are needed to be performed daily. However, to narrow the
focus of this work, we have chosen a few tasks that belong to the kitchen domain
only. Moreover, since the goal of the study is to develop algorithms that can re-use
skills, most tasks are similar to others. That increases overlap and re-usability of
skills.

All the tasks have a clear action sequence definition. For example, to have boiling
water the agent needs to grab a saucepan, fill it up with water and then heat it up,
all in that particular order. The definition of the action sequence is what determines
how much a certain block of actions can be reused. For example, boiling water is
composed of a sequence of actions and that block can be reused for various tasks.
The action sequence of 2 relatively similar actions is shown in Figure 3.2, Make soup
and Make tea. These two tasks share many actions and the sequence in which they
should be taken. In this diagram, each yellow box is an action that the agent can
take. The arrows represent the order in which those actions should be taken to solve
the task. For example, to get tea, the robot needs to be in front of the cabinet, then
open the door, then grab the tea and then it should close the door. Some action
sequences are shared among these two tasks. For instance, it can be seen that for
heating up a liquid inside a saucepan, the action sequence is exactly the same for
both tasks.

In this reinforcement learning setup, we need a way to indicate the agent which
task it needs to solve. The reason for that is because a typical reinforcement learning
algorithm always tries to maximize the expected return. Since all tasks return the
same reward, if the agent can get a positive reward for solving any task at any
given time, the maximum expected return will always be obtained by solving the
task that takes the least amount of time steps. The task that the agent needs to
solve in a given episode, is presented to the agent as another variable of the state
representation. The variable that gives that information was introduced in Table 3.1
with the name of Task encoding. It has that name because instead of just indexing
all the possible tasks using natural numbers, the tasks are binary encoded before
feeding it to the agent. In this situation, binary encoding simply means that instead
of using a variable with a value of 5 to solve task no5, the number 5 in binary
representation (0b101) is fed to the agent. The reasoning behind it is because when
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Go to sink

Get saucepan

Open tap

Close tap

Go to stove

Turn on fire

Heat up

Turn off fire

Go to cabinet

Open door

Close door

Get tea

Fill

Add & Mix

MAKE TEA

Go to sink

Get saucepan

Go to stove

Turn on fire

Heat up

Turn off fire

Go to cabinet

Open door

Close door

Get soup

Fill

MAKE SOUP

Figure 3.2: Diagram of the action sequence required to solve 2 similar tasks.

using a function approximator such as an MLP, the MLP might infer that there is
an ordering among the tasks (task no5 is more valuable than task no3). Due to this
issue, the number of state inputs for the agent is different based on the maximum
number of tasks. Basically, the number of state inputs will be the minimum number
of bits necessary to represent the total number of actions. It can be formally defined
by the equation:

n = d log2m e, (3.1)

where n is the number of state inputs and m is the total amount of tasks (including
the “do nothing” task represented by the 0).

There are six different tasks in total that can be solved by the agent. They are
listed in Table 3.4 and the detailed action sequence of each one of them can be found
in Appendix A. With the exception of the Clean stove task, the rest of the tasks
share a similar structure. For instance, in order to cook something you always need
to go to the cabinet, open the door, get the ingredients and then close the door.

The tasks proposed have different levels of difficulty. The difficulty of a given
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Task

Clean stove
Make tea

Make soup
Make pasta

Make omelette
Make pancakes

Table 3.4: Possible tasks in the environment

task refers to the amount of actions that are required to solve it, as well as the time
dependency that exists between those actions. Make pasta for example would be a
high difficulty task, since it is composed of many actions that are time dependant
(The agent can only drain the pasta after it’s fully cooked). Meanwhile, Clean stove
is a low difficulty task since it only takes 6 primitive actions to be solved.

3.2 Model

In this section, we describe the architecture of the proposed model, the different
building blocks and the training method. This approach is inspired by the work of
Frans et al. (2017), although there have been some modifications and new additions
that are potentially better suited for lifelong learning.

3.2.1 Architecture

The model consists of a master policy θ and one or more sub-policies φ1, φ2, . . . , φK .
Each policy has its own independent MLP. Each sub-policy can choose to take
any primitive action At ∈ A and all of them have access to all the components that
make a full observation St ∈ S. The master policy also shares the same observations.
However, the master policy’s goal is to choose the index k ∈ {1, 2, . . . , K}. Choosing
the index means which sub-policy to follow in a given moment. For example, given

Observation

Master action

Primitive action

Reward

Figure 3.3: Model’s architecture diagram
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that the agent is in a certain state st, the master policy πθ would yield an action
kt. Then for st, the agent would take the primitive action at yielded by the sub-
policy πφk . Figure 3.3 describes the model’s behaviour when interacting with the
environment. The idea behind this approach is that a given task can be solved by
simply applying a combination of the sub-policies. This approach tries to maximize
the re-usability of skills by letting the agent solve a task by using different policies
at different stages of the execution of a task. For instance, a policy could represent
the skill of opening a door, picking up an item and then closing the door. If this
skill is needed to solve other tasks, then there is no need to “learn it” anymore.

