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Abstract

Since the early days of neural networks research, the focus has largely been aimed at forward
processing of information. A recently developed theory called pattern theory, takes a different
approach to solving pattern recognition problems. Rather than extracting features from input
patterns, pattern theory aims at studying the interaction between the representation of input
patterns, and the reconstruction of the input patterns from internal representations. An imple-
mentation of the principles of pattern theory in the form of a neural network is the Helmholtz
machine. The Helmholtz machine, just as several other types of neural networks is very lim-
ited in the sense that it cannot learn dependencies between successive input patterns in time
series data. Adjusting the architecture and learning algorithm of a neural network such that it
can learn temporal dependencies often introduces a lot of problems. The liquid state machine
presents a solution to some of these problems by applying a liquid filter that does not need to
be trained, but can still be used as a source of information on temporal dependencies in time
series data. A readout mechanism, such as the Helmholtz machine can be trained to extract
information about temporal dependencies in the input data from snapshots of the liquid’s state.

In this thesis the feasibility of the liquid state machine with a Helmholtz machine as readout
mechanism is investigated, and compared with a feedforward neural network as readout mecha-
nism. The learning task is the classification of classical music for keyboard instruments written
by Bach and Beethoven. The liquid state machine and the Helmholtz machine are not just
mere theoretical inventions; their inventors were also inspired by recent insights in the low-level
structure of the human brain. Therefore, we will investigate some basic properties of biological
neural networks as well as the representation of audio and music in the human brain in order
to create a biologically plausible representation of the learning task.
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Chapter 1

Introduction

1.1 Pattern recognition

The outside world is perceived by human beings through the senses. In the outside world all
sorts of processes are going on that determine how the world is shaped. These processes generate
patterns that are picked up by the senses to provide us with information about the state of the
world. For instance, vibrations in the air are perceived as sound by the auditory system, and
electromagnetic waves of certain wavelengths as color by the visual system. Observations by
the senses are however not identical to patterns in the outside world. Brains do not process
sound vibrations or electromagnetic waves, but operate by transmitting electrochemical signals
between individual brain cells. Therefore the patterns in the outside world are transformed
into a neural encoding in the peripheral zones of the sensory organs. Observations from the
outside world represented as patterns of electrochemical signals can subsequently be processed
and interpreted by our brain, which makes it possible to learn, make decisions, plan actions,
and execute them, to manipulate the outside world as we see fit. Fortunately, the rules that
determine how the outside world is shaped and how patterns are formed are regular. Although
there are many different rules and processes that govern the behavior of objects in the outside
world, it is still the case that the generated patterns have certain properties in common. This
allows for interpreting observations by dividing them into separate classes which have certain
properties in common. For example the class of liquids has the property that one cannot
normally walk on it, and the class of solids that one can (except if it is a thin layer of ice).
These properties or features can either be learned by extracting them from direct observations,
or by interpreting and combining other observations. The process of extracting features is very
important in perception. Incoming signals from the sensory system are not perceived as the
‘raw’ data of which they consist, but are immediately transformed by the brain into features,
which can on their turn be transformed to even higher-level concepts. The processes in the
human brain that are responsible for classifying input patterns, and the methods by which the
brain adapts itself to improve this ability have been studied for several decades.

Since the age of digital computers the working of the brain has been compared to that
of computers, and computers have been programmed to model certain aspects of the brain.
Methods in which computers are used to mimic the capacity of the human brain to learn from
observations, are called machine learning methods. Patterns generated in the outside world by
stochastic processes share some statistical regularities. The task of a machine learning system is
to extract those regularities and represent them as features. This can be realized by providing
the system with examples of input patterns, and train the system by adjusting the parameters
such that it learns to extract the features from the observed data. There are basically two
possible applications of this method. The first deals with learning tasks in which the input
patterns belong to certain classes, and the correct label of the class for each input pattern is
already known. The input patterns are provided to the machine learning system together with
their corresponding labels. The task of the system is to assign the correct label to each input
pattern, relying on the extracted features. When the training process is finished, the system
can be used for classification of novel patterns, for which the corresponding class is not known.
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This process is called supervised learning. The second application is unsupervised learning.
Unsupervised learning involves finding regularities in input patterns, while there is no a priori
information about the class to which each input pattern belongs. Unsupervised learning can be
used for extracting features from input patterns, without the need for assigning labels to the
classes found during the training process. This method is sometimes used for preprocessing the
input data, where the extracted features can be applied in other learning methods.

Nowadays there are a vast number of pattern recognition problems that can be successfully
solved by machine learning algorithms, such as the classification of emails into spam or non-
spam categories, recognition of handwritten postal codes on envelopes, or recognition of images
of human faces. As in most areas machines do not perform as well as humans, machine learning
tasks are often limited to learning examples from a specific domain. The problem that is to
be solved by a machine is called the learning task. There exists a number of different machine
learning methods, most of them based on statistical methods but sometimes also inspired by
the actual biological structure of the brain, that can be applied on learning tasks. Some learn-
ing tasks require machine learning methods that are specifically designed for the task, while
other tasks can be solved by a number of different learning algorithms. A subclass of machine
learning methods that has been studied almost as long as there are digital computers, is the
class of artificial neural networks. Artificial neural networks are somehow based on the low-level
structure and properties of the human brain, but are in contrast to their biological counterparts
implemented on electronic circuits or in computer programs. These networks consist of simple
computation units, the equivalent of brain cells, that send signals to each other through con-
nections between them. A large number of connected units each performing relatively simple
computations can together solve complex tasks that are comparable to problems the human
brain can deal with.

The structure of artificial neural networks is often layered, not only to simplify the mathe-
matical properties or implementation in a computer program, but also to build a hierarchical
model in which each subsequent layer extracts more abstract properties from the previous layer.
Feature extraction is the most prominent method that is used by neural networks and several
other types of machine learning methods, to assign labels to input patterns in a classification
task. Compared to the human brain, this seems plausible because we perceive the outside world
not as the ‘raw’ sensory patterns, but sensory information is immediately and effortlessly com-
bined and translated to the more significant meaning of the input data. Most artificial neural
networks do nothing more than the feedforward processing of information from layer to layer
into higher-level features and concepts. In the field of psychology however, many experiments
have shown that what we perceive is neither the ‘raw’ sensory data, nor the combination of
features that is extracted from it, but a reconstruction of what it is like. For example, in an
experiment from the field of cognitive psychology known as the ‘Mooney faces’, different images

Figure 1.1: The figure left is a ‘Mooney face’ and the figure right is the mirrored
image with black and white inverted
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Figure 1.2: An edge detection algorithm applied to both images from figure 1.1
reveals no difference

of faces are depicted as in figure 1.1 (example adapted from Mumford and Desolneux 2005).
In the left image, there is a strong light which illuminates part of the face to saturation and
leaves the rest dark. In the right (mirrored) image the effect is reversed. An example of a
basic feature extraction algorithm applied on both images in figure 1.1 is depicted in figure
1.2. This method of feature extraction reveals no difference between the two images, except for
the fact that they are mirrored, and the results do not look like a face at all. The fact that
in figure 1.1 the left image is easily recognized as a face while the right is not, implies that
there must be information in the brain about the appearance of faces that is used to fill in the
missing parts of the face, thus constructing the perception of a face. If the contrast is reversed,
the information the brain has about the appearance of faces cannot be related to the image at
all, and no face is recognized. Just extracting features does not seem to be the way in which
the task of recognizing a face can be solved. This example as well as a number of other results
from the field of cognitive psychology implies that feature extraction by feedforward processing
of information is not the only process that takes place in the brain; the reconstruction of input
patterns might also play a significant role.

In pattern theory (Grenander, 1981; Mumford, 1994) this idea is investigated in more depth,
from a computational as well as a biological point of view, to create a better explanation for the
complex processes that are involved in pattern recognition. The theory introduces some general
properties that models should satisfy, and states a number of hypothesis about the structure and
processes in the brain, some of which are more or less supported by actual findings. Although
experiments from the field of psychology that were performed several decades ago already
suggested that pattern reconstruction is at least as important as feature extraction, pattern
theory in its present form has existed for only ten years. It is however interesting that certain
problems and discrepancies between biological and artificial systems that have haunted the
scientists in the field of neural networks for a long time can be solved with this new theory.
The basic idea in pattern theory is that a pattern recognition system not only learns to extract
features from input patterns, but uses these features to reconstruct the input patterns in order
to recognize them. Apart from the solipsist’s point of view, patterns that enter a system from
the outside world are caused by certain regular processes that determine how the outside world
is shaped. Learning the way in which processes in the outside world generate those patterns
is the most economic solution to the task of recognizing input patterns. To reconstruct input
patterns from higher level features, pattern theory adds a generative model to already existing
recognition models in the field of neural networks, whose task is to learn to represent the
actual processes that caused the input patterns to occur. The idea used in mere feedforward
processing methods that parts of the learning task could easily be solved by preprocessing the
input patterns is abandoned in pattern theory because it often adds more complexity to the
task of reconstructing the input patterns.
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In pattern theory, the brain or some other neural network is seen as a statistical inference
engine that learns to infer a probability distribution over the set of causes in the outside world
that generated the input patterns. This probability distribution can be used for recognizing
novel input patterns. The idea that the perceptual system uses some kind of generative model
to provide a probability distribution over the probable causes of the input was already stated
by a 19th century physicist and mathematician, called Hermann von Helmholtz. More than a
century after he died, the math he invented to describe physical systems in terms of statistics was
beautifully combined with the basic ideas from pattern theory in the form of a neural network
named after him; the Helmholtz machine. Helmholtz machines have already successfully been
applied to pattern recognition tasks such as extracting depth from stereo images, handwritten
character recognition and text classification (Dayan et al., 1995; Hinton et al., 1995; Chang and
Zhang, 2001).

1.2 Time series data

Machine learning systems are almost always implemented on digital computers. This imposes
certain restrictions on the process of pattern recognition, and determines some specific proper-
ties of machine learning systems with respect to the human brain. Just as the brain, computers
cannot handle information from the outside world in its basic form. A computer can only
process numbers, not colors or sounds. Therefore the input data in machine learning systems
have to be translated into a form that can be processed by a digital computer. The actual
input data to a machine learning system are not in the original form that was determined by
the processes that created them, but are representations of those data in a numeric form. A
major difference with the human brain is that all processes in a digital computer are governed
by a central clock, and all operations are performed in discrete time steps. This implies that
patterns can only be provided at discrete time steps. The representation of a pattern in the
world outside the machine learning system in a numerical form that is provided to the system
at a discrete time step will from now on be referred to as an input pattern.

Because of the discrete nature of programs implemented on digital computers training ex-
amples in most learning tasks consist of case-by-case ‘snapshots’ of a situation. This is not
a problem in case each separate input pattern contains enough information for correct classi-
fication. However, especially when dealing with phenomena or behavior expressed by human
beings, the structure of the related patterns shows temporal dependencies between the different
input patterns. The temporal dependencies are now crucial for correct classification, and a
learning algorithm depends on the extraction of information from those temporal dependen-
cies. In speech recognition for example, it isn’t of much use to know that the current input
pattern is classified as an ‘n’, when one wants to recognize the word ‘neuron’, if one cannot
relate the ‘n’ to the other symbols. Learning the temporal structure inherent in such patterns
involves learning the dependencies in the observed time series of patterns. When the temporal
dependencies between individual input patterns span over longer time periods, it is very difficult
to create a model and a corresponding learning algorithm that can extract information from
these long-term temporal dependencies. The problem is that supervised learning methods in
the field of neural networks, should be able to store information for the period of time that is
long enough to contain the temporal dependencies. It is however not a priori known how long
this period is, and where it starts or ends. Learning to extract information on patterns the
learning method has seen many time steps ago complicates the learning task in such a way that
it rarely the case that reasonable results can be obtained (Hochreiter, 1998).

A solution to this problem was proposed in the form of the liquid state machine (Maass
et al., 2002). The liquid state machine uses a static temporal filter that extracts temporal
dependencies from successively presented input patterns. This filter is static in the sense that
it is not necessary to train it for a specific learning task. The output of the filter is presented
to a readout mechanism, for instance a neural network, that does not need to implement any
temporal dependencies between successive input patterns because that information was already
extracted by the liquid filter. How this works can be explained with an analogy to a real liquid.
The time series of input patterns are injected in a liquid by disturbing the resting state of the
liquid. These disturbances propagate through the liquid and create specific resonating patterns
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over time, just as a pebble that is thrown into the water creates ripples in the surface of the
water. The state of the liquid at a certain time contains information on previous inputs, just
as the waves in water contain information on the time and place that a pebble was dropped.
In a classification task, this information can be presented at certain time steps to a readout
mechanism that learns to map the state of the liquid to a certain class. A liquid filter, whether
it is a real liquid or some other dynamical system can be used for a whole range of different
tasks as it does not need to be adapted or trained for a specific task.

The activity in some areas in the brain can be interpreted as the equivalent of perturbations
in a liquid. In these areas, incoming information creates certain patterns of activity that res-
onate through the network, and other areas can read out this information for further processing.
Although the liquid state machine is based on actual brain structures, it is not just another
interpretation of how the brain works, but the ideas also extend to models in machine learning
tasks dealing with the classification of time series data. Real biological neural networks as well
as artificial models can be seen as rather complex dynamical systems, which manifest more
complex behavior than a simple liquid such as water. Moreover, as it is not necessary to train
an artificial neural network that is used as a liquid filter for a specific task, the problems with
the training of an artificial neural network on time series data disappear. This means that more
complex recurrent neural networks can be applied as temporal filter, such as a spiking neural
network (Maass et al., 2002; Vreeken, 2004).

1.3 Research question

Because the Helmholtz machine has the same problems when faced with time series data as
other neural network architectures, it might be interesting to investigate certain solutions found
in the field of neural networks, and apply them to the principles of pattern theory. A possible
solution is to use the liquid filter of a liquid state machine as a temporal filter. The output
of such a liquid filter can be presented to a Helmholtz machine for further processing. The
question that needs to be answered is:

What are the capabilities of a Helmholtz machine as readout mechanism of a liquid
state machine in comparison with other readout mechanisms?

This question immediately gives rise to another question of a more theoretical nature: can
the Helmholtz machine extract any information at all from a temporal liquid filter? From the
previous it could be reasonably doubted whether this is possible, because the nature of the
Helmholtz machine is very different from other learning mechanisms. Helmholtz machines are
very good at learning pattern recognition from direct sensory input. Too much preprocessing
on the sensory data just complicates the learning task for a Helmholtz machine, while that
is exactly what a temporal filter does. However, given the possible solutions for dealing with
time series data, the liquid state machine offers not only a solution that is easy to understand
and implement, but is also based on interpretations of actual brain processes. Faced with
the problem of time series data in pattern theory, Mumford proposes some sort of “temporal
buffering” for which the neuronal mechanisms “have not yet been described” (Mumford, 1994,
page 26). If he was right, there must be a way to apply pattern theory to data that show
temporal dependencies between different input patterns. The only way to find out whether this
can be done with a liquid filter as in the liquid state machine is to try.

Other interesting questions that arise from the main question are: what kind of liquid should
be used, how should the information from the liquid be presented to the Helmholtz machine,
what other readout mechanisms can be used and what learning algorithms for the readout
mechanisms can be used? The answers to those questions also need to be found by running
experiments and comparing and interpreting the results.

It is common practice in the field of machine learning that researchers test their newly
designed algorithms on rather simplistic problems created by simple mathematical processes.
These problems called toy problems, can give a better understanding of the studied algorithm,
but don’t necessarily say something about the performance of the algorithms on more realistic
problems, such as the problems the human brain can solve. A more complex real-world problem
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tells us much more about the performance of an algorithm or structure of an artificial neural
network, but is of course also more difficult to learn. Because there are generally speaking a lot
of parameters that can be adjusted it can take quite some time to find the optimal parameter
settings for a particular problem. Other problems of testing real-world data are that it is
more difficult to obtain, and that it contains more noise that cannot be filtered out. However,
despite all these problems, solving real-world problems tells us more about the real capacity of
a machine learning mechanism, and above all, it speaks more to the imagination. Because both
the Helmholtz machine and the liquid state machine are not mere mathematical inventions, but
are based on interpretations of the actual physical structure and processes in the human brain,
a learning task was selected that involves a real-world problem that can be solved by the human
brain: the classification of music of Bach and Beethoven by composer. Music classification based
on musical content between genres that share most harmonic properties is a task that cannot
be solved by simply investigating individual snapshot of a musical piece, because the temporal
dependencies between different notes and groups of notes play an important role. Classification
of musical pieces is a typical problem that humans can easily learn to solve. Research has shown
that there are certain structures in the human brain that are especially suited for processing
music. Not only can these findings be used to build a model that mimics some of the actual
brain processes that are involved in music recognition, but it also shows that music and brains
are interwoven. Therefore music classification is a suitable learning task for this project.

1.4 Relevance to artificial intelligence

The human brain has been compared to many things in attempts to understand how it works.
Theories about the complex interplay between the structure of the brain, and how it operates
are often highly flavored by the prevailing technology of a particular time in history. In the days
of Freud the technology of the steam engine and the science of hydraulics were becoming very
popular. It is therefore not very surprising that Freud’s theory about psychological phenomena
contains references to the properties of the low-level structure of the brain in terms of ‘building
up pressure’ that needs to be ‘released’, or the ‘flow’ of the libido. When the telephone came
along, with it came the switchboard operator models of the brain. Such explanations of how
the brain works in all its complexity could however not be used to model actual brain processes.
Since the age of the digital computers, this has changed. Nobody would seriously think of build-
ing an intelligent steam engine, or sacrifice a telephone exchange center for scientific research,
but computers are available for almost everybody nowadays, and they can be programmed to
perform a large range of different tasks. Studying the brain is not limited anymore to the inves-
tigation of its actual structure while speculating about how it manages to perform intelligent
tasks, but can also be extended to building computer models and compare their structure and
the results of the tasks they can perform with the results of brain research.

Artificial intelligence is about simulating the intelligence that is found in processes and
creatures in nature. This can either be done by building models that are related to actual
brain structures, or by using other methods that are not necessarily related to the human brain
but can still perform cognitive tasks at a comparable level of intelligence. The latter methods
are often based on more formal properties of cognition, such as logic, formal language analysis
and tight rules that combine the basic concepts of which they consist. Because the phenomena
studied in artificial intelligence are often not strict, formal methods suffer from problems that
arise from irregularities, ambiguities and fuzzy data. These properties of real-world problems
are however effortlessly solved by the cognitive functions of the human brain. To solve the
problems that arise from the irregular patterns in the real world, it might be a good idea to
investigate how the brain manages to perform this. This is exactly the approach that was taken
in pattern theory. The result is a theory in which irregular properties of real-world patterns
naturally fit. Not only does this theory overcome the problems of more orthodox methods in
the field of artificial intelligence, it is also possible to implement its basics in an artificial neural
network. While it is possible to interpret the working of the brain at its low-level structure
in terms of pattern theory, the theory has also certain problems. A major problem is that
it cannot deal with time series data, for it requires a temporal buffer or short-term memory.
Mumford recognized that a neural mechanism that could perform this task was not known at
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the time (Mumford, 1994). A solution to this problem for other types of neural networks was
found in the form of the liquid state machine. Therefore it might be interesting to investigate
if this solution can also be applied to a neural network that is based on pattern theory. As
theories about intelligence come and go, new insights from brain research implemented in ideas,
theories and models will hopefully contribute to a better understanding of intelligence and how
it is accomplished by the brain.

1.5 Thesis outline

Since the brain, its structure and processes are the essence of what is studied and modeled in
this thesis, we start with a short introduction to biological neural networks, and their building
blocks: neurons. We continue with the description of artificial neural networks, and describe
some similarities and differences with biological neural networks, the basic properties of the
neuron, how neurons can be combined to form neural networks, and how neural networks
can be trained. Next a description of a very simple, but elegant type of neural network, the
feedforward neural network is presented. This type of network is used to explain the basics of
training neural networks. In the last section of chapter 2 a description of neural networks that
have been adapted for the task of learning time series data is given, followed by the problems
that are introduced by their training algorithms.

Chapter 3 elaborates some more on the problems that arise from learning time series data
with neural networks, and describes a solution to these problems in the form of the liquid state
machine. The chapter continues with the characteristics of neural circuitry used as liquid filter,
and the properties of readout mechanisms. At the end of the chapter the assumptions that
are being made for neural networks that are solely based on feedforward processing, and the
problems that arise from this perspective with respect to the liquid state machine are discussed.

