
TD Learning ofGame Evaluation Functions withHierarchical Neural ArchitecturesMarco A. Wiering1Department of Computer SystemsFaculty of Mathematics and Computer ScienceUniversity of AmsterdamApril 7, 1995

1e-mail: wiering@fwi.uva.nl

i

AbstractThis Master's thesis describes the e�ciency of temporal di�erence (TD) learning and theadvantages of using modular neural network architectures for learning game evaluationfunctions. These modular architectures use a hierarchy of gating networks to divide theinput space in subspaces for which expert networks are trained. This divide-and-conquerprinciple might be advantageous when learning game evaluation functions which containdiscontinuities, and can also lead to more understandable solutions in which strategiescan be identi�ed and explored. We compare the following three modular architectures :the hierarchical mixtures of experts, the Meta-Pi network and the use of �xed symbolicrules.In order to generate learning samples, we combine reinforcement learning with thetemporal di�erence method. When training neural networks with these examples, it ispossible to learn to play any desired game. An extension of normal back-propagationhas been used, in which the sensitivities of neurons are adapted by a learning rule. Wediscuss how these neuron sensitivities can be used to learn discontinuous and smoothgame evaluation functions.Experiments with the games of tic-tac-toe and the endgame of backgammon have beenperformed to compare the hierarchical architectures with a single network and to validatethe e�ciency of TD learning. The results with tic-tac-toe show that modular architec-tures learn faster, because independent expert networks can be invoked for evaluating aparticular position without the need of invoking one large neural network every time. Fur-thermore, the use of high neuron sensitivities has been proven to be useful when learningdiscontinuous functions. The results with the endgame of backgammon show that TDlearning is a viable alternative for supervised learning when only a small learning set isavailable. For both games, the performance of the architectures is improved when moregames are being played. High performance levels can be obtained when a large amountof games are played and the input of the networks contains su�cient features.
keywords : Game Playing , Modular Neural Networks , Extended Back-propagation ,Temporal Di�erence Learning , Expert Systems , Multi-strategy Learning, Mixtures ofExperts , Meta-Pi network , Tic-tac-toe , Backgammon.

i

ii
AcknowledgementsInspired by an article of G. Tesauro who had showed how practical neural networks andtemporal di�erence learning can be when learning to play the game of backgammon, Istarted working on my master's thesis with the goal to study how powerful neural networksare when learning to play games.This study was performed at the University of Amsterdam in the Intelligent Au-tonomous System Group headed by Prof. F.C.A. Groen. The supervisor of the researchdr. ir. Ben Kr�ose taught me how real research has to be done, and directed me throughthe huge space of research questions which I had. I want to thank him in particular forall his helpful remarks and for not losing patience. In the beginning of the research, chaoshad made her entrance. I want to express my gratitude to Gerard Schram who taught methat a good researcher never knows anything and that this is the way to acquire knowl-edge. At the time of his depart from the UvA, the research goals became more clear tome.Furthermore, I am grateful to Patrick van der Smagt who not only knows a lot aboutneural networks, but also about using tools to be able to produce and show obtainedresults. Special acknowledgements are devoted to the other PhD students at the univer-sity: Anuj Dev and Joris van Dam for making the right remarks at the right time. Iam also indebted to Sander Bosman who performed some tasks for me in a few seconds,while it would have taken much more e�orts for me. Finally, I am really grateful to JanWortelboer. I have disturbed him many times to ask if it would be possible to get morecomputing power. I was happy that I never got no for an answer.At home the situation was made inspiring by my two �ends Ren�e and Ren�e who helpedme a lot when I was not able to think about something new. I hope that we will alwayscontinue having parties and talk about meta stories. These two freaks (because they arethe freaks and not me) taught me how to live in the real world which I tended to forgetonce in a while.

Contents
1 Introduction 12 Game Playing 32.1 Introduction : 32.2 Reinforcement Learning : 42.3 Backgammon : 52.4 Multi-strategy Learning : 73 Function Approximation with Multiple Networks 93.1 Introduction : 93.2 Multi-layer Feed-forward Networks : 103.2.1 Forward Propagation : 103.2.2 Back-propagating the Error : 123.2.3 The State Space of a Neural Network : : : : : : : : : : : : : : : : : 133.2.4 Representing Discontinuous Functions : : : : : : : : : : : : : : : : 143.3 Hierarchical Network Architectures : 153.3.1 Hierarchical Mixtures of Experts : : : : : : : : : : : : : : : : : : : 163.3.2 The Meta-Pi Network Architecture : : : : : : : : : : : : : : : : : : 213.3.3 A Selection Threshold for Faster Propagation : : : : : : : : : : : : 253.3.4 The Di�erences between the Two Architectures : : : : : : : : : : : 253.3.5 Symbolic Rules Architecture : 273.4 Experiment : A Discontinuous Function : : : : : : : : : : : : : : : : : : : 283.4.1 Experimental Design : 283.4.2 Experimental Results : 303.5 Discussion : 344 TD Learning with Multiple Networks 364.1 Learning to Play a Game : 364.1.1 AHC-learning of Game Evaluation Functions : : : : : : : : : : : : : 384.1.2 Q-learning of Game Evaluation Functions : : : : : : : : : : : : : : 404.2 Tic-Tac-Toe : 42iii

iv CONTENTS4.2.1 Problem De�nition : 424.2.2 Experimental Design : 434.2.3 Experimental Results : 444.2.4 Discussion : 534.3 The Endgame of Backgammon : 544.3.1 Problem De�nition : 544.3.2 Experimental Design : 554.3.3 Experimental Results : 584.3.4 Discussion : 655 Conclusion 675.1 Discussion : 675.2 Prospects and Future Work : 68A Temporal Di�erence Learning 74A.1 TD(�)-methods : 74A.2 Markov Decision Processes : 77A.3 AHC-learning : 78A.4 Q-learning : 79B Extended Back-propagation 81C Perfect Performance against TTT 83C.1 The Agent Begins the Game : 83C.2 TTT Begins the Game : 84C.3 Total Equity : 84