3.2.2 Task-Specific Experience Replay

Experience replay is an element that enhances the learning process of a reinforcement
learning algorithm. By eliminating the temporal correlation among experiences, the
algorithm has a faster and more stable learning process (see Section 2.1.5).

In this work, we use experience replay with a particular approach. For every
task that the agent needs to learn we create its own experience replay buffer. If for
example there are six different tasks available in the environment, there will be six
different experience replay buffers, each containing only transitions corresponding
to a particular task. Figure 3.4 shows a diagram of how the task specific experience
replay buffers work. Experiences are only saved to the corresponding ER. When
training the agent to solve a specific task, the experiences are sampled from the
corresponding experience replay buffer only. Having a single experience replay buffer
for each task allows the system to train on previously explored tasks without the
need of taking exploration steps again.

Transition mini-batch

ER
Task1

ER
Taskn

ER
Task2

Taskj

Transition tuple

Figure 3.4: Task-specific experience replays

3.2.3 Training Process

There are various ways to train this model. As such, different variations in the
learning process were conducted. However, we will only present the one with the best
and most consistent results. It is important to note that, although this architecture
can use any kind of RL algorithm, Q-learning is used to train all the policies.
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Algorithm 2: Training algorithm

for c = 0, 1, . . . , C do /* C=Number of cycles */

Sample task T ∼ PT /* From possible tasks in experiment */

Reset θ /* Reset the weights of master policy */

for i = 0, 1, . . . , Iθ do /* Iθ=number of master updates */

Update θ using a sampled mini-batch from ERtask
θ

end
for i = 0, 1, . . . , Iφ do /* Iφ=number of sub-policy updates */

Sample 1 transition from the ERtask
θ , where k=master action

Update φk using a sampled mini-batch from ERtask
φ

end
Collect experiences for N timesteps using ε-greedy actions for master
and sub-policy actions

Store all transitions to ERtask
θ

Store to ERtask
φ only transitions where master action was not a

exploratory step

end

The pseudo-algorithm for the training process is shown in Algorithm 2. It can
be roughly divided into three blocks: task selection, policy updates and experience
collection. The same process is repeated for a certain number of times and each
iteration is called a cycle.

At the beginning of every cycle, a task is sampled from all the possible tasks that
are relevant for the experiment T ∼ PT . This changes the focus of the model into
task T for the rest of the cycle. Once the task has been selected, the master policy
weights are reset and randomly initialized. By resetting the weights, the master
policy is able to learn the optimal policy of one task without being influenced by
the behaviour learnt on previously seen tasks. This action has more value in later
stages of the process, when the agent tries to learn a whole new task but has the
knowledge on how to solve other tasks already (e.g. it learns a third task after it
already knew how to solve two tasks).

Next comes the policy updates block. In this block the MLPs are updated using
experiences sampled from the experience replay buffers. There are two training
loops, one for the master policy and another for the sub-policies. The idea is to
train the master policy first, to an extent where θ is close to the optimal policy.
That would mean that the master policy would select the best sub-policy in each
scenario. Due to the nature of the training process (first swap focus, then train
and then gather experiences) it was necessary to create a task-specific experience
replay for the master policy ERtask

θ . This is just an implementation necessity and it
is important to note that if, for example, the order of the blocks is swapped (first
gather experiences then train), this task-specific master ER would not be needed
and only one ER for the master policy would suffice. Once the master policy θ is
near the optimal policy, the sub-policies are trained. Iφ iterations are performed
following the same process. First a transition from the master experience replay
ERtask

θ is sampled. Then, based on that transition, the sub-policy φk is updated.
The index k is obtained from the transition that was sampled before (remember that
the master policy actions are the indexes k for the various sub-policies). The sub-
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policy φk is updated with a mini-batch sampled from the task-specific experience
replay ERtask

φ , where the task indicated is the one that was selected previously in
the task selection block.

The third block, experience collection, is very straightforward. A certain amount
N of timesteps is gathered using the newly updated policies and the ε-greedy explo-
ration method (as described in Algorithm 1 with ε-decay as described in Equation
2.16). There is one important addition that drastically improves the performance
of the algorithm. Transitions are stored into the ERtask

φ only when the master pol-
icy action k was not a exploratory step (that is, master action k follows θ∗). The
reasoning behind this idea can be explained with the following example. Imagine
that for solving a certain task, the master policy is only using sub-policies φ1 and
φ2. Then, if the master policy takes a random action (due to ε-greedy exploration)
and selects sub-policy φ3, it doesn’t matter anymore what the sub-policy φ3 does.
Even if sub-policy φ3 takes an action following its policy, since sub-policy 3 was not
trained significantly before, the action will be far from optimal. In the best of cases,
adding a transition to the ERtask

φ where the master policy took a exploratory step
would mean just adding another random primitive action. Adding all the transitions
adds noise into the ERtask

φ and delays (and can even derail) the learning process.