Chapter 4 gives a more elaborate view on pattern theory. The properties of patterns, the
relation with processes that create them and the models that can be build for recognition are
investigated in more detail. In the last sections of this chapter a detailed description of the
statistical physics that formed the basis of the mathematical background of the Helmholtz
machine is given, together with the training algorithm that is derived from this mathematics.

Chapter 5 is about music and music perception. First the basic properties of sound and
music are introduced, and some basic musical terms that will be used in the rest of the thesis
will be explained. Next, the structures and processes that play an important role in music
recognition in the brain are discussed, accompanied by the results of the research that led to
this insight. It is of course not the first time that machine learning mechanisms are applied
for the task of music classification. In the field of music classification the musical data are
often preprocessed by all sorts of feature extraction methods. The results of these methods
are then presented to machine learning methods, such as neural networks. Instead of relying
on extensive feature extraction methods, the model used in this project represents the musical
data in a more biologically plausible way. The last section of chapter 5 shows the difference
between common practice in other music classification methods and the approach taken in this
project.

Chapter 6 describes the setup of the experiments that were performed to investigate the
questions in section 1.3. It gives a better insight in the implementation of the different machines
and the choices that were made during their design. Furthermore some information on the
classification task and how the music data were gathered is given. Many papers on the subject of
machine learning are often vague about the specific details of the implementation and parameter
settings. Because we believe that it is important to be able to reproduce the same results, an
extensive description of the implementation of the neural networks as they are described in
the previous chapters is given together with the methods that were used for training, testing
and performance measuring. Also an overview of the adjustable parameters is given in tables,
together with an explanation why certain values were chosen for the parameters, and why other
values have to be found empirically.

In chapter 7 a description is given of the experiments that were performed and why they
were performed in a certain form. The results of those experiments are shown graphically in
this chapter.
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Chapter 8 discusses the results found in the previous chapter, and the implications they
have for the research questions. Some interesting possibilities and recommendations for further
research are also given.



Chapter 2

Neural networks

2.1 Biological neural networks

Since the beginning of the computer era researchers have attempted to mimic the capacities of
biological neural systems by modeling the low-level architecture of the brain. The human brain
is composed of a large number of brain cells, called neurons, which are highly interconnected.
The number of neurons in the average human brain is estimated around 100 billion (Kalat,
2001). Each neuron is a specialized cell that can receive, process and transmit electrochemical
signals. A neuron, as depicted in figure 2.1(a), consists of a cell body, branching input structures
called dendrites, and a branching output structure called an axon.

All parts of a neuron are covered by a membrane which in absence of any disturbances
maintains an electrical polarization of the inside of the neuron with respect to the outside.
This potential is called the resting potential of the neuron. One mechanism that maintains the
resting potential of the neuron, is a pump that transports charged ions into and out of the cell.
Because this pump transports more positively charged ions out of the cell than it transports
into the cell, the net result is that the neuron has a negative resting potential. Furthermore,
the membrane is covered with channels which can be closed or opened, allowing charged ions to
pass through the membrane. At rest, these channels are closed, but when they open, positively
charged ions will flow into the cell because of the difference in electrical potential between the
inside of the cell and its environment.

The tips of the branches of the axon, or the presynaptic terminals, are connected to the
dendrites of other neurons via synapses. The synapse, as depicted in figure 2.1(b), is a small
junction in which chemicals from the tip of the branch of an axon are released, which then travel
through the synaptic cleft and are received at the tip of the branch of a dendrite, called the
postsynaptic terminal. The chemicals that are released in the synaptic cleft attach to special
receptors at the postsynaptic terminal, which then inhibit or excite the membrane potential of
the postsynaptic neuron. These chemicals or neurotransmitters can initiate many reactions or
sequences of reactions in the postsynaptic neuron. The reactions that ultimately cause the ion
channels in the postsynaptic neuron to open, allowing positively or negatively charged ions to
flow into the cell, are responsible for the changes in the membrane potential. As the dendrites
of a neuron have many synapses in which incoming chemicals affect the membrane potential
of the neuron, the result in terms of membrane potential is a summation over all these dis-
turbances. When the total membrane potential of the postsynaptic neuron reaches a certain
positive threshold, a mechanism starts that opens the channels of the axon that allow the pos-
itively charged ions to freely flow into the cell. These channels open wider proportional to
the positive potential of the axon’s membrane, so increasing the membrane potential results
in widening the ion channels, which causes the membrane potential to increase even more.
Once the membrane potential is above the threshold the axon thus amplifies it to its maximum
strength, enabling the potential to propagate very rapidly. This process always results in the
same maximum activation value of the membrane potential, and takes very little time. The
electrochemical pulses generated in this way are called action potentials or spikes, and the pro-
cess of sending them is called firing. When such an electrochemical signal reaches the tips of
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Figure 2.1: Overview of a biological neuron (a), and a synapse (b)

the branches of the axon, it triggers the release of chemicals which travel through the synaptic
cleft to the dendrites of other neurons, which may in turn fire.

Each neuron synthesizes its own neurotransmitters, which costs a considerable amount of
energy and time. Propagating an action potential through the synaptic cleft takes a certain
amount of neurotransmitter molecules. Because the process of generating neurotransmitters
runs at a certain speed and requires chemical building blocks and energy, the neuron can run
out of neurotransmitters. After a period of rapid firing, the neuron can get ‘tired’ and cannot
maintain its firing rate any longer. Furthermore, after each time the neuron fires, it enters
a state in which it cannot fire again for a short period. Immediately after sending an action
potential, the ion gates are firmly closed and the membrane cannot produce another action
potential for a short time. This state is called the absolute refractory period. During the next
state, some of the ion channels are closed, but not all, requiring a much stronger stimulus to
produce another action potential. This stage is called the relative refractory period.

The total potentiation of the neuron depends on the spatial and temporal summation over
the fluctuations of the membrane potential caused in the synapses on the branches of the den-
drites. Due to the strongly branched architecture of the dendrites, the postsynaptic terminals
are situated at different distances from the cell body. The amount of the postsynaptic poten-
tiation that reaches the cell body is inversely proportional to the distance from the synapse to
the cell body. Moreover, propagating the disturbances in the membrane potential caused in the
tips of the branches of the dendrites costs an amount of time proportional to the distance to
the cell body. This means that some synapses are more influential than others because of the
spatial and temporal factors that influence the propagation of disturbances in the membrane
potential. Furthermore, the strength of the signal received by a neuron through a synapse de-
pends on the efficacy of the elements that make up the synapse, such as the amount of available
neurotransmitter molecules, the amount, type and position of the receptor molecules, possible
receptor blocker molecules and a whole lot of other factors. Together with the spatial and tem-
poral aspects of the strength of the signal related to the location of the synapse, these factors
determine the effect a synapse can have on the total potentiation of the membrane in the cell
body, which is called the strength of the synapse.
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The processes and variables described before are the basic mechanisms by which a neuron
operates. A structure that consists of a very large number of these building blocks, such as the
human brain, is capable of performing extremely complex and dynamic tasks. Moreover this
structure has the ability to adapt itself to certain circumstances, and can somehow reorganize
itself to improve its skills on different tasks. How this process, which is usually called learning,
takes place, and by what mechanisms the brain can train itself, has been the subject of research
for many years.

It was Hebb (1949) who first postulated the idea that learning consists principally of altering
the strength of a connection by some growth process or metabolic change that takes place in
one or both neurons that are interconnected. Later research has shown that such changes
did indeed take place by a mechanism called long-term potentiation (Bliss and Lømo, 1973).
Learning in a biological neural network that consists of interconnected neurons is achieved
by strengthening the synapses between those neurons, if two or more presynaptic neurons
repeatedly fire simultaneously and contribute to the firing of the postsynaptic neuron. The
opposite change, long-term depression, can also occur, which is a prolonged decrease in response
to slow or weak stimulation of the postsynaptic neuron. The mechanisms that are involved in
these processes are very complex. Synapses can be strengthened or weakened, by altering
the structure of postsynaptic receptors to become less or more sensitive to neurotransmitters,
decreasing or increasing the number of certain types of postsynaptic receptors, removing or
creating synapses between the two neurons, and various other processes.

In this fashion the brain manages to perform and learn extremely complex tasks using a very
large number of neurons and connections. There is a great deal of complexity in biological neural
networks that has not been discussed here, but these are the basic principles of the functioning
and learning processes of the brain as they are understood nowadays. Most artificial neural
networks can achieve some remarkable results with a model using not much more complex
processes than these.

2.2 Introduction to artificial neural networks

The term artificial neural networks refers to a large class of different architectures with prop-
erties that are related to those of their biological counterpart. Artificial neural networks are
mostly simulated by a computer program, or sometimes implemented on electronic circuits.
Applications of these networks include not only attempts to simulate and model specific parts
of the human brain to better understand the mechanisms by which it operates, but they are also
used to solve certain types of problems, usually related to the type of problems that humans
can deal with. Since the first attempts to mimic the brain by modeling its low-level structure,
many researchers came up with their own ideas about the specific topology, building blocks and
algorithms that could be used in neural networks, resulting in many architectures that belong
to the large class of artificial neural networks.

All artificial neural networks have certain properties in common. Just as the human brain,
they are built out of separate neurons, or units, that are connected to each other, and perform
a certain operation on the input patterns to produce an output. Signals in an artificial neural
network are of course not of electrochemical nature as in biological neural networks, but are
usually represented as numbers. For example in some network architectures the output signal
of a unit is 1 if it fires, and 0 otherwise.

A connection between two units has a certain weight related to it. When a signal is sent over
the connection, it is modified by the weight of that connection. As learning in a biological sense
is accomplished by adjusting the strength of the synapse, the equivalent of this mechanism in
an artificial neural network is the modification of the weights of the connections.

Signals that enter a unit through the input connections are processed into a single number
by a certain summation function, which is the equivalent of the total membrane potential of a
biological neuron. Mathematically the input signals and corresponding weights of a certain unit
i, can be represented as (y1, y2, . . . , yn) and (wi1, wi2, . . . , win), where yj is the output signal
of unit j, and wij is the weight of the connection between the output of unit j and the input
of unit i. The simplest summation function is the dot product of the two vectors, which can
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be computed by multiplying each input signal with its corresponding weight, and adding all
results:

neti = (wi1 · y1 + wi2 · y2 + . . . + win · yn)
=

∑
j

wijyj (2.1)

Of course other, more complex summation functions are possible which combine the input and
weighting coefficients in different ways.

The result of the summation function is passed on to a transfer, or squashing function to
compute the output of a unit. In the transfer function, the output of the summation function
can be compared with a certain threshold, to determine the value of the output signal. Of course
many other functions are possible, which usually are non-linear functions. Linear functions are
very limited, because they produce an output that is proportional to the input. Minsky and
Papert (1969) showed that neural networks using only linear functions cannot solve problems
that are not linearly separable, and are therefore not so very useful for most problems. The
output that is generated by the transfer function is sent through the output connections to the
units that are connected to it. Just as in a biological neuron, an artificial neuron generates
just one output, which can be sent to many other units, while it can receive signals from many
other units. An example of an artificial neuron is given in figure 2.2(a).

Patterns enter a network by providing them to the input connections of particular units
called input units. These input signals are collected by the summation function, and the out-
put is computed by the transfer function. Next, the output of the transfer function is sent to
the inputs of connected units. This process is repeated in each subsequent unit whose inputs
are connected to the output of the sending units. In this way the signals travel through the
network. An example of an artificial neural network is depicted in figure 2.2(b).

To solve a certain type of problem, a neural network usually has to be trained on a set
of examples, called the training set. There is one important feature of the training set that
determines the architecture that can be used to solve the problem. In the case that for each
example in the training set the target value is given, a supervised architecture can be applied. In
case there exist no target values of the input patterns that should be learned, only unsupervised
learning methods are feasible.

Supervised neural networks try to learn to produce the correct output, given the input data.
Usually, the process of learning starts by randomly initializing the weights of the network. Next,
the examples are provided to the network, which generate certain activities in the units. The
activity of some or all of the units, called the output units, is compared to the desired output
by computing the difference between actual and the desired output. This difference or error is
then transformed by an error function matching a particular network architecture. Using the

yi = fi(neti)

i

w1 w2
wn−1

wn

neti =

n∑

j=1

wijyj

· · ·

y1 y2 · · · yn−1 yn

(a)
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Figure 2.2: Example of an artificial neuron (a), and an artificial neural network
(b)
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results of the error function, the weight changes that are required to better match the targets
given the corresponding input pattern and outputs are computed.

Unsupervised learning methods somehow learn to organize the input data themselves, ac-
cording to a certain similarity metric. Just as in supervised neural networks, learning in unsu-
pervised networks is often started by randomly initializing the weights. Input data are provided
to the input units, and are propagated through the network. In contrast to supervised learning,
where the error function is based on the difference between the desired and the actual output,
the error function in unsupervised learning is based on certain characteristics of the input data.

Each network architecture uses its own learning function to compute the desired weight
change for a connection. The weight changes can be applied after the presentation of each
input pattern, or they can be accumulated over the presentation of several examples. Usually it
takes the presentation of a large number of examples until a network produces sensible results.
When no further learning is required because the results produced by the network are accurate
enough, the weights are frozen and the network can be used to produce outputs for novel input
patterns.

Learning a neural network involves adjusting the weights, using a training algorithm. A
training algorithm consists of a method to compute the error in case of supervised learning,
and a rule for determining the desired weight changes. The first learning rule was introduced
by Hebb, and is based on learning in biological neural networks. In terms of artificial neural
networks this rule means that if a unit receives an input signal from another unit and both
are highly active, the weight between the units should be strengthened (Hebb, 1949). Since
the introduction of this principle, many ideas have emerged that can be used to improve the
performance of artificial neural networks. Some examples are; the introduction of a learning rate
which specifies the magnitude of the strengthening or weakening of the weights, or the gradient
descent method which transforms the error in each unit by the derivative of the transfer function
of that unit.

2.3 Feedforward neural networks

One of the most widely known and commonly used artificial neural network architectures is
the feedforward neural network, also known as the backpropagation network, or the multilayer
perceptron (Rumelhart et al., 1986). Feedforward neural networks using non-linear transfer
functions are capable of solving an extensive range of problems. In such a network, the units
are organized within separate layers. In a fully connected multilayer feedforward network, each
unit in one layer is connected to every unit in the layer below. An input pattern is provided to
the lowest layer, and the signals travel through the network from layer to layer, to the top layer.
The activities in the top layer, or output layer, are then compared to the desired targets to
compute the error. The network is trained by the backpropagation algorithm, which computes
the weight update for each connection. An example of the structure of a feedforward network
is depicted in figure 2.2(b).

The specification of a feedforward neural network can best be given in mathematical terms.
Let N be a neural network. The external inputs to the network and the outputs of the units
are denoted by y. H is the set containing indices i, such that yi is the output of a unit, I is
the set containing indices i, for which yi is an external input to the network, and K is the set
containing indices i, for which yi is the output of a unit in the hidden layers of the network.
Let ~w be the weight vector with a unique value wij , for each weight between the input of unit
i and the output of unit j of every connected pair of units in the network. It is possible that
at some point all inputs to the network are 0, whereas the output should be a number other
than 0. To enable this kind of behavior the units include a bias term, so each unit that is not
an input unit is connected to a single bias unit, which always has a value of 1. Let

neti =
∑

j∈K∪I

wijyj (2.2)

be the net input to the ith unit for i ∈ H. The output of the unit is:

yi = fi(neti), (2.3)
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Figure 2.3: Weight space with respect to the error

where fi is the unit’s squashing function. Note that fi can be any function, as long as it is
differentiable. The system of equations 2.2 and 2.3 constitute the entire dynamics of all units
in the network N .

Training a neural network involves finding the set of weights for which the outputs are as
close as possible to the desired targets given the input data, so as to minimize the total error
over all examples. This process could be performed by investigating all possible combinations
of weights and picking the combination that minimizes the total error. One can imagine that
trying all possible combinations of the weights is computationally intractable. Therefore, most
training algorithms do not search for the minimum error by trying all possible combinations
of weights, but try to search for the minimum error in a more intelligent way. For example,
the backpropagation algorithm tries to find the minimum error by updating the weights into
the direction of the negative derivative of the error with respect to the weights. This process
can be visualized by imagining the weights and the error as a multidimensional space, in which
each weight represents one dimension, and the value of the error one additional dimension, as
depicted in figure 2.3. The algorithm searches for a minimum of the error in the weight space
using an iterative gradient descent method. In each step of this method, the direction of the
negative derivative of the error with respect to the weights is determined, and the update of
each weight is the proportion of that weight to this derivative. The combination of weights that
minimizes the error function is considered to be a solution of the learning problem. Because
this method uses the derivative of the error function and the error function is computed in each
unit, the components of the network must guarantee the continuity and differentiability of the
error function. This means that the summation and the transfer function of each unit should
have those properties. A function that is often used as transfer function is the sigmoid, because
it is a non-linear function, and its derivative is quite easy to compute:

f(z) =
1

1 + e−z
(2.4)

and its derivative:

f ′(z) = f(z)(1− f(z)) (2.5)

Backpropagation with gradient descent tries to find a minimum of the error function by
determining the direction of the partial derivative of each weight with respect to the error
function:



Section 2.3 Feedforward neural networks 15

∇E(~w) =
(

∂E

∂w1
, . . . ,

∂E

∂wn

)
(2.6)

This process is visualized in figure 2.3. Because the number of dimensions that can be depicted
is limited, this figure shows only two weights w1 and w2, and the error e, which is computed by
subtracting the target value t, from the actual output y. The lines in the figure determine the
landscape of the error surface with respect to the weights. Now imagine that the two weights
have certain values whose location in the error surface is given by point b. The direction of the
total weight change that decreases the error is given by the direction of the black arrow, which
points in the direction of a, the global minimum. The direction in which the two weights should
be changed is given by the gray arrows, which is the direction of the negative partial derivative
of each of the weights with respect to the total derivative.

The example in figure 2.3 is of course very simplistic in that more realistic networks have
more weights and therefore more dimensions. The error surface in such a high-dimensional
space may not be as smooth and regular as in the example, and may contain more local minima.
Moreover, there is another problem with gradient descent. As can be seen in figure 2.3, the
negative derivative of the error surface does not always point in the direction of the global
minimum. If, for example, the two weights have certain values whose location in the error
surface is given by point c, the direction of the negative derivative points away from the global
minimum. This means that backpropagation with gradient descent is not always guaranteed
to find the global minimum, and depends on the initial values of the weights. Yet another
drawback of gradient descent, is that it learns very slow. Each update changes the weights with
a certain amount, called the learning rate. The learning rate can be a number between 0 and
1, but it has to be chosen carefully. If it is too big, the process will overshoot the minimum,
and if it is too small, the learning process is very slow, and can be stuck in local minima. Even
with an appropriate learning rate it usually takes a large number of training cycles to find
a minimum. A possible solution to this problem is to use the second derivative of the error
function or an approximate as implemented in the Levenberg-Marquardt algorithm (Hagan
and Menhaj, 1994), or Quasi-Newton methods (Dennis and Schnabel, 1983). In this project
however, gradient descent with the first order derivative will be used, so we limit ourselves to
describing the computation of the first derivative.

The process of finding the direction of the weight changes for each separate weight can be
given by the mathematical description of the backpropagation algorithm. The set of output
units T , contains the units with indices i ∈ H, for which there exists a specified target value
di, that the output yi, of unit i should match. The error ei, in each unit is computed by the
equation:

ei =
{

di − yi if i ∈ T
0 otherwise (2.7)

Note that although the error is computed in each unit, only the output units i ∈ T , can have
a value other than 0. The total error over all output units is defined as:

E =
1
2

∑
i∈T

[ei]
2 (2.8)

The objective is to minimize the total error over the output units. This can be established by
propagating the error at the output units back through the network, computing the local error
for each unit in terms of the proportion of the total error E, to the input of the unit neti:

δi =
∂E

∂neti
, (2.9)

for all i ∈ H, which is:

δi = f
′

i (neti)[ei +
∑
j∈H

wjiδj ] (2.10)

Equation 2.10 holds for indices i ∈ T , of units for which a target value is defined, as well as
indices i /∈ T , of units that don’t have a target value. In case there exists a connection wji,
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with i ∈ T , and j ∈ H, the local error of the unit is added to the back-propagated δj from the
connected unit with index j. The gradient descent training algorithm computes the updates
for the weights according to:

4wji = −ε
∂E

∂wji
= εδjyi, (2.11)

with positive learning rate parameter ε. In this way each weight is updated by propagating
the δ’s from the top layer back towards the input layer, thus updating each weight with its
proportion to the derivative of the error.

