TD Learning of

Game Evaluation Functions with
Hierarchical Neural Architectures

Marco A. Wiering'

Department of Computer Systems
Faculty of Mathematics and Computer Science
University of Amsterdam

April 7, 1995

le-mail: wiering@fwi.uva.nl

Abstract

This Master’s thesis describes the efficiency of temporal difference (TD) learning and the
advantages of using modular neural network architectures for learning game evaluation
functions. These modular architectures use a hierarchy of gating networks to divide the
input space in subspaces for which expert networks are trained. This divide-and-conquer
principle might be advantageous when learning game evaluation functions which contain
discontinuities, and can also lead to more understandable solutions in which strategies
can be identified and explored. We compare the following three modular architectures :
the hierarchical mixtures of experts, the Meta-Pi network and the use of fixed symbolic
rules.

In order to generate learning samples, we combine reinforcement learning with the
temporal difference method. When training neural networks with these examples, it is
possible to learn to play any desired game. An extension of normal back-propagation
has been used, in which the sensitivities of neurons are adapted by a learning rule. We
discuss how these neuron sensitivities can be used to learn discontinuous and smooth
game evaluation functions.

Experiments with the games of tic-tac-toe and the endgame of backgammon have been
performed to compare the hierarchical architectures with a single network and to validate
the efficiency of TD learning. The results with tic-tac-toe show that modular architec-
tures learn faster, because independent expert networks can be invoked for evaluating a
particular position without the need of invoking one large neural network every time. Fur-
thermore, the use of high neuron sensitivities has been proven to be useful when learning
discontinuous functions. The results with the endgame of backgammon show that TD
learning is a viable alternative for supervised learning when only a small learning set is
available. For both games, the performance of the architectures is improved when more
games are being played. High performance levels can be obtained when a large amount
of games are played and the input of the networks contains sufficient features.

keywords : Game Playing , Modular Neural Networks , Extended Back-propagation ,
Temporal Difference Learning , Expert Systems , Multi-strategy Learning, Mixtures of
Experts , Meta-Pi network , Tic-tac-toe , Backgammon.

i

Acknowledgements

Inspired by an article of G. Tesauro who had showed how practical neural networks and
temporal difference learning can be when learning to play the game of backgammon, I
started working on my master’s thesis with the goal to study how powerful neural networks
are when learning to play games.

This study was performed at the University of Amsterdam in the Intelligent Au-
tonomous System Group headed by Prof. F.C.A. Groen. The supervisor of the research
dr. ir. Ben Krose taught me how real research has to be done, and directed me through
the huge space of research questions which I had. I want to thank him in particular for
all his helpful remarks and for not losing patience. In the beginning of the research, chaos
had made her entrance. I want to express my gratitude to Gerard Schram who taught me
that a good researcher never knows anything and that this is the way to acquire knowl-
edge. At the time of his depart from the UvA, the research goals became more clear to
me.

Furthermore, I am grateful to Patrick van der Smagt who not only knows a lot about
neural networks, but also about using tools to be able to produce and show obtained
results. Special acknowledgements are devoted to the other PhD students at the univer-
sity: Anuj Dev and Joris van Dam for making the right remarks at the right time. I
am also indebted to Sander Bosman who performed some tasks for me in a few seconds,
while it would have taken much more efforts for me. Finally, I am really grateful to Jan
Wortelboer. T have disturbed him many times to ask if it would be possible to get more
computing power. I was happy that [never got no for an answer.

At home the situation was made inspiring by my two fiends René and René who helped
me a lot when [was not able to think about something new. I hope that we will always
continue having parties and talk about meta stories. These two freaks (because they are
the freaks and not me) taught me how to live in the real world which I tended to forget
once in a while.

Contents

2.1
2.2
2.3
2.4

3.1
3.2

3.3

3.4

3.5

4.1

4.2

Introduction

Game Playing

Introduction Lo
Reinforcement Learning
Backgammon
Multi-strategy Learning

Function Approximation with Multiple Networks

Introduction Lo
Multi-layer Feed-forward Networks
3.2.1 Forward Propagation
3.2.2 Back-propagating the Exrror
3.2.3 The State Space of a Neural Network
3.2.4 Representing Discontinuous Functions
Hierarchical Network Architectures
3.3.1 Hierarchical Mixtures of Experts
3.3.2 The Meta-Pi Network Architecture
3.3.3 A Selection Threshold for Faster Propagation
3.3.4 The Differences between the Two Architectures
3.3.5 Symbolic Rules Architecture
Experiment : A Discontinuous Function
3.4.1 Experimental Design L oL
3.4.2 Experimental Results o 0L
Discussiono

TD Learning with Multiple Networks

Learning to Play a Game
4.1.1 AHC-learning of Game Evaluation Functions
4.1.2 Q-learning of Game Evaluation Functions

Tic-Tac-Toe

1

10
10
12
13
14
15
16
21
25
25
27
28
28
30
34

v

4.2.1 Problem Definition
4.2.2 Experimental Design
4.2.3 Experimental Results
4.2.4 Discussion
4.3 The Endgame of Backgammon
4.3.1 Problem Definition
4.3.2 Experimental Design
4.3.3 Experimental Results
4.3.4 Discussion
Conclusion
5.1 Discussion
5.2 Prospects and Future Work
Temporal Difference Learning
Al TD(A)-methods
A.2 Markov Decision Processes
A3 AHC-learning
A4 Q-learningo L

Extended Back-propagation

C Perfect Performance against TTT

C.1 The Agent Begins the Game
C.2 TTT Begins the Game
C.3 Total Equity

CONTENTS

67

.............. 67
.............. 68

74

.............. 74
.............. 7
.............. 78
.............. 79

81

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

C.1
C.2
C.3
C4
C.5

The Game of Backgammon L. 6
A Feed-forward Neural Network 10
The Sigmoidal Activation Function 12
Learning by Gradient Descent 14
Modelling a Discontinuous Function 15
A Hierarchy of Adaptive Experts 17
Mixing Gaussian Density Functions 22
The Target Discontinuous Function 28
Approximations of the Discontinuous Function 1 32
Approximations of the Discontinuous Function 2 32
The TD(A) Algorithm for AHC-learning 39
The TD(A) algorithm for Q-learning 41
TTT : Monolithic vs. HME 46
TTT : Monolithic vs. Meta-Pi 47
TTT : Monolithic vs. Symbolic Rules 49
TTT : Lookup Tables 52
Endgame of Backgammon : Supervised Learning Curves 60
Endgame of Backgammon : TD Learning Curves 61
Supervised vs. TD Learning 63
Performance vs. TTT 1 83
Performance vs. TTT 2, 85
Performance vs. TTT 3, 85
Performance vs. TTT 4, 85
Performance vs. TTT 5 85

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Differences between the Meta-Pi Architecture and the HME Architecture .
Results on the Discontinuous Function 1
Results on the Discontinuous Function 2
Learning Speeds for the HME and Symbolic Rules Architectures
Results with an Increasing Selection Threshold
Extended Back-propagation vs. Normal Back-propagation

TTT 1: Monolithic vs. HME
A Comparison between the Monolithic and HME Architectures
TTT 2 : Monolithic vs. Meta-Pi.
A Comparison between the Monolithic and Meta-Pi Architectures
TTT 3 : Monolithic vs. Symbolic Rules
A Comparison between the Monolithic and Symbolic Rules Architectures .
TTT 4 : AHC-learning vs. Q-learning
A Comparison between AHC-learning and Q-learning
TTT 5 : Neural Networks vs. Lookup Tables
TTT 6 : Results with Low Initial Neuron Sensitivities

Endgame of Backgammon :
Endgame of Backgammon :
Endgame of Backgammon :
Endgame of Backgammon :
Endgame of Backgammon :

Results with Supervised Learning
Results with TD Learning
Results with High Neuron Sensitivity
Supervised vs. TD Learning
A Tournament between Trained Architectures

vi

26
31
33
33
34
34

45
46
48
48
48
49
50
50
52
53
59
59
61
62
64

Chapter 1

Introduction

Intelligent computer systems (expert systems) can be constructed for many different
applications such as speech recognition, vision, robot control and game playing programs.
The prevailing paradigm to construct expert systems was the use of knowledge engineering
to translate human knowledge in a logical model which the computer can use. Although
understandable and usable expert systems have been constructed, the knowledge acqui-
sition bottleneck ! taught the computer scientists that it would cost many man-years to
create useful expert systems for complex tasks.

Nowadays machine learning techniques are used to trade off human time for computer
time. Learning means relating inputs with outputs by the use of many examples. The
use of neural networks provides a way to approximate any Borel measurable function
[Cybenko89]. However, when learning the required knowledge for a real world application
with a single neural network, the learning process takes a long time. Another problem
with training single networks is that they can easily get caught in a local minimum. To
improve such non-modular expert systems is very difficult, because the knowledge building
blocks which are responsible for occasional mistakes can not be identified. A method to
overcome these problems is to use a hierarchy of small single networks, in which each
single network learns a simpler sub-function.

Expert systems for game-playing require an evaluation function which returns the
expected payoff from a position given future optimal play of both sides. Some research
studies learning game evaluation functions with neural networks [Tesauro92, Boyan92,
Schraudol94|. Games provide domains where the evaluation function can differ drastically
for similar positions (tic-tac-toe). When learning discontinuous functions, single neural
networks tend to generalize over the discontinuities which results in small regions where
the local error is very high. For other games (backgammon, checkers, chess, go), the

IThe knowledge acquisition bottleneck is the problem of acquiring all necessary human expert knowl-
edge. This has to be done by registering an expert’s way of solving different problems, which is a time
and money consuming process.

2 CHAPTER 1. INTRODUCTION

number of possible positions is very large and generalization can only be effective for the
same type of positions. Therefore strategies have to be used to make it possible to learn
different evaluation functions for positions which fall in different classes. In this way it
becomes possible to accurately learn the game evaluation function, and to exploit the
acquired knowledge optimally.

In this thesis we are interested in the maximal obtainable performance level of a com-
puter agent which learns a model of simple game evaluation functions when temporal
difference (TD) learning is combined with neural networks. Temporal difference learn-
ing provides a way to learn on examples which are acquired by playing games with an
architecture. By using TD learning, we do not have to construct learning samples our-
selves; continuously training the architecture by self-play will improve the approximation
of the precise game evaluation function.

To solve the problems of having to represent discontinuities and storing large amount of
knowledge in one single neural network, we propose to use multiple local neural networks
over subregions of the input space. My master’s thesis describes a study on three divide-
and-conquer paradigms : the use of symbolic rules to divide the input space in fixed
subspaces, and the hierarchical mixtures of experts [Jacobs91, Nowlan91, Jordan92,
Jordan93] and the Meta-Pi network [Hampshire89] which use a hierarchy of gating
networks to learn to divide the input space in subspaces for which expert networks are
trained. These methodologies could be combined with temporal difference learning to
learn context specific game-strategies without a priori knowledge. The validation of the
methods will consist of two phases :

e The hierarchical neural network architectures will be compared with a simple mono-
lithic network on their abilities to learn a simple function with one discontinuity.

e The games of tic-tac-toe and the endgame of backgammon will be used to compare
the methods and to study the efficiency of temporal difference learning.

Game playing and some research to learn the game evaluation function of backgammon
will be described in Chapter 2. In Chapter 3 we will give an overview of the principles
of neural networks and modular network architectures. This is followed by a comparison
on learning a simple discontinuous function with the different architectures. Then in
Chapter 4, temporal difference learning of game evaluation functions will be described,
and the different methods will be evaluated on the games of tic-tac-toe and the endgame
of backgammon. In Chapter 5 we will conclude the research and describe the work which
has to be done in the future.

Chapter 2

Game Playing

2.1 Introduction

Games define domains which are easy to represent and evaluate, while expert-level play
may require sophisticated abilities of planning, pattern recognition and memory [Boyan92].
Computer game algorithms mostly use a position evaluator function which returns the
expected payoff for a given position. To decide on a move in a given situation means com-
paring all possible positions resulting from the current admissible moves or comparing
all positions which result from sequences of multiple moves. If only current legal moves
are compared, the search tree consists of only one level with a branching factor b which
equals the number of possible moves. If the terminals in such a small tree return good
approximations of the payoff of the positions, then this is the fastest possible method to
choose the best move in a position. If a look ahead strategy is used which builds a search
tree of M levels, then the number of positions which have to be compared is b™. This
compares very unfavourably with the first method, but we do not have to make such high
demands on the accuracy of the evaluation function. If the position evaluator function
for a game is known accurately, then the game is said to be solved, and the game can be
played by the fast first method.

Some complex games like draughts, go and chess are played by conventional programs
which use symbolic rules to give a rough approximation of the evaluation function. Such
programs use rigorous searching strategies where millions of positions must be evaluated
before a reasonable solution is found. This is due to many discontinuities (or exceptions)
in the evaluation function which are caused by many different combinations of contri-
butions of pieces on the board. For such games we would have to represent all those
discontinuities in our model of the evaluation function, which is very difficult and there-
fore rough approximations with symbolic rules are usually used. Of course this means
that searching strategies have to be used which make heavy demands on the speed of the
computer. When methods are found to construct more accurate models of the evaluation

4 CHAPTER 2. GAME PLAYING

functions, the speed of the computer would be less of a problem for playing games at
expert level.

One method to construct a precise evaluation function is the use of dynamic pro-
gramming. Dynamic programming computes and stores evaluations for every possible
position in lookup tables, which is very expensive. We will use neural networks to learn
an accurate model of the evaluation function, so that we can use the fast first method
to play games. We will concentrate on two games: the game of tic-tac-toe and the game
of backgammon, although experiments with the game of backgammon only consider the
endgame. The game of tic-tac-toe has an evaluation function which contains many discon-
tinuities, and the number of different positions is very low. To approximate its evaluation
function means storing those discontinuities in our model, which might be very difficult.
Backgammon (and especially the endgame of backgammon) on the contrary has a rea-
sonable smooth evaluation function, because the players throw dice to determine their
possible next moves. Because of this probabilistic nature, the branching factor is about
400. For this application it is therefore very important to have an accurate evaluation
function. The game has a much larger state space than tic-tac-toe, and it also consists
of many conflicting classes of positions. That is why human players use many strategies
to play backgammon at expert level. E.g. when a player is well behind in the race, she
must try to get more pieces hit and start a back-game, whereas in normal play she should
prevent, being hit.

2.2 Reinforcement Learning

There are two ways to learn to approximate the correct evaluation function for all possible
positions of a game. It could be done by supervised learning on evaluations of positions
given by a human expert. The problem is that the required amount of learning examples
given by a human expert will become much too large and the evaluations are not very
precise.

A better way is to use reinforcement learning in which examples are generated by the
system itself. Reinforcement learning means playing games so that the current model of
the evaluation function can be tested and refined. Reinforcement learning is attractive,
because we only need to design the game-rules and a reinforcement learning module, which
takes much less human effort than constructing a whole expert system to play the game.
Samuel [Samuel59, Samuel67] was the first to construct a reinforcement learning system.
He used a complex algorithm to select parameter adjustments based on the difference
between the evaluations of successive positions occurring in a played game to learn the
game of checkers.

Reinforcement learning is to construct a policy that maximizes future rewards and
minimizes future punishments [Lin93]. We have to construct a learning procedure which
effectively handles the temporal credit assignment problem. The temporal credit assign-

2.3. BACKGAMMON 5

ment problem is to assign credit or blame to the experienced situations and actions, which
makes it possible to create learning examples.

The most simple paradigm to create learning examples for neural networks is to convert
the positions of a played game to input vectors and to use the final result of the game
as the desired output for all constructed examples. This supervised method results in a
loss of precision, because every move would be held equally responsible for the obtained
result, which is almost never true. Especially when we want to learn to play games with
stochastic elements, the learning process might become very slow.

Temporal difference (TD) learning [Sutton88, Tesauro92, Dayan92, Dayan94] provides
an efficient method to receive learning examples with a higher accuracy, because the
evaluation of a given position is adjusted by using the differences between its evaluation
and the evaluations of successive positions. In this way the prediction of the result of
the game in a particular position is related to the predictions of the following positions.
Sutton defined a whole class of TD algorithms, TD()\), which look at predictions of
positions which are further ahead in the game, weighted exponentially less according to
their distance by the parameter A\. Recently Dayan has proved that the TD algorithms
converge with probability 1 when a linear representation of the input is used (e.g. lookup
tables) [Dayan94]. A description of TD learning and an example of its use is given in
Appendix A.

There are two advantages to learn the game of backgammon by the TD methods over
the game of tic-tac-toe. The first is that a game of backgammon always results in maximal
reinforcement (win or lose), the second is the use of dice to experience new positions *.
To learn tic-tac-toe by the TD method could more easily end up in a local solution in
which many positions have never been seen and we might need some exploration-strategy
to find the optimal policy. However the game of backgammon is much more complex than
the game of tic-tac-toe and together they can be used to evaluate the different learning
paradigms which use multiple expert networks.

2.3 Backgammon

Backgammon is played by two persons upon a board designed with 24 points. Each player
has 15 men and throws dice to move his men along the points until they reach their home
tables from which they are moved from the board (figure 2.1). On the way, single standing
men can get hit and they have to reenter in the opponents home table. The player first
bearing all his men off is declared the winner. Backgammon depends somewhat on luck,
but the player who makes the best moves will win over the long haul. Over the last fifteen

IThe game of backgammon has stochastic elements, because dice are thrown to determine the possible
moves in a position. This means that possible transitions to other positions depend on a probability
distribution determined by the possible throws of dice.

6 CHAPTER 2. GAME PLAYING

years human experts have increased their skill by using mathematical rules and tables of
odds. This makes computing more important for playing the game well, which is of course
an advantage for the computer.