Training the system on a new task

The process discussed above is meant to train the agent on a certain number of
tasks simultaneously. By the end of it, the agent will have learnt how to solve
all the tasks that it was trained on, namely PT . Although this first step would
be always necessary for a real-life setup (a household robot is initialized with the
knowledge of solving certain tasks), it is equally important that the agent is able
to learn new tasks throughout its lifetime. The household robot should be able to
learn a new task without forgetting the tasks it already knew. With this matter
in mind, Algorithm 2 was slightly modified in order to adapt it to a set up where
the agent can learn a new task without forgetting the previously learnt tasks. The
training process for new tasks is shown in Algorithm 3. The new training process
resembles the original one, but has several additions.

Firstly, the sub-policies φ1, . . . , φK that were previously trained in other tasks
are loaded. As we mentioned before, the agent does not start to learn from scratch
this time. At the beginning of the process, the agent already has the knowledge that
allows it to solve certain tasks. Therefore, it can use that knowledge to learn new
tasks faster now.

Secondly, the experience replay buffers ERtask
φ that were filled in the previous

phase are loaded too. The agent collected hundreds of timesteps worth of experience
in the previous learning phase and that experience can be used now for the remind
block, as will be explained below.

Lastly, the addition of a remind block. There is a risk that the agent might
forget the tasks that it already mastered when training on a new task. To avoid
this shortcoming, the agent is reminded of the old tasks every R number of cycles.
Every R cycles, the sub-policies are updated using mini-batches sampled from the
experience replay buffers that were loaded at the beginning.
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Algorithm 3: Training on a new task

Load sub-policies φ1, . . . , φK
Load ERtask

φ

for c = 0, 1, . . . , C do /* C=Number of cycles */

Focus on new task T
Reset θ /* Reset the weights of master policy */

for i = 0, 1, . . . , Iθ do /* Iθ=number of master updates */

Update θ using a sampled mini-batch from ERtask
θ

end
for i = 0, 1, . . . , Iφ do /* Iφ=number of sub-policy updates */

Sample 1 transition from the ERtask
θ , where k=master action

Update φk using a sampled mini-batch from ERtask
φ

end
Collect experiences for N timesteps using ε-greedy actions for master
and sub-policy actions

Store all transitions to ERtask
θ

Store to ERtask
φ only transitions where master action was not a

exploratory step
if c mod R = 0 then /* Do remind block every R cycles */

for every task previously trained on do
for i = 0, 1, . . . , Iφ do

Update φ1, . . . , φK using sampled mini-batches from ERtask
φ

end

end

end

end

3.3 Q-learning Adaptation for Multiple Tasks and

Lifelong Machine Learning

The standard Q-learning algorithm is not designed for multi-task training. It is not
designed either for LML. It was necessary to introduce a few changes to the standard
Q-learning algorithm to make it work on par with the HRL approach.

To adapt it to a multi-task scenario, the standard Q-learning algorithm is trained
in the following manner. If, for example, the algorithm needs to be trained in tasks
A and B, then at the beginning of each episode the focus is changed to one of the
tasks randomly —lets say task A—. It collects 1 episode of experience and is also
trained on that task. In the next episode, a new task is selected randomly —lets
say B— and the process repeats. Algorithm 4 describes such a process.

To adapt the standard Q-learning algorithm to an LML situation, the system
simply loads a previous model. If, for example, the system was already trained in
tasks A and B, and now it needs to learn a new task C, the weights of the previous
model —trained on A and B— are loaded. Starting from this point, the model is
then trained normally following Algorithm 4, where PT = {A,B,C}. By loading a
previously trained model, the system doesn’t have to start learning from scratch.
Likewise, by introducing the new task C into PT , the system is able to learn the
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new task C while not forgetting the previously learnt tasks (A and B).

Algorithm 4: Adapted Q-learning algorithm

for c = 0, 1, . . . , C do /* C=Number of episodes */

Sample task T ∼ PT /* From possible tasks in experiment */

for each timestep in episode c do
Collect 1 tuple of experience
Store experience tuple in ER
Optimize model with sampled mini-batch from ER

end

end
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Chapter 4

Experiments and Results

The experiments performed in order to compare the proposed HRL algorithm and
standard Q-learning are presented in this chapter. It should be noted that only
the final experiments are presented. The algorithm described in Section 3.2 was
achieved after an iterative process of trial and error where countless experiments
were conducted before finding the right architecture and hyperparameters. The ex-
periments presented below try to demonstrate how well the HRL approach performs
compared to Q-learning in a lifelong learning scenario.

In a lifelong learning scenario, an agent needs to be able to learn new tasks as
needed, while still being able to solve all the other tasks that were learnt before. We
decided to design a series of experiments that best capture the idea of a household
robot that keeps learning new tasks throughout its lifetime. We then compare the
performance of both HRL and Q-learning approaches. The comparison between
both approaches will be based on three metrics.