2.4 Recurrent neural networks

An important aspect of feedforward neural networks as discussed in the previous section, is
that units in a certain layer receive only inputs from units in a lower layer. This simplification
of the actual structure of biological neural networks results in some very nice mathematical
properties of feedforward networks, such as the possibility to use a gradient descent algorithm
based on the top-down propagation of the error. The drawback is that it requires the input
patterns to be presented in separate snapshots. Non-recurrent neural networks cannot employ
the dependencies between different snapshots, and thus cannot learn to find relations in time
series data. If the simplification of having no recurrent connections is dropped, and units
can have input connections from units in higher layers or even from themselves, an additional
temporal dimension is added to the network. An example of an artificial neural network with
recurrent connections is given in figure 2.4. Each time an input pattern is presented to the
network, the units compute their activation just as they would have done in a feedforward
network. However, the inputs to the unit now contains a term which reflects the state of the
network before the pattern was seen, through the activation of units in the previous step. When
subsequent patterns are presented, the states of the units in the network will be a function of
everything the network has seen so far, giving the network a sense of history.

Figure 2.4: Example of a network with recurrent and self-recurrent connections

In most recurrent neural network architectures, the computation of the states of the units
takes place in discrete time steps. At each time step, the activation propagates forward through
one layer of connections only. This ensures that the activation of each unit that provides input
to another unit is known at the next time step. Furthermore, the error can still be propagated
back through the network, while taking into account the extra temporal dimension. Once some
level of activity is present in the network, it will continue to flow through units, even if no
further input is presented. Instead of providing the input patterns as snapshots, it is now pos-
sible to present a network with a time series of inputs, and also require the network to produce
output based on this series. This results in a whole new set of problems that can be addressed
by recurrent neural networks, but also generates certain additional difficulties while training
these networks.
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In a recurrent neural network, information can be stored in two distinct ways, a short-term
memory and a long-term memory, analog to models used in computer science and psychology
(Atkinson and Shiffrin, 1968). The activation of a unit is a function of the history of the states
of the network, thus forming a sort of short-term memory which is lost when the activities in
the network are reset. The weights of the network also implement a sort of memory as they
are trained on past experience, but the timescale of the weight changes is much longer than
that of the activations. The weights of a recurrent neural network can thus be seen as a form
of long-term memory.

The reason why the short-term memory that is based on previous activities in the network
is really short, is that it is very difficult to retain a certain stable level of activity. Once a
certain level of activation is reached in the network, connections with a weight larger than 1
will cause the activation to increase exponentially, and connections with a weight less than
1 will cause the activations to decrease exponentially. Non-linear activation functions of the
units will prevent the activities from growing without bound, but the problem is that it is
very difficult to train the network to use of this sort of memory (Hochreiter and Schmidhuber,
1997). As the error is propagated back through the network, the contribution to the error of a
particular weight situated lower in the network becomes more indirect. The error is propagated
back over time, and each propagation dilutes the error until far back in time, it is too small
to have any influence. This makes it very difficult to assess the importance of network states
at times that lie far back in the past. Using the short-term memory that is present in the
activations of the weights back in time, is therefore very difficult. In general, recurrent neural
networks that are trained by gradient descent methods such as Realtime Recurrent Learning
(RTRL) and Backpropagation Through Time (BPTT) (Williams and Zipser, 1989; Rumelhart
et al., 1986) cannot reliably use states of the network that lie more than about 10 time steps
in the past. In the literature, this problem is often referred to as the problem of the vanishing
gradient (Hochreiter, 1998; Bengio et al., 1994; Pearlmutter, 1995; R.J. and Zipser, 1995; Lin
et al., 1996).





Chapter 3

The liquid state machine

3.1 Problems with recurrent neural networks

As discussed in the previous chapter, recurrent neural networks are more powerful than neural
networks without recurrent connections, because the recurrent connections allow a network
not only to process input patterns over time, but also employ these connections to maintain
some sort of short-term memory. Non-recurrent neural networks can only handle snapshots of
situations as input. For each input pattern a target has to be specified, and the computed error
for that snapshot is used to adjust the network as to minimize the error on future inputs. This
process is unlike what is going on in real biological neural networks, such as the human brain.
The brain is constantly supplied with a large amount of rapidly changing information. Even in
the case the brain is supplied with a still picture, for example a photograph of a human face,
the visual information is not presented to the brain in a single snapshot, but as the eyes of the
observer look at different parts of the picture, more information of the observed face becomes
available over time. To recognize a whole face from the observed parts, it is crucial that some
kind of memory is present to relate current inputs to former ones, in the parts of the brain
that are involved in facial recognition. In the case of artificial neural networks it is of course
possible to increase the number of input units, such that several snapshots can be provided to
the network at once. It is however not always a priori known over how many time steps the
temporal dependencies span, which makes it difficult to determine how many patterns should
be presented to the network at once. Besides, in case the dependencies span a very long time,
the network becomes very large, which results in low learning speeds and increased chance of
overfitting. Whereas neural networks without recurrent connections cannot use any information
that is present in the dependencies between inputs that are presented at different time points,
recurrent connections allow a network to keep a short-term memory of previously seen inputs.
To model biological neural networks and to employ the enormous computational power of such
networks, neural networks that can only process snapshots of situations will not suffice.

However, a major problem with recurrent neural networks is the training of such networks
with supervised learning. The types of neural networks discussed in the previous chapter are
already very simplified models of biological neural networks, but they still have to cope with
the problem of vanishing gradient. Trying to model a real biological neuron with an imple-
mentation that describes exactly what happens when which chemical influences the membrane
potential, might result in a very detailed and complex simulation, but is usually accompanied by
a large computational cost. Additionally, the more complexity is added to the model to closer
match real biological structures, the more difficult it gets to train such a model with supervised
learning methods. As in most experiments the electrochemical processes in individual neurons
are not subject of the study, but rather the total complex behavior that a neural network can
model, it is not always necessary to model the complexity of a real neuron to its full extent.

One artificial neural network architecture that is more like biological neural networks, is
the recurrent neural network with spiking units. This architecture is more closely related to
its biological counterpart than feedforward networks, because the units in this network do not
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communicate between each other with continuous values between 0 and 1, but by sending
discrete action potentials. Just as in a biological neurons that send out short pulses of electrical
energy as a signal, in this model communication between units is based on individual action
potentials or spikes. When a spike arrives at a unit, it increases or decreases the membrane
potential, which then slowly returns to its resting potential. When a number of spikes that
arrive shortly after each other have increased the membrane potential above a certain positive
threshold value, the unit itself sends a spike to other units. This mechanism quite differs
from the mechanisms by which feedforward networks and recurrent versions of the feedforward
networks operate, but neural networks with spiking units are capable of showing extremely rich
and dynamical behavior with a relatively small sensitivity to noisy input.

In contrast to the neural networks discussed in the previous chapter where the output of a
unit is represented as a real number, the activity of the units in a spiking neural network often
makes no sense to humans. An important question is how the information that is present in the
individual spikes and their precise timings is actually encoded, or how it should be represented.
This problem has been the subject of an ongoing debate in the field of spiking neural networks.
Biological neurons send in some sense binary outputs: they send an action potential, or they
don’t. In artificial neural networks this way of communicating information between units is
however not common practice. For example, the units in the feedforward networks as discussed
in the previous chapter, do not employ individual spikes, but use an interpretation of this neural
code in the form of average firing rates. The input of a unit from another unit does not consist
of individual action potential equivalents, but is a number between 0 and 1, representing the
number of times the unit sends a spike during a certain interval. This interpretation with
averaging the number of spikes, not only enables computer simulations to be calculated in
iterations, but also makes it possible to adjust the synaptic strengths or weights of connections
between units to be adjusted according to powerful gradient descent algorithms.

In biological neural networks there is no evidence that a neuron uses some kind of averaging
mechanism to interpret incoming signals into meaningful output signals. Research has shown
that even complex tasks such as human facial recognition can be performed in very short time,
which makes it unlikely that neurons use an average rate coding (Thorpe et al., 2001). Therefore
neural networks with spiking units need not to interpret signals between units as average firing
rates, but can employ the information that is present in the timing between individual spikes.
Much more information can be sent in a stream of individual pulses than can be transmitted
using just averages of pulses, thus creating a whole range of possibilities for new interpretations
of neural code. Several neural codes that could be used for communication between units have
been proposed by Thorpe et al. (2001), such as binary code which interprets a spike as a binary
1 and no spike as a binary 0, timing code, which takes into account the precise timing between
individual spikes, rank order code, in which information is stored in the temporal and spatial
order of incoming spikes, and synchrony code, in which the amount of units that fire at the same
time is taken into account. The latter two are more realistic because the amount of information
that can be sent in such ways is maximized, but depending on the ease of implementation of
these possible neural codes and the purpose of the simulation, several possibilities and all sorts
of combinations can be used.

In a neural network with spiking units the chance that a certain unit fires at a certain
time t, is very small, because the time of a spike is very small compared with the other time
constants. If the state of such a network at a certain time is needed for further processing,
not much information can be acquired from just taking a snapshot of the activities of the unit
at t. Therefore the average firing rate over a certain interval of a group of units is often used
instead of individual spikes of units. This interpretation of the activity in the network, called
population rate code, is often used, not to communicate signals in the network, but to extract
information from the network for further processing. This kind of neural code is unlikely to be
biologically plausible because the amount of neurons that would be required for difficult tasks
is not present in the human brain (Kandel et al., 1991). It is however very easy to implement,
and can be used to extract information from spiking neural networks without imposing a neural
code that should be used inside the network.

While Hebbian learning might be useful for some tasks that can be learned by unsupervised
methods in networks with spiking units, supervised learning of time series data with such units
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is even more difficult, as it involves controlling the responses of highly non-linear and time-
sensitive units. For most neural codes, adjusting the weights of the connections such that a
certain error function is minimized, is already very difficult, but as there is no clue which code
is actually used in the brain it is not clear which one to use anyway. Processing the rapidly
changing information that enters the human brain is performed by intricate organized connec-
tions between different neurons, that form an immensely complicated network with multiple
recurrent loops. Modeling these structures such that learning processes produce sensible results,
turned out to be intractable in the past, and still is nowadays (Savage, 1998). It might however
not be the case that there is an actual neural code that is used in biological neural networks
that needs to be understood to control the behavior and learning in neural networks, but that
the power of spiking neural networks lies in the dynamics. As long as such a network produces a
certain behavior that is complex, it is not necessary to steer and control the network dynamics
by adjusting the weights of the connections by more or less ingenious learning algorithms.

3.2 The liquid state machine

Instead of training a recurrent neural network to learn to exploit memory over previous states,
the liquid state machine (Maass et al., 2002) is based on the idea that the dynamics of spiking
neural networks can be employed as a temporal filter. At any moment this liquid filter contains
information on its present and past inputs. The state of this liquid can be read out and presented
to a separate readout mechanism at certain times. This readout mechanism can be trained to
learn to extract useful information from the state of the liquid, while the liquid itself doesn’t
need to be trained. As an illustration for this approach, imagine a series of perturbations in a
liquid, such as water, caused by a sequence of external disturbances, for example by raindrops
falling into the water. The water will respond by producing waves and ripples which travel
through the water and over its surface, creating specific resonating patterns. The successive
states of the water, or the state trajectories, resulting from a disturbance will be different
for each individual raindrop. At any moment the state of the liquid contains information on
present as well as previous disturbances that were applied to it. A readout mechanism, such
as an artificial neural network, can be trained to match its output to a certain target given
the state of the liquid at certain times as input. It is not necessary anymore that the readout
mechanism implements memory since the information on previous inputs are reflected in the
state of the liquid at any moment.

Although the idea for the liquid state machine originates from the dynamics of spiking
neural networks, it can be applied to any liquid that shows some kind of dynamical behavior.
In order for a liquid to serve as a source of salient information for the readout mechanism, the
perturbations should vary for different inputs, but the behavior of the liquid should not become
chaotic, since little information can be extracted from total chaos. Whether this is the case or
not for a certain liquid, depends on the complexity and dynamics of the liquid. In general, more
complex liquids with more degrees of freedom of the processes that govern its behavior, produce
more diverging internal states, but also have a greater risk of showing chaotic behavior. The
property of a liquid that it produces increasing divergence of internal states over time caused
by different input patterns, is called the separation property.

As in most learning tasks it is not required to retain information on all previous inputs
infinitely long, the dynamics of the liquid are required to slowly ‘forget’ about inputs that lie
long in the past. In the illustration with raindrops falling into water, this behavior corresponds
to slowly fading waves and ripples due to friction. The information that can be extracted from
the form and location of the ripples in the water surface slowly becomes less over time, and
when a new drop falls into the water the contribution to the ripples and waves of the latter is
more than the first. This property of liquids is called the property of fading memory (Boyd
and Chua, 1985).

Any system that satisfies the properties described above can be used as liquid in a liquid
state machine. Moreover, the liquid state machine does not require a task-specific constructed
liquid as long as it has the properties of a dynamical system with sufficient degrees of freedom.
Different readout mechanisms can even be trained to perform different tasks on the same state
trajectories of the liquid, enabling parallel computing. The way in which perturbations in the
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liquid are formed and propagated, varies for different types of liquids and strongly determines
how useful it is. The computational capabilities of liquids are determined by their time to
relaxation, local or non-local interactions, and the extend of heterogeneity of the elements or
particles of a liquid.

It is not required for the liquid to have stable internal states representing features in the
input that evolve over time, moreover it might not even be the case that a certain state occurs
more than once. If the liquid has the properties of a dynamical system with sufficient high
dimensionality, the readout mechanism can transform the transient states of the liquid to stable
target outputs. The capability of the readout mechanism to distinguish and transform the
different internal states of the liquid to match the given target, or the approximation property,
depends on the ability to adjust to the required task of the readout mechanism. The readout
mechanism should be able to learn to define its own notion of equivalence of dynamical states
within the liquid, despite the fact that the liquid may never re-visit the same state.

In contrast to the liquid, the readout mechanism has to be constructed in a task-specific
manner in terms of the desired output. Memory on previous inputs is accomplished by the
liquid, so in general the readout mechanism can be memoryless, which makes it much easier to
construct a task-specific readout mechanism. Unlike finite state machines where the internal
states are already constructed in a task-specific manner, the liquid state machine does not need
to store information about the past in stable states, such as memory buffers or delays. As long
as the dynamics of the liquid ensure significantly different internal states of the liquid over time
for two significantly different inputs, it is not important to store information about previous
inputs in stable states. That means that it is not required to carefully define the states and
transitions as is done in a task-specific finite state machine; the liquid state machine depends
only on identifiable internal states caused by an input pattern.

Figure 3.1(a) gives a schematic overview of the liquid state machine. Let M be a liquid
state machine with liquid LM and readout mechanism fM. The input to the liquid is a series
of disturbances u(·), the outputs of the readout mechanism is some series y(·), and the targets
are denoted by the set d(·). M produces at every time t, an internal liquid state xM(t), which
represents the current response to previous perturbations u(t′), where t′ < t. The task of this
liquid state machine is to map inputs u(·), to outputs y(t), by adjusting the readout mechanism
so that y(t) matches d(t) more closely for a given internal state of the liquid xM(t). The liquid
can be seen as some temporal filter LM, that maps inputs functions u(·), onto functions xM(t),
and the readout mechanism as a memoryless readout map fM, that transforms the liquid state
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Figure 3.1: Schematic architecture of the liquid state machine (a), and its neu-
ronal implementation (b)
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xM(t), into an output y(t), at every time t. This general description specifies the components
that are necessary and sufficient to build a liquid state machine, as long as these components
satisfy the properties described before.

Injecting time-varying input patterns into a liquid with sufficient complex dynamics, will
in most cases not reveal any information on the nature of the input patterns for the human
observer. It is however crucial to the efficacy of the liquid state machine that the readout mech-
anism can discriminate between different state trajectories caused by the input patterns. One
reason this is the case for a whole range of liquids, is that the preprocessing that is performed
by the liquid can be viewed as the projection of the input patterns in a high-dimensional space.
The decision surface which determines whether the liquid is in a certain state at some specific
time, can be approximated by a hyperplane in the state space of the dynamical system that
governs the behavior of the liquid. Statistical learning theory tells us that learning becomes
easier when the input patterns are first projected into sufficient high-dimensional space (Vap-
nik, 1998). Due to the high-dimensionality of the space of the liquid, the projections of the
original input patterns become linearly separable. In general, this means that the more degrees
of freedom the liquid has, usually the easier it becomes for the readout mechanism to learn to
predict the right targets. Whereas methods used in statistical learning theory do not cast the
input patterns into a high-dimensional space explicitly, this process can in liquid state machine
be attributed to the essential mechanisms that govern the behavior of the liquid.

Maass et al. (2002) prove that liquid states machines that satisfy the separation and the
approximation property have universal power for computations with fading memory on func-
tions of time. Häusler et al. (2003) argue that this universal computational ability is due to the
non-linear projection of the input patterns in high-dimensional space, which is performed in
the liquid. Neither this idea, nor Maass’ original theory of the liquid state machine makes any
specific requirements with regard to the structure of the components of the liquid. As long as
it satisfies the aforementioned properties, any system can successfully be employed, even real
water (Fernando and Sojakka, 2003).

3.3 Neural circuitry as liquid

Recurrent neural networks with spiking units do not only have a large variety of mechanisms and
constants determining their interactions, but can also have local as well as non-local interactions.
This means that they can effectively be used as high-dimensional liquid equivalents. Maass
et al. (2002) used a simplified model of the cerebral cortex, in which the individual neurons
are organized in columns. These columns in the cortex are all very similar and can perform
many complex tasks in parallel. Not only are these heterogeneous column-like structures found
in the human cortex; they are also present in the cortex of other species. Implementation of
these columns in the form of a spiking neural network, have already shown to perform very
well, and even in noisy environments their dynamics remain reliable (Vreeken, 2004). Therefore
the liquid in this project will be a recurrent neural network with spiking units, organized in a
column-like structure.

The spiking neural network tries to capture the behavior of real biological neural networks,
but does not necessary implement all features and interactions of its biological counterpart.
One model that is commonly used for networks of spiking units, is the integrate-and-fire model
(Feng and Brown, 2000). This is a general model that implements certain properties of bio-
logical neurons, such as spikes and membrane potentials, and describes in basic terms that the
membrane potential of a unit slowly leaks away, and that a unit fires if the membrane potential
reaches a certain value. This model is rather simple to understand and implement, and can
be described by giving the differential equations that govern the behavior of the membrane
potentials, spikes and some other variables over time.

In the model used in this project the states and variables of the units are computed in discrete
time, using a universal clock that updates the values of a unit each time step. Therefore the
equations that describe the behavior of such units will not be given in differential equations,
but are described in terms of the updates of the membrane potentials and activities of the
units, that are computed iteratively each time step t. The units used in this simulation are a
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simplified model of their more realistic biological counterparts. Spikes or action potentials are
modeled by short pulses that are communicated between units. The input signals to a unit i are
used to increase or decrease the membrane potential equivalent µi. Once µi reaches a certain
threshold value η, the unit sends a signal over its output to the inputs of other units.

Action potentials in biological neurons are all very similar. Therefore all spikes are modeled
to have the same value, so the output yi, of unit i is 1 if a unit fires, and 0 if it does not fire.
Most of the time a unit does not fire, meaning that its output is 0 and does not contribute to
the input of the units it is connected with. The incoming pulses are multiplied by the synaptic
strength equivalent, or weight wij , of the connection between the output of unit j and the input
of unit i, which can be a positive or negative value to model excitatory or inhibitory connections
respectively. Because the effect of an incoming signal lasts longer than the duration of the pulse
itself, and the membrane potential at the postsynaptic terminal of a biological neuron slowly
returns to the resting potential, the accumulated input of a unit at each time step is added to
a proportion of the membrane potential of the previous step. The parameter that controls the
speed at which the membrane potential returns to its resting potential is:

τ =
(

1
2

) 1
rh

(3.1)

where rh is the number of time steps in which half of the membrane potential is left if no
additional inputs are presented during this time. The membrane potential µi, of unit i is
computed each time step according to:

µi(t) = τµi(t− 1) +
∑

j

wijyj(t), (3.2)

Subsequently the output, or whether the unit fires or not, is computed by comparing it with
the threshold value η:

yi(t) =
{

1 if µi(t) ≥ η
0 otherwise (3.3)

After sending an action potential, a biological neuron cannot fire again for a certain period,
followed by a period in which it is more difficult to fire. This behavior is modeled in our artificial
neurons by implementing an absolute and a relative refractory period. After sending an action
potential, it is impossible for a unit to fire again for a number of ra

i time steps, where ra
i is the

absolute refractory period of unit i. Combining this with equation 3.3, yields:

yi(t) =
{

1 if µi(t) ≥ η and (t− tfi ) > ra
i

0 otherwise
(3.4)

where tfi is the last time unit i generated an action potential. When the absolute refractory
period has ended, a relative refractory period is simulated by resetting the membrane potential
µi, to some negative value rr

i , where −rr
i models the relative refractory period of unit i, thus

making it harder for the membrane potential to reach the positive threshold value η. To
implement this relative refractory period, equation 3.2 is augmented with an additional term:

µi(t) =
{

τµi(t− 1) +
∑

j wijyj(t) if (t− tfi ) > ra
i

rr
i otherwise

(3.5)

In case there is no additional input presented to the unit, the membrane potential will slowly
return to the resting potential, just as it would for a positive membrane potential in case no
additional inputs are presented, according to equation 3.2. Equations 3.4 and 3.5 sum up the
whole of the dynamics of spiking units of which the spiking neural network consists.