List of Figures2.1 The Game of Backgammon : 63.1 A Feed-forward Neural Network : 103.2 The Sigmoidal Activation Function : 123.3 Learning by Gradient Descent : 143.4 Modelling a Discontinuous Function : 153.5 A Hierarchy of Adaptive Experts : 173.6 Mixing Gaussian Density Functions : 223.7 The Target Discontinuous Function : 283.8 Approximations of the Discontinuous Function 1 : : : : : : : : : : : : : : : 323.9 Approximations of the Discontinuous Function 2 : : : : : : : : : : : : : : : 324.1 The TD(�) Algorithm for AHC-learning : : : : : : : : : : : : : : : : : : : 394.2 The TD(�) algorithm for Q-learning : 414.3 TTT : Monolithic vs. HME : 464.4 TTT : Monolithic vs. Meta-Pi : 474.5 TTT : Monolithic vs. Symbolic Rules : 494.6 TTT : Lookup Tables : 524.7 Endgame of Backgammon : Supervised Learning Curves : : : : : : : : : : 604.8 Endgame of Backgammon : TD Learning Curves : : : : : : : : : : : : : : 614.9 Supervised vs. TD Learning : 63C.1 Performance vs. TTT 1 : 83C.2 Performance vs. TTT 2 : 85C.3 Performance vs. TTT 3 : 85C.4 Performance vs. TTT 4 : 85C.5 Performance vs. TTT 5 : 85
v

List of Tables3.1 Di�erences between the Meta-Pi Architecture and the HME Architecture : 263.2 Results on the Discontinuous Function 1 : : : : : : : : : : : : : : : : : : : 313.3 Results on the Discontinuous Function 2 : : : : : : : : : : : : : : : : : : : 333.4 Learning Speeds for the HME and Symbolic Rules Architectures : : : : : : 333.5 Results with an Increasing Selection Threshold : : : : : : : : : : : : : : : : 343.6 Extended Back-propagation vs. Normal Back-propagation : : : : : : : : : 344.1 TTT 1 : Monolithic vs. HME : 454.2 A Comparison between the Monolithic and HME Architectures : : : : : : : 464.3 TTT 2 : Monolithic vs. Meta-Pi : 484.4 A Comparison between the Monolithic and Meta-Pi Architectures : : : : : 484.5 TTT 3 : Monolithic vs. Symbolic Rules : 484.6 A Comparison between the Monolithic and Symbolic Rules Architectures : 494.7 TTT 4 : AHC-learning vs. Q-learning : 504.8 A Comparison between AHC-learning and Q-learning : : : : : : : : : : : : 504.9 TTT 5 : Neural Networks vs. Lookup Tables : : : : : : : : : : : : : : : : : 524.10 TTT 6 : Results with Low Initial Neuron Sensitivities : : : : : : : : : : : : 534.11 Endgame of Backgammon : Results with Supervised Learning : : : : : : : 594.12 Endgame of Backgammon : Results with TD Learning : : : : : : : : : : : 594.13 Endgame of Backgammon : Results with High Neuron Sensitivity : : : : : 614.14 Endgame of Backgammon : Supervised vs. TD Learning : : : : : : : : : : 624.15 Endgame of Backgammon : A Tournament between Trained Architectures 64

vi

Chapter 1IntroductionIntelligent computer systems (expert systems) can be constructed for many di�erentapplications such as speech recognition, vision, robot control and game playing programs.The prevailing paradigm to construct expert systems was the use of knowledge engineeringto translate human knowledge in a logical model which the computer can use. Althoughunderstandable and usable expert systems have been constructed, the knowledge acqui-sition bottleneck 1 taught the computer scientists that it would cost many man-years tocreate useful expert systems for complex tasks.Nowadays machine learning techniques are used to trade o� human time for computertime. Learning means relating inputs with outputs by the use of many examples. Theuse of neural networks provides a way to approximate any Borel measurable function[Cybenko89]. However, when learning the required knowledge for a real world applicationwith a single neural network, the learning process takes a long time. Another problemwith training single networks is that they can easily get caught in a local minimum. Toimprove such non-modular expert systems is very di�cult, because the knowledge buildingblocks which are responsible for occasional mistakes can not be identi�ed. A method toovercome these problems is to use a hierarchy of small single networks, in which eachsingle network learns a simpler sub-function.Expert systems for game-playing require an evaluation function which returns theexpected payo� from a position given future optimal play of both sides. Some researchstudies learning game evaluation functions with neural networks [Tesauro92, Boyan92,Schraudol94]. Games provide domains where the evaluation function can di�er drasticallyfor similar positions (tic-tac-toe). When learning discontinuous functions, single neuralnetworks tend to generalize over the discontinuities which results in small regions wherethe local error is very high. For other games (backgammon, checkers, chess, go), the1The knowledge acquisition bottleneck is the problem of acquiring all necessary human expert knowl-edge. This has to be done by registering an expert's way of solving di�erent problems, which is a timeand money consuming process. 1

2 CHAPTER 1. INTRODUCTIONnumber of possible positions is very large and generalization can only be e�ective for thesame type of positions. Therefore strategies have to be used to make it possible to learndi�erent evaluation functions for positions which fall in di�erent classes. In this way itbecomes possible to accurately learn the game evaluation function, and to exploit theacquired knowledge optimally.In this thesis we are interested in the maximal obtainable performance level of a com-puter agent which learns a model of simple game evaluation functions when temporaldi�erence (TD) learning is combined with neural networks. Temporal di�erence learn-ing provides a way to learn on examples which are acquired by playing games with anarchitecture. By using TD learning, we do not have to construct learning samples our-selves; continuously training the architecture by self-play will improve the approximationof the precise game evaluation function.To solve the problems of having to represent discontinuities and storing large amount ofknowledge in one single neural network, we propose to use multiple local neural networksover subregions of the input space. My master's thesis describes a study on three divide-and-conquer paradigms : the use of symbolic rules to divide the input space in �xedsubspaces, and the hierarchical mixtures of experts [Jacobs91, Nowlan91, Jordan92,Jordan93] and the Meta-Pi network [Hampshire89] which use a hierarchy of gatingnetworks to learn to divide the input space in subspaces for which expert networks aretrained. These methodologies could be combined with temporal di�erence learning tolearn context speci�c game-strategies without a priori knowledge. The validation of themethods will consist of two phases :� The hierarchical neural network architectures will be compared with a simple mono-lithic network on their abilities to learn a simple function with one discontinuity.� The games of tic-tac-toe and the endgame of backgammon will be used to comparethe methods and to study the e�ciency of temporal di�erence learning.Game playing and some research to learn the game evaluation function of backgammonwill be described in Chapter 2. In Chapter 3 we will give an overview of the principlesof neural networks and modular network architectures. This is followed by a comparisonon learning a simple discontinuous function with the di�erent architectures. Then inChapter 4, temporal di�erence learning of game evaluation functions will be described,and the di�erent methods will be evaluated on the games of tic-tac-toe and the endgameof backgammon. In Chapter 5 we will conclude the research and describe the work whichhas to be done in the future.