The first metric (Time) measures the execution time of the learning process. By
definition, measuring the execution time of the learning process means how long
it takes for the agent to learn the optimal policy π∗. This, however, is difficult to
measure since it is not easy for us to know when — or if — the agent learns the
optimal policy. A commonly used approach is to define a threshold that indicates
that the agent has learnt a policy close enough to the optimal policy. For exam-
ple, the agent always achieves a final episode reward greater than a certain value
(
∑T

k=0Rt+k+1 > η), or it successfully solves the proposed task ρ out of the last 100
attempts. For all of the following experiments, we use a threshold ρ = 75. Therefore,
the metric Time measures the time from start until the moment the agent solves
the proposed task 75 out of the last 100 episodes. This metric is measured during
the training phase of the algorithm

The second metric (Steps) measures the amount of time steps that were taken
before reaching the aforementioned threshold ρ. Although quite similar to the time
metric, this one is hardware-independent. The same model can learn in a shorter
amount of time if it runs on better hardware, but it will roughly need the same
amount of experience.

The third metric (Accuracy) measures the effectiveness of the algorithm. It
measures the number of times the algorithm solved the task in 100 trials. To obtain
this metric, the model is put in a testing mode. This means that the exploration
rate ε is set to 0. Having a ε = 0 makes the agent always follow the policy and thus,
obtaining the maximum reward possible in each episode.
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The fourth metric (Retention) indicates how many of the tasks that the agent
already knew are still solvable by the agent. Knowledge retention is vital for LML
and is a requirement that must be satisfied by any system that aims to be a successful
LML approach.

4.1 Experiments

In this section we present the six experiments that were conducted in order to
compare the proposed HRL algorithm and the standard Q-learning approach. In
the first three experiments (4.1.1, 4.1.2, 4.1.3), both models are trained respectively
on 1, 2 and 3 tasks simultaneously. Training a model on several tasks simultaneously
represents the initialization of an agent, where a user already has a certain amount
of tasks that need to be solved. In the following three experiments (4.1.4, 4.1.5,
4.1.6), both models are trained on one additional previously unseen task. The new
tasks are learnt with different amounts of previous knowledge. Training a model on
a new task with previous knowledge about other tasks represents a lifelong learning
agent that needs to learn new tasks after it’s been deployed.

All of the experiments presented in this section are obtained using the hyper-
parameters shown in Appendix B. Each experiment was run three times and the
results presented show the average and standard deviation of the three trials (µ ±
σ). All of the experiments were run on the Peregrine high performance computing
cluster, using Nvidia V100 GPUs.

4.1.1 Learning One Task

The first experiment is also the one with the simplest conditions. The agent is
trained in only one task with zero prior knowledge about the environment. In this
case, a medium-high difficulty task was chosen (Make pancakes). Table 4.1 shows
the metric values for both the HRL approach and the Q-learning approach, while the
graphs created during training are shown in Figure 4.1. Although both approaches
are able to learn the task successfully, it is clearly visible that the standard Q-
learning approach performs better in this particular case. The metric Time, as well
as the graphs show that the standard Q-learning approach takes less time to learn
the task.

One of the main reasons for this gap is the experience distribution among sub-
policies in the HRL approach. In this case, there are three different sub-policies.
That fact entails that for the same amount of network updates and experience, the
HRL approach needs to distribute the updates among the 3 sub-policies. This fact
alone can result potentially in up to a ×3 longer execution time. Moreover, the HRL
approach also needs to train the master policy first at the beginning of each cycle,
which consequently increases the total execution time.

Experiment Time (hh:mm) Steps Accuracy Retention

HRL 3:32 ± 0:03 4.88× 106 ± 1.3× 105 100% -
Q-learning 0:34 ± 0:04 4.98× 105 ± 6.2× 104 100% -

Table 4.1: Learning one task. Trained on Make pancakes task
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(a) Cumulative reward (HRL) (b) Episode rewards (HRL)

(c) Cumulative reward (Q-learning) (d) Episode rewards (Q-learning)

Figure 4.1: Training graphs (cumulative reward and reward per episode) for HRL
and basic Q-learning methods. Task: Make pancakes

4.1.2 Learning Two Tasks Simultaneously

In this experiment both approaches are trained on two different tasks: Make pasta
and Make tea. Make pasta is a high difficulty task while Make tea is a medium-low
difficulty task. The HRL agent is trained using Algorithm 2. Table 4.2 shows the
metric values for both the HRL approach and the Q-learning approach, while the
graphs created during training are shown in Figure 4.2.