3.4 Readout mechanisms

Input patterns that are presented to the liquid cause certain state trajectories in the liquid,
which reflect at any moment information on present as well as past inputs. As discussed in
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section 3.2, there is a single factor that determines whether the readout mechanism can extract
information from the liquid states; the approximation property. This property formalized by
Maass et al. (2002), states that a class of functions that satisfy the approximation property,
always contains a function that produces a different output than any other continuous function,
given all possible inputs. This might seem a little abstract, but in other words this means that
this class of functions is guaranteed to contain a function that produces a unique value for each
possible input. The task of the readout mechanism is to find a function that can generalize
over different inputs, and also produces the right targets. In particular, the readout mechanism
should learn to define its own classes of equivalence of dynamical states within the liquid, so
that it can perform this task on inputs it has never seen before. This enables such a mechanism
to perform its task despite the fact that the liquid may never re-visit the same state.

Häusler et al. (2003) argue that as the liquid state machine operates by the principle of
projecting the input patterns in a high-dimensional space, very simple and robust readout
mechanisms should be able to learn very well. Reasonable results have been obtained by
Häusler on toy problems, using very simple readout mechanisms, such as single readout units
trained with the backpropagation algorithm, or linear perceptrons. The high dimensionality of
the liquid seems to be the key factor, as this enables a sufficiently large number of degrees of
freedom for the readout mechanism to extract individualized states of the liquid. As the training
algorithms that are used in these methods hardly suffer from being stuck in local minima, this
seems to be a very efficient readout mechanism. However, some assumptions are being made
which are problematic for the biological interpretation of this framework.

First, the liquid, consisting of the spiking neural network described in the previous section,
should be rather large. This decreases the probability that the learning algorithm of the readout
mechanism will be stuck in local minima by ensuring the necessary degrees of freedom in the
liquid from which the readout mechanism can extract individualized states. Although the
human brain consists of a very large number of neurons, it is improbable that the enormous
amount of neurons is available that would be required to perform such a range of different tasks
by just projecting the sensory input into a high-dimensional space, and using simple linear
readout mechanisms for learning (Kandel et al., 1991).

Second, the readout mechanism and the spiking neural network use different ‘languages’.
Therefore some sort of translation has to be implemented. Spiking neural networks as discussed
in section 3.1 communicate using individual spike times, whereas the readout mechanisms usu-
ally applied in liquid state machines are based on rate coding. Transforming the states of the
spiking neural network seems quite problematic at first sight. Because the units are not firing
most of the time, the activity in the network is sparse, and almost no information can be sup-
plied to the readout mechanism. Another possibility is not to use the activity of the units, but
the membrane potential. However, because of the highly non-linear behavior of these poten-
tials, they do not provide more information than the separate spikes (Buonomano, 2000). One
solution that is often used for extracting information from spiking neural networks, is to count
the number of times a unit fires during a certain interval. To make this method more reliable,
this process is performed for a number of units in the liquid and the results are averaged. In
this way all information that is available through the temporal aspect of the spikes is neglected.
This seems a major drawback, but as the internal dynamics of the liquid is not affected by this
process, this method often still produces reasonable performance.

The third assumption is not an assumption of liquid state machines specifically, but of
supervised classification in general. In classification problems, input patterns that are provided
to the network belong to a certain class. The task of the network is to indicate the right class
for a given input pattern. In the liquid state machine, the input patterns are injected in the
liquid. The disturbances from the resting state advance through the liquid and eventually affect
the whole liquid. The liquid state is used to extract information on the present and previous
inputs, and is then transformed by the readout mechanism to a certain class that corresponds
to the input pattern. In most readout mechanisms as described by authors who previously
used the liquid state machine (Maass et al., 2002; Vreeken, 2004; Häusler et al., 2003), the total
distributed state of the liquid is transformed into the local representation of the activity of
one unit in the readout mechanism. Take for example a speech classification task of a person
saying ‘cat’ or ‘dog’. The task of the readout mechanism is to activate unit 1 if the input to
the liquid was ‘cat’, and unit 2 if the input was ‘dog’. In this example the concepts ‘cat’ and
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‘dog’ are explicitly represented in the specific units that are pre-assigned to do so. From the
perspective of biological neural networks it is highly unlikely that this modeling choice reflects
realistic biological processes (Churchland and Sejnowski, 1992).

It is beyond the scope of this project to elaborate on the symbolism versus connectionism
debate or distributed versus localized representations. The purpose here is to investigate the
use of an alternative readout mechanism, that is based on different principles not necessarily
involving the assumptions and drawbacks of other readout mechanisms as discussed before.
This alternative readout mechanism is the Helmholtz machine. The Helmholtz machine is a
connectionist system that is based on building probabilistic models of the outside world, and
uses this model to recognize novel input patterns. Model building is accomplished by finding
economical descriptions of the features that are present in the input patterns. As the Helmholtz
machine can be trained unsupervised, and uses distributed representations, this would be a
more biological plausible candidate for a readout mechanism of the liquid state machine than
the models used by others.



Chapter 4

The Helmholtz machine

4.1 Introduction to pattern theory

Since the beginning of neural networks research, the focus has largely been aimed at forward pro-
cessing of incoming information. In this view incoming information is transformed to concepts
which represent certain features, and these concepts can be used to form even higher-level con-
cepts. This idea might not seem very strange, as to humans it seems that sensory information is
effortlessly and instantaneously transformed into concepts we perceive, such as a spoken word
or a face. Most classification methods used nowadays, such as feedforward neural networks,
parametric statistical modeling or tree-based classifiers, are based on the idea of transforming
incoming information into concepts that can be used for further processing. Mumford (1994)
radically breaks with this idea and describes a new view on classification based on evidence from
the field cognitive psychology, information theory and statistical physics. The most important
difference with other views is that classification does not only involve the transformation of
signals to concepts, but also the reconstruction of what the signal is like. Applying this idea
to the interpretation of the processes that are going on in the human brain, implies that the
noisy and ambiguous signals that are picked up by the sensory system never make it to the
consciousness, but are replaced by more ideal representations that are created with extensive
use of memory and expectations.

The key idea in Mumford’s theory, called pattern theory, is that sensory information gives
a clue to what is really going on in the outside world, and that processing these clues involves
reconstructing as good as possible the real state of the world. Sensory information is acquired
through available patterns in the outside world. These patterns are caused by underlying pro-
cesses. The task of recognizing patterns is to reconstruct the processes that caused the perceived
patterns to occur. Take for example a pattern of auditory signals produced by speaking a cer-
tain word. When this pattern reaches a human ear, the first step in recognizing the word that
was spoken, is to reconstruct the events in the throat and mouth of the speaker, and to connect
these events with the specific linguistic properties that can be used for further processing. Pat-
tern theory however, is not limited to reconstructing processes at the level of sensory input; it
can also be applied to higher-level concepts. An example of this is a medical expert system in
which the input to the system is a list of symptoms and test results. This information was of
course generated by the processes in the patient’s body, and the task of the expert system is to
reconstruct the processes given these clues. Pattern theory considers the outside world as the
source of unknown processes, objects and events that produce encoded patterns. A classifica-
tion model can classify this information into sensible concepts by reconstructing the processes
in the outside world that caused these patterns to occur.

To perform this task, pattern theory gives some basic properties that should be present
in models that implement this theory. Although these properties are not restricted to neural
networks, pattern theory as described by Mumford is mostly about neural networks, so the
description of these properties will be restricted to the application of neural networks. To
enable the synthesis or reconstruction of the input patterns, a simple feedforward architecture
will not suffice, because the reconstruction of input patterns can only be achieved by feedback,
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top-down connections. The process of sending information over these feedback connections, as
well as the feedforward connections, cannot be completely arbitrary, because the architecture
needs to encode the transformed input patterns in a certain way to be able to reconstruct
them. Reconstructing the input patterns must be learned by the network through experience.
As more information of the outside world is presented to the network, it learns to build a model
of the outside world that can be used to synthesize input patterns. Just as in most orthodox
feedforward neural networks, models that operate on the principle of pattern theory can also
have a hierarchical layered structure. Evidence for such layered structure that has feedforward
and feedback connections, is found in the human cortex (Felleman and Essen, 1991). Although
there is no strong evidence that the human brain operates on the principles of pattern theory,
the structure of the cortex in particular matches the properties described before. Some evidence
however comes from the field of cognitive psychology, where a large number of experiments has
shown that what we perceive is not what is actually there, but rather a reconstruction from
our imagination depending on our memories and the situation.

Learning in pattern theory is largely rooted in Bayesian statistics. The processes that
describe what is going on in the outer world can be described by certain variables Θ. These
processes are not directly known to the model, and are therefore called the hidden variables.
The patterns that are created by the processes are the data that can be observed, and will
be denoted by the set of variables U . From previous observations the model knows for every
possible subset θ ∈ Θ, the prior probability p(θ), that it occurs in the outer world. Furthermore
the model learns the probability of each relation between the possible input patterns and the
real-world processes that caused them: p(u|θ). Presented with a certain input pattern u, the
task of recognizing this pattern consists of selecting the most likely posteriori values of θ that
caused u to occur. According to Bayes (1764), this task can be performed by choosing the
θ which makes the conditional probability p(θ|u), the highest. The model learns by applying
Bayes theorem on both the prior probability distribution on the outer world processes Θ, and
the conditional probability on the observations U , given Θ. The method that is used in pattern
theory, is an application of the minimum description length principle. The minimum description
length principle can be used to re-code the input patterns in a form that requires less information
by finding regularities in the data. These regularities are often caused by the same processes,
so it is by using the minimum description length principle that the underlying processes that
generated the observed data can be found.

Mumford gives some ideas on how this could have been implemented in the cortex, and
also speculates about the evolutionary origin of this architecture in the mammalian cortex. His
hypothesis is that the probabilities of the set of variables of hidden world states and processes
are stored in a mechanism that generates patterns in such a way that the patterns that are more
likely to occur in the outer world, are also more likely to be generated. As more information
comes available and is processed, the better the synthesized patterns can be matched with
the actual input patterns. Patterns that are more likely to be generated can for instance be
inhibited by the input signal, resulting in the synthesis of a less likely pattern from the generative
mechanism. The task of the cortical structure is thus to find the simplest representation that will
generate a synthesized pattern through the top-down connections and is as close as possible to
the true input pattern. Because the patterns in the outside world are often fuzzy and distorted
by noise, it is usually not possible to regenerate the exact input pattern. Therefore the model
has to learn more idealized versions of the input patterns that are general enough to deal with
noise. For example, the concept of ‘cat’, or ‘dog’ is an idealized and general concept which
a model has built from several noisy instances of cats and dogs, without ever having seen an
ideal cat or dog. Elaborating on the idea that humans build idealized versions of concepts that
are close to the true underlying processes that generated the observations, it might be the case
that the very math that is used to describe the fundamental processes in nature is a result of
this mechanism.

Pattern theory is quite different from more orthodox methods in the field of artificial in-
telligence. Whereas the latter methods deal with strict rules, concepts, and formal analysis of
processes, the ideas of Mumford fit better with non-logical data structures such as probabilities,
fuzzy sets and noisy data. The basic idea of pattern theory that in order to recognize patterns,
it is also necessary to be able to synthesize them, clearly distinguishes this theory from other
methods in the field of artificial intelligence. It implies that top-down or feedback processes
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are just as important as bottom-up feedforward ones. The problem of just transforming input
patterns into concepts with certain features, without being able to recreate the input pattern
given certain features, is that incoming patterns are not explicitly modeled. In pattern theory
it is more important that a part of the input pattern matches the class, than it is for all parts
of it to match slightly. This makes classification more robust, and less sensitive to noise. In
more orthodox methods where this top-down synthesis is not employed, this is not possible.

4.2 Processes, patterns and models

Mumford’s theory states that classification, as is for example performed by the cortex, is not only
about representing the input patterns efficiently, but also about building probabilistic models
for those patterns by finding the structure that is inherent in the set of patterns. One possibility
to do this, is to build a parameterized stochastic model that can reproduce each pattern from
an independent draw, according to the same probability distribution as the observed set.

An example of a model that generates such patterns is depicted in figure 4.1 (example
adapted from Dayan et al. 1995). Each pattern consists of a 4 × 4 pixel bitmap. The patterns
are generated in two steps. In the first step each pixel in the top row is turned on with a
probability of 0.2. Subsequently the top row is copied to the bottom row, and shifted one
pixel to the left or right with wraparound. The two middle rows are then copied from the
adjacent outer rows, introducing redundancy into the images. Detecting the direction of the
shift resembles the task of extracting depth from stereo images of vertical line segments, where
the top two rows are the left retina, and the bottom rows the right.

Figure 4.1: Example of patterns created by a generative model

In this example, the task of learning is to induce a model that infers the probability distribu-
tion over the underlying causes of the observed patterns generated by the two-stage hierarchical
process. Even in this very simple process, any pattern can have multiple simultaneous causes,
whereas more realistic problems can even have an exponential number of possible causes un-
derlying each pattern. Training a model from a set of patterns generated by a more realistic
process, involves inference of an exponential number of possible causes. For such a model it is
intractable to adjust the parameters to optimize the ability of generating the exact probability
distribution of the observed set of patterns. A possible solution is to limit this combinatorial
explosion by maximizing a lower bound on the probability of the observations.

To see how this is possible, a comparison can be made between the possible explanations of
a pattern and the alternative configurations of a physical system. Each possible set of causes
is called an explanation of a pattern. The log probability that a model with parameters θ,
generates a particular pattern u, is the log of the sum of probabilities that a certain explanation
α, is chosen by the model and that this particular explanation generates u:

log p(u|θ) = log

(∑
α

p(α|θ)p(u|α, θ)

)
(4.1)

The posterior probability of an explanation α, given the pattern u, and the model parameters
θ, is the probability that α was chosen by the model and that it generated u, divided by the
sum of probabilities that another explanation α′, was chosen and generated u:

Pα(u, θ) = p(α|u, θ) =
p(α|θ)p(u|α, θ)∑

α′ p(α′|θ)p(u|α′, θ)
(4.2)

In statistical physics the energy of an explanation, Eα, can be written as the negative log of
the posterior probability that α was selected from a model with parameters θ, given u:
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Eα(u, θ) = − log p(α|θ)p(u|α, θ) (4.3)

The posterior probability of an explanation as given in equation 4.2 is in statistical physics
related to the energy of a system at equilibrium given by the Boltzmann distribution (with a
temperature of 1):

Pα(u, θ) =
e−Eα∑
α′ e−Eα′

, (4.4)

where indices u and θ have been omitted for clarity. When there are more alternative ex-
planations, it is possible to design a representation that takes advantage of the entropy across
alternative representations (Zemel and Hinton, 1994). Using equations 4.3 and 4.4, equation 4.1
can now be rewritten in terms of the difference between the expected energy of an explanation
and the entropy across explanations, which in statistical physics is called the Helmholtz free
energy:

log p(u|θ) = −

[∑
α

PαEα −

(
−
∑
α

Pα log Pα

)]
, (4.5)

where the second term is the entropy of the distribution assigned to the various alternative
representations.

Any probability distribution over explanations has at least as high free energy as the equi-
librium, or Boltzmann distribution (Thompson, 1988) as given in equation 4.4. The trick is
now to rewrite equation 4.5 using a more convenient probability distribution Q, instead of the
true posterior probability distribution P , and make up for the difference between Q and P by
subtracting the Kullback-Leibler divergence (Kullback, 1959) between Q and the true posterior
probability distribution P :

log p(u|θ) = −

[∑
α

QαEα −

(
−
∑
α

Qα log Qα

)
−

∑
α

Qα log
(

Qα

Pα

)]

= −

[
F (u, θ, Q) −

∑
α

Qα log
(

Qα

Pα

)] (4.6)

The non-equilibrium posterior probability distribution Q, always has at least as high free energy
as the energy at equilibrium. The last term in equation 4.6, the Kullback-Leibler divergence,
cannot be negative (Kullback, 1959) so ignoring it results in a lower bound on the log probability
of the data given the model. The Helmholtz free energy F (u, θ,Q), is now based on the non-
equilibrium posterior probability distribution Q.

4.3 Basic principles of the Helmholtz machine

Not only did Helmholtz provide us with the math that enabled the formal description of the
models described in the previous section, he was also proponent of the idea that the perceptual
system uses generative models. Therefore the implementation of the principles discussed in the
previous sections in a neural network model, was named after him. A Helmholtz machine (Dayan
et al., 1995) applies the principles discussed in the previous section to infer the probability
distribution Q, over the underlying causes from presented patterns in a recognition model. The
recognition model is implemented as a separate model with its own parameters φ. Furthermore
the Helmholtz machine has a generative model with parameters θ, which is used to train the
recognition model. During training, the parameters of both models are optimized to maximize
the lower bound of the log probability of the data, by maximizing −F (u, θ,Q(φ)).

The Helmholtz machine as depicted in figure 4.2 is a connectionist system with multiple
layers of binary stochastic units. Let G be a Helmholtz machine in which the units are con-
nected by two sets of connections with adjustable weights to implement separate recognition



Section 4.3 Basic principles of the Helmholtz machine 31

and generative models. The external inputs to the network as well as the outputs of the units
are denoted by the symbol y. H is the set containing indices i, such that yi is the output of
a unit, I is the set containing indices i, for which yi is an external input to the network, and
K is the set containing indices i, for which yi is the output of a unit a hidden layer of the
network other than the topmost hidden layer. Let φ be the set of weights that implement the
recognition model with a unique value wr

ij , for each weight between the input of unit i and the
output of unit j of every connected pair of units in the recognition model, and let θ be the set of
weights that implement the generative model with a unique value wg

ij , for each weight between
the input of unit i and the output of unit j of every connected pair of units in the generative
model. To provide for a bias, each unit is connected to a single bias unit, which always has a
value of 1. B is the set of bias units in the generative model that are connected to the units
in the top layer of the network. Both sets of connections connect only units between different
layers, so the state of a unit in layer l is independent of the states of the other units in this
layer. This means that the distributions of both the recognition and the generative model are
factorial in each layer.

Figure 4.2: The Helmholtz machine. The solid lines represent the bottom-up
recognition model, and the dashed lines the top-down generative model. Some
lines are depicted in gray for clarity.

The recognition model is used to produce the non-equilibrium posterior probability distri-
bution Q, from equation 4.6. Given an input pattern the recognition model assigns a state to
every unit in the network, using the model’s parameters to produce an explanation of the input
pattern. For a certain input pattern, the probability qi, that the state yi, of the ith unit for
i ∈ H, is 1, is computed from the bottom to the top layer using the recognition weights wr

ij ∈ φ,
according to:

qi = fi(neti), (4.7)

where neti is the net input to unit i:

neti =
∑

j∈K∪I

wr
ijyj (4.8)

The function fi, can be any differentiable function, but is usually chosen to be the sigmoid
function from equation 2.4. The activity or state yi, of unit i is 1 with probability qi (or 0 with
probability 1− qi).