Chapter 2Game Playing
2.1 IntroductionGames de�ne domains which are easy to represent and evaluate, while expert-level playmay require sophisticated abilities of planning, pattern recognition and memory [Boyan92].Computer game algorithms mostly use a position evaluator function which returns theexpected payo� for a given position. To decide on a move in a given situation means com-paring all possible positions resulting from the current admissible moves or comparingall positions which result from sequences of multiple moves. If only current legal movesare compared, the search tree consists of only one level with a branching factor b whichequals the number of possible moves. If the terminals in such a small tree return goodapproximations of the payo� of the positions, then this is the fastest possible method tochoose the best move in a position. If a look ahead strategy is used which builds a searchtree of M levels, then the number of positions which have to be compared is bM . Thiscompares very unfavourably with the �rst method, but we do not have to make such highdemands on the accuracy of the evaluation function. If the position evaluator functionfor a game is known accurately, then the game is said to be solved, and the game can beplayed by the fast �rst method.Some complex games like draughts, go and chess are played by conventional programswhich use symbolic rules to give a rough approximation of the evaluation function. Suchprograms use rigorous searching strategies where millions of positions must be evaluatedbefore a reasonable solution is found. This is due to many discontinuities (or exceptions)in the evaluation function which are caused by many di�erent combinations of contri-butions of pieces on the board. For such games we would have to represent all thosediscontinuities in our model of the evaluation function, which is very di�cult and there-fore rough approximations with symbolic rules are usually used. Of course this meansthat searching strategies have to be used which make heavy demands on the speed of thecomputer. When methods are found to construct more accurate models of the evaluation3

4 CHAPTER 2. GAME PLAYINGfunctions, the speed of the computer would be less of a problem for playing games atexpert level.One method to construct a precise evaluation function is the use of dynamic pro-gramming. Dynamic programming computes and stores evaluations for every possibleposition in lookup tables, which is very expensive. We will use neural networks to learnan accurate model of the evaluation function, so that we can use the fast �rst methodto play games. We will concentrate on two games: the game of tic-tac-toe and the gameof backgammon, although experiments with the game of backgammon only consider theendgame. The game of tic-tac-toe has an evaluation function which contains many discon-tinuities, and the number of di�erent positions is very low. To approximate its evaluationfunction means storing those discontinuities in our model, which might be very di�cult.Backgammon (and especially the endgame of backgammon) on the contrary has a rea-sonable smooth evaluation function, because the players throw dice to determine theirpossible next moves. Because of this probabilistic nature, the branching factor is about400. For this application it is therefore very important to have an accurate evaluationfunction. The game has a much larger state space than tic-tac-toe, and it also consistsof many conicting classes of positions. That is why human players use many strategiesto play backgammon at expert level. E.g. when a player is well behind in the race, shemust try to get more pieces hit and start a back-game, whereas in normal play she shouldprevent being hit.2.2 Reinforcement LearningThere are two ways to learn to approximate the correct evaluation function for all possiblepositions of a game. It could be done by supervised learning on evaluations of positionsgiven by a human expert. The problem is that the required amount of learning examplesgiven by a human expert will become much too large and the evaluations are not veryprecise.A better way is to use reinforcement learning in which examples are generated by thesystem itself. Reinforcement learning means playing games so that the current model ofthe evaluation function can be tested and re�ned. Reinforcement learning is attractive,because we only need to design the game-rules and a reinforcement learning module, whichtakes much less human e�ort than constructing a whole expert system to play the game.Samuel [Samuel59, Samuel67] was the �rst to construct a reinforcement learning system.He used a complex algorithm to select parameter adjustments based on the di�erencebetween the evaluations of successive positions occurring in a played game to learn thegame of checkers.Reinforcement learning is to construct a policy that maximizes future rewards andminimizes future punishments [Lin93]. We have to construct a learning procedure whiche�ectively handles the temporal credit assignment problem. The temporal credit assign-

2.3. BACKGAMMON 5ment problem is to assign credit or blame to the experienced situations and actions, whichmakes it possible to create learning examples.The most simple paradigm to create learning examples for neural networks is to convertthe positions of a played game to input vectors and to use the �nal result of the gameas the desired output for all constructed examples. This supervised method results in aloss of precision, because every move would be held equally responsible for the obtainedresult, which is almost never true. Especially when we want to learn to play games withstochastic elements, the learning process might become very slow.Temporal di�erence (TD) learning [Sutton88, Tesauro92, Dayan92, Dayan94] providesan e�cient method to receive learning examples with a higher accuracy, because theevaluation of a given position is adjusted by using the di�erences between its evaluationand the evaluations of successive positions. In this way the prediction of the result ofthe game in a particular position is related to the predictions of the following positions.Sutton de�ned a whole class of TD algorithms, TD(�), which look at predictions ofpositions which are further ahead in the game, weighted exponentially less according totheir distance by the parameter �. Recently Dayan has proved that the TD algorithmsconverge with probability 1 when a linear representation of the input is used (e.g. lookuptables) [Dayan94]. A description of TD learning and an example of its use is given inAppendix A.There are two advantages to learn the game of backgammon by the TD methods overthe game of tic-tac-toe. The �rst is that a game of backgammon always results in maximalreinforcement (win or lose), the second is the use of dice to experience new positions 1.To learn tic-tac-toe by the TD method could more easily end up in a local solution inwhich many positions have never been seen and we might need some exploration-strategyto �nd the optimal policy. However the game of backgammon is much more complex thanthe game of tic-tac-toe and together they can be used to evaluate the di�erent learningparadigms which use multiple expert networks.2.3 BackgammonBackgammon is played by two persons upon a board designed with 24 points. Each playerhas 15 men and throws dice to move his men along the points until they reach their hometables from which they are moved from the board (�gure 2.1). On the way, single standingmen can get hit and they have to reenter in the opponents home table. The player �rstbearing all his men o� is declared the winner. Backgammon depends somewhat on luck,but the player who makes the best moves will win over the long haul. Over the last �fteen1The game of backgammon has stochastic elements, because dice are thrown to determine the possiblemoves in a position. This means that possible transitions to other positions depend on a probabilitydistribution determined by the possible throws of dice.