Experiment Time (hh:mm) Steps Accuracy Retention

HRL 4:23 ± 0:20 6.05× 106 ± 4.7× 105 100% -
Q-learning 2:06 ± 1:39 1.79× 106 ± 1.5× 106 100% -

Table 4.2: Learning two tasks. Trained on Make tea and Make pasta tasks
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(a) Cumulative reward (HRL) (b) Episode rewards (HRL)

(c) Cumulative reward (Q-learning) (d) Episode rewards (Q-learning)

Figure 4.2: Training graphs (cumulative reward and reward per episode) for HRL
and basic Q-learning methods. Tasks: Make tea and Make pasta.

4.1.3 Learning Three Tasks Simultaneously

In this experiment, both approaches are trained on three different tasks simultane-
ously: Make pasta, Make tea and Make omelette. The HRL system uses Algorithm
2. The results are shown in Table 4.3 and Figure 4.3.

Let’s look at the evolution shown in section 4.1.2 and this section compared to
section 4.1.1. We can see how the HRL approach suffers a relatively small increase
in the execution time, whereas for the Q-learning approach the increase in time is
growing linearly with the number of tasks —approximately takes three times longer
to learn three tasks than learning just one—. This fact could indicate the benefit of
using task specific ER and skill re-utilization of the HRL.

Experiment Time (hh:mm) Steps Accuracy Retention

HRL 4:52 ± 0:41 6.77× 106 ± 7.8× 105 100% -
Q-learning 1:38 ± 0:01 1.39× 106 ± 7.8× 104 100% -

Table 4.3: Learning three tasks. Trained on Make tea, Make pasta and Make
omelette tasks
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(a) Cumulative reward (HRL) (b) Episode rewards (HRL)

(c) Cumulative reward (Q-learning) (d) Episode rewards (Q-learning)

Figure 4.3: Training graphs (cumulative reward and reward per episode) for HRL
and basic Q-learning methods. Tasks: Make tea, Make pasta and Make omelette

4.1.4 Learning a New Task (Similar Task)

In this experiment, both approaches are trained on a previously unseen task: Make
soup. It trains on it after being trained on experiment 4.1.2, so the training order
results in:

(Make tea + Make pasta)→ Make soup

We first make use of Algorithm 3 to train the HRL agent on this new task
while trying not to forget previously learned tasks. This new medium-low difficulty
task is very similar to the previously seen tasks Make tea and Make pasta. When
comparing the action diagrams (A.2, A.3, A.4) we can see that they share several
action sequences. Having a structure so similar helps the system reuse skills and
potentially learn faster. The results are shown in Table 4.4 and Figure 4.4.

For the first time, we see a significant decrease in the execution time of the HRL

Experiment Time (hh:mm) Steps Accuracy Retention

HRL 1:08 ± 0:13 1.10× 106 ± 2× 105 100% 2/2
Q-learning 0:33 ± 0:04 4.51× 105 ± 7.5× 104 100% 2/2

Table 4.4: Learning a new task. Trained on Make soup task
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(a) Cumulative reward (HRL) (b) Episode rewards (HRL)

(c) Cumulative reward (Q-learning) (d) Episode rewards (Q-learning)

Figure 4.4: Training graphs (cumulative reward and reward per episode) for HRL
and basic Q-learning methods. Task: Make soup.

approach. Learning a new task from a starting point of knowledge is the context
most adequate for the HRL algorithm, and the one we had in mind when designing
it. In the process of learning a new task, the master policy can use a combination of
the sub-policies at different moments to try to solve the new task. Since the overlap
between the tasks is big, only small changes are needed in order to obtain a solution
yielded by the combination of one or more sub-policies.

4.1.5 Learning a New Task (Dissimilar Task)

In this experiment, both approaches are trained on a previously unseen new task:
Clean stove. The agent trains on this new task after experiment 4.1.4, so the training
order results in:

(Make tea + Make pasta)→ Make soup → Clean stove

Unlike the previous experiment, the new task has very little in common with the
old tasks. Looking at the action diagrams ( A.1, A.2, A.4), we can see that Clean
stove has virtually no resemblance to any of the other tasks. The goal is to observe
how the system behaves when it tries to learn a task and it cannot reuse most of
the knowledge that it already has. Results are shown in Table 4.5 and Figure 4.5.
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Experiment Time (hh:mm) Steps Accuracy Retention

HRL 1:24 ± 0:33 1.31× 106 ± 4.7× 105 100% 3/3
Q-learning 0:35 ± 0:15 4.97× 105 ± 2.2× 105 100% 3/3

Table 4.5: Learning a new task. Trained on Clean stove task

Let’s first analyze the standard Q-learning method. The model is able to learn
the new task successfully and in a shorter time than its counterpart. However,
we can also notice that the execution time is slightly longer than in the previous
experiment. Although this new task is significantly easier than the one in experiment
4.1.4, the learning process is slightly longer due to the fact that it needs to collect
experience even for the tasks that it has already learnt.

If we look at the HRL approach, we see that it is able to learn the new task.
The execution time is slightly longer than the one in the previous experiment. That
could be due to the fact that the model needs to perform more updates for previous
tasks. The remind block needs to accommodate one more task — the task learnt in
the previous experiment —.