An explanation α, is the complete assignment of all states yi ∈ H. The contribution to the
probability of choosing α of each unit is qi for units that are on (yi = 1), and 1 − qi for units
that are off (yi = 0). The total probability of choosing α from the recognition model is the
product of all contributions of all units other than those in the input layer. In this way it is
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possible to compute the probability of α, given the model parameters φ, and an input pattern
u:

Qα(u, φ) =
∏
i∈H

(qi)yi(1− qi)1−yi (4.9)

The Helmholtz free energy can be computed using the generative model through Eα(u, θ)
from equation 4.3. To determine the energy of an explanation, the generative probabilities that
explanation α reproduces the states of the hidden units and the input units are computed, using
the generative model with parameters θ. The top-down connections wg

ij ∈ θ, are now used to
determine the probability pi, that the states in layer l + 1 generate the states in the underlying
layer l:

pi = fi(neti), (4.10)

where neti is the net input to unit i:

neti =
∑

j∈H∪B

wg
ijyj (4.11)

Because in the generative model there is no input to the units in the top layer, the probabilities
in the top layer are computed using only the inputs from the bias units that are connected to the
units in the top layer. Furthermore, function fi is again the sigmoid function from equation 2.4.

The contribution of the generative probability pi, of unit i of reproducing α is pi for units
that are on (yi = 1), and 1−pi for units that are off (yi = 0). The total probability of generating
α from the generative model is the product of all contributions of all units other than those in
the input layer:

p(α|θ) =
∏
i∈H

(pi)yi(1− pi)1−yi , (4.12)

The probability pi, that the states in the second layer (l = 2) generate the states in the input
layer (l = 1), can also be determined with equation 4.10, resulting in the probability of the
input pattern given explanation α, and generative model parameters θ:

p(u|α, θ) =
∏
i∈I

(pi)yi(1− pi)1−yi , (4.13)

The energy of α from equation 4.3 can now be determined using equations 4.12 and 4.13:

Eα(u, θ) = − log p(α|θ)p(u|α, θ)
= −

∑
i∈H∪I

yi log pi + (1− yi) log(1− pi) (4.14)

An unbiased estimate of F (u, θ, φ) can be determined based on an explanation α, drawn from
Qα as given in equation 4.9 and the energy Eα, as given in equation 4.14:

Fα(u, θ, φ) = Eα(u, θ) + log Qα(u, φ)

=
∑

i∈H∪I

yi log
qi

pi
+ (1− yi) log

(
1− qi

1− pi

)
(4.15)

The total negative free energy across all patterns can simply be found by summing over the pro-
portion of each pattern to the probability distribution Q, which is produced by the recognition
model φ:

−F (θ, φ) = −
∑

u

F (u, θ, φ) (4.16)

Training the weights now involves a stochastic gradient ascent in the total negative free energy
from equation 4.16.
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4.4 The wake-sleep algorithm

Training the recognition and the generative model involves adjusting the weights in the direction
of the proportion of each weight to the derivative of the free energy across the provided input
patterns. These derivatives are quite complex because they have to take into account the effects
that changing the states of the units in one layer has on the states of the units in other layers.
A solution to this involves an algorithm that trains the network in two separate phases, called
the wake-sleep algorithm (Hinton et al., 1995).

Input patterns are presented to the bottom layer of the network during the wake phase, and
the states of the units are computed bottom-up, using the recognition model. The top-down
generative weights are then adjusted to minimize the Kullback-Leibler divergence between the
actual states and the generated probabilities that the states in layer l +1 generate the states in
layer l. During the sleep phase the states of the units in the network are computed top-down
using the generative model, thus generating a random instance from the generative model. The
true underlying causes of the generated pattern are known now, so the recognition model can
be trained using the target values of the hidden units.

Training the models can be compared to a communication between a sender and a receiver,
in which the sender communicates the representation of an input pattern and the difference
between the input pattern and its reconstruction from the representation. Assuming the receiver
knows the parameters of the selected model, it can reconstruct the input pattern. The goal of
learning is to minimize the length of the communication needed to send the input patterns in
this way. Minimizing the length of the communication forces the model to learn economical
representations that allow the input patterns to be reconstructed accurately.

When a pattern u, is presented to the network, the state yi, of each unit i, is 1 with
probability qi, which is computed from equation 4.7. The values of qi and yi are computed in
each layer, from the bottom to the top. The collective states of all units, other than those in
the input layer, is the total representation α. The states of the units in each layer other than
the input layer are now communicated to the layer below, using the distribution pi for units
that are on and 1− pi for units that are off, where pi is computed according to equation 4.10.
Shannon’s coding theorems states that it requires − log r bits to send a state with probability r
under a distribution known to both the sender and the receiver (Casti, 2000). Communicating
the state yi, of unit i, using the distribution (pi, 1− pi) requires:

C(yi) = −yi log pi − (1− yi) log(1− pi) (4.17)

bits, where C(yi) is called the description length of unit i. The description length of the total
representation is the cost of describing the states of all units other than those in the input layer
in this way. Furthermore, the difference between the input pattern and its reconstruction from
the representation needs to be specified, which is the cost of describing the input pattern given
the total representation. The total description length of communicating the patterns is this
way is:

C(α, u) = C(α) + C(u|α)
=

∑
i∈H

C(yi) +
∑
i∈I

C(yi|α) , (4.18)

where H ranges over all units other than those in the input layer, and I ranges over all units in
the input layer. Because the network consists of stochastic units, the representation of an input
pattern is not always the same, so the recognition weights determine a conditional probability
distribution over the total representations. The recognition weights are not changed during
the wake phase, so it is possible to adjust the generative weights to minimize the expected
cost

∑
α Q(α|u)C(α, u), of describing the input pattern with the chosen representation. The

generative weights are adjusted in the direction of the proportion of each weight to the derivative
of equation 4.18, using the delta rule:

∆wg
ij = γyj(yi − pi), (4.19)
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where γ is the positive learning rate parameter. This makes each layer in the network other
than the input layer better at reconstructing the states in the layer below.

In the next phase, the sleep phase, the recognition model is trained by generating a random
instance from the generative model that is computed by activating the units top-down according
to equation 4.10. Because the network consists of stochastic units, this process will generate
different ‘fantasy’ patterns, providing unbiased samples from the generative model. The proba-
bilities that the states of the units in layer l + 1 would be represented by the recognition model
from the states of the units in layer l, are computed with equation 4.7. Again the delta rule is
used to compute the weight updates of the recognition model:

∆wr
ij = γyj(yi − qi), (4.20)

where γ is the positive learning rate parameter.

From the previous section it is clear that it is possible to design a representation that takes
advantage of the entropy across alternative representations, if there are many alternative ways
to represent an input pattern. In terms of description length, the cost of describing an input
pattern is then:

C(u) =
∑
α

Q(α|u)C(α, u)−

(
−
∑
α

Q(α|u) log Q(α|u)

)
, (4.21)

where the second term is the entropy of the distribution that the recognition weights assign
to alternative representations. So training the recognition model does not involve adjusting
the weights to maximize the probability of choosing the representation that minimizes C(α, u),
but to make the distribution Q as similar as possible to the Boltzmann distribution from
equation 4.4, which in terms of minimum description length is:

Pα(u, θ) =
e−C(α,u)∑
α′ e−C(α′,u)

, (4.22)

C(u) is minimized when the probabilities of the alternative representations are exponentially
related to their costs by the Boltzmann distribution, which is the posterior distribution over
representations given the input patterns and the generative model. This can be accomplished
by updating the weights in an iterative fashion according to equations 4.19 and 4.20.

The sleep phase trains the recognition model from patterns that are produced by the gen-
erative model rather than the real input patterns. Furthermore, distribution Q produced by
the recognition weights, is a factorial distribution because the states of the units in layer l are
conditionally independent given the states in the layer l − 1 below. This makes it impossible
for Q to exactly match the posterior distribution from equation 4.22. The reason this method
still works, is in equation 4.6. During the wake phase, the generative model is trained to make
the distribution P match Q, limiting the loss caused by the factorial distribution of Q. The
Kullback-Leibler divergence between Q en P , which is the cost of describing an input pattern
using Q exceeds that of P , is minimized by training the generative model.

Learning with the wake-sleep algorithm as described here is generally performed in an unsu-
pervised fashion. Although it is possible to train a Helmholtz machine with supervised learning
using certain units as output units (Dayan and Hinton, 1996), assigning certain concepts to the
activity of specific units as described in the previous chapter is something that is to be avoided
here. As opposed to training algorithms used for backpropagation networks, the minimum de-
scription length principle is the basis of the learning methods used in the Helmholtz machine.
There are basically two ways in which this principle can be applied to learn a classification task.

First, a Helmholtz machine can learn to represent a probability distribution over the input
data. After presenting a Helmholtz machine with a sufficient amount of training data, the
machine has built an internal model of the input patterns provided during training, and can
reproduce the input patterns with the same probability as in the training set. This can be
achieved by activating the units in the topmost layer with a probability drawn from their
generative bias values, and computing the activities of the units in the lower layers using the
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generative model. When performed repeatedly, this process will ultimately generate each input
pattern with the same distribution as in the training set. This method is of course very useful
if one wants to build a model that can reproduce input patterns with a certain probability
distribution, but this method cannot be used for a classification task.

The second method is more suitable for classification. Although the wake-sleep algorithm
itself is a unsupervised training method that involves a local update rule, it is possible to use
a Helmholtz machine for a supervised classification task. Training in this fashion involves a
supervised learning method, in which a separate Helmholtz machine is taken for each class.
Input patterns are only provided to that Helmholtz machine that corresponds to the class the
pattern belongs to. The minimum description length principle can now be used as measure for
how well a certain concept can be represented by a Helmholtz machine. To test how well this
method performs on novel inputs, each pattern is presented to all Helmholtz machines, and the
machine that can represent the pattern using the fewest amount of information is said to rep-
resent the class of that input pattern. So the Helmholtz machine that has learned to represent
an input pattern with the shortest description length, has the best internal representation of
the class that pattern belongs to.

The Helmholtz machine, as described in this chapter is an implementation of Mumford’s
proposals for mapping the approach of generative models onto the brain. The wake-sleep
algorithm implements the minimum description length principle, which is used to build models
of the processes that are going on in the outside world. Although Mumford’s pattern theory
is mostly hypothetical concerning actual brain processes, it is not unlikely that the Helmholtz
machine models certain aspects of the human brain closely.





Chapter 5

Music

5.1 Introduction to terminology

Music has left its traces in human culture and society during the course of history, and still is
an important aspect of human life nowadays. Already in the days of the Greek philosophers,
Plato saw how much music could influence people and concluded that the spiritual tempera-
ture of an individual or society could be marked by the music they performed or listened to.
What the exact origins of music are and how mankind got involved in making music is still
largely unknown. Some argue that the structure in the music of animals and humans shows
so much similarity that it is likely that the roots of music lie closer to the brain structure of
our primaeval non-human ancestors than to the more recently evolved reasoning cortex (Gray
et al., 2001). Whether it is the case that humans can make an exclusive claim to music, or that
music predates humans, in any case it is clear that music is universal among all humans. In
all cultures around the world people practise the art of making music, and enjoy listening to
their musical creations. Most people seem to have the innate ability to memorize, produce and
recognize musical patterns which makes it possible to pass on tunes between individual persons
and from generation to generation. Before we explain how this extraordinary ability is achieved
by the human brain, we will first shed some light on the nature of music and introduce along
the way some terminology that will be used later on.

The basic component of music is sound. Sound is a vibration in the air that is caused by a
moving or oscillating body, such as a string or a speaker. The amount of oscillations per time
unit is called the frequency, which is often measured as the number of vibrations per second
in Hertz (Hz) and the amplitude is a measure for the magnitude of the oscillation. In more
simple terms: the amplitude determines the loudness of a sound, and the frequency its pitch.
Vibrating bodies don’t necessarily vibrate at one frequency; they often produce vibrations at
several different frequencies. As such a body vibrates, it causes the air around it to vibrate and
the vibrations are propagated through the air as sound waves, which can be picked up by the
human ear.

Most musical instruments have the property that they can produce one or more discernible
tones. As vibrating bodies often produce more than one frequency, each tone is made of a
number of distinct frequencies, the lowest of which is called the fundamental and produces
the pitch of that tone. The other frequencies that are produced by the instrument are often
approximately integer multiples of the fundamental frequency, called harmonics. These over-
tones and the balance of their amplitudes are important factors for giving each instrument its
characteristic timbre.

A musical instrument or the human voice can produce a tone with a certain duration at a
fixed pitch. Such an instance of a tone is called a note. The duration of the onsets between
notes that are played successively is what produces a sense of rhythm. Rhythm is a very
important aspect of music because it creates a sense of structure in time. Not only does
sounding different notes after each other produce rhythm, the combination of the relations
between pitches and durations of the successive notes produces melody. In addition to playing
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different notes subsequently, it is also possible to play two or more different notes at the same
time. The relation between notes that are sounded simultaneously is what constitutes harmony.

The distance or relation between the pitches of successive or simultaneously sounding notes,
is called the interval. The frequency ratio between two pitches determines how well the com-
bination of the two sounds. In many cultures the basic intervals in harmony are those using
the ratios with the lowest integers, such as 1:1, 1:2, 2:3, etcetera. For example, a certain pitch
with a frequency of 440 Hz and another one with a frequency of 880 Hz, have a frequency ratio
of 1:2. Putting different notes together, using the rhythmic, melodic and harmonic aspects of
the combination of notes results in a musical piece, which often consists of a lot of individual
and discernible units. Each different note can be seen as a unit, but also groups of notes that
have certain properties in common, such as the intervals between successive or simultaneously
sounded notes, or the duration and similar rhythmic properties of the notes. Repetition and
symmetry of groups of notes that have certain aspects in common is what makes the units,
phrases and above all, the organization and structure in music.

In each period in history, and in each culture composers use a particular combination of units
and rules to create a song or a musical piece. For instance, Western music is characterized by
the use of a 12-note scale and a trend toward complexity in harmony, rhythm, and orchestration.
Western music in the early Middle Ages was mostly monophonic, which means that it consisted
of just one part. In later periods other parts were added, which were often subservient to the
melody. Polyphony emerged in the Renaissance period and culminated during the Baroque
period in the musical technique that is known as counterpoint. Counterpoint aims at creating
several independent melodic voices, as opposed to monophonic music, which has just one part
and homophonic music, which consists of a dominant melody part that is accompanied by other
parts. The melodic interaction between the different voices rather than the harmonic effects
generated by the intervals between the voices is important in counterpoint. Furthermore, the
rules that govern the melodic interactions are often very strict. Towards the end of the Baroque
counterpoint lost its dominant role, as harmony became the predominant organizing principle
in music. As described before, harmony is the relation between the pitches of two or more
notes that are played at the same time. The combination of three or more different pitches that
are sounded simultaneously, or nearly simultaneously over a period of time is called a chord.
Generally speaking, any combination of three or more pitches is a chord, albeit that in Western
music some combinations are more prominent than others. Since the late Baroque, chords and
patterns of chord progressions are very important in Western music; these are still among the
main aspects of popular and jazz music.

Within the class of Western music there exists a great variety of musical styles which are
achieved by very complex conventions and rules. Each period, style and composer has its own
characteristics, but there are some properties that all Western music have in common. Rhythm
is often present in Western music as a periodic structure of stressed and unstressed notes or
beats. When this structure is regular, the music is characterized by a repeating basic rhythm
which can be perceived as a regular pulse. The presence of repeating rhythmic patterns with a
regular structure is called meter. Tempo is a related concept that determines how fast a piece
is played. The length of notes and the time between the onsets of different notes is what makes
rhythm, but timing and length are always relative to tempo. Musical pieces can be performed
at different tempos, moreover the tempo can change abruptly, slow down or speed up within a
musical piece, but this does not affect the mutual proportions of rhythmic patterns. Together
with notes and relations between the pitches of notes, duration and temporal structure are the
most important features of Western music.

5.2 Music perception

The process of music perception starts at the ear, which is an ingenious device that picks up
sound waves and transforms them into neural pulses that are transported deeper into the brain.
Inside the ear are several thousands sensory cells that look like tiny hair cells, that resonate at
specific frequencies. Each hair cell represents a small frequency band and produces an amount
of neural activity that is proportional to the amplitude of the frequency at which it resonates.
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The hair cells in the ear as well as the deeper lying cells in the auditory cortex are arranged
in a certain order such that similar frequencies are represented by neighboring cells. Due to
the physical structure of the ear, the processing of sound already begins in the inner ear which
sorts complex sounds, for instance a tone produced by a musical instrument, into its constituent
elementary frequencies.

As described before, musical instruments as well as the human voice produce a whole range
of sounds at different frequencies that are mostly harmonic overtones. The different frequencies
of which a sound consists that are picked up by the hair cells inside the ear, are however not
perceived individually by humans. Instead of hearing the whole spectrum of the fundamental
frequency and the overtones, humans perceive the fundamental as the pitch of a sound. This
aspect of hearing is very important in music. For instance it makes it possible for two sounds
that might consist of different frequencies, such as the same note played on a piano and a violin
or sung by different persons, to be perceived as the same pitch. Pitch perception does not
take place at the level of the ear, because the different frequencies of which a sound consists
are transported separately to the brain, but the brain actively constructs pitch perception.
Research has shown that the reconstruction of pitch is a very important aspect of the processing
of sound in the brain. Even when in an experimental setup the fundamental frequency of a tone
is deleted while keeping the harmonics, the missing fundamental is still perceived as the pitch
of that sound (Whitfield, 1980). This implies that the information about individual frequencies
is somehow combined to construct pitch. Not only humans have the ability to perceive pitch
instead of the individual frequencies of which each tone consists, this property has also been
found in the brain of animals, such as birds, bats, cats and monkeys (Weinberger, 1994a). The
organization of the hair cells in the inner ear such that neighboring cells are tuned to adjacent
frequencies, is also maintained in the auditory cortex. An important difference however, is that
this organization is not at the level of individual frequencies, but at the level of pitch (Pantev
et al., 1989, 1991). Certain areas in the auditory cortex respond in essentially the same way
to a variety of sounds that all have the same fundamental but do not necessary share any
frequencies. The neurons in these areas are very important for the ability to perceive pitch,
and have a spatial order according to this abstract property, such that adjacent areas respond to
adjacent pitch, just as the order of the keys on a piano. The obvious representation of pitch in
the neural structure of the brain implies that it is an important concept in auditory perception.

Although very important in music, pitch perception is not the only property that accounts
for the phenomenon music. The same mechanisms that are responsible for producing a sense
of pitch are also involved in another important aspect of music: harmony. As described before,
the ratio of the frequencies of tones that are sounded together is very important in harmony.
However, the human brain is not a computer that can easily multiply frequencies and compare
the results with each other to produce a sense of harmony. Just as in pitch perception, the
overtones seem to play a crucial role in harmony perception. It was Helmholtz who found
that sounds which are harmonically related, have overtones in common (Helmholtz, 1877). The
neural basis for this is less complicated than would be required for computing multiplications
of frequencies. As the human ear is constructed in such a way that it activates a specific neuron
for each frequency band, partly the same neurons will be activated for sounds which have
overtones in common. Because these neurons have a certain amount of overlap, the overtones
don’t have to be exactly the same, as Helmholtz stated, but can diverge within the range of that
frequency band. The number of coincidence neurons which respond to two different harmonic
frequencies could be used to determine their harmonic relation, but it is debatable if such a
simple mechanism can account for all different aspects of harmony (Fishman et al., 2001). Due
to the structure of the auditory system other related mechanisms are sometimes activated by
harmonic relations. For example, frequencies with approximately simple integer ratios produce
sequences of action potentials that show stronger temporal correlations than frequencies with
ratios of high integer numbers. Of course the frequencies are not always produced in the same
phase, but due to the stochastic nature of neuronal representations it is still possible to detect
synchrony in firing patterns. In addition, there is a mechanism that activates neurons that
correspond to the difference in frequency between two overtones of different frequencies. This
means that the difference between two frequencies can sometimes be perceived as a tone that
is actually not present. Harmony is also directly related to the emotional aspects of music.
Certain ratios between two different frequencies result in the activation of a part of the brain
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that is responsible for pleasant feelings, while other specific ratios result in the activation of
areas that are involved in other emotions (Blood and Zatorre, 2001).