6 CHAPTER 2. GAME PLAYINGyears human experts have increased their skill by using mathematical rules and tables ofodds. This makes computing more important for playing the game well, which is of coursean advantage for the computer.
Black

White

Home-table

Home-table

Figure 2.1: Backgammon is a two player zero-sum game in which the �rst player to bearo� all pieces has won the game. During the game both players try to block their opponentby making points on �elds so that the opponent can not play on or hit pieces from these�elds. Every time two dice are thrown to determine the possible moves. When equal diceare thrown, the player can play four times the number of eyes on a dice. In the examplewhite plays a blocking move so that black's two pieces have problems going to black'shome-table.BKG [Berliner77] was the �rst backgammon program. It was constructed during ahuman knowledge engineering period of four years after which all important features of thegame were used in the reasoning process of the expert system. Many years later Tesauro[Tesauro89] presented his Neurogammon program which was trained on a massive dataset of expert preferences of best moves in backgammon positions, but he realized that itwould be a better idea to enable a network to see millions of positions and learn fromthe outcome of its own play. He adapted the TD method to implement TD-Gammon[Tesauro92] and trained it �rst on the simplest case : disengaged bear-o� (endgame)and next he trained the network to learn the whole game. Tesauro created a simpleinput encoding scheme which only contained a raw board description, but his monolithicTD-trained network eventually surpassed the performance level of BKG and the networktrained on expert preferences. This was because the TD-network did not imitate a human

2.4. MULTI-STRATEGY LEARNING 7expert, so that it did not get itself into situations that it did not know how to handle.His conclusions were :� Empirically the TD algorithm always converges to at least a local minimum.� The quality of solution found by the network is usually fairly good and generallyimproves with increasing numbers of hidden units.� Partitioning the game into a number of specialist networks may make it easier tolearn the appropriate evaluation functions.� An improved representation scheme might give substantially better results.Tesauro's work was extended by [Boyan92] who used a priori knowledge to decomposethe input space into subspaces for which independent expert networks were trained. Boyanused a Meta-Pi network [Hampshire89] to combine the evaluations of the trained expertsso that a smoother evaluation function would be obtained. Results showed that the useof multiple experts outperformed a single network, although his task-decomposition wasvery simple and did not use human strategies. A more e�cient decomposition would costmuch more human engineering time, so we would like to have a methodology which canintegrate learning the decomposition and the context-speci�c evaluation functions.2.4 Multi-strategy LearningNeural networks trained by back-propagation provide powerful inductive learning tech-niques, but when learning complex game evaluation functions with a single network, theglobal parameters in the network tend to smooth some important details. When wewould use methods to divide the input space into less complex subspaces, independentlocal networks could learn the simpler evaluation functions much more accurately. Thismulti-strategy learning might be very useful to learn games where evaluations of simi-lar positions may di�er drastically (tic-tac-toe) or where strategies must be used to dividea complex evaluation function into simpler evaluation functions for a smaller input space(backgammon).To make use of multi-strategy learning, we need to have some meta module whichchooses specialists to evaluate a given position. The more subspaces we would create, thesmaller the specialists would have to be and performing will become much faster (providedthat each time only a few specialists are selected and the meta module performs fast). Thisis in particular important when we use searching strategies to improve one-ply evaluations.On the other hand, when there are too many specialists, they will not see many examplesand generalization will not take place so that the learning process might become sloweror end up in worse local minima.

8 CHAPTER 2. GAME PLAYINGAnother choice we have to make when we want to use multiple experts is betweencompeting or collaborating experts. Selecting one expert (competing experts) to evaluatean example is the fastest method, but then the evaluation function will not be smooth. Ifwe allow data to lie simultaneously in multiple regions (collaborating experts), then theoverall function will be much smoother, but because at all times multiple experts have tobe invoked this will take more time.We study three di�erent methods to divide the input space and compare the resultswith the performance of a single network. The �rst method uses a a priori knowledgeof the game-domain to divide the input space by �xed symbolic rules. This method isa fast way to select an expert network, but the linear regions cannot adapt themselveswhich results in a poor division when a priori knowledge is inaccurate. The two otherparadigms make use of meta-modules which can adapt themselves by using given outputsof the chosen specialists. They use feed-forward neural networks and back-propagationto learn the division, which makes it possible to learn game-strategies without a prioriknowledge.

Chapter 3Function Approximation withMultiple Networks
3.1 IntroductionNeural networks can approximate any Borel measurable function until a speci�ed levelof precision [Cybenko89]. However, the problem is to �nd good parameters for the net-works, which has to be done by learning on examples. Published successes in connectionistlearning have been empirical results for very small networks, typically much less than 100nodes. To fully exploit the expressive power of networks on complex real world tasks, theyneed to get larger and the amount of time to load the training data grows prohibitively[Judd90]. Nowadays, some researchers are focussing on modular architectures which con-sist of some small specialistic or expert networks which co-operate to learn the desiredfunction [Jordan92, Nowlan91, Hampshire89, Fox91, Hashem93]. For many tasks, thisresults in more understandable systems which are easier to train, because each expertnetwork learns a speci�c sub-function and experts can be analyzed and re�ned indepen-dently. Especially for discontinuous functions, the use of such a modular architecturecan be advantageous, because otherwise the imbedded generalization of a neural networkmight smooth important details of the desired function.Another way to make learning discontinuous functions easier is studied in which ac-tivation functions are made steeper, so that hidden units have less problems when ap-proximating a discontinuity. In the experiments, activation functions are made steeperby introducing neuron sensitivity. When the neuron sensitivity is made very large, theslope of the activation function is very steep.In this Chapter we will formally describe multi-layer feed-forward networks in section3.2, and in section 3.3 three modular architectures which consist of multiple feed-forwardnetworks will be described. In section 3.4 comparisons between using a single networkand modular architectures are made by performing simulations on learning a simple dis-9