() O ® Home-table
® Black
o
o
O Home-table
@ /000 O OVOVO ®/@® whie

N
Figure 2.1: Backgammon is a two player zero-sum game in which the first player to bear
off all pieces has won the game. During the game both players try to block their opponent
by making points on fields so that the opponent can not play on or hit pieces from these
fields. Every time two dice are thrown to determine the possible moves. When equal dice
are thrown, the player can play four times the number of eyes on a dice. In the example

white plays a blocking move so that black’s two pieces have problems going to black’s
home-table.

BKG [Berliner77] was the first backgammon program. It was constructed during a
human knowledge engineering period of four years after which all important features of the
game were used in the reasoning process of the expert system. Many years later Tesauro
[Tesauro89] presented his Neurogammon program which was trained on a massive data
set of expert preferences of best moves in backgammon positions, but he realized that it
would be a better idea to enable a network to see millions of positions and learn from
the outcome of its own play. He adapted the TD method to implement TD-Gammon
[Tesauro92| and trained it first on the simplest case : disengaged bear-off (endgame)
and next he trained the network to learn the whole game. Tesauro created a simple
input encoding scheme which only contained a raw board description, but his monolithic
TD-trained network eventually surpassed the performance level of BKG and the network
trained on expert preferences. This was because the TD-network did not imitate a human

2.4. MULTI-STRATEGY LEARNING 7

expert, so that it did not get itself into situations that it did not know how to handle.
His conclusions were :

e Empirically the TD algorithm always converges to at least a local minimum.

e The quality of solution found by the network is usually fairly good and generally
improves with increasing numbers of hidden units.

e Partitioning the game into a number of specialist networks may make it easier to
learn the appropriate evaluation functions.

e An improved representation scheme might give substantially better results.

Tesauro’s work was extended by [Boyan92] who used a priori knowledge to decompose
the input space into subspaces for which independent expert networks were trained. Boyan
used a Meta-Pi network [Hampshire89] to combine the evaluations of the trained experts
so that a smoother evaluation function would be obtained. Results showed that the use
of multiple experts outperformed a single network, although his task-decomposition was
very simple and did not use human strategies. A more efficient decomposition would cost
much more human engineering time, so we would like to have a methodology which can
integrate learning the decomposition and the context-specific evaluation functions.

2.4 Multi-strategy Learning

Neural networks trained by back-propagation provide powerful inductive learning tech-
niques, but when learning complex game evaluation functions with a single network, the
global parameters in the network tend to smooth some important details. When we
would use methods to divide the input space into less complex subspaces, independent
local networks could learn the simpler evaluation functions much more accurately. This
multi-strategy learning might be very useful to learn games where evaluations of simi-
lar positions may differ drastically (tic-tac-toe) or where strategies must be used to divide
a complex evaluation function into simpler evaluation functions for a smaller input space
(backgammon).

To make use of multi-strategy learning, we need to have some meta module which
chooses specialists to evaluate a given position. The more subspaces we would create, the
smaller the specialists would have to be and performing will become much faster (provided
that each time only a few specialists are selected and the meta module performs fast). This
is in particular important when we use searching strategies to improve one-ply evaluations.
On the other hand, when there are too many specialists, they will not see many examples
and generalization will not take place so that the learning process might become slower
or end up in worse local minima.

8 CHAPTER 2. GAME PLAYING

Another choice we have to make when we want to use multiple experts is between
competing or collaborating experts. Selecting one expert (competing experts) to evaluate
an example is the fastest method, but then the evaluation function will not be smooth. If
we allow data to lie simultaneously in multiple regions (collaborating experts), then the
overall function will be much smoother, but because at all times multiple experts have to
be invoked this will take more time.

We study three different methods to divide the input space and compare the results
with the performance of a single network. The first method uses a a priori knowledge
of the game-domain to divide the input space by fixed symbolic rules. This method is
a fast way to select an expert network, but the linear regions cannot adapt themselves
which results in a poor division when a priori knowledge is inaccurate. The two other
paradigms make use of meta-modules which can adapt themselves by using given outputs
of the chosen specialists. They use feed-forward neural networks and back-propagation
to learn the division, which makes it possible to learn game-strategies without a priori
knowledge.

Chapter 3

Function Approximation with
Multiple Networks

3.1 Introduction

Neural networks can approximate any Borel measurable function until a specified level
of precision [Cybenko89]. However, the problem is to find good parameters for the net-
works, which has to be done by learning on examples. Published successes in connectionist
learning have been empirical results for very small networks, typically much less than 100
nodes. To fully exploit the expressive power of networks on complex real world tasks, they
need to get larger and the amount of time to load the training data grows prohibitively
[Judd90]. Nowadays, some researchers are focussing on modular architectures which con-
sist of some small specialistic or expert networks which co-operate to learn the desired
function [Jordan92, Nowlan91, Hampshire89, Fox91, Hashem93|. For many tasks, this
results in more understandable systems which are easier to train, because each expert
network learns a specific sub-function and experts can be analyzed and refined indepen-
dently. Especially for discontinuous functions, the use of such a modular architecture
can be advantageous, because otherwise the imbedded generalization of a neural network
might smooth important details of the desired function.

Another way to make learning discontinuous functions easier is studied in which ac-
tivation functions are made steeper, so that hidden units have less problems when ap-
proximating a discontinuity. In the experiments, activation functions are made steeper
by introducing neuron sensitivity. When the neuron sensitivity is made very large, the
slope of the activation function is very steep.

In this Chapter we will formally describe multi-layer feed-forward networks in section
3.2, and in section 3.3 three modular architectures which consist of multiple feed-forward
networks will be described. In section 3.4 comparisons between using a single network
and modular architectures are made by performing simulations on learning a simple dis-

10 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

continuous function.

3.2 Multi-layer Feed-forward Networks

Neural networks consist of many very simple processing units which communicate by send-
ing numeric signals to each other over a large number of weighted connections [Krose92].
The knowledge is stored in the connections and processing units, which are adapted by
a learning rule to minimize the error of the output units on the training data. A feed-
forward network has a layered structure. Each layer consists of units which receive their
input from units from a layer directly below and send their output to units in a layer
directly above the unit (figure 3.1). We consider feed-forward networks with full connec-
tions between successive layers which minimizes human engineering time, however some
researchers [Nadi91, Tresp93| are constructing constrained networks to bias and speed up
the learning process. These specialized network topologies will almost always outperform
the simple fully connected networks and are more easily to understand. This approach can
be seen as an intermediate solution between knowledge engineering and machine learning,
but can only be used for learning understandable tasks. One hidden layer with enough

Output Layer

Hidden Layer

Input Layer

Figure 3.1: a fully connected two-layer feed-forward network, the input layer does not
contain processing units and is not counted as a ’processing’ layer.

units and non-linear activation functions is sufficient to approximate any Borel measur-
able function [Cybenko89] so all constructed networks in this paper will have at most one
hidden layer.

3.2.1 Forward Propagation

The first step in using a neural network is to encode the problem in an input to output
vector mapping and to choose the number of hidden units. When we have constructed

3.2. MULTI-LAYER FEED-FORWARD NETWORKS 11

the proper network, we can assign the input vector @ of an example to the input layer
and propagate these inputs to a higher level by computing activations of the units in the
hidden layer. The input #; of a hidden unit is computed by taking the weighted sum over
the input

’I:Z' = Z wijaj + bl
J

With :
wy; : the strength of the connection between the j% input unit and the i hidden unit.
b; : the bias of the i hidden unit. It can be considered as the strength of a connection
from a unit with constant activation 1.

The activation a; of a unit in the hidden layer is computed by using a non-linear
activation function F;

a; = Fi(i;)

In this paper the sigmoidal function will be used for the hidden units. The sigmoidal
activation function is called a basis function and in this research it is given by

1.01
i
; is the neuron sensitivity of the i"* hidden unit to the input and can be chosen very large
to make the activation function of the hidden units very steep (see figure 3.2). In this
manner hidden units only change their incoming weights on a specific part of the input,
for other inputs weight changes will be zero. When we make the activation functions very
steep, the basis functions are made local.

[Sperduti92] has found a learning rule which learns neuron sensitivities (see Appendix
B), so that the learning process becomes faster and units have different learning rates.
This learning rule will be evaluated in section 3.4 and in Chapter 4 by its ability to adjust
the neuron sensitivities for learning game evaluation functions.

When all activations of the units in the hidden layer are known, we can compute the
activations s; of the output units

si = Filis) = Fi(3_ wija; + bi) (3.1)

F; can be a sigmoid, but in this research a linear activation function will be used. §'is the
output of the network on a particular input, and w;; is the weight from the ;% hidden
unit to the i output unit. When the desired output for an example is known, we can
adapt all weights so that the next time the error on this example will be smaller. For this
we can use the back-propagation [Rumelhart86] algorithm.

12 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

F) 1.00

0.90
oso s T SanativitvV O3 T T T
0.70
0.60
0.50
0.40
0.30
0.20

0.10

0.00

-5.00 0.00 5.00

Figure 3.2: The sigmoidal activation function with high and low neuron sensitivities.

3.2.2 Back-propagating the Error

The network designer has to choose an error function, usually the error measure FE is
defined as the quadratic error for an example with target output vector d at the output

units
1

B =3 (d; — 5:)?
5 X =5
By using gradient descent we can change the weights including the bias. First we can
write

OE OFE 04

Ow;; - 0i; Ow;;
And the weights update rule with learning rate « controls a gradient descent on the error
surface. It is given by

OF

A’wi]’ = —’yaw” = ’Y(SZ'CL]' (32)
where in the case of an output unit é; can be computed by
oF
2}

and in the case of a hidden unit 6; can be computed by the back-propagation chain rule

h

3.2. MULTI-LAYER FEED-FORWARD NETWORKS 13

Sometimes a momentum term is used to speed up the learning process !. The momentum
term uses the last weights alteration to direct the new update step. The weights update
rule with momentum p at time t is

Awl; = v8a; + pAwl;! (3.5)

3.2.3 The State Space of a Neural Network

The state space is defined by all possible states of a predefined fixed architecture. Learning
can be considered as a search in this state space with the aim to find the state w which
minimizes the error function F(w) given by

B(w) = [louls) - f(o)ds

with :

X : the input space or all possible inputs.

Gw : N x W — R°. The function approximation for a given architecture when it is in
state w.

f: R — R°. The desired function.

Usually the error E(w) is computed over a small subset of the possible inputs, which is
called the test set. The best approximation w* depends on the chosen architecture which
defines all possible states of the network. When the state space becomes much larger, it
takes more time to find the best state. This has consequences for learning : we have to
have an architecture which contains a ’good’ solution, but we do not want to have too
many superfluous states. Some researchers use pruning [Esposito93], and others make it
possible for the architecture to grow [Schaffer92, Gruau92, Simon92]. These methods can
be used to find an architecture which contains at least one 'good’ state, but a minimum
of superfluous states.

When we want to learn a complex task, we can expect that the input space for this
task is very large and we must use a representation with a large expressive power. The
expressive power or VC dimension of a neural network depends mostly on the number of
weights [Anthony91], and when we have enough examples and hidden units in the network
we are able to learn most functions until a specified level of precision [Vysniausk93|. This
means that the architecture contains one or more 'good’ states.

When we want to analyze a neural network, we must understand its state space. In
neural network literature, it is usual to talk about weight spaces instead of state spaces,
because the weights are the parameters which are adjusted. The dimension of the weight

IThe use of a momentum term is usually very effective when off-line or batch learning is used. For
on-line learning, the use of a momentum term is much less necessary.

14 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

space depends on the number of weights and because weights are continuous parameters,
the weight space is usually very large. Finding the best weight-setting has to be done by
searching in all directions in this space.

O X0DI0M

State: W

Figure 3.3: Back-propagation learning is a gradient descent method : in a given iteration
the search direction is given by the negative gradient of the error, the step along this
direction is given by the learning rate. The problem is to find the global minimum
(indicated by the cross) in a space which might contain many attractors.

Back-propagation follows computed gradients to minimize the error-function E(w)
(figure 3.3). When we use off-line back-propagation, we try to minimize the sum of the
error over all learning examples and we can easily be trapped in a local minimum, because
we mostly follow the same direction. When we are trapped, this means that there will
never be a transition to a state outside of the current local attractor. With stochastic or
on-line back-propagation, the weights of a network are immediately changed after each
learning example. This results in faster learning and less problems with local minima,
but it can still happen that the network gets trapped in a local minimum from which it
is not probable that the network will get out.

When we are often trapped in local minima we should use other minimization pro-
cedures e.g. simulated annealing [Aarts89], but these are often significantly slower than
conventional back-propagation.

3.2.4 Representing Discontinuous Functions

When learning functions which might contain many discontinuities, high accuracy can
only be obtained when we use an architecture which can represent these discontinuities.

3.3. HIERARCHICAL NETWORK ARCHITECTURES 15

Single networks with global nondecreasing activation functions (e.g. sigmoids) use super-
positions of functions which all have a particular value and derivative at each discontinuity,
and when some values are slowly varying around such critical points, we can expect the
function approximation of the network to be too smooth when fast jumps are required.
Of course this means that we have to use many hidden units from which many have to
be located around the discontinuities to approximate them with steep slopes. The rest
of the hidden units have to be used to represent the smooth details and to wipe out the
effects of the hidden units which are representing the discontinuities.

A technique to circumvent the problem of representing discontinuities is to use multiple
local models which perform in regions which are bounded by the discontinuities (figure
3.4). A priori knowledge of where the discontinuities are is often not at hand, so we would
like to use an algorithm which learns to place neural networks in each subdivision of the
input space which does not contain any discontinuities.

Modd 1 Discontinuity Model 2

Y

Figure 3.4: Representing a discontinuous function by using two local models. In this way
the problem of representing the discontinuity is circumvented.

3.3 Hierarchical Network Architectures

We have shown a possible problem when learning discontinuous functions with a single
network : the imbedded generalization will smooth important details of the desired func-
tion. Using multiple networks might overcome this problem, but we must find ways to
integrate all networks in a learning architecture and decompose the function into smooth
sub-functions.

16 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

Although there are many ways to integrate different learning modules in an architec-
ture, we will focus here on modular architectures which consist of a number of expert
feed-forward networks, where each expert learns a specific part of the desired function
and a number of gating feed-forward networks which learn to divide the input space into
a number of subregions corresponding to the number of experts. The gating networks
use an output for each expert or cluster of experts. This output is used to determine the
responsibility of the expert or cluster. By monitoring the competition between the experts
or clusters, learning rules are defined for the gating networks so that these responsibilities
over the inputs are adapted.

These architectures can use arbitrary hierarchies (figure 3.5) in which each propagate
node uses the output vectors of a gating network to propagate the output vectors of the
experts to a higher level. The highest-level propagate node will give the final output of
the architecture.

The architectures which will be described in this paper can learn to map an input vec-
tor of any dimension onto an output vector of dimension one, but a generalization to larger
output vectors is straightforward. All gating and expert networks in the architecture re-
ceive the same input, although this is not a necessity. We will proceed by summarizing
some of the work done in this field, starting with the hierarchical mixtures of experts
(HME) methodology [Nowlan91, Jacobs91, Jordan92, Jordan93| in section 3.3.1. This de-
scription is followed by the second methodology by Hampshire and Waibel [Hampshire89]
in section 3.3.2, which is based upon the Meta-Pi network. The use of a selection thresh-
old to make the propagation of the architectures faster is described in section 3.3.3. The
differences between the two architectures will be depicted in section 3.3.4. A third ar-
chitecture which uses knowledge bases containing fixed symbolic rules as gating networks
will be described in section 3.3.4.

3.3.1 Hierarchical Mixtures of Experts

[Jacobs91, Jordan92, Nowlan91| developed a modular gating architecture which can learn
to divide the input space in subspaces. Their architecture consists of a number of expert
feed-forward networks which receive the same input patterns and compete with each other
to produce the desired output vectors. The outputs of the gating networks are used by
the propagate nodes to propagate the outputs of the experts to the top-level of the tree.

Gating Networks

In the following a hierarchy which consists of two hierarchical levels (Figure 3.5) will be
considered, but one can transform the given learning rules to arbitrary hierarchies.

The system works as follows. The gating networks are linear neural networks and
are used to blend the outputs of the experts. First, the outputs s; and s;; of the gating

3.3. HIERARCHICAL NETWORK ARCHITECTURES 17

OUTPUT Y
0. :
propagate I Gating
node Network
92 o
Y1 Y,

propagate

Gating propagate ng Gating
e | Network node I Network
O —7 g 7

2
Yi1 ¥2 / \yzz

Expert Expert Expert
Network Network Network Network

INPUT X

Figure 3.5: Two hierarchical levels of adaptive experts. All networks receive the same
input.

18 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

networks are normalized to give gate values g; and g;;.

e
i = 3.6
g 2 e (36)
and "
e (3.7)
gl] Zk esik :

When the gates are almost equal, a partitioning has not been made for this input vector.
When we start training the gating networks, we can make all weights equal which expresses
the fact that we do not know how to partition the input space in advance. When the
gates begin to diversify, so are the experts and the part of the input space which is shared
about equally by multiple experts is becoming smaller.