The previous section has pointed out that although music comes to us as an immediate and
wholistic experience, it consists of clearly discernable units. Not only does the auditory cortex
process pitch rather than raw sound frequencies, brain cells have been found that process more
general temporal aspects of music such as specific melodic patterns and rhythm. Structuring
the auditorial input is an important function of the brain, moreover phenomena like music
and language seem to based on this property. Rhythm is an important feature of music that
is recognized by grouping sound sequences into discrete phrases. This process which in other
cognitive studies is referred to as chunking, does not only enhance the auditory memory, but
also makes it easier to recognize the same pattern independent of the speed at which it is played
(Weinberger, 1994b). Rhythm is however not the only aspect that is produced by the structuring
process, there also is a different mechanism in the brain that is responsible for structuring
successive pitches. This means that individual pitches are not processed independently, but that
the place and relation of a pitch with respect to other pitches is important. For instance, certain
cells in the auditory cortex react differently to the same pitch when it is part of a sequence
of ascending pitches than when it is part of a sequence of decreasing pitches (Zatorre, 2005).
Together, all these different units in music that are the result of the structuring performed
by the brain, constitute a set of rules that govern the proper combination of elements. For
instance, in Western music there is a strong expectancy for specific periodic rhythmic patterns
as well as certain chord progressions. The presence of neural structures that are specifically
dedicated to music and the amount of brain regions that participate in the different aspects of
music perception as well as emotional reactions, shows that music is not a fancy by-product of
the complex human brain, but that it has a strong biological basis.

5.3 Music classification

People which are interested in music often like or dislike certain styles and can easily recognize
the style or composer of a certain musical piece, even if they hadn’t heard it before. To
assist people in the task of recognizing music, computer programs have been developed that
use different features of music to assign labels to musical pieces, such as the composer or
a certain musical style. Music classification has become a growing field of interest in music
technology, as many people have access to large collections of digital musical pieces. Databases
of music files are often organized in directory structures classified by genre or artist, but as
these classification methods are not always accurate and because of the problems that arise due
to language differences, a system that makes classifications based on musical content would be
much more appropriate. Such a system could also be used to automatically classify new music
using the existing classification system specified by the user. Although music classification
using algorithmic methods is a relatively new field, extensive research has been performed on
the nature of musical units, and what rules are used to combine these units into musical pieces.

Digital music files can roughly be divided in two distinct classes: files in wave format, and
files that consist of notes. Wave format files are direct recordings of sound waves through
a microphone or similar device, transformed to a digital signal and stored on some digital
medium. Methods from digital signal processing theory are often applied to extract features
from the spectral analysis of frequency bands of the digital wave files. Frequency bands are
computed using bandpass filters that split the incoming signal consisting of multiple frequencies
into separate frequencies that can be processed independently. This process is the equivalent
of frequency separation of the human auditory system. Several other methods such as the
extraction of power spectral density, smoothness in frequency domain and the development of
wave energies, are used to extract some more low-level properties of the musical piece (McKinney
and Breebaart, 2003). These methods extract more abstract representations of basic musical
properties such as meter, tempo, rhythm and the timbre of the musical instruments or the
human voice.

The other class of music files does not contain digital information of sound waves produced
by musical instruments or voices, but contains information on the pitch, onset, duration and
volume of individual notes. For example, it contains information on when to press and release
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Figure 5.1: Schematic overview of music classification

a specific key on a piano, and with what velocity, but the actual sound that is produced by
the piano is not stored in the file. A commonly used format for storing such files on digital
computers is the MIDI file format. This representation of music can be used to extract high-
level information on musical features, rather than sound features. As opposed to wave format
files, this format does not require digital signal processing theory for feature extraction, but
the individual notes can be studied with methods that are directly derived from music theory
(McKay and Fujinaga, 2004; Li and Sleep, 2004). Melodic features can be extracted from the
intervals between subsequent notes, upward or downward moving sequences of notes, and mod-
ulations between different keys. The intervals between pitches of simultaneously played notes,
and chord progressions are used for information on harmony. Meter, note onset and note length
can be used to extract rhythmic features, and the change in volume of subsequent notes for
information on dynamical features.

Feature extraction of digitized music files and the representation of these features is often
limited to short fragments. Because of the nature of the methods and representation of the
features that are used to extract information from music files, these methods are often applied
to subsequent and possibly overlapping parts of the music file. For instance, it is not of much
use to know that the average interval between the notes of a melody has a certain value,
while the intervals between subsequent notes that are much more interesting, take place on a
smaller timescale. Therefore a musical file is divided into several time-frames, and features are
computed for each frame. The computed feature snapshots of small parts of music can then be
used for further analysis.

Whereas statistical analysis methods used to be the standard in music classification, machine
learning methods are becoming increasingly popular. Such methods include hidden Markov
models, PCA analysis, neural networks and support vector machines (Basili et al., 2004; Har-
ford, 2003; Maddage et al., 2003). The main goal of machine learning methods is to learn to
classify musical pieces by genre or composer, using sets of features such as those described
before. This process is illustrated in figure 5.1. Most machine learning methods are limited in
the sense that they can only process snapshots of situations, and cannot learn any temporal
dependencies between those snapshots. Apart from the fact that all this feature extracting is
not always biologically plausible, these methods can in most cases not be used to learn temporal
dependencies between different snapshots, and therefore they rely on the temporal features that
are extracted from the music. Furthermore, feature extraction as described before is because of
the nature of the methods used also limited to short fragments of music. It is common practice
in the field of music classification to cut a musical piece into small parts. These parts are
preprocessed by feature extraction methods, and the features are provided to machine learning
methods as snapshots. The liquid state machine in combination with the Helmholtz machine
provides a framework in which both the problem of extensive preprocessing and the limitation
of using snapshots of small parts of the data disappear.





Chapter 6

Methods and implementation

6.1 Music classification as learning task

Investigating the questions in section 1.3 into more depth involves an appropriate learning
task for testing the different aspects of the application of a Helmholtz machine as readout
mechanism of a liquid state machine. Such a learning task should of course involve time series
data in which the temporal dependencies play an important role to justify the use of a temporal
liquid filter. Furthermore, the Helmholtz machine can only be used for unsupervised learning
or for classification tasks as described at the end of chapter 4, so the learning task should be a
classification task that can only be solved by finding temporal dependencies between different
input patterns in time series data. Such a task should of course not be too easy, because it is
difficult to conclude anything from a learning algorithm that always solves the task regardless
of the parameter settings. Because the artificial neural networks used in this project are not
mere theoretical inventions, but try to model certain aspects of the human brain, the learning
task should preferably be of a kind that can also be solved by the human brain. A task that
satisfies these requirements and does not only involve quite complex brain mechanisms, but is
also very easily solved by humans, is the classification of music. A machine learning algorithm
that doesn’t rely on preprocessing can only solve this task by finding musical properties such as
rhythm and melody, that are inferred from temporal dependencies in the musical data, such as
the relation between the lengths and pitches of successive notes. However, in order to create a
music classification task that depends mostly on temporal dependencies between the different
notes, there should not be too much difference in harmonic features between the different classes.
Harmony can be derived from the proportion between the pitches of different notes that are
sounded at the same time. That means that harmony can be derived from single input patterns
in time series data of music. If the classes that have to be learned have very distinct harmonic
properties, the task can easily be solved without finding temporal dependencies.

As described in the previous chapter, most other methods used for music classification
heavily rely on extracting all sorts of features. The feature extraction algorithms used in these
methods are often applied to find temporal relations in the data, in order to avoid the inference
of temporal relations in the machine learning methods that are used for further processing of
the features. This is however not the way the task is solved in this project. The Helmholtz
machine is based on extracting features from input data, and builds a generative model of the
processes that caused the data to occur. Too much preprocessing of the data complicates this
task. Besides, we don’t want to test the performance of feature extraction algorithms to find
temporal dependencies in the data, but the capability of a spiking neural network as liquid
filter to extract those temporal dependencies.

A music classification task involves finding the corresponding class for a certain musical
piece, based on its content. A set of musical pieces can be divided into different classes based
on several criteria. The criterion used in the music classification task for this project is the
composer. Among the most famous composers in Western classical music are without doubt
Johann Sebastian Bach and Ludwig van Beethoven. Both of them have written an extensive
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opus, including not only orchestral and chamber music, but also vocal, choral and keyboard
works. Although not of the same period, the works of Bach and Beethoven have much in
common. Beethoven played and studied the work of Bach and has most certainly been influenced
by this in his compositions. Two sets of musical pieces that are not only very representative
for the two composers, but are also intended for the same type of instrument, are: the ‘Well-
Tempered Clavier’ by Bach, and the ‘Piano Sonatas’ by Beethoven.

The Well-Tempered Clavier is a major work of music for keyboard instruments, such as the
harpsichord or the piano. It consists of two books with twenty-four pairs of preludes and fugues
each. The first pair is in C-major, the second in C-minor, the third in Csharp-major, the fourth
in Csharp-minor, etcetera. Every major and minor key is represented in each of the two books
in ascending order. The Well-Tempered Clavier is a work of great depth and diversity, and has
provided the harmonic basis for classical music from Bach onwards. Just as the Well-Tempered
Clavier is a work of major importance in Western classical music, the 32 Piano Sonatas written
by Beethoven are among the most prominent in their class. A piano sonata is a musical piece
written for unaccompanied piano. Sonatas are usually written in several movements, mostly
three or four, and satisfy certain rules, for example the modulation to certain keys in different
movements. Because these two sets are very important in the history of Western music, and
because their harmonic properties are not too different as well, they are used as the two classes
in the music classification task.

6.2 Setup

To compare the performance of the Helmholtz machine with other readout mechanisms, another
neural network is required that has certain aspects in common. For example: most neural
networks can process real numbers within a certain interval, whereas the Helmholtz machine
as implemented in this project can only process input patterns that consist of ones and zeros.
For a fair comparison a neural network is needed that has no difficulty learning from input
patterns that consist of ones and zeros, and has a comparable amount of complexity in terms
of non-linear functions and the number of adjustable weights. Such a neural network is the
multilayer perceptron as described in section 2.3. The multilayer perceptron can solve non-
linearly separable classification tasks, and is at least as good as most methods used by others,
such as linear perceptrons. The structure of the multilayer perceptron is not much different
from the recognition and generative models of the Helmholtz machine. Both networks use the
same summation and squashing functions, however the learning algorithms of both networks
are based on different principles. Because of this difference not much can be explained about
the nature of the possible difference in performance between the multilayer perceptron and the
Helmholtz machine. However, to compare the performance of a Helmholtz machine as readout
mechanism of a liquid state machine with other readout mechanisms, a neural network that
can solve quite complex problems serves as a good reference.

Neural networks are not just designed and tested; they first have to be trained. During
training the network learns to extract features from the input patterns in the case of a multilayer
perceptron, or learns to build a model of those patterns in the case of the Helmholtz machine.
The data set that is presented to the network during training is called the training set. When
the learning phase is finished, the performance of the network is tested on input patterns that
were not presented to the network during training, but belong to the same classes. This novel
data set is called the test set. In this way the ability of the network to learn the characteristics
of a certain class and generalize this to data it has never seen before, is tested. Because the
multilayer perceptron and the Helmholtz machine operate on a different basis, a performance
measure is needed that can be used to compare the performance of both algorithms with each
other.

Multilayer perceptrons can be used for classification tasks by assigning an output unit for
each class. The activity of an output unit can be used as measure for the correspondence of an
input pattern to a certain class. Therefore in the multilayer perceptron used in the experiments
in this project the target values for the output units are 1 for the unit that represents the
correct class, and 0 for the other units. In this way, the network learns to assign a high value
to the unit that represents the class of an input pattern, and a low value for all other output
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units. Because a certain input pattern can cause an activity other than zero in more than one
output unit, the unit with the highest activity is said to correspond to the class the network
assigns to that input pattern.

Unlike the supervised backpropagation algorithm used for the multilayer perceptron, the
Helmholtz machine uses the unsupervised wake-sleep algorithm for training. To compare the
capabilities of a Helmholtz machine with other algorithms, a supervised learning method was
devised in which the performance of the Helmholtz machine to build models of the input data
is tested, while the training algorithm itself remains unsupervised. The minimum description
length principle is used as a performance measure in the experiments in this project, by im-
plementing a separate Helmholtz machine for each class. During training the input patterns
are presented to the single Helmholtz machine that represents a class, and the wake-sleep al-
gorithm computes the updates for the weights of that Helmholtz machine to learn a better
representation of the input pattern in terms of description length. When the training phase is
finished, the performance of the Helmholtz machines is tested by presenting an input pattern to
each Helmholtz machine and computing the description length needed to represent that input
pattern. The class of an input pattern is assigned by the Helmholtz machine that can do this
with the least amount of bits, or the shortest description length.

The number of input patterns that are correctly classified by a readout mechanism, is a per-
formance measure that can be used to compare the two mechanisms with each other. However,
the performance in the experiments is not defined as the absolute number of correctly classified
patterns, but as the percentage of correctly classified patterns with respect to the total amount
of patterns in each class. Subsequently, the percentage of correctly classified patterns in each
class is averaged over all classes to get a performance measure that can be represented as a
single number.

An important aspect of a learning task is the representation of the input patterns to the
algorithm, and the preprocessing methods that are involved in creating the representation. In
this project the question is: in what form should the musical content of the Well-Tempered
Clavier and the Piano Sonatas be provided to the network? To find an answer for this question,
the representation of music in the brain has been a major guideline. It was pointed out in
the previous chapter that music recognition can be seen as the process of recognizing certain
features in music from the low-level preprocessing of sensory input to pitches, to high-level
feature extraction such as the recognition of specific melodic and rhythmic structures. When
the brain is presented with music, it immediately transforms the different frequencies of which
it consists to pitches. There are specific neurons that fire when a certain pitch is detected, and
these neurons are ordered by pitch, not frequency, just as the keys on a piano. Modeling such
a translation from raw frequencies to ordered pitches would require a sophisticated algorithm.
If implemented in an artificial neural network, it would not only require a special structure,
training algorithm and a lot of tuning, but also a large amount of computation time. Because the
time and resources are limited for this project, we choose not to implement the transformation
from frequencies to ordered pitches in our model, but to use music files that contain direct pitch
information rather than sound waves.

A commonly used file format for musical files that contains information on the pitch of
a note, its onset, its duration and its loudness, is the MIDI format. MIDI files of the Well-
Tempered Clavier and the Piano Sonatas downloaded from different sources on the internet are
used in this project. Because neural networks cannot process MIDI files, the files are further
processed to time series data. For the purpose of the experiments each prelude and fugue from
the Well-Tempered Clavier is considered as one musical piece, and for the Piano Sonatas, not
the sonata as a whole, but a single movement is considered as one piece.

The data set is divided into two subsets; one part is used during training, and the other part
for testing the performance of the networks after training is finished. A neural network learns
faster if the data are evenly divided over all classes, so a training set is needed that contains
the same number of input patterns in both classes. Book I from the Well-Tempered Clavier
and a total of 20 movements from Piano Sonatas 1-15 are used as training set. Piano Sonatas
1-15 last about 4 times as long as book I from the Well-Tempered Clavier, so just one fourth
of the movements of the Piano Sonatas are used, to create a training set in which both classes
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contain an equal number of input patterns. Book II from the Well-Tempered Clavier and 30
movements from Sonatas 16-31 are used as test set.

Now that the basic properties of the music classification task are discussed, we define the
problem to be learned as “the task of choosing the right class for a MIDI file taken from the
Well-Tempered Clavier or Beethoven’s Piano Sonatas”. For the sake of simplicity, the classes
are labeled ‘Bach’ and ‘Beethoven’ from now on. To give a general idea about the experiments
that are performed, an overview of the different components that are implemented and how
these are linked to each other will be given first, while further details of the components are
given in the remainder of this chapter.

During the training phase the MIDI files are preprocessed for use with neural networks,
and presented to the liquid filter. At certain time steps the liquid states are processed further
to a representation that can be handled both by the multilayer perceptron and the Helmholtz
machine. Next, this data together with the corresponding target values are used repeatedly
to train both readout mechanisms for a certain number of epochs. When the results of the
learning process are satisfactory, the training is stopped and the weight and bias values are
saved. To test the performance of the networks on novel data, the test set is preprocessed in
the same way as the training set and presented to the liquid filter. The liquid states at certain
time steps are processed in the same way as the training set, and presented to both readout
mechanisms. Next, the results of the readout mechanisms are compared to the actual classes.
In this way a comparison between the performance of both readout mechanisms can be made.

6.3 MIDI to time series data

The liquid filter implemented as a spiking neural network, cannot process raw MIDI files.
Therefore some basic preprocessing must be performed on the MIDI files, to create a time
series data set that can be processed by the liquid. A MIDI file consists of events. There are
a large number of events that can be represented in such a file, most of which have to do with
specific properties of electronic instruments, but are not relevant to this project. The events
used here are: the onset and duration of a note, and its pitch. Because the files are played by
different artists, or sometimes directly entered into a computer program, it is likely that the
contents of the file represents certain musical aspects and preferences of its creator. As the goal
of the classification task is to specify the composer, not the musician that played the piece,
these effects are removed by neglecting information on dynamics and exact note onsets and
durations. Each note is set to the same velocity value, and the beginning and duration of the
notes are set to discrete time steps with intervals of 1

32 note. This value is chosen because any
note with a duration shorter than 1

32 has little implication for the basic melodic line, and is more
often used as ‘ornament’. Furthermore, all files are transposed to the same key, namely the
key of C-major for pieces in a major scale, and A-minor for pieces in a minor scale, such that
classes cannot be determined based on key. In a MIDI file a range of 128 different pitches can
be represented, but because the data set contained files composed for keyboard instruments,
notes that cannot be played or are rarely played on such instruments, are filtered out. After
preprocessing the MIDI files, the results are represented in the form of a time series data set,
in which the time is divided into discrete time steps of 1

32 note. Each input pattern in the time
series data consists of a set of 72 numbers corresponding to the 72 most-used keys on a piano
(starting at f2), where the value of each number is 1 if the corresponding note is ‘on’ and 0 if
the corresponding note is ‘off’. A simplified version of the process of converting MIDI files to
time series data is depicted in figure 6.1. The total number of input patterns resulting from
the process of converting MIDI files to time series data, was about 130 000 in the training set,
and about 220 000 in the test set.

In music perception the activity at the onset of a note is of much more importance than the
activity during the rest of a note. This can easily be implemented by setting the value of the
corresponding note in the time series data to 1 only at the onset of a note and to 0 during the
rest of the note, but this results in a data set in which the activity is sparse and has almost
no effect on the activity in the liquid. Therefore the values for the corresponding notes are set
to 1 for the entire duration of a note in the time series data set. In this fashion the melodic
and rhythmic features are explicitly present. In contrast to the brain where certain harmonic
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Figure 6.1: Representation of MIDI file in staff (top), and part of the time series
data (bottom). The numbers within the dashed box represent an input pattern to
the liquid filter at one time step.

relations between different pitches are extracted represented in specific areas, we choose not to
extract harmonic features and represent them explicitly, because we want the learning task to be
focussed on extracting temporal dependencies. The other choices that are made in the process
of converting MIDI files to time series data that can be processed by a spiking neural network
as described before, are listed in table 6.1 as parameters with their corresponding values.

Parameter description Symbol Value
lowest note f2
number of notes 72
resolution 1

32 note

Table 6.1: Adjustable parameters for MIDI to time series conversion

6.4 Liquid filter and liquid states

The type of liquid used in the experiments is a spiking neural network as described in section 3.3.
The structure of the liquid is a three-dimensional space, in which each unit is located at the
integer points. The time series data extracted from the MIDI files consisting of information on
the presence of each of the 72 notes are presented to the leftmost column of the network each
time step. The dimensions of this column are 12× 6 to represent the 12-note scale property of
the music used in this project over 6 octaves (= 72 notes). Each unit in a horizontal row of
12 units corresponds to a note in the 12-note scale, and each vertical row to one octave. For
each note that is played in the MIDI file at a certain time step, the output of the corresponding
unit is set to 1, while the output of the other units is set to 0. To create a three-dimensional
space, 5 additional columns of the same size are placed next to the input column. The resulting
three-dimensional space of units has dimensions 12× 6× 6.

The units in this space are connected to each other according to a stochastic process such
that units that are close to each other have a higher chance to be connected than units that



48 Methods and implementation Chapter 6

lie farther from each other. To create such a network with mainly locally connected units, the
chance pc(i, j) for each unit i that it has a connection to unit j is computed according to:

pc(i, j) =
{

Ce(D(i,j)/λ)2 if i 6= j
0 otherwise

, (6.1)

where D(i, j) is the Euclidean distance between units i and j. λ is the parameter that controls
both the probability of a connection and the rate at which the probability that two units
are connected decreases with increasing distance between the two. C is the parameter that
controls just the probability that two units are connected, and can be used in combination
with λ to scale the proportion between the rate at which the probability that unit i and j
are connected decreases with increasing distance between i and j, and the actual probability
of a connection. The second term of equation 6.1 is added to prevent units from having self-
recurrent connections. Maass et al. (2002) found that the connectivity in biological settings can
be approximated by setting the value λ to 2 and C to a value between 0.1 and 0.4, depending
on whether the concerning units are inhibitory or excitatory. We use the same value of λ in
our experiments. The value of C is 0.4 for all units, because a distinction between inhibitory
and excitatory is not made at the level of units, but at the individual connections.