(a) Cumulative reward (HRL) (b) Episode rewards (HRL)

(c) Cumulative reward (Q-learning) (d) Episode rewards (Q-learning)

Figure 4.5: Training graphs (cumulative reward and reward per episode) for HRL
and basic Q-learning methods. Task: Clean stove.
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4.1.6 Learning Additional New Task (Similar Task)

In this experiment, both approaches are trained on a previously unseen new task:
Make pancakes. The experiment is similar to experiment 4.1.4 but with a different
starting point. At the start of the training, the system already has knowledge about
four tasks. The order in which the system learnt the tasks is:

(Make tea + Make pasta)→ Make soup → Clean stove → Make pancakes

where the first 2 tasks are learnt using Algorithm 2 and the rest were trained se-
quentially using Algorithm 3.

For the first time, we can observe a significant change in the results of both
models. Firstly, the standard Q-learning approach was not able to successfully learn
this new task. It might seem when looking at Figures 4.6c and 4.6d that the model
was starting to get consistent positive rewards. Nonetheless, the positive rewards

Experiment Time (hh:mm) Steps Accuracy Retention

HRL 7:18 ± 1:33 6.58× 106 ± 1.2× 106 100% 4/4
Q-learning - - 0% 4/4

Table 4.6: Learning a new task. Trained on Make pancakes task

(a) Cumulative reward (HRL) (b) Episode rewards (HRL)

(c) Cumulative reward (Q-learning) (d) Episode rewards (Q-learning)

Figure 4.6: Training graphs (cumulative reward and reward per episode) for HRL
and basic Q-learning methods. Task: Make pancakes.
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come from the agent solving old tasks that it had already learnt. In contrast, the
HRL approach was able to learn the new task, although it took it a longer time than
usual to achieve that.

4.2 Evaluating the Re-usability of Skills for the

Proposed Method

As we introduced in previous sections, the main focus of this thesis was to find a
system that could effectively and efficiently retain and reuse knowledge. From a
pragmatic point of view, this means that if the agent already knows how to boil
water, it should be able to reuse that knowledge for other tasks as well instead of
learning it again.

In order to verify this hypothesis, the HRL method was tested in the following
manner. Once the model has been trained for a specific subset of tasks, one hundred
episodes are run over only one of those tasks. In these episodes, the agent always
follows its policy (ε = 0). During all the runs, the actions of the master policy are
recorded — remember that the master policy actions simply indicate the index k
of which sub-policy to follow in that timestep —. Once the 100 episodes conclude,
we calculate the number of times that each policy was used at each timestep. This
gives an idea of how policies were used. For example, φ1 was used at the beginning
of the task but then φ3 was used to finish it.

(a) Test run using model obtained after ex-
periment 4.1.2; Chosen task: Make tea

(b) Test run using model obtained after ex-
periment 4.1.4; Chosen task: Make soup

Figure 4.7: Sub-policy selection

Figure 4.7 shows the probability of choosing a specific sub-policy in any given
timestep. If we look at the green line (φ2), we can see that it is predominantly used
at the beginning of the episode for both tasks. This could indicate that the agent
uses the same sub-policy to solve the first steps in both situations. If we look at the
action diagrams A.2 and A.3, we can observe that both action sequences are very
similar. For instance, those first steps using sub-policy φ2 could represent the agent
approaching the cabinet, opening the door, getting the ingredient and closing the
door.

After those first steps, Figure 4.7a uses a combination of φ0 and φ1, while Figure
4.7b uses mainly φ1. This behaviour is completely understandable. After all, it is
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perfectly plausible that a single sub-policy can contain the knowledge on solving
whole tasks. This behaviour is shown in Figure 4.8. In this case, both experiments

(a) (b)

Figure 4.8: Sub-policy selection; Test run using model obtained after experiment
4.1.5; Chosen task: Clean stove

are run using the same model and focusing the same task. However, the master
policy is re-trained from scratch before starting the measurements. While Figure
4.8b shows a combination of sub-policies φ0 and φ1, Figure 4.8a only shows the usage
of sub-policy φ1. In this case, sub-policy φ1 is capable of solving the proposed task
without the need of any other sub-policies. Depending on the state of the master
policy after training, this task can be solved by using a combination of different
sub-policies or by constantly using the same sub-policy.
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Chapter 5

Discussion

We conclude the final chapter of this thesis with a discussion. First, we give answers
to the original research questions presented in Section 1.1. After that, we suggest
possible directions for future work. Lastly, there is a brief section to summarize the
efforts done in this thesis and the results.

5.1 Answers to Research Questions

Can we design a system that can learn new tasks throughout its life-
time and effectively and efficiently retains and reuses previously gained
knowledge to solve new problems?