Propagate Nodes

The propagate nodes use the gates and the outputs of the experts and clusters to propagate
the output vectors to higher levels. Different strategies for the propagate nodes make three
different ways of using the hierarchical mixtures of experts methodology.

e Mixing the outputs

The first way is to combine the outputs of all experts, for most functions this makes
sense, because then we use more than one random source. This can be considered
as the soft approach and will result in a smooth overall function. The output of the
i" propagate node or cluster is given by

Yi = Z 9iiYij
J

where y;; is the output of the j™ expert in the ™ cluster. The output of the
architecture is given by
Y= 9iYi
i

In Chapter 4 this strategy will be used to learn evaluation functions for positions in
a game with the HME architecture.

e Winner takes all

The second way is to start at the top-level gating network and to use the output
vector of the cluster with the maximal g;

y =1y with k= argmax;{g;:}

3.3. HIERARCHICAL NETWORK ARCHITECTURES 19

When the highest level propagate node has chosen a cluster, the output of this
cluster is the same as the output of the expert with the largest g;; value

Y =y with | = argmaz;{gx;}

This winner takes all approach makes sense for learning discontinuous functions,
because then we will never use output vectors of experts which are trained at the
wrong side of a discontinuity.

e Stochastic choice

The third way is to switch to a stochastic model in which the gate values give the
a priori probabilities of selecting the i* cluster and (i, 7)™ expert to produce the
output vector
Py =y;) = g;
and
P(y; = yij) = Gij

This is the original way of interpreting (but not using) the methodology [Nowlan91].
The propagate node acts like a multiple input, single output stochastic switch. This
approach makes sense for learning games, because we must avoid making the same
repetition of moves and this provides us a way to explore novel states. However, if
we have provided an exploration rule, we might better use the mixing the outputs
strategy, because otherwise one expert could easily dominate over another. This
means that we could end up with 'dead’ experts, and many parameters in the

architecture will never be used 2. In this research we will not use the stochastic
choice method.

HME as a Probabilistic Model

For understanding the learning algorithm, we must first give the hierarchy a probabilistic
interpretation. For this the propagate nodes act like the single stochastic switches as
described above. The gate values g; and g;; determine the a priori probabilities P(y;|Z)
and P(y;;|Z) that the first and second level propagate nodes decide to select the output y;
of the " cluster and the output y;; of the (7,7) expert. They are a priori probabilities,
because they are obtained without using the target output d. The probability that the
desired output d is generated when the input vector Z is given is

P(d|7; ©) Zpyl Zpy”|$) ”(d|x yl](Gljﬂx))

2When learning to play games, the same argument is also applicable when we would use the winner
takes all approach.

20 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

Where O refers to all parameters in the architecture and ©;; refers to the parameters in
the (i, 7)™ expert network. The formula corresponds to a form of Bayes’ rule and in our
case it can be rewritten as

P(d|7;0) Zgzzgu i (d|T; i)

The second sum represents the probability that the i** cluster will produce the desired
output when given the input vector Z. P;;(d|Z;©;;) represent the probability that the
(4,7)™ expert produces the desired output when presented with input #. P; is the prob-
ability density function for the (i,5)" expert. When we are using a Gaussian density
function for modeling a normal distribution, this results in

d|£L'® Zgzzgze 3(d=yis)?

The posterior probability h; is a better estimate for the a priori probability ¢;, because
the errors of the experts are used. It is computed by using Bayes’ rule

—Ldey;;)?
gi 2_j gije 2(1=vij)

hi = 1
i i X gige 2y’

We can also define the posterior probability that an expert has to be selected in each

cluster by
gije*%(dfyif)z

hij =
5 gie 2

L)

Gradient Ascent on a Log Likelihood Function

We will treat P(d|z;©) as a likelihood function in the unknown parameters ©. A learn-
ing algorithm is now developed by using gradient ascent to maximize the log likelihood

1) =Y g) gye 2 v
{ J

The expert networks have to learn the examples weighted by their joint posterior proba-
bility h;h;;. We use the posterior probabilities to weight the errors of the experts so that
the most responsible expert will learn to specialize on examples it already approximates
better than the other experts. The partial derivative of the log likelihood with respect to
the output of the (i,) expert network is

function given by

OL(©,r)

o i(d) (38)

3.3. HIERARCHICAL NETWORK ARCHITECTURES 21

This gradient can be filled in for é; in equation 3.2, and back-propagation will fit experts
in regions where h;h;; is high. Finally, the partial derivatives of the log likelihood function
with respect to the output units of the gating networks are

OL(©,r)

— h; — g, 3.9
95, g (3.9)

and
= hi(hi; — ;) (3.10)

The two gradients 3.9 and 3.10 can be filled in for §; in equation 3.2 and the weights
update rule will shift experts to regions where they outperform other experts.

Discussion

The competition between the experts is controlled by the gating feed-forward networks
which use a mixture of Gaussian distributions to model the performance of the experts
on the learning examples. Learning is achieved by gradient ascent in the log likelihood of
generating the learning examples. This means that when given an input-output pattern,
the gating networks learn which expert is to be chosen for maximizing the probability that
the desired output will be given. If a smooth approach is used (the mixing the outputs
strategy of the propagate nodes), then examples fall in multiple regions (figure 3.6), and
for every example all experts have to learn to reduce their error in proportion to their
joint, posterior probability.

The HME architecture is especially suited when there is an obvious division of the
input space in subspaces, and for such domains faster learning is usually achieved. When
a good division has been learned by the gating networks (e.g. dividing the function at each
discontinuity), the expert networks will have less problems with learning the sub-functions
than a single network would have when it tries to learn the whole function including all
discontinuities.

3.3.2 The Meta-Pi Network Architecture

The mixture of experts methodology uses soft adaption and competition between the
experts, so that all experts can be used to learn a part of the desired function. The Meta-
Pi network architecture as presented by [Hampshire89] has the same structure as given in
figure 3.5, but instead of competing networks they use co-operating networks. In contrast
to the previous section where experts are made more responsible in regions where they
have a smaller error than the other experts, the Meta-Pi gating network learns to make
experts more responsible in regions where they can be used to minimize the error of the
architecture as a whole. For a more formal description we will again refer to the two-level
hierarchy shown in figure 3.5.

22 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

Figure 3.6: Mixing gaussians to decompose the input space into regions where experts
1 and 2 are to be located. The expert which is closest to an example has the largest
responsibility for generating the output of the architecture. When presented with example
A, expert 1 has the largest a priori probability to generate the desired output and will
be used more than expert 2. The two experts will compete on the rights to generate
the output for example B. The gating network will shift the expert which has the largest
posterior probability to generate the desired output for example B towards the input
vector of B. This posterior probability depends on the error both experts make when
presented with the learning example B.

Gating Networks

The Meta-Pi gating network uses non-linear activation functions for the output units
which are strict positive e.g. RBFs [Hakala94], or sigmoids can be used. The gates of the
top-level gating network are given by

i si>0 (3.11)

— S .
9i > 8) Si

where the activation of each output unit s; is computed by equation 3.1. Gates with other
identifiers can be computed by this equation for the other gating networks.

Propagate Nodes

The propagate nodes have to use the experts in a co-operative way. So mixing the outputs
is the only strategy, for this weighted sum is minimized by the learning procedure. The
output of the architecture is

Y= Yigi

3.3. HIERARCHICAL NETWORK ARCHITECTURES 23

Where y; are the outputs of the propagate nodes in the second level of the hierarchy.
They are computed by

Yi = Z YijGij
J

y;; is the output of the (4, 7)™ expert network.

Gradient Descent on a Squared Error Cost-function

Until now we can see many similarities with the mixtures of experts method, but the
Meta-Pi network uses a squared error cost-function which is to be minimized by gradient
descent instead of a likelihood function which is to maximized by gradient ascent. The
error of the whole architecture on a given example is given by

1
E = —(d—y)?
2(Y)
1
= Q(d_zgizyi]’gi]’)z
i J

This error depends on the parameters of the gating networks and the expert networks.

The partial derivative of the error with respect to the output of the (i, 7)™ expert network
is

OE OF dy 0y,

9Yij dy Oy; yij

We can use the gradient in equation 3.12 and formula 3.3 to compute §;. We see that there
are differences compared to the mixtures of experts method. The experts are adjusted
to reduce the error (d — y)? between the desired output and the output of the whole
architecture. This could increase the error (d — y;;)? of an individual expert on the
given example! The second difference is that an expert is adjusted in proportion to
its responsibility g¢;g;; in the architecture for the given input, instead of to the more
meaningful posterior probability that an expert has produced the desired output. Because
this error-term does not reflect how good one expert approximates the target value, it
is possible that bad fitting experts are adjusted the most. However this disadvantage
is overcome after a while, when the gating networks have learned to assign the correct
responsibilities to the experts when given an input vector.

The partial error derivative with respect to the #** output unit of the top-level gating
network is given by

OE OE dy
ds; Oy Is;
—(d —y)(yi — y)

- 3.13
55, (3.13)

24 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

and the partial derivative with respect to the j%* output unit of the :** second level gating
network is

oE 8_E dy Jy;
882']' - By Gyi aSij
_ —(d—=y)gi(yi; — i) (3.14)
2k Sik

These gradients reflect how well an expert or cluster approximates the target value with
respect to the approximation given by the architecture. When the partial derivative is
negative, the expert or cluster can be used to minimize the error of the architecture
as a whole and should be made more responsible so that the architecture will better
approximate the target value. We will use equations 3.13 and 3.14 to compute 6; by
equation 3.3 and the weight update rule 3.2 will move the experts to the regions where
they can minimize the error of the architecture.

Discussion

Hampshire and Waibel proposed to use the Meta-Pi network to learn to combine multiple
experts which have already been trained in subspaces of the input space. When the
division of the input space is known and experts can be trained independently, the use
of the Meta-Pi feed-forward network improves generalization abilities. This was shown
on a speech recognition task where experts were trained on data from different speakers
[Hampshire89] and on learning to play backgammon with multiple experts [Boyan92].
However, the Meta-Pi network can also be used when the experts are initialized randomly
which makes the method more powerful, because we do not have to know an a priori input
space division.

Propagate nodes in a Meta-Pi architecture use the gates of the gating networks to
propagate a weighted sum of the output vectors of the experts or cluster of experts to
above. Learning rules are defined so that experts or clusters which can minimize the error
of the weighted sum on an example are made more responsible in the future. One problem
with this approach is that all experts have to learn to minimize a part of the error of the
whole architecture instead of their own error and this results in interference between
experts. When one expert changes its weights, the error function E(w) of the whole
architecture changes its evaluation of the current state of the architecture. This results
in a changed evaluation of the state of each individual expert. This is why convergence
until a stable weight setting can take a long time.

One method to overcome this problem is to use propagate nodes which use some
selection device so that an expert is only used when it is important enough. When we
increase this selection threshold, we end up with using one expert for each example and
interference effects are gone, because the error function of the whole architecture and the

3.3. HIERARCHICAL NETWORK ARCHITECTURES 25

chosen expert become the same. This selection threshold can be seen as a method to
make a more localized representation.

3.3.3 A Selection Threshold for Faster Propagation

To speed up the propagation of an architecture, we introduce a selection device which
is used by the propagate nodes to select experts. This selection device uses a selection
threshold to determine if the responsibility or gate of an expert is high enough, so that
only important experts are used in the weighted sum. If an expert’s responsibility is
not larger than the selection threshold, the expert is not invoked. This can save a lot
of time, because if the selection threshold of a propagate node is very high, e.g. .3 for
an architecture which uses 2 experts, then many times only 1 expert has to be invoked.
Furthermore, when only one expert is invoked, the gating network and the other expert
network do not have to be trained.

Another advantage of using a selection threshold, is that we have found a method to
attack the problem of interference between experts for the Meta-Pi network architecture.
When the selection threshold is high enough we will only select one expert and it can
learn to minimize its own error.

For both architectures, the selection threshold can be used to make a more localized
representation. When the selection threshold is very high, the performance level of an
expert is not degraded by learning too many examples which are not really its destination.

When we want to use a selection threshold, we define the following intermediate step
before calculating the final gates

if (¢;>ST;) then 5; = 8;

else $;, =0

In this equation g; are the intermediate gates, which are computed by normalizing them
over all experts by equations 3.6, 3.7, and 3.11. ST} is the threshold for the i** cluster
or expert and can be changed on-line. After this computation we have eliminated the
experts with low responsibilities. Now we must compute the final gates by using the new
vector § in equations 3.6, 3.7, and 3.11. When learning the new gates we have to make
the partial error derivative with respect to the i* output unit of the gating vector zero, if
the it" cluster or expert has not been selected. We do this by using 0 for F’(4;) in equation
3.3.

3.3.4 The Differences between the Two Architectures

As we have seen, the two architecture use two different error-functions for the archi-
tectures. The differences between the two architectures arise from these chosen error-
functions. When one would like to develop other architectures for some kind of task,

26 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

‘ ‘ Meta-Pi architecture ‘ HME architecture ‘

1 | co-operating experts competing experts
experts learn to reduce the error of || experts learn to reduce their own
the architecture error

3 | experts may increase their own experts may increase the error of the
error architecture

4 | experts are adjusted in proportion || experts are adjusted in proportion to
to their responsibility g;g;; their joint posterior probability h;h;;

5 | experts are shifted to a region of experts are shifted to a region of the
the input space if its output is on input space if its output out-competes
the 'right’ side of the error of the other experts’ outputs

the architecture

Table 3.1: Differences between the Meta-Pi Architecture and the HME Architecture

e.g. one wants to use multiple experts to solve successive subtasks, one should try to
construct an architecture with a chosen error-function which, when minimized, will result
in the desired division of the input space. The two error-functions are duplicated here for
readers’ convenience.

e The HME likelihood function has to be maximized
Pdlr) = 30 g: Y gie 340
i J

From this we may define the error-function as

E=1-P(d|r)
e The error-function of the Meta-Pi network architecture has to be minimized

1
E = —(d—uy)?
5(d—y)
1
= §(d_zgizyijgij)2
(J

We can see that the desired output is inside the summations for the HME architecture and
outside the summations for the Meta-Pi architecture. From this, the differences which
are outlined in table 3.1 arise.

In the following section we will see what for consequences these differences have when
learning a simple discontinuous function. We expect that the HME architecture with a
winner takes all (WTA) forward propagation will be the best, because it will never use
an expert for the function approximation if this expert is located at the wrong side of the
discontinuity. All other approaches may always suffer from the problem that an expert is
used which makes a large error on an example.

3.3. HIERARCHICAL NETWORK ARCHITECTURES 27

3.3.5 Symbolic Rules Architecture

The third architecture which has been studied is the use of a knowledge base containing
symbolic rules to decide which expert has to be chosen for evaluating an example. The
knowledge base has to be considered as the gating network, but the symbolic rules are
fixed. This means that when no a priori knowledge is available, we can not use this
architecture. When the domain is large, a short knowledge engineering period might
make the decomposition more useful. Again this is an intermediate way between using
knowledge engineering and machine learning. Of course it is almost always possible to
make a simple decomposition of the input space, and because the use of symbolic rules
is very fast, an increased propagating speed can be obtained. Here we consider using
symbolic rules which produce gate values in which only one expert gets a gate value 1,
this means that for every example only one expert network is selected.

Gating Networks

The symbolic rules determine under which conditions which expert has to be chosen. Then
only one selected expert network is invoked and it produces the output of the architecture.
It is possible to invoke multiple expert networks by using symbolic rules, but this would
slow down the propagating speed of the architecture. Although the linear regions where
the expert networks are situated are not adjusted, an advantage of using this architecture
is that the expert networks can be much larger than when the outputs of multiple expert
networks are combined. Another advantage is that when the decomposition is very good,
it does not have to be learned first.

if conditions; then gi =1.0

else gi = 0.0

Propagate Nodes

The propagate nodes propagate the output of the selected expert network to the top of
the tree (only one gate value has the value 1.0).

Y= g
7

Gradient Descent on a Squared Error Function

The error-function of the architecture is the same as the error-function of the Meta-Pi
network. The difference is that only one one expert has a responsibility to produce an
output for an example. This makes the learning rules the same, but many expert networks

28 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

do not have to be adjusted, because their gradients are zero (see 3.12). The symbolic rules
are not adjusted, although it is possible to use machine learning techniques to adjust the
regions in which expert networks perform.

3.4 Experiment : A Discontinuous Function

Experiments have been performed to analyze the differences between using the three hier-
archical architectures and a single network (monolithic architecture). We have discussed
the problem of learning discontinuous functions, so one simple discontinuous function will
be used to validate the methods.

3.4.1 Experimental Design

The different methods have been evaluated on a simple discontinuous function (see figure
3.7). The function is defined as

f(z) = sin(2rz +7)+1 0<z<.b
= sin(2rz —7) —1 b<r <1

f(x) 1.00
0.80

0.60

0.40

0O.20

-0.00

-0.20

-0.40
-0.60
-0.80

-1.00

Figure 3.7: the target discontinuous function.

All modular architectures used one linear gating network and two expert networks
containing 3 hidden units, which is enough to learn the split and the two sub-functions.
Simulations were performed with hidden units which used sigmoids with two different
neuron sensitivities :

3.4. EXPERIMENT : A DISCONTINUOUS FUNCTION 29

e 1.0 (global), which is almost always used

e 5.0 (local), which gives the hidden units a more local orientation and updates their
incoming weights faster.

Used Methodologies

Monolithic Architectures:
e Single Networks with 3 hidden units.
e Single Networks with 6 hidden units.
Modular Architectures with 2 Expert Networks and 1 Gating Network

e Symbolic Rules which choose one expert for values below .5, and the other expert
for values above .5. Thus, they encode a perfect decomposition.

e Hierarchical mixtures of experts : Mixing the outputs (MTO).
e Hierarchical mixtures of experts : Winner takes all (WTA).
e Meta-Pi: Without selection threshold.

e Meta-Pi: With increasing selection threshold.