10 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKScontinuous function.3.2 Multi-layer Feed-forward NetworksNeural networks consist of many very simple processing units which communicate by send-ing numeric signals to each other over a large number of weighted connections [Krose92].The knowledge is stored in the connections and processing units, which are adapted bya learning rule to minimize the error of the output units on the training data. A feed-forward network has a layered structure. Each layer consists of units which receive theirinput from units from a layer directly below and send their output to units in a layerdirectly above the unit (�gure 3.1). We consider feed-forward networks with full connec-tions between successive layers which minimizes human engineering time, however someresearchers [Nadi91, Tresp93] are constructing constrained networks to bias and speed upthe learning process. These specialized network topologies will almost always outperformthe simple fully connected networks and are more easily to understand. This approach canbe seen as an intermediate solution between knowledge engineering and machine learning,but can only be used for learning understandable tasks. One hidden layer with enough

 Input Layer

Hidden Layer

 Output Layer

Figure 3.1: a fully connected two-layer feed-forward network, the input layer does notcontain processing units and is not counted as a 'processing' layer.units and non-linear activation functions is su�cient to approximate any Borel measur-able function [Cybenko89] so all constructed networks in this paper will have at most onehidden layer.3.2.1 Forward PropagationThe �rst step in using a neural network is to encode the problem in an input to outputvector mapping and to choose the number of hidden units. When we have constructed

3.2. MULTI-LAYER FEED-FORWARD NETWORKS 11the proper network, we can assign the input vector ~a of an example to the input layerand propagate these inputs to a higher level by computing activations of the units in thehidden layer. The input ii of a hidden unit is computed by taking the weighted sum overthe input ii =Xj wijaj + biWith :wij : the strength of the connection between the jth input unit and the ith hidden unit.bi : the bias of the ith hidden unit. It can be considered as the strength of a connectionfrom a unit with constant activation 1.The activation ai of a unit in the hidden layer is computed by using a non-linearactivation function Fi ai = Fi(ii)In this paper the sigmoidal function will be used for the hidden units. The sigmoidalactivation function is called a basis function and in this research it is given byFi(x) = 1:011 + e��ix�i is the neuron sensitivity of the ith hidden unit to the input and can be chosen very largeto make the activation function of the hidden units very steep (see �gure 3.2). In thismanner hidden units only change their incoming weights on a speci�c part of the input,for other inputs weight changes will be zero. When we make the activation functions verysteep, the basis functions are made local.[Sperduti92] has found a learning rule which learns neuron sensitivities (see AppendixB), so that the learning process becomes faster and units have di�erent learning rates.This learning rule will be evaluated in section 3.4 and in Chapter 4 by its ability to adjustthe neuron sensitivities for learning game evaluation functions.When all activations of the units in the hidden layer are known, we can compute theactivations si of the output unitssi = Fi(ii) = Fi(Xj wijaj + bi) (3:1)Fi can be a sigmoid, but in this research a linear activation function will be used. ~s is theoutput of the network on a particular input, and wij is the weight from the jth hiddenunit to the ith output unit. When the desired output for an example is known, we canadapt all weights so that the next time the error on this example will be smaller. For thiswe can use the back-propagation [Rumelhart86] algorithm.

12 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS
 Sensitivity 5.0

 Sensitivity 0.3

 0.00

 0.10

 0.20

 0.30

 0.40

 0.50

 0.60

 0.70

 0.80

 0.90

 1.00F(X)

X

 -5.00 0.00 5.00Figure 3.2: The sigmoidal activation function with high and low neuron sensitivities.3.2.2 Back-propagating the ErrorThe network designer has to choose an error function, usually the error measure E isde�ned as the quadratic error for an example with target output vector ~d at the outputunits E = 12Xi (di � si)2By using gradient descent we can change the weights including the bias. First we canwrite @E@wij = @E@ii @ii@wijAnd the weights update rule with learning rate controls a gradient descent on the errorsurface. It is given by �wij = � @E@wij = �iaj (3:2)where in the case of an output unit �i can be computed by�i = �@E@ii = (di � si)F 0i (ii) (3:3)and in the case of a hidden unit �i can be computed by the back-propagation chain rule�i = F 0i (ii)Xh �hwhi (3:4)

3.2. MULTI-LAYER FEED-FORWARD NETWORKS 13Sometimes a momentum term is used to speed up the learning process 1. The momentumterm uses the last weights alteration to direct the new update step. The weights updaterule with momentum � at time t is�wtij = �iaj + ��wt�1ij (3:5)3.2.3 The State Space of a Neural NetworkThe state space is de�ned by all possible states of a prede�ned �xed architecture. Learningcan be considered as a search in this state space with the aim to �nd the state w whichminimizes the error function E(w) given byE(w) = ZX jgw(x)� f(x)j2dxwith :X : the input space or all possible inputs.gw : <i x W 7! <o. The function approximation for a given architecture when it is instate w.f : <i 7! <o. The desired function.Usually the error E(w) is computed over a small subset of the possible inputs, which iscalled the test set. The best approximation w� depends on the chosen architecture whichde�nes all possible states of the network. When the state space becomes much larger, ittakes more time to �nd the best state. This has consequences for learning : we have tohave an architecture which contains a 'good' solution, but we do not want to have toomany superuous states. Some researchers use pruning [Esposito93], and others make itpossible for the architecture to grow [Scha�er92, Gruau92, Simon92]. These methods canbe used to �nd an architecture which contains at least one 'good' state, but a minimumof superuous states.When we want to learn a complex task, we can expect that the input space for thistask is very large and we must use a representation with a large expressive power. Theexpressive power or VC dimension of a neural network depends mostly on the number ofweights [Anthony91], and when we have enough examples and hidden units in the networkwe are able to learn most functions until a speci�ed level of precision [Vysniausk93]. Thismeans that the architecture contains one or more 'good' states.When we want to analyze a neural network, we must understand its state space. Inneural network literature, it is usual to talk about weight spaces instead of state spaces,because the weights are the parameters which are adjusted. The dimension of the weight1The use of a momentum term is usually very e�ective when o�-line or batch learning is used. Foron-line learning, the use of a momentum term is much less necessary.