The system designed in Section 3.2 is indeed capable of learning new tasks sequen-
tially, and it is able to effectively and efficiently retain and reuse previously gained
knowledge to solve new problems. The proposed model was able to learn all the
tasks in all the experiments. Moreover, the process of learning a new task was faster
when the model was using previously gained knowledge. This indicates the efficient
reuse of previous knowledge by the system. Furthermore, we can say that the system
effectively retains previously gained knowledge since it never forgot previously seen
tasks.

How does this system perform in a specific scenario where a simulated
household robot needs to solve common tasks?

The system was tested in such a scenario and the results were majorly positive. Any
potential household robot that will be developed in the future needs to be able to
learn new tasks according to the user’s needs. Any system that can deal with this
constraint is well suited for this situation. After all the experiments conducted in
Section 4.1, we have proven that the proposed system can continuously learn new
tasks without forgetting the old ones. Moreover, it uses past knowledge to accelerate
the learning speed of new related tasks.

How does this system perform compared to a standard reinforcement
learning algorithm such as Q-learning?

Although the standard Q-learning algorithm required some minor modifications to
make it suitable for a multi-task LML approach, it performed slightly better than
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the proposed model in terms of learning speed. The only unsuccessful experiment
was 4.1.6. The problem could be due to the saturation of the network. Making the
MLP larger could fix the issue, but it would also require a complete re-training of the
model. The HRL approach took significantly longer than usual in said experiment,
which could also point to the need of expanding the network. However, expanding
the model in the HRL is as simple as adding a new MLP representing a new sub-
policy. The HRL has the advantage of being more modular which makes it more
suitable for an LML approach.

Is such a system a suitable option for a lifelong learning scenario, such
as the household robot environment?

As mentioned earlier, a household robot needs to be able to learn new tasks as it
is required. The characteristics of the proposed method make it very suitable for
lifelong learning scenarios. The model is able to remember previously learnt tasks
and it has the ability to use previous knowledge to speed up the learning process of
new tasks. The system can be expanded by adding new sub-policies to the system
with no re-training of the old policies required.

5.2 Future Work

The system proposed in this thesis proved to be a viable solution for LML in scenar-
ios similar to the one used. Although it underperformed in terms of learning speed
when compared to a more standard Q-learning model, it was able to solve experi-
ment 4.1.6 while its counterpart could not. The results obtained in the experiments
conducted show that this new system has the potential to become a system that
can be used in real-life agents. Nevertheless, more work would be needed to make
that thought a reality. In this section we present several areas where more research
could drastically improve the quality of this approach.

One direction for future work could be to expand the task set. In this thesis we
limited the scope of the tasks to the kitchen domain. Most of them shared actions
but still all of them belonged to the same domain. It would be very interesting to see
how the system behaves when there are several sets of similar tasks. For instance,
a set of living room tasks — such as mop the floor, clean up the table, clean the
windows, etc. — and another set of bedroom tasks — such as make the bed, fold
clothes, vacuum the carpet, etc.—. Having more diversity in the task distribution
could potentially indicate flaws in the system that are now undetectable. It could
also indicate directions for improvement. Additionally, different ways of presenting
the goal task to the agent could be tested. For example, trying to find ways to
encode tasks based on its action sequence. Just as word embeddings are created
using semantics for NLP approaches, tasks could be encoded based on the actions
that are required to solve them. This way, the vector encoding for making tea would
be much closer to the vector of making soup than to the vector of cleaning stove.

As more tasks are added, there will come the time where the system needs to
be expanded. The system was designed with LML in mind, so expanding the model
is a simple process. It is possible to add new sub-policies as needed. In theory,
the system should be able to use this new sub-policies to solve new tasks, while old
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policies remain constant and are able to solve older tasks. This behaviour occurs
because the master policy decides which sub-policies to follow/train depending on
the task at hand. More work in this area is needed in order to check the limits of
this hypothesis.

Perhaps, the most relevant improvements to this approach could come from in-
creasing the learning speed of the algorithm. As it was shown in the experiments,
the proposed model underperformed in terms of speed when compared to its coun-
terpart. This issue was partly due to the fact that the master policy is re-trained
in every cycle. The rationale for resetting the master policy θ was inspired by the
work of Frans et al. (2017). “As we update the sub-policy parameters φ while reusing
master policy parameters θ, we are assuming that re-training θ will result in roughly
the same master policy. However, as φ changes, this assumption holds less weight.”
This is the reason why we re-train θ once a threshold of Iφ iterations has passed.
Finding ways to overcome the need for constant re-training of θ could eventually
yield a faster algorithm. We actually performed some initial experiments and, for
example, experiment 4.1.4 saw its learning time cut by more than half when we
stopped re-initializing θ.

Another direction for future work would be to experiment with different kinds
of experience replay. Its been shown that using more advanced types of experience
replay such as Hindsight Experience Replay (Andrychowicz et al., 2017) or Prior-
itized Experience Replay (Schaul, Quan, Antonoglou, & Silver, 2015) can increase
the learning speed and even make unsolvable tasks solvable. Using other types of
ER could make the proposed algorithm faster and more robust.