The Expert Network Parameters

e Learning rate : all expert used a learning rate which was slowly increased in the
beginning of the learning process. This was done so that the decomposition was
found before the expert networks had stabilized. Good starting learning rates were
found to be between 0.007 for the networks with high neuron sensitivities and 0.04
for the networks which use low neuron sensitivities, hereafter they were multiplied
by 1.0001 after each cycle for the first 20,000 cycles. Thus, the learning rates were
increased from 0.007 to 0.052 and from 0.04 to 0.30, and kept constant afterwards.

e Momentum : 0.3

e Initialization of the weights : between -0.2 and 0.2

30 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

The Gating Network Parameters

e Learning rate : The learning rate of the gating networks was decreased so that once
a decomposition was learned, the regions of the experts did not change too much.
The learning rate was initialized at .7 and was multiplied by .999999 after each
cycle.

e Momentum : 0.0

e Initialization of the weights : When we start we do not know a decomposition so we
can make the responsibilities of the experts equal over the whole example space. We
did this by setting the connections between units at 0.5 and the bias of the output
units at 0.0.

Presentation of Learning Examples

e Examples were drawn randomly and learned on-line, each presentation of an example
is a cycle or iteration.

e The root of the mean squared error (RMS) was computed after each 25,000 cycles
on a uniform distribution of thousand points, and the smallest RMS over all tests
per simulation was kept as the final result. This was done because the error was
not, decreasing all the time.

e 1,000,000 cycles was the maximum for one simulation, when the RMS was lower
than .01 the simulation was stopped earlier.

3.4.2 Experimental Results

In table 3.2 the simulations are summarized with expert networks which use low neu-
ron sensitivities in the hidden units. We can see that single networks are not able to
approximate the function. This is not very surprising, because a global model cannot
store a discontinuous function. What is not very surprising either is that by using rules
to encode a perfect split, the two experts have no problem to learn their sides of the
discontinuity: all simulations reached a RMS < 0.01. More surprising is that the mixtures
of experts hierarchy with the winner takes all forward propagation always converged to
good solutions, which is as good as using the perfect rules. The HME architecture with
the mixing the outputs strategy does not do as well what was expected, although in this
case the same good divisions have been learned. The higher error can be explained by
the fact that around the discontinuity the outputs of both experts are mixed, because the
gating network cannot learn to switch from one to the other expert at once (this would
require representing the discontinuity, what we want to avoid). Finally the Meta-Pi hi-
erarchy could not approximate the function better than the single networks. The single

3.4. EXPERIMENT : A DISCONTINUOUS FUNCTION 31

H Architecture ‘ hidden u. H Mean RMS ‘ SD RMS ‘ Lowest RMS H

Single Net 3 337 014 .329
Single Net 6 331 .000 331
Rules 3* .0093 .0013 .0072
HME WTA 3* 0077 .0023 .0036
HME MTO 3* .103 .001 .102
Meta-Pi 3* .330 .001 328

Table 3.2: Simulations with a hidden unit sensitivity of 1.0 on the discontinuous function.
Simulations were repeated 20 times and each time the best RMS was recorded. Only the
rules and the winner takes all strategy of the HME architecture converged to solutions
with RMS < .01. * means per expert.

networks and Meta-Pi hierarchy were not able to approximate the discontinuous function
when neuron sensitivities of 1.0 were used. There were no hidden units which could learn
the discontinuity (figure 3.8), because the region with the discontinuity is too small and
contains conflicting details.

Table 3.3 shows that using a neuron sensitivity of 5.0 in the hidden units makes a big
difference for the single networks and also for the Meta-Pi hierarchy. The hidden units
with a high neuron sensitivity were able to learn the discontinuity, although it is clear that
using 3 hidden units is not enough, the smallest single network was able to approximate
the function better than the larger single network with the low neuron sensitivity! We can
also see that the rules and HME with the winner takes all propagate strategy do as well as
before with the low neuron sensitivity. The HME with the mixing the outputs strategy is
the only architecture which obtains worse results with the high neuron sensitivities. The
high standard deviation may be explained by the fact that in some cases the architecture
learns to make one expert more responsible than the other for all inputs. Some different
approximations are given in Figure 3.9.

Table 3.4 shows the number of cycles needed to converge to an approximation with
RMS < .01. It shows no significant difference between using the high or low neuron
sensitivity, although the fastest simulations were using the high sensitivity. The rules
converge faster, but this difference is not surprising because the division does not have to
be learned first.

Experiments with the Selection Threshold

Simulations with the use of a selection threshold in the propagate nodes confirmed our
hypotheses that learning would become much quicker. With a selection threshold of 0.01
the time saved is about 30% for the Meta-Pi and HME architectures with low neuron
sensitivities. This speed up can be explained by the fact that most examples do not

32 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

f(x) 100 HME WTA

0.80

0.60
0.40
0.20

-0.00

-0.20

-0.40

-0.60

-0.80

-1.00

-1.20 J R ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 3.8: the function approximations of the different methods with neuron sensitivities
1.0

f(xX) 100

0.60

0.40

0.20

-0.00

-0.20

-0.40

-0.60

-0.80

-1.00

0.00 0.50 1.00

Figure 3.9: The function approximations of the Meta-Pi hierarchy and the single network
with 6 hidden units. With a neuron sensitivity of 5.0 in the hidden units, they were better
able to learn the target function.

3.4. EXPERIMENT : A DISCONTINUOUS FUNCTION 33

H Architecture ‘ hidden u. H Mean RMS ‘ SD RMS ‘ Lowest RMS H

Single Net 3 263 .015 214
Single Net 6 .093 013 .083
Rules 3* .0097 .0015 .0079
HME WTA 3* 0077 .0011 .0060
HME MTO 3* 118 .049 .109
Meta-Pi 3* .097 015 .081

Table 3.3: Simulations with a hidden unit sensitivity of 5.0 on the discontinuous function.
Simulations were repeated 20 times. The single networks and Meta-pi architecture now
have less problems in approximating the discontinuous function than they had with a
neuron sensitivity of 1.0. * means per expert.

H Architecture ‘ £ h.u. H Mean cycles ‘ SD cycles ‘ minimum H

Rules 1.0 254 * 103 46 * 10° | 175 * 10°
Rules 5.0 139 * 103 127 103 | 60 * 103
HME 1.0 428 *10° | 203 * 10° | 150 * 103
HME 5.0 439 * 10 | 241 * 103 | 125 * 10°

Table 3.4: Number of cycles needed to converge to states with RMS < .01. The simulations
were repeated 20 times.

have to be learned by the gating network and one expert network, but only by one
expert. Performance levels remain the same with this low threshold. The mixtures of
experts methodology does not allow a fast rising selection threshold, for often one expert
dominates over the other and this would result in a dead expert which is never used
anymore. For the Meta-Pi network, a fast rising selection threshold changes the results of
the simulations as we can see in table 3.5. Although it is very difficult to find an algorithm
which increases the selection threshold very carefully, some simulations show good results.
Good divisions (between x =.49 and .51) have been found for expert networks with 3,4
and 5 hidden units in respectively 70%, 75% and 85% of the simulations. The Meta-Pi
methodology can profit from the selection threshold to increase the competition between
the experts and to minimize the co-operation.

Experiments with Extended Back-propagation

Finally some experiments have been performed to evaluate the learning rule extended
back-propagation (BP+) [Sperduti92], see Appendix B for a description. We have seen
that the settings of the neuron sensitivities are important for learning the discontinuous
function. BP+ is able to change neuron sensitivities so that learning rates are adapted

34 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

H Architecture ‘ hidden u. H Mean RMS ‘ SD RMS ‘ Lowest RMS H

Meta-Pi 3* 110 .082 .0065
Meta-Pi 4% 078 073 .0065
Meta-Pi H* .056 .050 .0064

Table 3.5: Simulations with an increasing selection threshold. The threshold is equal for
both experts and is raised from 0.0 until 0.5, so that finally only one expert is chosen for
an example. At first the threshold is increased fast, later on it is increased slowly. The
simulations were repeated 20 times.

on-line. E.g. when one wants to decrease the learning rate during the learning process,
this is not longer necessary, because BP+ can decrease the neuron sensitivity of the output
unit itself. Table 3.6 summarizes an experiment with the same single network with six
hidden units and high initial neuron sensitivities as before. It is trained by normal back-
propagation and with BP+. The learning rates for the neuron sensitivities are :

e Hidden unit : 0.05
e Output unit : 0.001

The number of cycles until convergence (RMS < 0.15) is compared by performing 10
simulations in which each 10,000 cycles the network is tested to determine the RMS. The
results (see table 3.6) indicate that using BP+ results in faster learning, so in the next
Chapter BP+ will be used for learning game evaluation functions.

H Learning Rule H Mean cycles ‘ SD cycles ‘ minimum H
BP 239 ¥ 10% | 54 *10% | 170 * 10°
BP+ 157 * 10% | 30 * 10® | 120 * 103

Table 3.6: The number of cycles needed to converge to a state with a RMS < .15 for a
single network. Simulations were repeated 10 times. The results show that using BP+
results in faster learning.

3.5 Discussion

In this Chapter we have described the difficulty of learning discontinuous functions with
single neural networks. The global network parameters will smooth important details of
the function around the discontinuity, which results in a large local error. Hierarchical
architectures can circumvent this problem by fitting local expert networks on both sides
of the discontinuity. Three methodologies for constructing hierarchical neural network

3.5. DISCUSSION 35

architectures are described and the learning rules are given which follow from the chosen
error-functions.

The first methodology we have described is the hierarchical mixtures of experts hier-
archy and it is shown to be a powerful methodology for learning discontinuous functions.
In all simulations the gating network learned to decompose the function into two sub-
functions which could easily be approximated by two independent expert networks (see
table 3.2). The methodology only works well when a hard division is used, but when the
outputs of the experts are blended, the architecture does not work better than a single
network with high neuron sensitivity in the hidden units (see table 3.3). The second
methodology which uses the Meta-Pi network was shown to work no better than a single
network with the same amount of parameters. The third modular architecture uses sym-
bolic rules to decompose the input space. When learning the discontinuous function and
a perfect decomposition is known, this architecture obtains the same performance level
as the winner takes all strategy for the HME architecture. Of course the learning speed
is increased, because a decomposition does not have to be learned first.

Some simulations with neuron sensitivities in the activation function of the hidden
units have been studied. If these hidden neuron sensitivities are set on higher values,
then the slopes of the activation functions are steeper. The results (see tables 3.2 and
3.3) showed better local tuning of the parameters for single networks and the Meta-Pi
hierarchy, if the neuron sensitivities were set on higher values. BP+ is an extension of
normal back-propagation which can learn the neuron sensitivities. Results have indicated
that the use of BP+ makes the learning process faster (see table 3.6). The next Chapter
will show how these findings can be used to learn to play games by temporal difference
learning.

Chapter 4

TD Learning with Multiple
Networks

4.1 Learning to Play a Game

In this Chapter we will use the different architectures to learn to play the games of
tic-tac-toe and the endgame of backgammon (disengaged bear-off). Playing games are
tasks which require the computer agent to differentiate between positions and to decide,
depending upon the position, which move to make. Playing a game is a Markov decision
process (see Appendix A), because all states, actions, rewards, and transition probabilities
between states are known. The Markov property states that all transitions and rewards
depend only upon the current state and the current action [Whitehead92]. If we have
an evaluation function for positions in the game, we can generate all possible moves, use
the evaluation function to compare them and select the move which results in a position
with the highest evaluation. When the evaluation function is very accurate, the Markov
property states that it is useless to use look ahead strategies to improve the evaluation.
The generate/evaluate/compare/select procedure is the control policy of the agent.
Initially the evaluation function is unknown and we will have to learn it with e.g.
neural networks. A neural network models an evaluation function V' which is defined as :

V(@) = E(r|z)
with :
Ty : the state vector of the position after t moves.

E(r|z:) : the expected result r of the game given that we start in z; and follow the current
control policy.

So a neural network acts as a predictor of the result of the game when given a state vector.

36

4.1. LEARNING TO PLAY A GAME 37

A state vector represents a board position and must include all important features of the
position. For the state vector it does not matter if it is white’s or black’s turn. This is
very useful, because the input-pattern implicitly encodes the fact that the opponent has
to move next.

Aslong as we are improving the evaluation function, the control policy will improve the
agent’s performance. Learning game evaluation functions with a neural network requires
two procedures. One for acquiring learning examples and one for training the multi-layer
networks. We have seen that the error back-propagation algorithm can be used for the
latter. In this work acquiring learning examples will be done by performing simulations
with the agent.

Several methods exist to create board positions and to calculate evaluations with which
we can improve our evaluation function. One way to create examples {z;, E(r|z;)} for
improving the evaluation function is by the use of dynamic programming [Whitehead92]
in which we compute examples for all possible positions. In dynamic programming, we
start with an arbitrary control policy which is iteratively improved by changing it so
that for all possible positions from the endgame until the start of the game, the move
which maximizes the merits is chosen. The evaluation of each position is the same as the
evaluation of the position which results when the chosen move is played. This approach is
difficult to use however, because for games the number of possible positions is very large
and the computations involved inhibit an efficient learning process.

A more efficient way is to use heuristic dynamic programming or reinforcement learning
(RL) in which the network plays games against itself or a fixed opponent. When playing
games, external feedback or reinforcement r is received when a game is finished and the
game rules conclude that the agent has won (r = 1), has lost (r = —1), or has played
equal (r = 0). From a played game and reinforcement we can generate examples by the
temporal difference (TD) methods (Appendix A).

Two RIL-formalisms have been developed : AHC-learning [Sutton88] and Q-learning
[Watkins92]. Both are able to learn a control policy which maximizes an agent’s perfor-
mance level, provided that a linear representation of the input (lookup tables) is used,
all actions are repeatedly sampled in all states and a proper scheduling of the learning
rates is made [Watkins92, Dayan94]. The formalisms are formally described in Appendix
A. Here we will concentrate on using both formalisms to learn game evaluation functions.
AHC-learning learns an evaluation function for states. This V-function can be used to
compare all possible positions which result from playing a legal move in the current po-
sition. The disadvantage of this is that all resulting positions have to be computed first.
Q-learning learns an evaluation function for state-action pairs. This Q-function can be
used to compare all legal moves in the current position, without the need of computing
the resulting positions, although the considered moves have to be encoded in the input
vector of an architecture, which enlarges the input space.

In the next section we will use the game of tic-tac-toe, and we will evaluate AHC-

38 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

learning and Q-learning with the different architectures. The different architectures will
be compared by their abilities to learn a control policy which beats a fixed opponent as
much as possible. The succeeding section uses the endgame of backgammon and AHC-
learning to test the obtained accuracy of the evaluation function modelled by the different
architectures. This will be done by the use of the program BOINQ, which uses dynamic
programming to accurately calculate the evaluation of endgame positions in the game of
backgammon.

4.1.1 AHC-learning of Game Evaluation Functions

Adaptive heuristic critic (AHC) learning directly learns the V-function. A move is selected
in a position z; by the following procedure (control policy) :

e Generate all legal moves
e Compute the resulting positions for all legal moves
e Evaluate all positions with the V-function

e Select the move which results in the positions with the highest evaluation. Thus,
m; = argmaz;{V(z;)|m; € moves(z;); x; =T (xs,m;)}

When we assume that the current control policy is followed throughout the future, the
evaluation V (#;) of a position z for white after he has made his move must be equal to the
complement of the evaluation V(y:31) of position y for black after his move. Therefore,
the optimal V-function must satisfy :

V(zi) = =V(zi) (4.1)

The difference between the two evaluations in equation 4.1 is the TD(0) error and can be
used to create an example. Suppose we have played a game and stored all positions and
their evaluations which occurred in that game. Then we can use TD(A) to calculate the
temporal differences so that the played game is translated into examples (see figure 4.1).

We will not always follow the same control policy, because this will probably lead to a
local minimum in which the agent repeatedly makes the same mistakes. Therefore some
kind of exploration is needed. A natural trade-off between exploitation for maximizing
the agent’s performance level and exploration is to choose moves randomly to a probabil-
ity distribution determined by the evaluation of the resulting positions [Thrun92]. The
probability P;(m;) of selecting a move m; when looking at position z; is computed by the
Boltzmann distribution

eV (Wi)/T

) eV(y_fc)/T

Py(m;) = (4.2)

ka emoves(zt

4.1. LEARNING TO PLAY A GAME 39

TD()\) procedure for AHC-learning;:

Goal : map a played game onto a set of examples (7}, V'(#;)). One example
is made for each position which has occurred in the game. V'(1;) is the
desired evaluation for the state vector z; and is calculated by the TD(\)
method. Notice that the V-value of the starting-position is also
calculated, but never used by the control policy.

Input

Ty : t = [0..M]
V() + t = [1..M]
r

A

Output :
A set of examples Ezample(i,zy,V'(zy)) i = [1..M+1]1, t = [0..M].

Algorithm :
1) V'(za) := r;
2) storel[Exzample(l, x5, V'(z3r))];

3) 1 := 2;

4) t := M-1;

5) While (t > 0) do

6) Vi) i= = AWV (@) + (1= WV (2i));
7) store[Example(i, z;, V'(z:))];

8) t = t-1; i := i+1;

Figure 4.1: The TD()) algorithm for AHC-learning to translate a played game into ex-
amples for the neural networks. All state vectors z; are positions in which we consider
that white has played the last move.

40 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

Where a move m; (which is an element of the set of possible moves : moves(z;)) results
in position y; (T(x¢, m;) = y;), and the temperature T adjusts the randomness of move
selection.