A connection between unit i and unit j has a certain weight, with value wij . A certain
proportion pi, of the weights is set to a negative value to provide for inhibitory connections,
while the remaining weights are set to positive values, representing excitatory connections. The
dynamics of the spiking units were described by equations 3.1, 3.4 and 3.5 in section 3.3. The
adjustable parameters in these equations are the half-time of the membrane potential rh, the
absolute and relative refractory period ra

i and rr
i of each unit i, and the firing threshold η. The

firing threshold is set to 1 for all experiments, and the half-time of the membrane potential to
4 time steps. The absolute refractory period ra

i , is for each unit i sampled from a Gaussian
distribution with mean ra and standard deviation of 1

2r
a. The relative refractory period rr

i , is
not implemented as a number of time steps, but as a negative value of the membrane potential
after the absolute refractory period is over. In this way it is harder for a unit to reach the
threshold value for a certain number of time steps. The relative refractory period depends on
the value of the absolute refractory period, and the membrane potential decay constant τ , in
the following way:

rr
i = −τra

i

rs
, (6.2)

where rs is a scale factor which has a value of 10.
When time series data of input patterns are provided to the network, the state yi(t), of

unit i in the network is computed at each discrete time step t, using the states of connected
units at the previous time step. The incoming signals propagate through the network, and
produce certain activities in the liquid units. The total activity of all units in the network at
a certain time step contains information on the inputs that were provided during the previous
time steps. It is not necessary to present the liquid state to the readout mechanism at each
time step, because the liquid can preserve information on previously seen inputs over several
time steps. Some preliminary analysis of the liquid and learning task used in this project,
showed that the liquid in most cases returns to a level of stable activity in not more than 100
time steps after the last input is presented. This means that this type of liquid ‘forgets’ about
inputs that have been presented more than about 100 time steps ago when no additional inputs
are presented. Of course this isn’t a precise measure of the memory capacity of the liquid,
but rather an indication of the number of time steps that can reasonably be used as interval
between successive readouts. The interval between successive readouts tv, is set to 128 for all
experiments in this project. To give an idea about the duration of the music that is presented
to the liquid during this period; 128 time steps correspond to 128

32 notes in the MIDI file (= 4
bars in 4

4 measure). The total number of input patterns to the neural networks extracted from
the liquid states, was 536 in class ‘Bach’ and 539 in class ‘Beethoven’ for the training set, and
816 in class ‘Bach’ and 980 in class ‘Beethoven’ for the test set.

At the beginning of the processing of each file, the activity in the network is reset to zero.
Because it takes some time before the activity has spread from the input units over the rest of
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Parameter description Symbol Value
readout interval tv 128
warmup period tw 64
number of time steps over which the activity of a unit is summed
up during readout

ta test

dimensions 12× 6× 6
connectivity parameter λ 2
connectivity parameter C 0.4
proportion of inhibitory connections pi test
firing threshold η 1
mean of the Gaussian distribution from which the absolute refrac-
tory period is sampled

ra test

scale factor for computing the relative refractory period rs 10
half-time of membrane potential rh 4
weight between unit i and unit j wij test

Table 6.2: Adjustable parameters for the liquid and liquid states

the network, the collection of liquid states is started after a certain number of time steps. The
period between reset at the beginning of the processing of each file and the first readout time
is called the warmup period, and will be denoted with the symbol tw. The warmup period is
chosen to be half as long as the readout interval.

At the readout moments the activity in the network representing information about present
as well as past inputs can be used for further processing by the readout mechanisms. However,
because the liquid units are not firing most of the time, the activity in the network is sparse.
That means that little information can be extracted from the activities at just one time step.
Therefore not the information whether a unit is firing or not at a single time step, but the
number of times a unit fires during a certain readout period is used as measure of activity in
the network. Because the Helmholtz machine can only process inputs that are represented as
patterns of ones and zeros, the total activity of a unit during the readout period is compared
with a certain threshold. If the number of times a unit fires during the readout period is above
this threshold, the input to the corresponding unit of the readout mechanism is 1, and if it is
below this threshold, it is 0. If the readout period is chosen sufficiently small, there will still be
a reasonable amount of units that show no activity at all during this period, which means that
the threshold value can be set to 0, so no additional adjustable parameter for the threshold
value is needed:

xi(t) =

 1 if
t∑

t′=t−ta

yi(t′) > 0

0 otherwise

, (6.3)

where t is the time step at which the liquid state is read, xi(t) is a measure of activity of unit i,
and ta it the number of time steps in the readout period. All adjustable parameters discussed
in this section are given in table 6.2. In case the value of a parameter is not given in this
section, experiment have to be performed to find an optimal value, which is denoted with the
word ‘test’ in the table.

6.5 Readout mechanisms

The liquid state produced by the liquid at a certain time step can be used by a readout mecha-
nism for classifying the successive input patterns that were the cause of that state. The readout
mechanisms that are used in the experiments are the Helmholtz machine, and a multilayer per-
ceptron. The architecture of the Helmholtz machine and the wake-sleep training algorithm were
given in chapter 4 and the description of the multilayer perceptron and the backpropagation
training algorithm in section 2.3.
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The wake-sleep algorithm is an unsupervised learning method. However, the minimum
description length principle can be used as a performance measure, using a Helmholtz machine
for each class of the classification task. To be more specific: there is one Helmholtz machine that
has the task to find the best representation for liquid outputs caused by input patterns from
Bach, and another machine for Beethoven. The performance of this method can be measured by
providing a liquid state to each Helmholtz machine. The machine that can represent that liquid
state using the minimal description length corresponds to the class that is assigned. Because
the activation function of a Helmholtz machine is of a stochastic nature, the input patterns are
provided a number of times and the average description length is taken as measurement and
used for comparison. In the experiments the number of times each input pattern is provided to
a Helmholtz machine is 10.

The multilayer perceptron can be trained by the supervised backpropagation training algo-
rithm. This algorithm uses an error at the output units and propagates this information back
through the network. To compute an error at the output units, a representation of the desired
output has to be created. Therefore a multilayer perceptron with two output units is used in
the experiments, in which each output unit corresponds to a class. The desired activity of the
output unit for the correct class is 1, and 0 for the other classes. When a liquid state is provided
to the network and the activities of the units are computed, the output unit with the highest
activity corresponds to the class that is assigned by the network.

Because the multilayer perceptron and the Helmholtz machine are based on different prin-
ciples, it is not immediately obvious what the structure of the networks should be in terms of
the number of hidden units or the number of adjustable weights and bias values, for a fair com-
parison between the two. A Helmholtz machine with the same number of units as a multilayer
perceptron uses twice the amount of weights and biases as the multilayer perceptron, because
it has separate generative and recognition models. Furthermore, a single multilayer perceptron
with a supervised training algorithm is used for all classes, while a Helmholtz machine with
unsupervised learning is used for each class. However, the property that both neural networks
have in common is that they build a representation in the activity of the hidden units of the
input patterns that are provided to the input units. Because the ability of a network to build a
representation of the liquid states in terms of the activity of the output units or the description
length is tested, the number of hidden units in which this activity is represented is the same
for all networks.

The results of equation 6.3 for all liquid units are presented to the input layer of the readout
neural networks. All units other than the input units of the liquid are used for readout. The
dimensions of the liquid without the input units are: 12× 6× 5, so the number of input units
of the readout neural networks is 360. The multilayer perceptron has a hidden layer, and an
output layer with 2 units, while the Helmholtz machine has no output layer. However, as
discussed before, the number of units in which a representation of the input can be made is
kept the same for all networks, so the Helmholtz machine has two hidden layers where the top
hidden layer also has 2 units. The optimal number of hidden units in the first hidden layer for
both networks is tested in the experiments.

The training and test sets for the readout mechanism consists of patterns of ones and zeros
computed according to equation 6.3. Readouts are performed each 128 time steps for all units
in the liquid other than the input units. Because training a neural network while providing the
training set just one time often doesn’t result in good performance, both networks are trained
on the training set several times. One epoch consists of the presentation of all input data to the
network while training the network on this data. Neural networks often have to be trained for
several epochs before reasonably good results are achieved. However, when a neural network
is trained on the training set for too long, it is possible that the network overfits the training
set. When a neural network is trained it learns to extract the general features of a class, but
when training is repeated too often, the network learns to extract features that are specific for
the training set but not for the class as a whole. It is often the case that after a number of
epochs the performance of the network on the training set still increases, while the performance
on the test set starts to decrease due to overfitting. The moment at which the performance
of the training algorithm on the test set starts to decrease, is taken as the stopping criterion
for the training process. The number of epochs that is required to train the network such
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Parameter description Symbol Value
number times an input pattern is provided to a Helmholtz machine
to compute the average description length

10

number of units used for readout (= number of units in the input
layer)

360

number of units in first hidden layer test
number of units in second hidden layer / output units 2
interval of the uniform distribution from which the weights of the
multilayer perceptron are sampled at initialization

[−0.3, 0.3]

interval of the uniform distribution from which the biases of the
multilayer perceptron are sampled at initialization

[−0.1, 0.1]

initial values of all weights and biases of the Helmholtz machine 0
learning rate for Helmholtz machine γ 0.005
learning rate for multilayer perceptron ε 0.0001
batch size 10
number of training epochs for the Helmholtz machine test
number of training epochs for the multilayer perceptron test

Table 6.3: Adjustable parameters for the readout mechanisms

that the performance on novel data is optimized is not a priori known, and has to be found
experimentally.

During training the performance of the neural networks is improved by adjusting the weights
of the connections between units and the bias values of the units. In equations 2.11, 4.19 and 4.20
the rules for the weight updates for the multilayer perceptron and the Helmholtz machine
were given. These equations include the learning rate parameters ε and γ for the multilayer
perceptron and the Helmholtz machine respectively. As pointed out in section 2.3, the learning
rate parameter has to be chosen carefully. In a preliminary analysis several learning rate
parameters were tested for both types of networks. When the value of the parameter was too
large, the error or description length did not decrease steadily, but oscillated between different
values, and when the learning rate was too small, it took a very large number of epochs before
reasonable results were attained. The training algorithms were however not very sensitive to
the exact value of the learning rate parameters, such that a difference of up to a factor ten
didn’t have much impact on the final performance. Unless otherwise specified, the values of the
learning rate parameters ε and γ were set to 0.0001 and 0.005 respectively.

When a neural network is initialized, the weights and bias values have to be set to certain
values. The weight and bias values for the Helmholtz machine were all set to 0, as is often
done with this type of neural network (Dayan et al., 1995). The weights and biases of the
multilayer perceptron were sampled from a uniform distribution with intervals [−0.1, 0.1] for
the biases and [−0.3, 0.3] for the weights. Next, the training algorithm computes the weight
updates that are required to better match the target or decrease the description length, given
an input pattern. It is possible to update the weights each time an input pattern is provided
to the network, but the weight updates can also be summed over the presentation of a number
of input patterns. The weight updates are then applied after the presentation of a certain
number of input patterns. In this fashion the update process is ‘smooth’, and the chance that
weights start to oscillate between different values is diminished. The number of input patterns
that are provided to the network until the weights are updated, is called the batch size. In all
experiments the number of input patterns per batch is set to 10. Furthermore, the order in
which the patterns were provided to the readout mechanisms is randomized at the beginning
of each new epoch, which improves the learning speed and makes it less likely that the training
algorithm gets stuck in local optima. The adjustable parameters for the readout mechanisms
as discussed in this section are given in table 6.3. Again the value ‘test’ means that the optimal
value has to be found empirically.





Chapter 7

Experiments and results

7.1 Overview

Since there are a number of parameters of the liquid state machine, the Helmholtz machine
and the multilayer perceptron that cannot just be copied from existing literature or set by
educated guesses, experiments were performed to examine the performance on the learning task
for different parameters settings. The neural networks that were used as readout mechanisms
have to be initialized at the beginning of the learning process, which involves setting certain
values according to a stochastic process. For the multilayer perceptron the initial weights and
biases have to be set to small values from a uniform distribution, and the Helmholtz machine
uses a stochastic unit activation function all the time. Because of the stochastic nature of
the initialization and computation, training networks that are initialized with different random
values can produce different results, so the results of a single trained network cannot be used as
a reliable method. Therefore in all experiments the performance was measured for ten networks
with different initialized values, and the average performance over these ten networks is shown
in the results.

The results of most experiments are shown graphically, which does not only give a general
overview of the effect that changing the parameter has, but also allows us to see at which value
of the parameter the best performance is achieved. Each experiment yields an optimal value
or range of values for the parameter that is tested, which is used in later experiments. In this
fashion, the performance on the learning task will increase in each consecutive experiment. It
is however not guaranteed that an optimal performance is achieved for this setup, because each
parameter was tested only in one experiment and the effect that changing another parameter
in further experiments had on the optimal value of the parameter in previous experiments was
not taken into account. Testing each parameter over and over again when another parameter is
changed will require an enormous amount of experiments. Because the time for this project is
limited, we have thought carefully about the order in which the experiments were performed,
and which parameters are the most important, such that the final performance of the setup is
hopefully close to optimal. Besides, the precise value of a parameter is not of great importance;
changing a parameter by a relatively large factor has often little effect on the final performance.

Because the performance of the readout mechanisms was used as the criterion for finding
the right parameter settings for the liquid, the optimal parameter settings of the readout mech-
anisms were investigated first. The optimal parameters for the liquid filter were not yet known
at this stage, so they had to be found by running some preliminary experiments to determine
at which value of the parameters the liquid produced ‘sensible’ liquid states. Because not
much can be learned if the input patterns to the readout mechanisms are all the same, the
separation property of the liquid filter for various parameter settings was tested by investigat-
ing the number of liquid states that were the same. By using this very simple method, we
found that the following parameters for the liquid produced reasonably different liquid states:
(pi = 0.2, ra = 4, wij = 0.4, ta = 12). Furthermore, all units of the liquid filter other than
the input units were used for readout, and presented to the corresponding units of the readout
mechanisms. The liquid parameters were fine-tuned after the optimal values for the readout



54 Experiments and results Chapter 7

mechanisms were found. We expect however that the optimal values of some parameters of the
liquid might not be far from the values we found during the preliminary experiments. Since
we had to set certain values to the liquid parameters it might not be surprising that these
‘guessed’ values are also found to be optimal in other experiments because most parameters are
interdependent.

7.2 Readout mechanisms

The first parameter of the readout mechanisms that was tested, is the number of epochs a
network should be trained. This is very important for the rest of the experiments, because it
determines at which moment the training algorithm starts to overfit, and should be stopped.
When the performance on the test set starts to decrease after a certain number of epochs, it is
unlikely that it will start to improve again, because the algorithm is probably starting to overfit
the training set. The moment the process of overfitting begins is used as the stopping criterion
for the training algorithm. To get an idea at which point the training should be stopped, several
experiments were performed for different numbers of epochs, the result of which are shown in
figure 7.1. The other parameters for the networks were as described before, and the number
of units in the network was 360 in the input layer, 8 in the first hidden layer and 2 in the
output layer or second hidden layer in case of the Helmholtz machine. As can be derived from
figure 7.1(a) the performance of both networks on the training set is improving all the time,
while the performance of the trained networks on the test set as shown in figure 7.1(b) first
increases, but after a certain number of epochs starts to decrease. This is exactly what was
expected, and shows that the best performance on the test set can be achieved by stopping at
the moment the algorithm starts to overfit.
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Figure 7.1: Results for different number of epochs on the training set (a), and
on the test set (b)

Another aspect that can be deduced from figure 7.1, is that the Helmholtz machine learns
much faster than the multilayer perceptron. In other words: the best performance of the
Helmholtz machine on the training set is reached in several tens of epochs, while the maximum
performance of the multilayer perceptron is achieved in several thousands of epochs. A possible
explanation for this behavior is that the learning rate parameter γ of the Helmholtz machine is
fifty times as large as the learning rate parameter ε of the multilayer perceptron. As described in
the previous chapter, the reason that γ is much larger than ε is that the largest possible learning
rate parameter for a network of a certain size was chosen such that the performance on the
training set steadily increases and does not oscillate between different values. To investigate if
the difference in learning rate parameters is indeed an explanation for the difference in learning
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speed, another experiment was performed in which the learning rate parameters of both learning
algorithms were set to the same values. Because the learning rate parameter for each network
were set as large as possible to obtain a steadily increase in performance, the learning rate
parameter of the Helmholtz machine was set to a smaller value, while the learning rate parameter
of the multilayer perceptron was not changed, so: γ = ε = 0.0001. The other parameters were
the same as in the previous experiment. From the results in figure 7.2 can be concluded
that the Helmholtz machine still learns faster. It is however interesting to notice that the
maximum performance on the test set achieved by the Helmholtz machine is not as good as in
the previous experiment. Although the value of the learning rate parameter is an important
factor, the difference between the learning speeds between the Helmholtz machine and the
multilayer perceptron can not only be attributed to the difference in learning rate parameters.
The number of epochs at which the best performance on the test set was achieved, is used as
stopping criterion for the experiments from now on, which is 200 for the Helmholtz machine
and 1750 for the multilayer perceptron.
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Figure 7.2: Results for different number of epochs on the training set (a), and
on the test set (b) where both networks were trained with the same learning rate
parameters

Now that the stopping criterion has been established, another important question is how
large the readout neural networks should be in terms of number of hidden layers and the number
of units in these layers. The more hidden units the network has, the better it can learn to extract
features from the input patterns. On the other hand, the risk of overfitting increases with more
hidden units. When a network has more hidden units, the learning rate should be set to a
smaller value which results in a larger number of epochs that is needed to train the network.
It is often the case that a certain learning task requires a minimum amount of hidden units,
while increasing the number of units too far comes at a great cost in terms of overfitting and
learning speed. To get an idea about the number of hidden units that is sufficient for this task,
a number of experiments were performed with different numbers of hidden units in the readout
networks. An additional experiment was performed in which the networks had no first hidden
layer at all. The results of the experiments are depicted in figure 7.3. From this figure can be
inferred that the performance on the test set increases first with an increasing amount of units
in the hidden layer, but slowly starts to decrease when the number of hidden units gets larger
than about 10. The performance on the training set (which is not shown here) increases all the
time, so the decrease in performance on the test set when the number of hidden units is more
than 10, is not because the network needs to be trained for more epochs, but is probably due
to overfitting. The best performance was achieved in a network with a hidden layer with 10
hidden units, so the size of the networks that will be used from now on is 360 units in the input
layer, 10 units in the first hidden layer and 2 units in the output layer or second hidden layer
in case of the Helmholtz machine.
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Figure 7.3: Performance on the test set for different number of hidden units in
the first hidden layer. 0 units means no first hidden layer at all.

7.3 Liquid optimization

The results of the previous experiments are well above guess-chance, but as the parameter set-
tings of the liquid are initial guesses, the performance can hopefully be improved by analyzing
the dynamics of the liquid more closely. The performance of the readout mechanisms were
averages over ten randomly initialized networks, while just one liquid was used for generating
the liquid states. It might be the case that a differently initialized liquid yields other results.
To examine the variation between the results of different randomly initialized liquids, the av-
erage performance of ten networks for ten different liquids was investigated. The results of
this experiment as depicted in figure 7.4 show that the difference between the best and worst
performance for both readout mechanisms is not more than 2%. Testing all liquid parameters
for a number of different liquids, and training 10 different instances of each readout mechanism
would take a very long time. Because time and computational resources are limited for this
project and the difference in performance between different instances of the liquid is not much,
all liquid parameters will be tested just for one instance of the spiking neural network.
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Figure 7.4: Performance of readout mechanisms on the test set for liquids with
different random seeds at initialization

Two important parameters that determine the activity of the units in the liquid are the
proportion of inhibitory connections pi, and the value of the weights wij . First the best value
for pi was determined by measuring the performance on several different values, while the
other parameters were: (ra = 4, wij = 0.4, ta = 12). The result of this experiment are shown
in figure 7.5(a). The value of pi in the experiments performed till now was 20%, but from
figure 7.5(a) can be deduced that increasing this value to 30% largely improves performance,
so pi will be set to 30% in all experiments from now on.