5.3 Conclusion

In this thesis we developed a hierarchical reinforcement learning system that can be
used in a lifelong learning scenario. Such a scenario is represented as a simulated
household robot that is able to learn new tasks presented by the user. The agent
is able to learn new tasks throughout its lifetime while retaining the knowledge on
how to solve old tasks. Moreover, the agent re-uses previously acquired knowledge to
solve new tasks. The efficient transfer of knowledge from one task to another makes
this system suitable for lifelong machine learning. Additionally, the architecture
of this system allows it to be expanded as the situation requires, with very little
re-training needed (only master policy needs re-training). This modularity and ease
to expand the size of the model is another key factor for an LML system.

In conclusion, the proposed system is an effort to bring us a step closer towards
the future of LML. Systems such as household robots, robots sent on exploratory
missions in space or under the sea could benefit from advancements in this area. We
hope that this thesis inspires other researchers so that we can someday achieve the
dream of real autonomous robots.
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Appendix A

Action Diagrams

CLEAN STOVE

Go to sink

Get cleaning cloth Get cleaning product

Scrub

Go to stove

Go to sink

Rinse and dry

Open tap

Close tap

Figure A.1: Clean stove action diagram
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Go to sink

Get saucepan

Open tap

Close tap

Go to stove

Turn on fire

Heat up

Turn off fire

Go to cabinet

Open door

Close door

Get tea

Fill

Add & Mix

MAKE TEA

Figure A.2: Make tea action diagram
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Go to sink

Get saucepan

Go to stove

Turn on fire

Heat up

Turn off fire

Go to cabinet

Open door

Close door

Get soup

Fill

MAKE SOUP

Figure A.3: Make soup action diagram
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Go to sink

Get saucepan

Open tap

Close tap

Go to stove

Turn on fire

Heat up

Turn off fire

Go to cabinet

Open door

Close door

Get pasta

Fill

Get sauce

Add & Mix

Drain

Add & Mix

MAKE PASTA

Figure A.4: Make pasta action diagram
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Go to sink

Get frying pan

Go to stove

Turn on fire

Heat up

Turn off fire

Go to cabinet

Open door

Close door

MAKE
OMELETTE

Get eggs

Flip

Whisk

Figure A.5: Make omelette action diagram
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Go to sink

Get frying pan

Go to stove

Turn on fire

Heat up

Turn off fire

Go to cabinet

Open door

Close door

Get pancake mix

MAKE
PANCAKES

Get eggs Get milk

Flip

Whisk

Figure A.6: Make pancakes action diagram
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Appendix B

Hyperparameters

C (number of training cycles) 1× 104

N (collect experience timesteps) 2000
R (remind frequency) 10
ρ (success threshold) 75%

Batch size 32
Iθ 500
Iφ 500

εstart (θ) 1
εend (θ) 0.1
εdecay (θ) 450
εstart (φ) 1
εend (φ) 0.1

εdecay (φ) (Alg. 2) 1× 107

εdecay (φ) (Alg. 3) 5× 105

γ (θ) 0.9
γ (φ) 0.9
α (θ) 1× 10−2

α (φ) 2.5× 10−4

ERθ 2000
ERφ 1× 105

Q-Net target update (θ) 20
Q-Net target update (φ) 1000

MLP (θ) 2 layers (1000/500)
MLPs (φk) 2 layers (1000/500)

Table B.1: Hyperparameters used for experiments with HRL (Section 4)
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C (number of training episodes) 1× 104

ρ (success threshold) 75%
Batch size 32
εstart (θ) 1
εend (θ) 0.1
εdecay (θ) 5× 105

γ 0.85
α 2.5× 10−4

Q-Net target update 1000
ER 1× 106

MLP 2 layers (1000/500)

Table B.2: Hyperparameters used for experiments with Q-learning (Section 4)

49


	Abstract
	Acknowledgements
	Nomenclature
	Introduction
	Research Questions
	Thesis Outline

	Theoretical Background
	Reinforcement Learning
	Finite Markov Decision Processes
	Exploration–Exploitation Dilemma
	Q-Learning
	ANNs as Function Approximators
	Experience Replay

	Hierarchical Reinforcement Learning
	Lifelong Machine Learning

	Methodology
	Environment
	Layout and Dynamics
	Rewards
	Tasks

	Model
	Architecture
	Task-Specific Experience Replay
	Training Process

	Q-learning Adaptation for Multiple Tasks and Lifelong Machine Learning

	Experiments and Results
	Experiments
	Learning One Task
	Learning Two Tasks Simultaneously
	Learning Three Tasks Simultaneously
	Learning a New Task (Similar Task)
	Learning a New Task (Dissimilar Task)
	Learning Additional New Task (Similar Task)

	Evaluating the Re-usability of Skills for the Proposed Method

	Discussion
	Answers to Research Questions
	Future Work
	Conclusion

	Action Diagrams
	Hyperparameters