4.1.2 Q-learning of Game Evaluation Functions

Q-learning learns a Q-function in which Q(z;, m;) represents the evaluation of making
move m; in position z;. A move is selected in the current position by the following
control policy :

e Generate all legal moves
e Evaluate all moves by using the Q-function

e Select the move which results in the highest evaluation.
Thus, m; = argmaz;{Q(z:, m;)|m; € moves(z;)}

For games Q(#}, m;) is equal to V(z1) where x4} is the resulting state vector, because
games are deterministic and the same move in a particular position always results in
the same position. The control policy is to choose the move my, for which Q(z;, m;) is
maximal over all moves. Therefore, the optimal Q-function must satisfy :

Q(zy,my) = —Max{Q(xii1, myy1)|mir1 € moves(zi1)} (4.3)

The difference between both sides of equation 4.3 is again the TD(0)-error and will be
used to improve the Q-function. Figure 4.2 shows how a played game can be used to
create a set of examples by the TD(A)-learning Algorithm for Q-learning.

The Q-function not only depends on the position, but also on the move. With Q-
learning we do not have to generate and compare all possible resulting positions, but only
all possible moves. The Q-value of the different moves in the position z; will be used to
select a move by the Boltzmann distribution

) eQt(z,my,) /T

P(m;) = (4.4)

kaEmoves(zt
The difference with AHC-learning is that the architecture must know which move is
evaluated. A possible way is to encode the move in the input vector for the network, but
this might decrease the important discriminating abilities for the different moves. Another
way to let the architecture know which move is being looked at, is to use a representation
in which for each possible move a different expert network is selected, which only has to
evaluate the current position [Lin93]. We will use this approach to learn tic-tac-toe by
Q-learning. The problem with this is that for a game like backgammon, the set of possible
moves is very large (>> 1,000), so that the amount of required parameters becomes too
large. When this is the case, we must encode the move in the input vector.

4.1. LEARNING TO PLAY A GAME 41
TD()\) procedure for Q-learning:
Goal : map a played game onto a set of examples (Z}, my, Q'(Z;,m:)). One

example is made for each position which has occurred in the game. The
move is stored so that it can be used for selecting the corresponding
expert network or for expanding the state vector. Q'(7;,m;) is the
desired evaluation for playing the move m; when looking at the state
vector 7;, and is calculated by the TD(A) method. Notice that the
Q-value of playing no move (my = 0) in the starting-position is also
calculated, but never used by the control policy. The move mj; in the
position ;s resulted in the final position with reinforcement r.

Input :

Ty : t = [0..M]

m, : t = [0..M]

Maz{Q(z;, m;)|m; € moves;)} : t = [1..M]
r

A

Output :

A set of examples FExzample(i,z;, mi, Q' (%, my)) 1 = [1..M+#1], t = [0..M].

Algorithm :
1 Q(airmar) = T3
2) store[Exzample(1, x5, mar, Q' (x5, mar))1;

3) i := 2;

4) t := M-1;

5) While (t > 0) do

6) Q'(7t,me) = = (AQ'(zei1, mer1) + (1 — A) =
maz{Q(rii1, m;)|m; € moves;i1});

7) store [Example(i, Ty, ms, Q' (7, my))];

8) t :=t-1; i := i+1;

Figure 4.2: The TD()) algorithm for Q-learning to translate a played game into examples
for the neural networks. All state vectors z; are positions in which white has played the

move m;.

42 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

4.2 Tic-Tac-Toe

4.2.1 Problem Definition

The networks have to learn to play tic-tac-toe, therefore I have designed a knowledge base
(TTT) which acts as an opponent. The knowledge base contains the following three rules

TTT program

1) IF a given move wins the game THEN play this move.

2) ELSE IF a given move for the opponent would win the game,
THEN block this move by playing on this field.

3) ELSE play a random move.

This teacher can be beaten by constructing a winning fork, which is a position in which
the player has two possible moves which win the game on his next turn. The maximal
obtainable performance level is about 0.614 (see Appendix C). This performance level
(match-equity) stands for (wins - losses) /games when one plays a match of a large number
of games with both white and black against the opponent TTT.

Playing games against an opponent with an architecture, instead of playing against
itself, requires some changes to the TD-procedures in figures 4.1 and 4.2. When we use
the control policy of the network, and use the evaluation of a position which results from
an action by this control policy, we might never be able to learn that in some positions
the opponent makes a lot of mistakes. That is why we use the moves of the opponent and
calculate the V-value and Q-value with the network on this move and position. So instead
of using the maximal Q-value, we use the Q-value of the move which is selected by TTT.
This is not only faster, but without this we might learn that a position is non-paying,
because the opponent can always play the best move, whereas he can make many mistakes
in such a position.

The input of the networks will consist of 9 units : each unit encodes one field. The
activation of an input unit will be :

e +1 for a circle (white)
e -1 for a cross (black)
e 0 for an empty field

The output V of the networks will lie between +1 <= P(white wins) = 100%
and -1 <= P(white loses) = 100%.

4.2. TIC-TAC-TOE 43

4.2.2 Experimental Design

For learning tic-tac-toe against TTT, a priori knowledge of how many expert networks
to use is not available. Several different architectures have been tried out and the results
of the best of them are used in the following. After pilot experiments, the temperature
T, A\, and the parameters of the expert and gating networks were chosen to be the same
for all architectures. Extended back-propagation was only used for learning the expert
networks, which not only produced a small gain in performance compared to normal
back-propagation, but also made searching for learning parameters easier and decreases
the learning rates automatically (which is important for TD learning).

List of Experiments

e Monolithic architectures with 30, 50 and 80 hidden units.

e HME architectures with 2 experts containing 40 hidden units each. One architecture
uses a selection threshold of 0.3 and the other does not use a selection threshold

(ST = 0.0).

e Meta-Pi architectures with 2 experts containing 40 hidden units each. One architec-
ture uses a selection threshold of 0.3 and the other does not use a selection threshold

(ST = 0.0).
e Symbolic rules architectures with 9 experts containing 20 and 30 hidden units.

e Lookup tables which store the evaluations of all different positions in different en-
tries.

e For all neural network architectures, experiments with high (3.0) and low (1.0) initial
neuron sensitivities are performed.
The Expert Network Parameters
e Learning rate : .3
e Momentum : .5
e Initialization of the weights : between -.2 and .2
e Initial hidden unit neuron sensitivity : 3.0
e Initial output unit neuron sensitivity : 0.2
e Hidden unit neuron sensitivity learning rate : 0.1

e Output unit neuron sensitivity learning rate : 0.001

44 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

The Gating Network Parameters

e Learning rate : .1
e Initialization of the weights : between -.2 and .2

e Output neuron sensitivity : 1.0

Design of the Simulations

e After each played game, examples are constructed by the procedure in figure 4.1 for
AHC-learning or the procedure in 4.2 for Q-learning. These examples are passed to
the learning module which uses (extended) back-propagation to alter the weights.

e In one simulation an architecture played 40,000 games, alternating with white and
black. This produces about 340,000 learning examples.

o After each 2,000 training games, 2,000 test games were played in which always the
best move was selected by the control policy. The match equity ((the number of
wins - the number of losses) / the number of played games) over these 2,000 test
games was used in the results.

e The temperature T which is used in equation 4.2 and equation 4.4 for determining
the amount of exploration, was annealed from .2 to .05

e)\ was annealed from .8 to .2

4.2.3 Experimental Results

We will first discuss experiments with the architectures which use high initial neuron
sensitivities, because this results in better performances; many simulations reached match-
equities which proximate the maximal obtainable match-equity of 0.614.

An experiment with an architecture consists of 10 simulations. In the figures, the
learning curves are presented which are averaged over the 10 simulations. The tables
present the results which were averaged over the 10 simulations, in which for every simu-
lation the 2,000 test games which obtained the highest average was kept as the result of
that simulation. This was done because the performance is not monotonously improving
when more games are played, although we could always copy an architecture when it
has reached its maximal performance level so that the best state of the architecture in
a simulation is kept. The most important feature in the experiments is the average of
the maximal match-equities over all 10 simulations with an architecture; these results are
presented in the tables.

4.2. TIC-TAC-TOE 45

The average over all maximal match-equities per simulation often reaches an equity
which is little below 0.600. The standard deviation over the simulations is decreased from
about .15 after 2,000 games, to about .1 after 10,000 games to about .02 after 40,000
games. Because the standard deviations in the first 10,000 games are so high and the
equity rises from -.7 to about .4, this part of the simulation is not important and will not
be shown in the figures.

Tic-Tac-Toe Experiment 1 : Monolithic vs. Mixture of Experts

In the first experiment we compare the performances of single neural networks with the
HME architectures. We have tried out several single neural networks and found out that
larger networks are performing better than smaller ones, although there is a maximum
size after which the performance degrades. After we have found the single network archi-
tectures we wanted to use, we searched for hierarchies of expert networks with about the
same amount of parameters as the largest single network. The best HME architectures
used only two expert networks, because larger hierarchies did not perform better. Fi-
nally we experimented with using the selection threshold. This resulted in a comparison
between the following architectures:

e A single network with 30 hidden units.
e A single network with 50 hidden units.
e A single network with 80 hidden units.

e A HME architecture with two expert networks of 40 hidden units each, without the
use of a selection threshold.

e A HME architecture with two expert networks of 40 hidden units each, but with a
selection threshold of 0.3.

‘ Architecture-type ‘ h.u. H E(equity) ‘ SD(equity) ‘ time ‘
Single Network 30 0.526 0.030 | 51 min
Single Network 50 0.577 0.014 | 85 min
Single Network 80 0.600 0.010 | 136 min
HME S.T. =0.0 |2 *40 0.592 0.011 | 138 min
HME S.T. =03 |2 *40 0.592 0.009 | 78 min

Table 4.1: The average maximal match equities obtained by the monolithic and the HME
architectures. The HME architectures perform as good as the largest single network, but
with the use of a selection threshold, they become faster.

46 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

Equity
-60 S Single80hu. T
58 THMEsT.03 T
.56
HME S.T. 0.0

.54

52 TTSingles5O0hau. T T T T T T T T
50

a8 Single 30 h.u.

.46

.44

42

.40

Nnr. games
20000 40000

Figure 4.3: The results obtained by the single networks and the HME architectures. Each
experiment with an architecture consists of 10 simulations. The figure shows the average
match-equity after each 2,000 training games against TTT.

Figure 4.3 and table 4.1 show that the HME architectures with two experts (40 hidden
units) and the largest single network obtained the best results when they are compared
with the smaller architectures. The largest single network with 80 hidden units performed
a little bit better, but the HME architecture with a selection threshold of 0.3 saves a
lot of time by not invoking one of its experts in 98% of the times! The smaller single
networks were not performing much slower, but reached a significant smaller expected
match-equity (see table 4.2). The results show that architectures with a lot of parameters
perform better than smaller architectures. The selection threshold is an efficient method
to use more parameters, without decreasing the propagating speed of the architecture.

| * | HME S.T. = 0.0 | HME S.T. = 0.3 |
Single 30 < <
Single 50 < <
Single 80 Y ~

Table 4.2: A comparison between the results obtained by the monolithic and HME ar-
chitectures produced by t-tests. < means significantly worse (« = 5%) and < means
significantly worse (o = .1%).

4.2. TIC-TAC-TOE 47

When the WTA strategy was used in the HME architecture, the results were much
worse. This was because often only one expert was chosen to evaluate all positions. When
this strategy was used, the combination with TD learning resulted in examples which were
constructed by using the evaluation of one of the experts. Therefore one expert is better
able to approximate these examples, and will be chosen for all inputs.

Tic-Tac-Toe Experiment 2 : Monolithic vs. Meta-Pi

In this experiment the results are compared between the single networks from experiment
1 and architectures which use the Meta-Pi network. Just as in experiment 1, we have
experimented with some different hierarchical architectures and kept two Meta-Pi archi-
tectures which use two experts with 40 hidden units each, one without and the other with
a selection threshold of .3. The learning curves are presented in figure 4.4.

Equity
.60

.58

.56

20000 40000

Figure 4.4: The results obtained by the single networks and hierarchies with a Meta-Pi
network. The Meta-Pi hierarchies do not reach match-equities which are as good as the
largest single network, but perform better than the single network with 50 hidden units.

As we can see in tables 4.3 and 4.4, the Meta-Pi architectures perform worse than the
largest single network, and the fastest Meta-Pi architecture does not perform significantly
better than the single network with 50 hidden units. The Meta-Pi network with a selection
threshold could be used to trade-off learning speed against performance level, but performs
slightly worse than the HME architecture.

48 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

‘ Architecture-type ‘ h.u. H E(equity) ‘ SD(equity) ‘ time ‘
Single Network 30 0.526 0.030 | 51 min
Single Network 50 0.577 0.014 | 85 min
Single Network 80 0.600 0.010 | 136 min
Meta-Pi S.T. = 0.0 | 2 * 40 0.588 0.011 | 138 min
Meta-Pi S.T. = 0.3 | 2 * 40 0.587 0.016 | 78 min

Table 4.3: The average maximal match-equities obtained by the monolithic and Meta-Pi
architectures

‘ K H Meta-Pi S.T. = 0.0 | Meta-Pi S.T. = 0.3
Single 30 < <
Single 50 < ~
Single 80 > >

Table 4.4: A comparison between the monolithic and Meta-Pi architectures

Tic-Tac-Toe Experiment 3 : Monolithic vs. Symbolic Rules

This is another experiment in which we used the single networks. Now we compared them
with an architecture which uses symbolic rules to select an expert network. The symbolic
rules select for each move a different expert network to evaluate that move. This reduces
the input space for each expert network, because the chosen field always contains a piece
so that one particular bit in the input vector is always on. After some pilot experiments,
we decided to keep the architectures which use 10 expert networks with 20 and 30 hidden
units. Notice that one expert network is used for evaluating playing no move in the
starting position, and therefore it is never used by the control policy.

‘ Architecture-type ‘ h.u. H E(equity) ‘ SD(equity) ‘ time
Single Network 30 0.526 0.030 | 51 min
Single Network 50 0.577 0.014 | 85 min
Single Network 80 0.600 0.010 | 136 min
Symbolic Rules 10 * 20 0.590 0.013 | 35 min
Symbolic Rules 10 * 30 0.598 0.004 | 51 min

Table 4.5: The average maximal match-equities obtained by the monolithic and symbolic
rules architectures.

Figure 4.5 and table 4.5 show that having one expert network for evaluating the merits
of playing a particular move gives a very good performance. These architectures have a
lot of parameters, but each time only one expert needs to be invoked so they perform very

4.2. TIC-TAC-TOE 49

Equity
.60 S SRR
ss 3 3 Rules 30 h.u.
’ Single80 h.u.
-56 TRuleszoh.u.
-S54 "Single50 h.a. T T T
.52
.50
48 Single 30 h.u.
.46
.44
a2
.40
nr. games
20000 40000

Figure 4.5: The results obtained by the single networks and hierarchies which use symbolic
rules to select an individual expert network for evaluating each different move. These
hierarchies are very fast and the hierarchy which uses expert networks with 30 hidden
units reaches match-equities which are as good as the largest single network and performs
much better than the single network with 50 hidden units.

‘ ook H Symbolic 20 ‘ Symbolic 30 ‘
Single 30 < <
Single 50 < <
Single 80 > ~

Table 4.6: A comparison between single networks and symbolic rules architectures

50 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

fast. Because the performance level of the largest single network is not better than the
hierarchy which uses expert networks with 30 hidden units for different moves, but is much
slower, the use of different action expert networks can be promising if the set of possible
actions is small enough. Maybe this is why in some studies the results of Q-learning with
one expert for one action outperformed the use of AHC-learning with one single network
[Lin93]. The results of using the one expert for one move and the best HME architecture
are not significantly different, although the HME architecture is slower.

Tic-Tac-Toe Experiment 4 : AHC-learning vs. Q-learning

This experiment compares AHC-learning to Q-learning. The use of an architecture with
symbolic rules to select different networks for different moves fits well in Q-learning. This
provides a method to let the architecture know which move it is evaluating, instead of
encoding the move in the input vector. Again expert networks with 20 and 30 hidden
units are used for both TD-paradigms.

‘ Architecture-type ‘ h.u. H E(equity) ‘ SD(equity) ‘ time

AHC-learning 10 * 20 0.590 0.013 | 51 min
AHC-learning 10 * 30 0.598 0.004 | 85 min
Q-learning 10 * 20 0.590 0.008 | 51 min
Q-learning 10 * 30 0.595 0.011 | 85 min

Table 4.7: The average maximal match-equities obtained by the architectures which use
AHC-learning and Q-learning

‘ FoRRoK H Q-learning 20 ‘ Q-learning 30
AHC-learning 20 ~ ~
AHC-learning 30 > ~

Table 4.8: A comparison between AHC-learning and Q-learning

Table 4.7 shows that using the division of selecting one expert for one move when
used for AHC-learning or Q-learning results in almost the same performance levels. Both
architectures are very fast, but can use a lot of parameters. The only difference with
this AHC-learning paradigm and Q-learning in this experiment is that this AHC-learning
paradigm shows a position after a move and Q-learning shows the position before the
move is played to the chosen network. This makes selecting a move faster if computing
the resulting position is not trivial, but Q-learning can not be used if we do not dis-
criminate between different moves when we present a position and a possible move to
the architecture. AHC-learning might use classes of moves, and because the state vector

4.2. TIC-TAC-TOE o1

encodes the position after a move has been played, discriminating abilities still exist. So,
for a game such as backgammon we can better use AHC-learning and make use of classes
of moves or classes of positions to choose between different expert networks.