Next, the performance for different values of the weights of the connections between the
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liquid units was tested, the result of which is depicted in figure 7.5(b). The other parameters
were: (ra = 4, ta = 12). The weight value for which the best performance is achieved, is 0.4,
which is not surprising because this value was also used in the previous experiment to determine
the optimal value for the percentage of inhibitory connections. The results in figure 7.5 show
that the proportion of inhibitory connections and the values of the weights are important factors
for the amount of information that can be extracted from the liquid and used for classification
by the readout mechanisms.
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Figure 7.5: Results on the test set for different values for percentage of inhibitory
weights (a), the values of the weights (b)

The next parameter that was tested, was the value of the mean of the Gaussian distribution
from which the absolute refractory period is sampled; ra. The value of the relative refractory
period rr also depends on ra. As given in equation 6.2 a larger larger value for ra results in
an increase in relative refractory period, so changing ra affects both the relative and absolute
refractory period. The optimal values of the other parameters were specified before, except for
ta, which was set to 12. The results depicted in figure 7.6 show that the actual value of ra is
not of much importance, as long as it is between about 2 and 7. The value that was used for ra

was 4 in other experiments. This value also yields good results in this experiment, so we will
continue to use this value.
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Figure 7.6: Results on the test set for different values of the absolute refractory
period

The last parameter that was tested is the number of time steps over which the activity of
a liquid unit is summed during readout. Figure 7.7 shows the performance on the learning
task for the test set for different values of this parameter. As it turns out, the number of time
steps over which the activity of a liquid unit is summed during readout is of great importance
for the performance on the task. The performance continues to increase until the activity
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over the entire readout interval (128) is summed up. In equation 6.3 the summed activity
of the liquid units over the readout period is compared with a threshold value which was set
to 0 to avoid the introduction of an additional parameter. In this fashion the input to the
corresponding unit in the readout mechanisms is 1 when a unit in the liquid fires during the
period that the liquid activity is read, and 0 if the liquid unit does not fire. It might be that the
value of this threshold parameter also affects the performance. Several additional experiments
were performed to investigate the importance of the threshold value in equation 6.3. These
experiments of which the results are not graphically shown here did not yield better results for
other values of the threshold parameter. That means that it is much more important for the
readout mechanisms to know that the corresponding unit in the spiking neural network didn’t
fire at all than the difference between the number of spikes that were produced by units that
fired one or more times.
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Figure 7.7: Results for different values of summation steps for the test set

The results in figure 7.7 also show that the performance on the task largely depends on the
summation of the liquid states. This summation is just a method used to obtain a measure for
the activity in the liquid, while it is not involved in the dynamics of the liquid itself. Because it
seems that the number of steps over which the summation is performed is of great importance for
the performance on this task, it is interesting to examine if the learning task can also be solved
with a summation function only, without using the spiking neural network. If it is the case that
the summation over the liquid states is much more important than the dynamics of the liquid, a
summation of the inputs over the same number of time steps would produce comparable or even
better results. To test this hypothesis, an experiment was performed in which the summation
was computed over the input patterns instead of the liquid states. The summation over the
inputs was preprocessed by the threshold function from equation 6.3 before presenting it to the
readout mechanisms, in the same fashion as the summation over the activities of the units in
the liquid filter. The results of this experiment together with the results of the task with a
spiking neural network as liquid are shown in figure 7.8. It can be concluded from this figure
that it is indeed the case that the summation is the most important factor while the use of a
liquid only reduces performance.

Now that we have shown that a very simple temporal filter that computes the sum of the
input patterns over several time steps performs better than a more complex filter such as a
spiking neural network, the question is why the spiking neural network isn’t of much use. The
previous experiment showed that the number of time steps over which the activity of the liquid
units is summed up is more important than the liquid dynamics. That means that the summed
activity of the unit does not contain much information on the activity of the liquid outside the
summation period. If for example the number of steps over which the activity of the liquid
is summed up is 12, the information of the last 12 time steps is available, but nothing can
be learned from the summation over the last 12 time steps about the activity in the liquid
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Figure 7.8: Results for different values of the number of inputs or liquid states
over which the summation function is computed, for the Helmholtz machine (a),
and the multilayer perceptron (b)

before those 12 steps. Even with the optimal parameter settings that were found empirically,
the liquid cannot retain much information over time. A possible reason for this is that the
input does not contain enough activity to cause a significant disturbance in the liquid state.
The input patterns to the spiking neural network are the result of the translation process of
the MIDI files to time series data. In the MIDI file the number of notes that are played at a
certain time, is often around four, and not more than ten. The same number of liquid units is
activated in a single time step by the input patterns. A possible solution to the small number
of perturbations of the liquid, is to copy the activity of each note to the corresponding notes
in other octaves. For example, if the note ‘g4’ is played in the MIDI file, the input units of the
liquid that correspond to ‘g2’, ‘g3’, ‘g5’, ‘g6’ and ‘g7’ are also activated. The drawback of this
method is that only twelve notes can be differentiated, which means that the input patterns
contain less information. This representation can however be used to demonstrate whether the
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Figure 7.9: Results for different representations of the input patterns over several
summation steps for the Helmholtz machine (a), and the multilayer perceptron (b)
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fact that the liquid cannot retain much information over time is due to the sparseness of the
activity in the input patterns.

Figure 7.9 shows that the representation in which the notes are copied to the same notes
in other octaves yield better results than than the sparse representation that was used in
previous experiments. That means that although the representation with copied notes was
less information-rich, the increased activity in the liquid enabled better performance on the
task. Therefore it is likely that the difference in performance between the liquid and a simple
summation function is at least partially caused by the sparse activity in the representation of
the learning task.

7.4 Improving performance

In section 7.2 the point at which the networks began to overfit was empirically determined to
be 200 and 1750 epochs for the Helmholtz machine and the multilayer perceptron respectively.
Because a lot of parameters have been changed, it might be the case that the moment that the
networks start to overfit has changed. Therefore the experiment in which the optimal number
of epochs is determined is repeated with the parameter settings of the spiking neural networks
that produced the best results. The results in figure 7.10 show that the optimal number of
epochs has indeed changed. The best results are obtained at 40 epochs for the Helmholtz
machine and 2000 for the multilayer perceptron.
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Figure 7.10: Results for different number of epochs on the training set retested
on optimal liquid parameter settings (a), and the same results with a logarithmic
scale on the horizontal axis (b)

In the experiments described in the previous sections the results of the multilayer perceptron
were almost always better than the results of the Helmholtz machine. Although the difference
in average performance was small, the Helmholtz machine showed much more variation between
the performance over the ten trained instances. Sometimes the results of the best out of ten
trained Helmholtz machines were even better than the best out of ten multilayer perceptrons.
On the other hand, the Helmholtz machine with the worst results performed almost always
worse than the multilayer perceptron with the lowest performance. Because of the relatively
large variation in performance between the different instances of the Helmholtz machine, it
might be the case that the performance on the learning task can be improved by using the
judgement of all individual networks together instead of the average performance over the
networks. In this method, which we will call an ensemble method, the class that the majority
of the networks assigns to an input pattern is taken as the output. To avoid cases in which
an equal number of networks assigned different classes, the decisions of nine (instead of ten)
networks were used. The average performance of the individual networks for experiment 7.10 at
the optimal number of epochs is compared with the ensemble method. The results are given in
figure 7.11. From these results it is clear that the performance of both readout mechanisms can
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Figure 7.11: Results for ensemble method compared with average performance
of the Helmholtz machine (a), and the multilayer perceptron (b)

slightly be improved by using the ensemble method instead of the average results of individual
networks. Although the variance in performance between different trained instances of the
Helmholtz machine is larger than that of the multilayer perceptron, the variance remains small
in both cases.

The performance in the previous experiments has been measured by the percentage of
samples that was classified correctly. From this performance measure it is not immediately
clear how much of the musical pieces were correctly classified. In theory, if the percentage
of samples is above 50% and the incorrectly classified samples are evenly distributed over all
files, 100% of the files should be classified correctly. To investigate how the correctly classified
samples are distributed over the different musical pieces, the number samples that is assigned
to each class is counted for a piece, and the class that is assigned to the majority of the samples
is taken as the class for that piece. In this method called majority voting, it might be the case
that the same number of samples is assigned to two different classes. In that case no decision
can be made to which class the algorithm assigns that particular piece. Majority voting for
the best results of experiment 7.10 is applied, and the results are given in figure 7.12. In this
majority voting method 81% of the files are correctly classified by the Helmholtz machine, and
88% by the multilayer perceptron. The percentage of files for which no decision could be made
was 5% for the Helmholtz machine and 3% for the multilayer perceptron.
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Figure 7.12: Results for majority voting on the test set





Chapter 8

Conclusion

8.1 Discussion

The experiments as described in the previous chapter were performed to investigate the ca-
pabilities of the Helmholtz machine as readout mechanism of the liquid state machine, and
to compare it with other readout mechanisms. Because the multilayer perceptron can solve a
large range of problems, the performance of the Helmholtz machine was compared with that of
a multilayer perceptron. The results of the experiments have shed some light on the difference
in performance between the Helmholtz machine and the multilayer perceptron, but along the
way it became clear that the spiking neural network that was used as liquid did not suffice.
A very simple summation function performed better than the more complex spiking neural
network. Therefore we will first discuss the different aspects that might be responsible for this
behavior.

The learning task could be solved by the neural networks that were used as readout mech-
anism with a reasonably good performance even without a temporal filter. The average per-
centage of input patterns that was correctly classified by the Helmholtz machine without a
temporal filter was about 64% and 70% for the multilayer perceptron (see figure 7.8 at a single
summation step). While this is not perfect, it is possible to improve the performance above
these percentages by taking into account the temporal dependencies between successive input
patterns. Although the performance is well above guess chance without the extraction of tem-
poral dependencies, this doesn’t necessarily imply that the learning task is too simple. Even
with the use of a simple summation function as temporal filter the performance did not reach
100%, so it is possible to improve the performance on the learning task by using a more complex
temporal filter. This however, was not the case for the liquid used in this project.

There are several reasons for the bad performance of the liquid used in the experiments. The
liquid that was used in this project is a simplified version of the spiking neural network that
was used by Maass et al. (2002). An important difference is that in contrast to the differential
equations used by Maass, our spiking neural network computed the state of the liquid in an
iterative manner in discrete time steps. That means that it was not possible to differentiate be-
tween delay times of connections. Another difference is that individual connections were chosen
to be inhibitory or excitatory, while Maass’ spiking neural network consisted of units with only
one type of connections. The functions that were used in each unit were the same as in Maass’
network, albeit that the membrane potential equivalent and activation values were computed
in an iterative manner instead of differential equations. Despite the differences between the
spiking neural network used in this project and the one used by Maass, we don’t expect this to
be the major cause of the bad performance of the liquid. After all, the actual complexity of the
liquid is not of great importance, which was already demonstrated by Fernando and Sojakka
(2003), who used real water as temporal filter in a speech recognition task.

Another reason which is more likely to be the cause of the bad performance of the spiking
neural network is that the activity that was presented to the spiking neural network was too
sparse to create a significant perturbation in its stable state. Support for this explanation is
provided by the last experiment from section 7.3. In this experiment the notes in the MIDI
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file were copied to the same location in all other octaves. In this fashion, just the position of a
note relative to other notes in an octave was represented, not its absolute pitch. Whereas the
information that was available in this representation was less, the fact that more input units
of the liquid were activated in a single time step led to better performance. That means the
sparseness in the patterns is a probable cause of the bad performance of the liquid. Better results
for the music classification task could probably be achieved by using other representations of
music files that contain less sparse input patterns, for example by adding explicit information
on harmonic relations or by using the Fourier transform of a wave file.

The most important conclusion from the experiments with regard to the liquid filter, is that
a complex temporal filter isn’t always better than a simple one. Projecting the input patterns
into a high-dimensional space should make the problem of finding temporal dependencies easier
for a simple readout mechanism. Although the spiking neural network can show more dynam-
ical behavior and complexity than the simple summation function, the summation turned out
to be the most important factor for the performance on the learning task. As discussed before,
a possible reason for this is that the representation of the learning task was not appropriate for
a spiking neural network. Another possibility is that although the liquid state machine is an
interesting theoretical invention, it is not clear how it could be applied to problems involving
real-world data. Of course it is possible to design a theoretical learning task or toy problem in
which the temporal dependencies between successive input patterns can by no means be found
by using a summation function, while a spiking neural network still can. We believe however
that learning tasks involving real-world data can often be solved by using more simple temporal
filters. Others have also used spiking neural networks as liquid in combination with a low-pass
filter or other temporal summation functions to convert the liquid states into representations
that can be processed by the readout mechanisms (Maass et al., 2002; Vreeken, 2004). It could
be the case that the results of their experiments on real-world data should not be ascribed to the
complex dynamics of the spiking neural network, but are caused by the temporal summation
over the input patterns or liquid states.

Despite the fact that the representation of the learning task in combination with the spik-
ing neural network used as liquid filter did not produce spectacular results, the experiments
provide enough information to discuss the difference between the Helmholtz machine and the
multilayer perceptron that were used as readout mechanisms. An important question asked in
the introduction is whether the Helmholtz machine could extract any information at all from the
complex dynamics of a temporal liquid filter. The reason why this question was put forward is
that a Helmholtz machine is based on building a generative model of the processes that created
an input pattern, whereas the spiking neural network used for preprocessing complicates this
process. Although the performance of the Helmholtz machine was mostly worse than that of the
multilayer perceptron, the Helmholtz machine was still able to learn this task well above guess
chance. Moreover, the graphs in the previous chapter show without exception the performance
of the Helmholtz machine depends on the different parameter settings of the liquid in the same
way as the performance of the multilayer perceptron.

Another aspect of the Helmholtz machine is the large variation between the performance of
different randomly initialized instances with respect to the variation of the multilayer percep-
trons. Because the weights and bias values of both the generative and the recognition model
were all set to 0 at initialization, the variation in performance between different instances of
the Helmholtz machine could only have been caused by the stochastic nature of the unit acti-
vation function. Although the results of the best out of ten trained Helmholtz machines were
sometimes better than the results of the best out of of ten trained multilayer perceptrons, the
average performance over all trained Helmholtz machines was always worse than the average
performance of the multilayer perceptrons. Because of the variance between the results of
different initialized instances of the Helmholtz machine, an ensemble method was applied to
investigate whether the results of the Helmholtz machine could be improved. The results of
the ensemble method showed that the performance of both networks could indeed be improved,
and that the difference between the performance of the two readout mechanisms is less in the
ensemble method. From these results can be derived that the difference in performance as
shown in other experiments was probably not caused by the different principles on which the
learning algorithms are based, but mainly because of the stochastic nature of the processes that
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govern the behavior of the Helmholtz machine. The multilayer perceptron learns by extracting
features, whereas the Helmholtz machine is based on building models of the input patterns by
finding the minimum description length. Despite these different approaches, the experiments
have demonstrated that both learning mechanisms can be used to extract information about
the temporal dependencies in the input data from the states of a temporal filter.

Although the performance of the Helmholtz machine is slightly less than that of the multi-
layer perceptron, there is a big difference between the two in terms of learning speed. The best
performance of the Helmholtz machine is achieved after only a few epochs, while the best per-
formance of the multilayer perceptron is achieved after several hundreds of epochs. The results
in figure 7.2 show that this difference it not only caused by different learning rates, but that
the Helmholtz machine in general learns much faster. This is actually a very nice property of
the Helmholtz machine, because most artificial neural networks that are used to model certain
features of biological neural networks often have to be presented with the training set for several
times. In terms of the learning task used in this project that would mean that a person has to
learn to discriminate between book II of the Well-Tempered Clavier and Piano Sonatas 15− 30
by listening to book I and Piano Sonatas 1−15 several thousand times. One could imagine that
it is not only highly implausible that anyone would be willing to listen to The Well-Tempered
Clavier and the Piano sonatas over and over again, but that the performance of a real person
would be better than most artificial neural networks after hearing just a couple of pieces. The
Helmholtz machine however, learns most of the characteristics that can be extracted from the
training set after just one epoch, while the performance hardly improves any further during
additional training epochs, as can be derived from figure 7.10.

Although the performance of the multilayer perceptron is better than that of the Helmholtz
machine, it is interesting to notice that the latter learns much faster. Therefore we conclude
that the principles of pattern theory which involve not only the extraction of features, but also
the reconstruction of the input patterns from the extracted features can successfully be applied
to sensory data that are preprocessed by a filter that extracts temporal dependencies between
successive input patterns.

8.2 Further research

During the experiments that were performed in this project, some interesting results were
obtained with respect to the liquid filter and the Helmholtz machine. In the discussion in the
previous section, a number of explanations were put forward which are more or less confirmed
by the experiments, but it isn’t clear wether these conclusions extend to other learning tasks,
and types of neural networks. Some recommendations and possibilities for further research are
given here that can be used to investigate the explanations and hypothesis that arose from this
project into further detail.

In this project the Well-Tempered Clavier by Bach and the Piano Sonatas by Beethoven
were the two classes of which the learning task consisted. The readout mechanisms could
solve this task even without a temporal filter, but the performance was not optimal. Although
this allows for better results by introducing a temporal filter, the application of a liquid state
machine wasn’t of much use. A possibility to increase the difficulty of the music classification
task, is to use other classes or composers. Pieces of other composers that are more difficult
to discern are for instance the String Quartets by Haydn and Mozart. There is a quiz on the
internet (http://qq.themefinder.org/) in which the contesters can listen to a random movement
in MIDI format, and have to choose the right composer. It would be interesting to compare
the results of the setup used in this project with the results achieved by humans on this task.

As described in the previous section, the representation of the MIDI files in combination
with the spiking neural network was probably the cause of the bad performance of this complex
temporal filter. Because the information on whether a certain pitch is played didn’t cause a
sufficient amount of disturbance in the liquid states, other representations might perform better
in combination with this type of liquid. For example, the density of the representation used
in this project could be increased by adding information on the harmonic properties between
different notes, which can easily be computed from the MIDI files. Another representation that
is often used for classification of audio data, is the Fourier transform of a digital wave file. In
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such a representation the wave data are analyzed to determine which frequencies or frequency
bands are present within a certain time-frame. The Fourier transform of the wave information
of a recorded musical piece contains much more information than just the pitches, so it might
be interesting to investigate if such a representation would produce better results than the
pitch representation used in this project, and whether this is due to the extra information, or
is caused by more significant perturbations of the liquid state.

The most important conclusion with respect to the spiking neural network that was used
as liquid filter is that complex temporal filters are not necessarily better than simple ones.
Moreover, it might be the case that the results of the liquid state machine in this project
as well as the results of others for problems concerning real-world data are caused by the
low-pass filter that is applied to the activities of the liquid units over time, and not by the
complex dynamics of the spiking neural network. Additional support for this idea is found in
the experiments of Fernando and Sojakka (2003), in which water was used as liquid filter. As
the complexity of the liquid is not of great importance, it might be interesting to investigate
whether simple temporal filters such as the summation function used here, or a moving average
method, produce comparable results on real-world data. Another method to investigate the use
of a spiking neural network, is to compare a representation in which the input to the readout
mechanism consists of the results of a summation function, with a representation in which the
input consists of the results of the summation function on the input data and the liquid states.

The temporal dependencies that can be represented in the state of a liquid highly depend on
its structure. Certain parameters of the spiking neural network used as liquid are set according
to stochastic processes. The values that result from these processes determine the structure of
the liquid, and with that the temporal features that can be represented in the state of the liquid.
Differently initialized liquids can represent different temporal features. It might be interesting
to investigate the presentation of the input patterns to differently initialized liquids, and train a
readout mechanism for each liquid. Instead of using an ensemble method in which the decision
of differently initialized readout mechanisms is used, a method in which the decision of the
readout mechanisms of differently initialized liquids is used, would probably improve the result.

Whereas learning tasks involving real-world data might be easily solved by simple temporal
filters, toy problems such as learning to discern spike trains from different Gaussian distributions
as was done by Maass et al. (2002), can shed more light on the actual capabilities of the spiking
neural network as liquid filter. Furthermore, from the perspective of the Helmholtz machine, it
might be interesting to examine the computational aspects of a spiking neural network in terms
of the difference in description length between individual liquid states, instead of Euclidean
distance as was done by Maass.

From the theory and experiments in this project can be concluded that the liquid state
machine and the Helmholtz machine are interesting models whose dynamics and capabilities
are not yet fully understood. Further research into those types of neural networks might not
only give more insight in theoretical and mathematical properties of processing patterns in time
series data, but might also shed some light on the working of the brain, and the processes that
are involved in the emergence of intelligence.
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