14 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKSspace depends on the number of weights and because weights are continuous parameters,the weight space is usually very large. Finding the best weight-setting has to be done bysearching in all directions in this space.

State : W

R
R
O
R

E

Figure 3.3: Back-propagation learning is a gradient descent method : in a given iterationthe search direction is given by the negative gradient of the error, the step along thisdirection is given by the learning rate. The problem is to �nd the global minimum(indicated by the cross) in a space which might contain many attractors.Back-propagation follows computed gradients to minimize the error-function E(w)(�gure 3.3). When we use o�-line back-propagation, we try to minimize the sum of theerror over all learning examples and we can easily be trapped in a local minimum, becausewe mostly follow the same direction. When we are trapped, this means that there willnever be a transition to a state outside of the current local attractor. With stochastic oron-line back-propagation, the weights of a network are immediately changed after eachlearning example. This results in faster learning and less problems with local minima,but it can still happen that the network gets trapped in a local minimum from which itis not probable that the network will get out.When we are often trapped in local minima we should use other minimization pro-cedures e.g. simulated annealing [Aarts89], but these are often signi�cantly slower thanconventional back-propagation.3.2.4 Representing Discontinuous FunctionsWhen learning functions which might contain many discontinuities, high accuracy canonly be obtained when we use an architecture which can represent these discontinuities.

3.3. HIERARCHICAL NETWORK ARCHITECTURES 15Single networks with global nondecreasing activation functions (e.g. sigmoids) use super-positions of functions which all have a particular value and derivative at each discontinuity,and when some values are slowly varying around such critical points, we can expect thefunction approximation of the network to be too smooth when fast jumps are required.Of course this means that we have to use many hidden units from which many have tobe located around the discontinuities to approximate them with steep slopes. The restof the hidden units have to be used to represent the smooth details and to wipe out thee�ects of the hidden units which are representing the discontinuities.A technique to circumvent the problem of representing discontinuities is to use multiplelocal models which perform in regions which are bounded by the discontinuities (�gure3.4). A priori knowledge of where the discontinuities are is often not at hand, so we wouldlike to use an algorithm which learns to place neural networks in each subdivision of theinput space which does not contain any discontinuities.

X

Y

DiscontinuityModel 1 Model 2

Figure 3.4: Representing a discontinuous function by using two local models. In this waythe problem of representing the discontinuity is circumvented.3.3 Hierarchical Network ArchitecturesWe have shown a possible problem when learning discontinuous functions with a singlenetwork : the imbedded generalization will smooth important details of the desired func-tion. Using multiple networks might overcome this problem, but we must �nd ways tointegrate all networks in a learning architecture and decompose the function into smoothsub-functions.

16 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKSAlthough there are many ways to integrate di�erent learning modules in an architec-ture, we will focus here on modular architectures which consist of a number of expertfeed-forward networks, where each expert learns a speci�c part of the desired functionand a number of gating feed-forward networks which learn to divide the input space intoa number of subregions corresponding to the number of experts. The gating networksuse an output for each expert or cluster of experts. This output is used to determine theresponsibility of the expert or cluster. By monitoring the competition between the expertsor clusters, learning rules are de�ned for the gating networks so that these responsibilitiesover the inputs are adapted.These architectures can use arbitrary hierarchies (�gure 3.5) in which each propagatenode uses the output vectors of a gating network to propagate the output vectors of theexperts to a higher level. The highest-level propagate node will give the �nal output ofthe architecture.The architectures which will be described in this paper can learn to map an input vec-tor of any dimension onto an output vector of dimension one, but a generalization to largeroutput vectors is straightforward. All gating and expert networks in the architecture re-ceive the same input, although this is not a necessity. We will proceed by summarizingsome of the work done in this �eld, starting with the hierarchical mixtures of experts(HME) methodology [Nowlan91, Jacobs91, Jordan92, Jordan93] in section 3.3.1. This de-scription is followed by the second methodology by Hampshire and Waibel [Hampshire89]in section 3.3.2, which is based upon the Meta-Pi network. The use of a selection thresh-old to make the propagation of the architectures faster is described in section 3.3.3. Thedi�erences between the two architectures will be depicted in section 3.3.4. A third ar-chitecture which uses knowledge bases containing �xed symbolic rules as gating networkswill be described in section 3.3.4.3.3.1 Hierarchical Mixtures of Experts[Jacobs91, Jordan92, Nowlan91] developed a modular gating architecture which can learnto divide the input space in subspaces. Their architecture consists of a number of expertfeed-forward networks which receive the same input patterns and compete with each otherto produce the desired output vectors. The outputs of the gating networks are used bythe propagate nodes to propagate the outputs of the experts to the top-level of the tree.Gating NetworksIn the following a hierarchy which consists of two hierarchical levels (Figure 3.5) will beconsidered, but one can transform the given learning rules to arbitrary hierarchies.The system works as follows. The gating networks are linear neural networks andare used to blend the outputs of the experts. First, the outputs si and sij of the gating

3.3. HIERARCHICAL NETWORK ARCHITECTURES 17

INPUT X

Gating

Network

Expert Expert

NetworkNetwork

Gating

Network

Gating

Network

Expert

Network

Expert

Network

OUTPUT Y

21

21

y 22y

22

1

g

g
propagate

node

propagate

node

propagate

node

g

2g

2y1y

11g

12g

12y 11y

Figure 3.5: Two hierarchical levels of adaptive experts. All networks receive the sameinput.