Tic-Tac-Toe Experiment 5 : Lookup Tables

In this experiment we study lookup tables. Lookup tables use a different entry for each
position to return the evaluation of that position. Lookup tables can store non-linear func-
tions, but because they have no generalization ability, they have to use many parameters.
Therefore the use of lookup tables is no viable paradigm when the state space is very
large. However, Dayan has proved that lookup tables trained with temporal difference
learning will find a global minimum [Dayan94]. Lookup tables are similar to the previous
architectures with high neuron sensitivities for the hidden units, in the sense that most
parameters are only adjusted in a specific part of the input space.

The results show that the use of lookup tables requires about 4,600 parameters, which
is much more than the 880 parameters needed by the largest single network. The learning
traject of the lookup tables is shown to be much faster than the use of neural network
architectures (figure 4.6). Furthermore when we look at table 4.9, we can see that the
lookup tables obtain the best results of all the architectures which are considered here.
This means again that using many local basis functions results in faster learning and a
better performance level when learning a discontinuous game evaluation function. The
time to train a lookup table depends on its representation. The representation which was
used here, is using a list so that everytime an evaluation of a position was needed, this
position had to be compared with many entries in the list. This implementation is very
inefficient, but the time needed for a simulation was about the same as for the neural
network architectures. Naturally, a smart representation (e.g. a tree, or a hashing table)
would require much less learning time than even the smallest network architecture.

Tic-Tac-Toe Experiment 6 : Architectures with low neuron sensitivity

In the last experiment, the use of low initial neuron sensitivities in the activation functions
for the hidden units in the neural networks is studied. Instead of the previous starting
values 3.0 for the neuron sensitivities, neuron sensitivities will be initialized on 1.0. This
makes the networks more globally oriented, and (as we could see in Chapter 3) this makes
it more difficult to learn discontinuous functions. The results of the experiment are given
in table 4.10 and show that the architectures perform worse with low neuron sensitivities
than with high hidden unit sensitivities. This confirms the results obtained in Chapter 3.
When discontinuous functions have to be learned it is a good idea to start with activation
functions with steep slopes. The results also show that using modular architectures work
better than the monolithic architectures when low neuron sensitivities are used. It appears
that the modular architectures are able to decrease the number of discontinuities which

52 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

Equity

Nr. Games

20000 40000

Figure 4.6: The results obtained by the lookup tables compared to the large single network
and the architecture which uses symbolic rules to select an expert network. The use of
lookup tables results in faster learning and a better final performance.

‘ Architecture-type ‘ h.u. H E(equity) ‘ SD(equity) ‘ time
Single Network 30 0.526 0.030 | 51 min
Single Network 50 0.577 0.014 | 85 min
Single Network 80 0.600 0.010 | 136 min
HME S.T. = 0.0 2 * 40 0.592 0.011 | 138 min
HME S.T. = 0.3 2 * 40 0.592 0.009 | 78 min
Meta-Pi S.T. = 0.0 | 2 * 40 0.588 0.011 | 138 min
Meta-Pi S.T. = 0.3 | 2 * 40 0.587 0.016 | 78 min
Symbolic Rules 10 * 20 0.590 0.013 | 35 min
Symbolic Rules 10 * 30 0.598 0.004 | 51 min
Lookup table 4,560%* 0.606 0.007 | 102 min

Table 4.9: The results obtained by all architectures with high initial neuron sensitivities
or local basis functions. The lookup tables obtain the best results, but they use the
largest amount of parameters. In general we can say that the amount of parameters in
an architecture is a good predictor for its performance.

4.2. TIC-TAC-TOE 53

‘ Architecture-type ‘ h.u. H E(equity) ‘ SD(equity) ‘ time
Single Network 30 0.384 0.060 | 53 min
Single Network 50 0.421 0.019 | 87 min
Single Network 80 0.434 0.027 | 138 min
HME S.T. = 0.3 2 * 40 0.498 0.031 | 82 min
Meta-Pi S.T. = 0.3 | 2 * 40 0.485 0.031 | 80 min
Symbolic Rules 10 * 30 0.507 0.042 | 53 min

Table 4.10: The results obtained by the architectures with an initial neuron sensitivity of
1.0. The architectures obtain worse results than the architectures which use high initial
neuron sensitivities. We can see that the single neural networks obtain worse results than
the modular architectures.

have to be learned by the expert networks. With low neuron sensitivities, the need to
decompose the input space appears to be much larger than with high neuron sensitivities.

4.2.4 Discussion

We have seen that TD learning is an efficient way to learn a control policy for an agent.
The obtained results (see table 4.6) show that by using large neural network architectures,
we can get close to the maximal performance level of playing games of tic-tac-toe against
an imperfect fixed opponent. The results also show that using many local basis functions
to store the required knowledge results in an improved performance. Using multiple expert
networks is an efficient way to use many parameters, because we can select independent
neural networks for evaluating different moves and positions, which is much faster than
always invoking one large monolithic network. The use of lookup tables provides an
efficient way to store an evaluation function. They are not only very accurate, but when
a smart representation is used, they are also very fast. Because every possible position
needs a different entry in a lookup table, the amount of parameters grows prohibitively
as the number of dimensions of the state space of a game increases. That is why the use
of lookup tables is no viable alternative when the state space of a game is very large.
We have compared the results between the monolithic architectures and three archi-
tectures which use multiple expert networks. The HME architecture could make use
of the selection threshold in an efficient way so that many times only one expert was
invoked. This made it a lot faster than the largest single network, although the per-
formances were about equal. The Meta-Pi architecture performed worse than the HME
architecture, which confirmed the results obtained in Chapter 3. Using symbolic rules to
select an expert to evaluate playing a specific move resulted in very good performance.
These architectures can use a lot of expert networks, because each time only one expert
needs to be invoked. The results obtained by these architectures were about equal to the

54 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

results obtained by the HME and largest monolithic architectures, but they performed a
lot faster.

Another comparison was made between AHC-learning and Q-learning. The experi-
ments showed that when both reinforcement learning methods are applied on the same
architectures, the results are about the same. An advantage of using AHC-learning is
that the architecture does not have to know which move is played. So when we want to
learn a game which allows many possible moves (e.g. go, backgammon, draughts, chess)
AHC-learning is the paradigm we have to use. Using Q-learning would require encoding
the move in the state vector which might decrease generalization abilities, because the
moves which resulted in a specific position might differ.

When we compare the obtained results with [Boyan92], who obtained a maximal
match-equity of 0.474 after playing more training games, they are impressive. Except for
a different input encoding and the use of TD(\) instead of TD(0), the use of high initial
neuron sensitivities in the hidden units could be the reason for the difference between
the results. The results of Chapter 3, which showed that using high neuron sensitivities
in the activation functions of the hidden units to learn a discontinuous function was
advantageous, were confirmed in the considered task of learning a discontinuous game
evaluation function.

The next section will show if using modular architectures or high hidden neuron sen-
sitivities also improves learning a smooth evaluation function.

4.3 The Endgame of Backgammon

4.3.1 Problem Definition

In this section we study adaptive experts and TD learning for the endgame (bear-off)
of backgammon. In contrast to the previous section where a discontinuous evaluation
function had to be learned, the game evaluation function considered here is very smooth.
However, the number of different positions is 1.5 * 10?, which is much larger than the
4.6 x 10% positions which are used by the lookup tables to store the evaluation function of
tic-tac-toe.

Our goal is to learn the V-function given by

e Supervised learning on learning samples {(z1, V(x1)), ..., (zar, V(2pr))} which are
created by dynamic programming.

e Playing games with the architectures and creating examples with the TD methods.

4.3. THE ENDGAME OF BACKGAMMON 95

We will compare supervised learning to TD learning with the different architectures, to
evaluate the efficiency of TD learning. For supervised learning, learning samples consisting
of the evaluation V for a given state Z are generated from a program BOINQ which
is able to compute these evaluations for the endgame directly. BOINQ uses dynamic
programming to create a lookup table with the evaluations for all possible positions from
1 to 14 stones for both sides.

The networks used 68 inputs, 56 inputs encode the possible fields 0-6 where the stones
for both players are allowed to stand. The maximal number of stones that can be on a
particular field is 14, and so the number of stones on a field is binary encoded by 4 inputs.
For the other 12 inputs some features are used which are hard to learn for the network
itself. The following features were used (which were scaled between -3.0 and 3.0)

e Features for both players :

— the pip-count.
— the number of pieces out.
— the standard deviation of the placement of the stones on all fields.

— the mean of the placement of the stones on the fields.

e Overall features

A bit which indicates which player has taken off the largest amount of stones.
— The difference in pip-counts.

A bit which indicates whether this difference has passed 15%.

A bit which indicates if the player has taken all pieces off.

4.3.2 Experimental Design

We compared temporal difference learning to supervised learning. The experiments exist
of two parts : the first part of the simulations compare the performances of the different
architectures on TD learning and supervised learning for a short learning time. The
second part of the experiments compare the use of TD learning to supervised learning for
a longer training time.

Experiment 1 : Effect of Architectures

In this experiment, small training times are studied to compare the different architectures.

For supervised learning the experimental setup is as follows. The architectures are
trained on-line, repeatedly presented with a learning set of 500 samples for 120 epochs.
The experiment is repeated 10 times, each time with a different set of 500 learning samples.

56 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

We have used 10 different learning sets, so that the results do not depend on one arbitrary
drawn learning set. The total amount of iterations in a simulation is 60,000.

A simulation with temporal difference learning consisted of 10,000 games of self-play
starting with randomly drawn positions in the endgame with a maximum of 14 against
14 stones. The mean number of pieces on the board in a starting position for a player is
7.5. Playing one game produces about 6 positions, which makes the amount of learning
examples equal to the supervised paradigm. The difference in the presented learning
samples is that for TD learning the distribution of the shown positions are on average
closer to an end-position than the uniform distribution of the supervised learning set.
This could be a disadvantage for TD learning, but is almost inevitable.

For both learning strategies, an independent test set of 2,000 randomly drawn perfect
examples generated with dynamic programming was used. The best results of one sim-
ulation was kept as the final result of that simulation. For this, the supervised trained
architectures were tested after each epoch, and the architectures which were trained by
TD learning were tested after each 100 games. The experimental results were averaged
over all simulations.

After a coarse search through the parameter space, we decided to keep the following
architectures :

e Monolithic architectures with 0, 5 and 10 hidden units.

e The HME architecture with two expert networks with 5 hidden units without selec-
tion threshold.

e The Meta-Pi architecture with two expert networks with 5 hidden units without
selection threshold.

e A symbolic rules architecture to choose one out of six expert networks with 10 hidden
units. The symbolic rules use the difference in pip-count between both players (pip-
count, player 1 - pip-count player 2). The pip-count is the total number of fields all
pieces have to advance from their current field before they can be taken off. We
constructed the following division :

1) IF the difference < -34 THEN category := 1

2) ELSE IF the difference < -14 THEN category := 2
3) ELSE IF the difference < -4 THEN category := 3
4) ELSE IF the difference < 6 THEN category := 4
5) ELSE IF the difference < 26 THEN category := 5
6) ELSE category := 6

Although the propagate speeds of these architectures are the same (except for the
smaller single networks), the architecture which uses symbolic rules has the largest number
of parameters. For TD learning, initial neuron sensitivities of 1.0 and 3.0 were used in

4.3. THE ENDGAME OF BACKGAMMON o7

the hidden units, so that we were able to compare the use of the different initial neuron
sensitivities when learning a smooth evaluation function. Extended back-propagation was
again used to train the expert networks.

Experiment 2 : TD vs. Supervised Learning

In this experiment, we use the single network architecture with 10 hidden units. We
compare its performances on learning on a learning set, learning by self-play and learning
by a combination of a learning set and self-play. We study the following experiments

e 1,600 epochs on 500 learning samples.
e 160 epochs on 5,000 learning samples.
e 130,000 games of self-play.

e 65,000 games of self-play combined with 800 epochs on 500 learning samples.

Each experiment is repeated five times. After each 40,000 iterations, the architectures
are tested on a test set of 5,000 examples created by BOINQ. When the combination of self-
play and TD learning is used, TD learning is continuously interchanged with supervised
learning during the learning process. The architecture is tested after playing 3,250 games
and learning on the learning set of 500 examples for 40 epochs.

For both experiments the same parameters were used :

The Expert Network Parameters

e Learning rate : .3

e Momentum : .0

e Initialization of the weights : between -.2 and .2

e Initial hidden unit neuron sensitivity : 1.0

e Initial output unit neuron sensitivity : 0.25

e Hidden unit neuron sensitivity learning rate : 0.05

e Output unit neuron sensitivity learning rate : 0.001

58 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

The Gating Network Parameters

e Learning rate : .1
e Initialization of the weights : between -.1 and .1

e Output neuron sensitivity : 1.0

Design of the Simulations

e TD learning

— After each played game, examples are constructed and passed to the learning
module which uses (extended) back-propagation to alter the weights.

— The temperature T which is used in equation 4.2 for determining the amount
of exploration, was annealed from .005 to .0025.

— X was annealed from .3 to .0.
e Supervised learning

— Examples were learned on-line.

4.3.3 Experimental Results
Experiment 1 : Effect of Architectures

We present separately supervised and TD learning, for the latter we also study the ef-
fect of neuron sensitivity. We will first discuss the results of networks with low neuron
sensitivities in the activation functions of the hidden units, because they obtained better
results than the architectures with steeper activation functions.

Experiment 1.1 : Low Neuron Sensitivity

Table 4.11 shows that when the architectures are trained by supervised learning on 500
examples, the single networks with 5 and 10 hidden units give the best results. The linear
network obtains the worst results. The supervised trained single networks with hidden
units obtain the best generalization performance on this amount of examples. When a
modular architecture is used to decompose the input space, the generalization performance
decreases. This is especially shown by the results of the architecture which uses symbolic
rules to decompose the input space. In figure 4.7 we can see the learning curves of the
architectures when supervised learning is used. We can see that the architecture which
uses the symbolic rules is not able to decrease its error after a while during learning. The
reason for this might be that the architecture is being overtrained, because the different

4.3. THE ENDGAME OF BACKGAMMON 99

‘ Architecture ‘ h.u. H RMS ‘ SD ‘

Single 0| 0.189 | .008
Single 5| 0.107 | .007
Single 10 || 0.103 | .010
HME 2*5 || 0.115 | .006
Meta-Pi 2%5 || 0.111 | .018
Symbolic 6*10 || 0.145 | .005

Table 4.11: The performances of the different architectures when supervised learning is
used. A supervised learning set consists of 500 examples. This learning set is presented
120 times to the architectures. For each simulation a different learning set is randomly
selected from a lookup table created by dynamic programming. Simulations were repeated
10 times. The best RMS after a test was kept as the final result of a simulation.

expert networks contain too many parameters and do not receive enough learning samples.
The architecture finds a good approximation for the learning set but generalizes poorly.
So when we have to choose an architecture for supervised learning of a smooth evaluation
function with a small learning set, it is best to use a small single network.

‘ Architecture ‘ h.u. H RMS ‘ SD ‘

Single 01 0.219 | .005
Single 5 || 0.113 | .005
Single 10 || 0.115 | .005
HME 2*5 || 0.112 | .004
Meta-Pi 2*5 || 0.113 | .005
Symbolic 6*10 || 0.124 | .004

Table 4.12: The performances of the different architectures when TD learning is used.
One simulation consists of 10,000 games of self-play. Simulations were repeated 10 times.
The best RMS after a test was kept as the final result of a simulation.

The results when TD learning is used are shown in table 4.12. For TD learning, the
architecture which uses symbolic rules to select an expert network obtains almost the worst
performance. The worst performance is obtained by the linear neural network, but this
is not, very surprising. It is more surprising that the architecture with the largest amount
of parameters works worst for TD learning of a smooth evaluation function. Again this
architecture obtains worse generalization performance, because the architecture contains
too many hidden units to be trained with so few accurate learning samples.

The Meta-Pi, HME and single network architectures work about the same. Because
the evaluation function is very smooth and the number of parameters in the architectures

60 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

RMS 24

23

>5 TRules T

21

20 HME

19 el
M eta-Pi

18

17
Single 10 h.u.

16

15

14

13

12

11

10

fe} 50 100 Nr. Epochs

Figure 4.7: The learning curves for the architectures which use supervised learning. The
curves are averaged over 10 simulations.

are about equal, it is not surprising that one of the architectures does not generalize
better. The small advantage of the performance of the single network with 5 hidden units
compared to the single network with 10 hidden units is more surprising. This means
that the generalization performance of an architecture is maximal with a low number of
parameters. When longer training times are used and more accurate learning samples are
shown, this difference will probably change its sign. The learning curves for TD learning
are presented in figure 4.8. We can see that for all architectures the RMS error gradually
decreases.

When we compare supervised to TD learning with the architectures, we can see that it
is to be expected that TD learning will give better and better generalization performance,
while supervised learning will end up in overtraining the network on the learning set.
After 60,000 iterations, the results are about equal for most architectures. Obtaining a
learning set for supervised learning might be very difficult, because we would have to
do this by dynamic programming or asking a human expert which is very expensive. So
heuristic dynamic programming is a viable alternative for supervised learning when it is
difficult to construct a large learning set.

4.3. THE ENDGAME OF BACKGAMMON 61

RMS 26
s T MeaB T
.24
23 HME TD
=2 EngleTD
.21
20
Rules TD
19
18
A7
.16
15
.14
13

Nr. Games

5000 10000

Figure 4.8: The average learning curves for the four architectures trained by TD learning.
The simulations were repeated 10 times, one simulation consists of 10,000 games of self-
play starting with randomly drawn positions in the endgame with a maximum of 14
against 14 pieces.