18 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKSnetworks are normalized to give gate values gi and gij.gi = esiPk esk (3:6)and gij = esijPk esik (3:7)When the gates are almost equal, a partitioning has not been made for this input vector.When we start training the gating networks, we can make all weights equal which expressesthe fact that we do not know how to partition the input space in advance. When thegates begin to diversify, so are the experts and the part of the input space which is sharedabout equally by multiple experts is becoming smaller.Propagate NodesThe propagate nodes use the gates and the outputs of the experts and clusters to propagatethe output vectors to higher levels. Di�erent strategies for the propagate nodes make threedi�erent ways of using the hierarchical mixtures of experts methodology.� Mixing the outputsThe �rst way is to combine the outputs of all experts, for most functions this makessense, because then we use more than one random source. This can be consideredas the soft approach and will result in a smooth overall function. The output of theith propagate node or cluster is given byyi =Xj gijyijwhere yij is the output of the jth expert in the ith cluster. The output of thearchitecture is given by y =Xi giyiIn Chapter 4 this strategy will be used to learn evaluation functions for positions ina game with the HME architecture.� Winner takes allThe second way is to start at the top-level gating network and to use the outputvector of the cluster with the maximal giy = yk with k = argmaxifgig

3.3. HIERARCHICAL NETWORK ARCHITECTURES 19When the highest level propagate node has chosen a cluster, the output of thiscluster is the same as the output of the expert with the largest gkj valueyk = ykl with l = argmaxjfgkjgThis winner takes all approach makes sense for learning discontinuous functions,because then we will never use output vectors of experts which are trained at thewrong side of a discontinuity.� Stochastic choiceThe third way is to switch to a stochastic model in which the gate values give thea priori probabilities of selecting the ith cluster and (i; j)th expert to produce theoutput vector P (y = yi) = giand P (yi = yij) = gijThis is the original way of interpreting (but not using) the methodology [Nowlan91].The propagate node acts like a multiple input, single output stochastic switch. Thisapproach makes sense for learning games, because we must avoid making the samerepetition of moves and this provides us a way to explore novel states. However, ifwe have provided an exploration rule, we might better use the mixing the outputsstrategy, because otherwise one expert could easily dominate over another. Thismeans that we could end up with 'dead' experts, and many parameters in thearchitecture will never be used 2. In this research we will not use the stochasticchoice method.HME as a Probabilistic ModelFor understanding the learning algorithm, we must �rst give the hierarchy a probabilisticinterpretation. For this the propagate nodes act like the single stochastic switches asdescribed above. The gate values gi and gij determine the a priori probabilities P (yij~x)and P (yijj~x) that the �rst and second level propagate nodes decide to select the output yiof the ith cluster and the output yij of the (i; j)th expert. They are a priori probabilities,because they are obtained without using the target output d. The probability that thedesired output d is generated when the input vector ~x is given isP (dj~x; �) =Xi P (yij~x)Xj P (yijj~x)Pij(dj~x; yij(�ij; x))2When learning to play games, the same argument is also applicable when we would use the winnertakes all approach.

20 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKSWhere � refers to all parameters in the architecture and �ij refers to the parameters inthe (i; j)th expert network. The formula corresponds to a form of Bayes' rule and in ourcase it can be rewritten asP (dj~x; �) = Xi giXj gijPij(dj~x; �ij)The second sum represents the probability that the ith cluster will produce the desiredoutput when given the input vector ~x. Pij(dj~x; �ij) represent the probability that the(i; j)th expert produces the desired output when presented with input ~x. Pij is the prob-ability density function for the (i; j)th expert. When we are using a Gaussian densityfunction for modeling a normal distribution, this results inP (dj~x; �) = Xi giXj gije� 12 (d�yij)2The posterior probability hi is a better estimate for the a priori probability gi, becausethe errors of the experts are used. It is computed by using Bayes' rulehi = giPj gije� 12 (d�yij)2Pi giPj gije� 12 (d�yij)2We can also de�ne the posterior probability that an expert has to be selected in eachcluster by hij = gije� 12 (d�yij)2Pj gije� 12 (d�yij)2Gradient Ascent on a Log Likelihood FunctionWe will treat P (djx; �) as a likelihood function in the unknown parameters �. A learn-ing algorithm is now developed by using gradient ascent to maximize the log likelihoodfunction given by L(�; x) = lnXi giXj gije� 12 (d�yij)2The expert networks have to learn the examples weighted by their joint posterior proba-bility hihij. We use the posterior probabilities to weight the errors of the experts so thatthe most responsible expert will learn to specialize on examples it already approximatesbetter than the other experts. The partial derivative of the log likelihood with respect tothe output of the (i; j)th expert network is@L(�; x)@yij = hihij(d� yij) (3:8)

3.3. HIERARCHICAL NETWORK ARCHITECTURES 21This gradient can be �lled in for �i in equation 3.2, and back-propagation will �t expertsin regions where hihij is high. Finally, the partial derivatives of the log likelihood functionwith respect to the output units of the gating networks are@L(�; x)@si = hi � gi (3:9)and @L(�; x)@sij = hi(hij � gij) (3:10)The two gradients 3.9 and 3.10 can be �lled in for �i in equation 3.2 and the weightsupdate rule will shift experts to regions where they outperform other experts.DiscussionThe competition between the experts is controlled by the gating feed-forward networkswhich use a mixture of Gaussian distributions to model the performance of the expertson the learning examples. Learning is achieved by gradient ascent in the log likelihood ofgenerating the learning examples. This means that when given an input-output pattern,the gating networks learn which expert is to be chosen for maximizing the probability thatthe desired output will be given. If a smooth approach is used (the mixing the outputsstrategy of the propagate nodes), then examples fall in multiple regions (�gure 3.6), andfor every example all experts have to learn to reduce their error in proportion to theirjoint posterior probability.The HME architecture is especially suited when there is an obvious division of theinput space in subspaces, and for such domains faster learning is usually achieved. Whena good division has been learned by the gating networks (e.g. dividing the function at eachdiscontinuity), the expert networks will have less problems with learning the sub-functionsthan a single network would have when it tries to learn the whole function including alldiscontinuities.3.3.2 The Meta-Pi Network ArchitectureThe mixture of experts methodology uses soft adaption and competition between theexperts, so that all experts can be used to learn a part of the desired function. The Meta-Pi network architecture as presented by [Hampshire89] has the same structure as given in�gure 3.5, but instead of competing networks they use co-operating networks. In contrastto the previous section where experts are made more responsible in regions where theyhave a smaller error than the other experts, the Meta-Pi gating network learns to makeexperts more responsible in regions where they can be used to minimize the error of thearchitecture as a whole. For a more formal description we will again refer to the two-levelhierarchy shown in �gure 3.5.