Experiment 1.2 : High Neuron Sensitivity

Table 4.13 shows all results of the experiments when TD learning of architectures with
initial neuron sensitivities of 3.0 were used. The results show that when using high neuron

‘ Architecture ‘ h.u. H RMS ‘ SD ‘

Single 10 || 0.143 | .004
HME 2%5 || 0.141 | .011
Meta-Pi 2%5 || 0.144 | .007
Symbolic 6*10 || 0.125 | .004

Table 4.13: The performances of the different architectures with high neuron sensitivity
when TD learning is applied. Simulations were repeated 10 times. The best RMS after a
test was kept as the final result of a simulation.

sensitivities, the symbolic rules architecture obtains the best results. When using high
neuron sensitivities, the architectures must consist of many parameters to be able to
generalize well. The symbolic rules architecture is the only architecture which obtains the
same performance levels when low or high initial neuron sensitivities are used. The other

62 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

architectures obtain much better results when using a low number of hidden units with
low neuron sensitivity to learn the smooth game evaluation function for the endgame of
backgammon.

Experiment 2 : Supervised vs. TD Learning

For this experiment we used longer training times to really compare supervised to TD
learning. For all simulations a single network is used with 10 hidden units. We compare
its performance on supervised learning on a learning set size of 500 and 5,000 examples,
and on TD learning with or without combining supervised learning on 500 examples.
Table 4.14 shows all results of the experiments when initial neuron sensitivities of 1.0 are
used. The RMS is computed after every 40,000 presented learning samples. The total
number of iterations for all methods is 800,000, so the RMS is computed 20 times for each
simulation.

‘ Method ‘ nr games or epochs H RMS ‘ SD ‘
500 examples 1,600 || 0.101 | 0.006
5,000 examples 160 || 0.044 | 0.002
TD learning 130,000 || 0.080 | 0.002
TD + 500 examples 65,000 + 800 || 0.068 | 0.003

Table 4.14: The results of training a single network with 10 hidden units on supervised
learning and TD learning. The method specifies if supervised learning is used, TD learning
is used or a mixture of TD and supervised learning is used. The simulations were repeated
5 times.

The results show that using a large example set works best. Overtraining does not
occur and the obtained RMS show that the single network is able to accurately approx-
imate the desired game evaluation function. Further training and using larger learning
sets will improve the obtained approximation.

We can see in figure 4.9 that with a learning set size of 500 examples overtraining
occurs. This problem does not occur with TD learning or the mixture of TD learning and
supervised learning. Both methods obtain better results than supervised learning on the
small learning set of 500 examples. The mixture of TD learning and supervised learning
works better than either one of these methods alone. So it seems that this combination is
advantageous. When using TD learning, one could try to construct a small set of learning
examples, so that the combination of TD learning and supervised learning can be tried
out. In our experiment, the supervised learning set is very accurate, but some researchers
have tried to use action replay so that examples acquired by TD learning can be reused
[Lin93]. When these examples are known to be accurate, it might be a good idea to store
these examples so that a supervised learning set is created.

4.3. THE ENDGAME OF BACKGAMMON 63

RMS 0.13
0.12
011

200
0.10
0.09

0.08

0.07

006

0.05 5000

0.04 s D

iterations
500000

Figure 4.9: The learning curves for a single network with 10 hidden units when longer
training times are used. The methods which are studied are : supervised learning on 500
and 5,000 examples, TD learning and a mixture of TD learning and supervised learning on
500 examples. After each 40,000 learning examples the RMS is computed. The learning
curves were averaged over 5 simulations.

64 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

Finally we studied if a lower error of the approximation of the evaluation function
means that the control policy of the agent is better. For this we used the trained architec-
tures from the previous experiment. A tournament between the following architectures
with the given RMS error was held

e 5,000 examples architecture : RMS = 0.046

RMS = 0.100

e 500 examples architecture :

TD learning architecture : RMS = 0.080

Mixture TD 4+ 500 architecture : RMS = 0.070

Rules which bear-off as many pieces as possible. If different moves take off the same
amount of pieces, one is chosen randomly.

Each competition is repeated 5 times in which every time 5,000 games are played. Table

Method player A ‘ Method player B H equity player A ‘ SD ‘

500 examples 5,000 examples 0.014 0.011
500 examples TD learning 0.002 0.008
500 examples Mixture TD+500 0.013 0.010
500 examples Rules 0.012 0.019
5,000 examples TD learning 0.007 0.010
5,000 examples Mixture TD+500 -0.006 0.010
5,000 examples Rules -0.013 0.017
TD learning Mixture TD+500 0.005 0.007
TD learning Rules 0.006 0.011
Mixture TD+500 | Rules 0.016 0.004

Table 4.15: The tournament between the single network which is trained by different
methods and a simple knowledge base which takes off as many pieces as possible. Each
competition consists of 5,000 test games and is repeated 5 times.

4.15 shows that when the differences in the accuracy of the evaluation function are sig-
nificant, this does not mean that the control policy is also better. It is a big surprise that
the architecture which is trained on 500 supervised learning samples wins against the
architecture which is trained on 5,000 supervised learning samples. Although the latter
architecture approximates the desired evaluation function much more accurate, this does
not mean that the control policy is also better. It is possible that the first architecture
has better learned to discriminate between possible positions, and that minor differences
in the evaluation of different moves are less of a problem for this architecture, because it

4.3. THE ENDGAME OF BACKGAMMON 65

has reached its maximal approximation. The other architectures were all able to improve
their approximation, and maybe this is why small differences in the evaluation of different
positions are more of a problem for these architectures. Look ahead strategies might be
a method to exploit the differences in the accuracy of the evaluation function, but we did
not research this possibility.

Although higher accuracy of an approximation of an evaluation function does not
mean that the control policy of the agent performs better, it is very useful to have an
accurate approximation. When we would like to learn the whole game of backgammon,
we will use the approximation for the endgame situation to adapt evaluations of positions.
When the approximation of the endgame is very accurate, there is no need to play the
game further, because reinforcement can be returned when we reach the endgame.

4.3.4 Discussion

The different architectures have been used to learn the game evaluation function for the
endgame of backgammon. When supervised learning on a small learning set is used to
learn the evaluation function, there is no need to use a modular architecture to learn
this part of the game (see table 4.11). The game evaluation function of the endgame of
backgammon is very smooth so when an architecture decomposes the input space, the
generalization performance only decreases.

When TD learning is used, the HME, Meta-Pi and monolithic architectures obtain the
same performance levels, and the symbolic rules architecture obtains a lower performance
level (see table 4.12). This latter may be caused, because the architecture uses more
experts, so that some experts are trained on a small number of learning samples. The effect
of neuron sensitivity was studied and the results show that increasing the initial neuron
sensitivity results in lower performance levels, except for the symbolic rules architecture.

We have also compared supervised learning to TD learning with a single network.
When a large amount of perfect examples is available, supervised learning on these learn-
ing samples obtains the best results. However, when only a small amount of perfect exam-
ples is available, this results in overtraining of the network. That is why TD learning works
better. When TD learning is applied, the generalization error gradually decreases if more
games are being played. This is not surprising, because Dayan has proved that TD learn-
ing always converges to at least a local minimum [Dayan94]. We have also studied using
a mixture of supervised and TD learning. This method works better than either of these
methods alone. So when only a small learning set is available, this may computationally
be more effective than constructing a large learning set with dynamic programming. An-
other method which might be advantageous is to store examples acquired by TD learning,
so that these examples can be reused [Lin93].

TD learning of the game evaluation function for the endgame of backgammon is rea-
sonable efficient. When a large amount of training games are played, the architecture

66 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

can reach a high level of precision. One surprising result is that when an architecture
better approximates the game evaluation function than another architecture, this does
not mean that the architecture also plays better (see table 4.15). However, it is very
important to have a very precise approximation of the game evaluation function for the
endgame, because this approximation may be used to return reinforcement for learning
stages before the endgame. By using this kind of hierarchical learning [Lin93|, there is no
need to play the game any further, so that the learning process will become faster.

Chapter 5

Conclusion

5.1 Discussion

We have studied learning game evaluation functions with modular neural network archi-
tectures. Game evaluation functions usually contain many discontinuities, which makes
them difficult to learn. To make the learning process faster and the acquired approxi-
mation more accurate, we studied using multiple expert networks which are located in
subspaces of the total input space. We have described two learning algorithms to divide
the input space in subspaces. The first is the hierarchical mixtures of experts (HME)
methodology in which a likelihood function of generating the desired outputs is maxi-
mized, so that expert networks are located in regions where they outperform the other
experts. The second methodology uses a Meta-Pi gating network to learn to locate expert
networks where they can help to minimize the error of the architecture as a whole. These
architectures are compared with monolithic architectures and architectures which use a
priori knowledge to divide the input space in non-overlapping regions.

All architectures have been studied on learning a simple discontinuous function. The
results show that using the HME architecture with a winner takes all selection strategy
of the experts, and the architecture which uses symbolic rules to divide the input space
at the discontinuity, outperform the other architectures.

In our work we have used an extension of back-propagation, which is able to adapt
neuron sensitivities. An activation function of a neuron multiplies the neuron sensitivity
with the input, after which the output is computed as normal. We have studied ini-
tializing the neuron sensitivities on high values, so that the activation functions become
steeper. The results of using low and high neuron sensitivities indicate a big advan-
tage of using hidden units with high neuron sensitivities when learning a discontinuous
function (see section 3.4.2). The results also show that using the learning rule extended
back-propagation which learns neuron sensitivities results in faster learning compared to
normal back-propagation.

67

68 CHAPTER 5. CONCLUSION

The methodologies are used to learn to play the games of tic-tac-toe and the endgame
of backgammon. We have described how temporal difference (TD) learning can be used
to generate learning samples from played games. We have seen that TD learning is an
efficient way to learn a control policy for an agent. The obtained results on learning the
discontinuous game evaluation function of tic-tac-toe show that by using architectures
which contain many adjustable parameters and high neuron sensitivities, we can get
close to the maximal performance level of playing tic-tac-toe against a fixed opponent.
When more parameters are used in an architecture, the performance improves. Using
multiple expert networks is an efficient way to use many parameters, because we can
select independent neural networks for evaluating different moves and positions, which is
much faster than always invoking one large single network.

Experiments with the endgame of backgammon show that TD learning is a viable
alternative for supervised learning when only a small amount of training examples is
available. Overtraining of the architectures does not occur with TD learning, and it
is to be expected that the generalization error will gradually decrease. A combination
of supervised learning and TD learning obtains better results than using one of these
learning paradigms alone. For supervised learning on a small example set, it was not
advantageous to use modular neural network architectures. This can be explained by the
fact that the evaluation function is very smooth in this part of the game. For learning a
smooth evaluation function, the use of modular architectures and high neuron sensitivity
is not advantageous. However, when learning a discontinuous game evaluation function,
the opposite is true.

5.2 Prospects and Future Work

The recent interest in neural networks and reinforcement learning might make an enor-
mous contribution to machine learning. When computers are getting larger and faster,
new challenging domains could be conquered. We want to make a contribution to this
research by showing how accurate game evaluation function can be approximated, and
how modular architectures can be applied to speed up the learning process.

For this we want to use the game of backgammon. The state space of backgammon
will be divided in some non-overlapping subspaces by symbolic rules, which results in
the fastest architecture. These symbolic rules will be acquired by a short knowledge
engineering period. Hereafter, many expert neural networks and TD learning will be used
to learn to evaluate positions which fall in the different classes.

When this learning process is in an advanced state, we will study how the architec-
ture can be combined with the HME and Meta-Pi architectures, CMACS or fuzzy logic.
This could improve the generalization performance which results in a smooth evaluation
function. To save time, we will look at ways to improve the generalization performance
without having to invoke too many experts at the same time.

5.2. PROSPECTS AND FUTURE WORK 69

Finally, we want to study the use of modular architectures and high neuron sensitivities
by researching TD learning of game evaluation functions of games like draughts, checkers
and chess, because these games contain a large number of discontinuities. We hope that
this research will be performed so that in future more difficult games can be solved, and
the expressive power of large neural network architectures can be really evaluated.

Bibliography

[Aarts89]

[Anthony91]

[Berliner77]

[Boyan92]

[Cybenko89]

[Dayan92]

[Dayan94]

[Esposito93]

[Fox91]

[Gruau92]

E.H.L. Aarts & Jan Korst. Simulated Annealing and Boltzmann Machines.
Wiley, Chichester, 1989.

M. Anthony. Uniform Convergence and Learnability. PhD thesis, Univer-
sity of London, 1991.

H. Berliner. Experiences in evaluation with BKG - a program that plays
backgammon. Proceedings of IJCAI, (428-433), 1977.

J. Boyan. Modular Neural Networks for Learning Context-Dependent
Game Strategies. Thesis report B.S. | University of Chicago, 1992.

G. Cybenko. Approximation by Superpositions of a Sigmoidal Function.
Math. Control Signals Systems, 2, (303-314), 1989.

P. Dayan. The convergence of TD(A) for general A. Machine Learning, 8,
(341-362), 1992.

P. Dayan & T.J. Sejnowski. TD(A) Converges with Probability 1. Machine
Learning, 14, (295-301), 1994.

F. Esposito, D. Malerba & G. Semeraro. Decision Tree Pruning as a Search
in the State Space. In P. B. Brazdil (ed.), Proceedings of the 1993 European
Conference on Machine Learning, (166-184), Vienna, 1993.

D. Fox, V. Heinze, K. Méller, S. Thrun & G. Veenker. Learning by error-
driven decomposition. In T.Kohonen, K. Mkisara, O. Simular & J. Kangas

(eds.), Proceedings of the 1991 International Conference on Artificial Neu-
ral Networks, (207 - 212), Amsterdam, North-Holland, 1991.

F. Gruau. Genetic synthesis of boolean neural networks with a cell rewrit-
ing developmental process. In L.D. Whitley & J.D. Schaffer (eds.), Inter-
national Workshop on Combinations of Genetic Algorithms and Neural

Networks, (55-72), Baltimore, MD: IEEE, June 1992.

70

BIBLIOGRAPHY 71

[Hakala94]

J. Hakala, C. Koslowski & R. Eckmiller. 'Partition of Unity’ RBF Net-
works are Universal Function Approximators. Neural Networks, 5, (459-
462), 1994.

[Hampshire89] J.B. Hampshire & A. Waibel. The Meta-Pi network: Building distributed

[Hashem93]

[Jacobs91]

[Jordan92]

[Jordan93]

[Judd90]

[Krose92]

[Lin93]

[Nadiol]

[Nowlan91]

knowledge representations for robust pattern recognition. Tech. Report
CMU-CS-89-166, Carnegie Mellon University, August 1989.

S. Hashem. Optimal Linear Combinations of Neural Networks. PhD thesis,
Tech. Report SMS 94-4. Purdue University, December 1993.

R.A. Jacobs, M.I. Jordan, S.J. Nowlan & G.E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1), 1991.

M.I. Jordan & R.A. Jacobs. Hierarchies of adaptive experts. In J. Moody, S.
Hanson & R. Lippmann (eds.), Advances in Neural Information Processing
Systems, 4, (985-993), San Mateo, CA: Morgan Kaufmann, 1992.

M.I. Jordan & R.A. Jacobs. Hierarchical mixtures of experts and the EM
algorithm. Submitted to Neural Computation, Tech. Rep. 9301, April 1993.

J.S. Judd. Neural Network Design and the Complexity of Learning. The
MIT press, Cambridge, 1990.

B.J.A. Krose & P. van den Smagt. An Introduction to Neural Networks.
July 1992.

L.J. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD
thesis, Tech. report CMU-CS-93-103, Carnegie Mellon University, Pitts-
burgh, January 1993.

F. Nadi. Topological Design of Modular Neural Networks. In T. Koho-
nen, K. Mikisara, O. Simular & J. Kangas (eds.), Proceedings of the 1991
International Conference on Artificial Neural Networks, (213 - 218), Ams-
terdam, North-Holland, 1991.

S.J. Nowlan. Soft Competitive Adaption: Neural Network Learning Al-
gorithms based on Fitting Statistical Mixtures. PhD thesis, Tech. report
CMU-CS-91-126, Carnegie Mellon University, Pittsburgh, April 1991.

[Rumelhart86] D.E. Rumelhart, G.E. Hinton & R.J. Williams. Learning internal rep-

resentations by error propagation. In D.E. Rumelhart & J.L.. McClelland
(eds.), Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, Volume 1, Chapter 8, The MIT press, 1986.

72

[Samuel59]

[Samuel67]

[Schaffer92]

[Schraudol94]

[Simon92]

[Sperduti92]

[Sutton88]

[Tesauro89|

[Tesauro92]

[Thrun92]

[Tresp93|

BIBLIOGRAPHY

A. Samuel. Some studies in machine learning using the game of checkers.
IBM Journal of Research and Development, 3, (210-229), 1959.

A. Samuel. Some studies in machine learning using the game of checkers:
IT - recent progress . IBM Journal of Research and Development, 11, (601-
617), 1967.

J.D. Schaffer, D. Whitley & L.J. Eshelman. Combinations of Genetic Al-
gorithms and Neural Networks: A Survey of the State of the Art. In L.D.
Whitley & J.D. Schaffer (eds.), International Workshop on Combinations
of Genetic Algorithms and Neural Networks, (1-37), Baltimore, MD: IEEE,
June 1992.

N.N. Schraudolph, P. Dayan & T.J. Sejnowski. Temporal difference learn-
ing of Position evaluation in the Game of Go. In J.D. Cowan, G. Tesauro &
J. Alspector (eds.), Advances in Neural Information Processing, 6, Morgan
Kaufmann, San Fransisco, 1994.

N. Simon, H. Corporaal & E. Kerckhoffs. Variations on the Cascade-
Correlation learning architecture for fast convergence in robot control.
Neuro Nimes, 5, (455-464), 1992.

A. Sperduti. Speed Up Learning and Network Optimization With Ex-
tended Back Propagation. Tech. report TR-10/92, University of Pisa, May
1992.

R. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3, (9-44), 1988.

G. Tesauro. Neurogammon : A neural network backgammon learning pro-
gram. In D.N.L. Levy & D.F. Beal, (eds.), Heuristic Programming in Ar-
tificial Intelligence : The first Computer Olympiad, Chichester, England,
Ellis Horwood lim, 1989.

G. Tesauro. Practical issues in temporal difference learning. Machine
Learning, 8(3/4), (257-277), Kluwer Academic Publishers, May 1992.

S.B. Thrun. Efficient Exploration in Reinforcement Learning. Tech. Report
CMU-CS-92-102, Carnegie Mellon University, Pittsburgh, 1992.

V. Tresp, J. Hollatz & S. Ahmad. Network structuring and training us-
ing rule-based knowledge. Advances in Neural Information Processing Sys-

tems, 5, (871-878), 1993.

BIBLIOGRAPHY 73

[Vysniausk93] V. Vysniauskas, F.C.A. Groen & B.J.A. Krése. The optimal number
of learning samples and hidden units in function approximation with a
feedforward network. Tech. Report CS-93-15, University of Amsterdam,
November 1993.

[Watkins92] C.J.C.H. Watkins & P. Dayan. Q-Learning, Machine Learning, 8, (279-
292), 1992.

[Whitehead92] S.D. Whitehead. Reinforcement Learning for the Adaptive Control of Per-
ception and Action. PhD thesis, University of Rochester, February 1992.

Appendix A

Temporal Difference Learning

A.1 TD()A)-methods

Temporal difference (TD) methods [Sutton88] are a class of learning procedures specialized
for prediction problems. In prediction problems, an observation or state vector is used
to predict the final outcome with e.g. a neural network. So we can predict the outcome
of a game when we see a board position, and use this prediction as the evaluation of
the position. With such an evaluation function, we can perform tasks by comparing the
evaluations of the states which result from taking all possible actions in the current state.
So we want to use a neural network to model an evaluation function V' given by

V(z) = E(r|z)

with :
x; : the state or observation at time t.
E(r|z:) : the expected outcome or result r of the game when we are in state x;.

We would like to learn this model with a neural network which is based on minimizing
the error over a learning set. We can generate a learning set by playing a game with
our network. Weights are adjusted according to an error measure F;. We can define two
possible ways to define the error measure. We might use a supervised learning procedure
which defines the error as the difference between V' (z;) (the predicted outcome) and r
(the actual outcome)

1
Et = 5(7' — V(./L't))Z
The total error E of a played game is

M

E:ZE“’

t=1

74

A.1. TD(\)-METHODS 75

We minimize the total error by gradient descent with learning rate «

M aEt M Et 8V($t)
AW =) — =
; aaWt ; aav .Z't) 3Wt
We may write this as
M
AW =>"a(r — V(z))V,V(z) (A.1)
t=1

in which the gradient V,V(z;) is computed by the back-propagation procedure. This
supervised paradigm compares the evaluations of the state vectors with the actual out-
come of the experience, but does not use the differences between temporally successive
predictions. Thus, learning is not possible when the result of the game is unknown.

Unlike the previous method which compares V(z;) with r, there are TD methods
which are driven by the error or difference between temporally successive predictions
V(z411) — V(z¢). This makes learning possible when the result is (still) unknown. We can
construct a TD method which makes the same updates as equation A.1 by rewriting the
error r — V(x;) as

M:

k:t
Where V(zpr41) = r. Now by using A.2, we can rewrite A.1 as

M
AW = Za V(zry1) — V(zk)) Ve V(ze)
t=1 :t
M t
= Y a(V(ze1) = V(ze) > Vi V(zy)
t=1 k=1
We can convert this rule to an incremental update rule
¢
k=1

Equation A.3 is the supervised or TD(1) rule. The advantage of TD(1) compared to A.1 is
that the computations to perform back-propagation are spread out over time. However it
does not really use the information in successive predictions either. The advantage of the
TD-methods is that they can use the information contained in intermediate predictions
and do not rely too much on the actual outcome. When the difference V(z441) — V(x4) is
very large, this difference is in equation A.3 used to equally adjust the evaluation of states
T1,. . 2. TD(X) methods make greater alterations to more recent states by weighting the
recency exponentially with A\. The general TD()) algorithm has the following form

AW, = a(V(ze41) — V(xe)) DA TFVLV (21)

k=1

76 APPENDIX A. TEMPORAL DIFFERENCE LEARNING

with :

AW, : the adaptions of the weights of the network at time t.

V(z¢) : the network’s evaluation of state x;.

« : the learning rate.

0 < A < 1: the discount factor which is used to weight TD(0) errors exponentially by
recency.

The case A = 1 corresponds to the supervised pairing of each input pattern with the
final reward signal r (= V(zpr41)). The case A = 0 corresponds to an explicit pairing
of each input pattern z; with the next prediction V(z¢y1). In this case the difference
V(z41) — V(z¢) is used to direct the network through the weight space. We will call this
difference the TD(0) error.

Until now we have seen that temporal difference learning can be used after a sequence
of M actions which results in a final reinforcement. It can also be used for other classes of
problems. A class which generalizes the previous class is when actions a; from nonterminal
states z; are allowed to return reinforcement r(z:,a;). When we allow non-absorbing
goal states, we might want the evaluation V(x;) of a state to approximate the expected
discounted cumulative reward V; when we start in state x;

o0

Vi= E(Z 'YkT(xtJrka at+k)|$t)

k=0

Where « is the discount factor and determines how much the agent has to aim at im-
mediate and future rewards. For this class of problems we can write down the following
recursive equation [Sutton88]

V(xe) = (x4, a0) + YV (2431)

The difference between both sides is the TD(0) error : 7(z¢, a:) + vV (z441) — V(z). We
use this TD(0) error to construct the following incremental TD learning rule

AW, = a(r(ze, ar) + YV (2e41) — V(xe)) D ATFVLV (24)

k=1

Example : What is the effect of \ 7

Suppose we have taken two actions which results in a win, the starting position is z; and
white’s evaluations of the positions are :

For notational purposes we will define the final reinforcement r as V(z4) = 1.0.

A.2. MARKOV DECISION PROCESSES 7

A =1 gives :

AW, =a * (0.4-0.6) *
AWy = o * (0.8 - 0.4) *
AW =a * (1.0-0.8) *
This sums up to :

AW =« * ((1.0-0.6) * V,,V(z1) + (1.0- 0.4) * V,,V(22) + (1.0 - 0.8) * V,,V(z3))
which is a supervised pairing of each prediction with the actual outcome of the experience.

VoV (21
VwV(xl) + va(x2))
VuoV(z1) + VuV(zs) + V,,V(z3))

—~~
~—

w

A = 0 gives :

AW, = a * (0.4 -0.6) * V,V(z;)
AWy, = a * (0.8 - 0.4) * V,V(z2)
AW; = a * (1.0 - 0.8) * V,V(z3)

Which associates each observation vector with only the next time-step’s prediction.

A = 0.5 gives :

AW, = a * (0.4 -0.6) * V,V(z;)

AWy, = a * (0.8-0.4) * (0.5 * V,,V(21) + V,V(z3))

AW3 = a * (1.0-0.8) * (0.25 * V,,V(21) + 0.5 * V,,V(z3) + V,V(z3))
This sums up to :

AW =« * (0.05 * V,,V(z1) + 0.5 * V,V(z3) + 0.2 * V,,V(z3))

which lies in between the two extremes.

A.2 Markov Decision Processes

We want to learn a control policy which maximizes an agent’s performance level. The
control policy has to be able to differentiate between possible actions in a particular state
and to choose the action with the highest merit. Like [Whitehead92], we will use Markov
decision processes to define a mathematical framework with which we can describe the
task. The Markov property states that a description of the current state is sufficient to
choose between the possible actions so that the agent’s performance level is maximized.
The Markov property is violated when an action depends on actions which have been
performed earlier (e.g. when a box might contain a banana, because the agent has put a
banana in the box, but is not able to see this in the current state). For such tasks, re-
current networks have been proposed [Lin93], but in this work we concentrate on playing
games and the Markov property holds. We will also concentrate on deterministic worlds,
so an action in a particular state always results in the same next state (the transition
probability function of states and actions is a true function). The discussion can be ex-
tended to non-deterministic world by taking the probabilities of multiple action outcomes
into consideration.

78 APPENDIX A. TEMPORAL DIFFERENCE LEARNING

We will first define the Markov decision process :

x; : the state in which the agent is at time t.

a; - the action the agent makes at time t.

A(xy) @ the set of possible actions in state ;.

T(x¢,as) : the state z;y; which results from performing action a; in state ;.

r(z¢, as) : the reinforcement which is emitted when the agent makes action a; in state x;.
[I(x;) : the action the agent will select when it is in state z; and follows the control policy

I1.

In TD learning we learn an evaluation function of states (AHC-learning) or an evaluation
function of state-action pairs (Q-learning). The control policy can use this evaluation
function to choose an action in a particular state. To learn the evaluation function, sim-
ulations with the agent are performed, so that the agent can evaluate its own actions
and the states it was in. When the agent has repeatedly tried all state-action pairs, she
can learn which actions are expected to have the highest merit in each state. For trying
out all state-action pairs, the control policy is usually not strictly followed while learning.
Instead some kind of exploration strategy is used, in which the action which is expected
to have the highest merit has the largest probability of being chosen. This means that
a; = I(x;) is not always valid.

A.3 AHC-learning

AHC-learning is used to learn an evaluation function (V-function) of states. We want the
evaluation V(z;) of a state to approximate the discounted cumulative reward V; when we
start in state x;

Vi = B(2 r(@ees Dz |20) (A4)

Where « is the discount factor and determines how much the agent has to aim at im-
mediate and future rewards. For learning a game evaluation function, we set v to -1
which expresses the fact that the evaluation of a position for player 1 is the negative of
the evaluation of a succeeding position for player 2. For such classes of problems, the
reinforcement r(xyr, apr) or r which is returned when the last move is played, is the only
reinforcement we can use. When an optimal V-function has been learned and the control
policy II is followed throughout the future, the V-function must satisfy

Vize) = (@, (1)) + YV (2441) (A.5)

A.4. Q-LEARNING 79

When the V-function is not optimal, the difference between both sides in equation A.5
can be used to change the V-function. This difference or TD(0)-error is defined by

EY = [r(ze, a0) + YV (2e11)] — V()

Where we have defined V(zp41) = 0. We will use [Lin93] to define the TD(A)-error as

M—t

Et/\ = Z('Y)‘)kEngrt (A.6)

Now we define

This can be rewritten as

V'(zpn) = r(zar, anr)

V(1) = r(ze, a) +5[(1 = NV (241) + AV (2411)]

V'(x;) is the estimated evaluation for state ;. We can create the following set of examples:
{(z1,V'(21)), ..., (s, V'(zar))} and present these to the back-propagating module to
minimize the TD(\)-errors.

A.4 Q-learning

Q-learning learns an evaluation of state-action pairs. We want the Q-value Q(z¢, I1(x))
to approximate the discounted cumulative reward in equation A.4. When an optimal
Q-function has been learned, and the control policy II chooses the action which results in
the maximal Q-value, the Q-function must satisfy

Q(l"t, at) = r(xt, at) + ’YMCW{Q(%H, at+1)|at+1 € A($t+1)}
We can rewrite this as follows
Q(xt, at) = T(xt, at) + 7Q(xt+17 H($t+1)) (A-7)

When the Q-function is not optimal, the difference between both sides in equation A.7
can again be used to change the Q-function. The TD(0)-error is now defined by

E)? = [T(xta at) + ')’Q(xt—l—l, H($t+1))] - Q(Cﬂt, at)

80 APPENDIX A. TEMPORAL DIFFERENCE LEARNING

The TD(\)-error can be defined as in equation A.6. We define

Ql(iﬁM’ GM) = T(éUM, GM)

Q,(xt; at) - Q(xt; at) + EtA

Ql('/EMa O’M) = T('/EMa O’M)
Q' (w4, ar) = 7(w4y ar) + ¥[(1 = NQ(wer1, (w41)) + AQ (441, ary1)]
Q' (x4, ar) is the estimated evaluation for performing action a; in state z;. We can present

the set of examples {(z1, Q' (z1,a1)), ..., (zar, Q' (zar, anr))} to the back-propagating mod-
ule to minimize the TD(\)-errors.

Appendix B

Extended Back-propagation

Extended back-propagation [Sperduti92| is a learning rule which introduces a new pa-
rameter to speed up the learning process of normal back-propagation and to make the
network find learning rates for individual neurons itself. Neuron sensitivity is used in the
activation function Fj(z), e.g. a sigmoid, in the following way
1
a; = Fi(1;) = ————
() 1 + e—tbi

So the activation a; of a unit depends on the weighted sum over its input 7; multiplied with
its neuron sensitivity ;. When the sensitivity of a neuron is very low, its activation will
always vary around the same value so that the neuron is less important for the overall
network and it will adapt itself slower. Sperduti found the following learning rule for
adapting the neuron sensitivities by using gradient descent

With « as the learning rate for the neuron sensitivity and 6; the gradient which is com-
puted by back-propagation (see equations 3.3 and 3.4).

Proof :

The error function which is to be minimized is the mean squared error over the outputs
1 2
b= Z 5(dj — a5)
j

By using gradient descent we can change the neuron sensitivities. We can define the
neuron sensitivity update rule as

_ o 9d; —ay)
M= T

J

81

82 APPENDIX B. EXTENDED BACK-PROPAGATION

8(1]
Z aﬁl j (BQ)

1) For an output unit the learning rule follows from the steps:

From equation B.2 and because a; only depends on f3;

Oa;
AB; = ! ; B.3
i = aliidi— a) (8:3)
A simple derivation gives
da;
5 = i) (B.4)

Substituting equation B.4 in B.3 gives
Ay = i Fi (i) (d; — a;)

When we use the fact that back-propagation computes 6; = FJ(i;)(d; — a;) (see equation
3.3) we get the learning rule B.1.

2) For a hidden unit the learning rule follows from the steps:

First we use the back-propagation chain rule and change indices to define equation B.2 as

Aﬁk—aZF' i;)(d; Zw”@ﬁk

Because ay only depends on [
Baj

A (B.5)

ABy =) Fl(i;)(d; — a;)wi
Substituting B.4 in B.5 gives

Again we make use of the fact that back-propagation has computed 6, = FJ(ix) >; biwir
and this results again in the learning rule B.1.

The steepness parameters are adjusted after the weight changes. When the network
has been loading examples for a long time and is not able to learn them, the sensitiv-
ity of the output neurons will gradually decrease. Sperduti showed that a method to
prune hidden units away can be easily integrated in the architecture. Neurons with a
very low neuron sensitivity can be pruned away, because this hardly changes the overall
performance.

Appendix C

Perfect Performance against TTT

The maximal obtainable performance level against the knowledge base which plays tic-
tac-toe (see section 4.2) is about 0.614. In the following we will call this opponent TTT.
The maximal performance level against TTT can be computed in two steps by forward
dynamic programming:

C.1 The Agent Begins the Game

- When the agent begins, she must play in a corner to maximize the probability that TTT
will make a mistake.

- TTT plays a random move : If this move is not in the middle (see figure C.1), then the
agent can win. The chance that TTT will not play in the middle is 7/8. This means that
the expected payoft E(r|z;) = 7/8.

-if TTT plays in the middle then the agent must play in the corner of the same diagonal

X

Figure C.1: X wins when TTT plays at . = E(r|zr) = 7/8.

to maximize her winning probability (see figure C.2). X wins when TTT plays at . —
Probability = 1/3

83

84 APPENDIX C. PERFECT PERFORMANCE AGAINST TTT

— The expected payoff when the agent begins the game:
T/8%141/8*1/3%1=11/12

C.2 TTT Begins the Game

When TTT (O) begins the game, there are three possible ways :

- Possibility 1 (see figure C.3), TTT plays in a corner and the agent must play in the
opposite corner.

e When TTT plays at . he will lose the game.

e When TTT plays at a field with 1/5 in it, this means that the agent can play a
move after which she has an expected game-result of 1/5.

e When TTT plays on an empty field the result of the game is maximal a draw.

= equity = 2/7 + 2/7 *1/5 =12/35

- Possibility 2 (see figure C.4), TTT plays in the middle of a line, but not in the centre.
The agent plays in the corner aligned to white’s piece.
= equity = 2/7 + 2/7*1/5 =12/35

- Possibility 3 (see figure C.5), TTT plays in the centre.
= equity = 2/7* 1/5 =2/35

— expected payoff for the agent when TTT begins : 4/9 * 12/35 + 4/9 * 12/35 + 1/9
*2/35 =98/315

C.3 Total Equity

The total expected payoff for the agent = 1/2 * 11/12 + 1/2 * 98/315 = 1547/2520,
1547/2520 ~ 0.614

C.3. TOTAL EQUITY

X

Figure C.2: X wins when TTT plays at . E(r|z;) = 1/3.

1/5

1/5

X

Figure C.3: Possibility 1 : TTT plays in a corner, the agent plays in the opposite corner.

E(r|z;) = 12/35.

1/5

1/5

Figure C.4: Possibility 2 : TTT plays in the middle of a line, but not in the centre.
The agent must play in an aligned corner for maximizing the expected payoff. E(r|z;) =

12/35.

1/5

1/5

O

Figure C.5: Possibility 3 : TTT plays in the centre, the agent plays in a corner to maximize

the expected payoff. E(r|z;) = 2/35.