22 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS
B

A

1 2

C

Figure 3.6: Mixing gaussians to decompose the input space into regions where experts1 and 2 are to be located. The expert which is closest to an example has the largestresponsibility for generating the output of the architecture. When presented with exampleA, expert 1 has the largest a priori probability to generate the desired output and willbe used more than expert 2. The two experts will compete on the rights to generatethe output for example B. The gating network will shift the expert which has the largestposterior probability to generate the desired output for example B towards the inputvector of B. This posterior probability depends on the error both experts make whenpresented with the learning example B.Gating NetworksThe Meta-Pi gating network uses non-linear activation functions for the output unitswhich are strict positive e.g. RBFs [Hakala94], or sigmoids can be used. The gates of thetop-level gating network are given bygi = siPj sj ; si > 0 (3:11)where the activation of each output unit si is computed by equation 3.1. Gates with otheridenti�ers can be computed by this equation for the other gating networks.Propagate NodesThe propagate nodes have to use the experts in a co-operative way. So mixing the outputsis the only strategy, for this weighted sum is minimized by the learning procedure. Theoutput of the architecture is y =Xi yigi

3.3. HIERARCHICAL NETWORK ARCHITECTURES 23Where yi are the outputs of the propagate nodes in the second level of the hierarchy.They are computed by yi = Xj yijgijyij is the output of the (i; j)th expert network.Gradient Descent on a Squared Error Cost-functionUntil now we can see many similarities with the mixtures of experts method, but theMeta-Pi network uses a squared error cost-function which is to be minimized by gradientdescent instead of a likelihood function which is to maximized by gradient ascent. Theerror of the whole architecture on a given example is given byE = 12(d� y)2= 12(d�Xi giXj yijgij)2This error depends on the parameters of the gating networks and the expert networks.The partial derivative of the error with respect to the output of the (i; j)th expert networkis @E@yij = @E@y @y@yi @yi@yij= �(d� y)gigij (3.12)We can use the gradient in equation 3.12 and formula 3.3 to compute �i. We see that thereare di�erences compared to the mixtures of experts method. The experts are adjustedto reduce the error (d � y)2 between the desired output and the output of the wholearchitecture. This could increase the error (d � yij)2 of an individual expert on thegiven example! The second di�erence is that an expert is adjusted in proportion toits responsibility gigij in the architecture for the given input, instead of to the moremeaningful posterior probability that an expert has produced the desired output. Becausethis error-term does not reect how good one expert approximates the target value, itis possible that bad �tting experts are adjusted the most. However this disadvantageis overcome after a while, when the gating networks have learned to assign the correctresponsibilities to the experts when given an input vector.The partial error derivative with respect to the ith output unit of the top-level gatingnetwork is given by @E@si = @E@y @y@si= �(d� y)(yi � y)Pj sj (3.13)

24 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKSand the partial derivative with respect to the jth output unit of the ith second level gatingnetwork is @E@sij = @E@y @y@yi @yi@sij= �(d� y)gi(yij � yi)Pk sik (3.14)These gradients reect how well an expert or cluster approximates the target value withrespect to the approximation given by the architecture. When the partial derivative isnegative, the expert or cluster can be used to minimize the error of the architectureas a whole and should be made more responsible so that the architecture will betterapproximate the target value. We will use equations 3.13 and 3.14 to compute �i byequation 3.3 and the weight update rule 3.2 will move the experts to the regions wherethey can minimize the error of the architecture.DiscussionHampshire and Waibel proposed to use the Meta-Pi network to learn to combine multipleexperts which have already been trained in subspaces of the input space. When thedivision of the input space is known and experts can be trained independently, the useof the Meta-Pi feed-forward network improves generalization abilities. This was shownon a speech recognition task where experts were trained on data from di�erent speakers[Hampshire89] and on learning to play backgammon with multiple experts [Boyan92].However, the Meta-Pi network can also be used when the experts are initialized randomlywhich makes the method more powerful, because we do not have to know an a priori inputspace division.Propagate nodes in a Meta-Pi architecture use the gates of the gating networks topropagate a weighted sum of the output vectors of the experts or cluster of experts toabove. Learning rules are de�ned so that experts or clusters which can minimize the errorof the weighted sum on an example are made more responsible in the future. One problemwith this approach is that all experts have to learn to minimize a part of the error of thewhole architecture instead of their own error and this results in interference betweenexperts. When one expert changes its weights, the error function E(w) of the wholearchitecture changes its evaluation of the current state of the architecture. This resultsin a changed evaluation of the state of each individual expert. This is why convergenceuntil a stable weight setting can take a long time.One method to overcome this problem is to use propagate nodes which use someselection device so that an expert is only used when it is important enough. When weincrease this selection threshold, we end up with using one expert for each example andinterference e�ects are gone, because the error function of the whole architecture and the

3.3. HIERARCHICAL NETWORK ARCHITECTURES 25chosen expert become the same. This selection threshold can be seen as a method tomake a more localized representation.3.3.3 A Selection Threshold for Faster PropagationTo speed up the propagation of an architecture, we introduce a selection device whichis used by the propagate nodes to select experts. This selection device uses a selectionthreshold to determine if the responsibility or gate of an expert is high enough, so thatonly important experts are used in the weighted sum. If an expert's responsibility isnot larger than the selection threshold, the expert is not invoked. This can save a lotof time, because if the selection threshold of a propagate node is very high, e.g. .3 foran architecture which uses 2 experts, then many times only 1 expert has to be invoked.Furthermore, when only one expert is invoked, the gating network and the other expertnetwork do not have to be trained.Another advantage of using a selection threshold, is that we have found a method toattack the problem of interference between experts for the Meta-Pi network architecture.When the selection threshold is high enough we will only select one expert and it canlearn to minimize its own error.For both architectures, the selection threshold can be used to make a more localizedrepresentation. When the selection threshold is very high, the performance level of anexpert is not degraded by learning too many examples which are not really its destination.When we want to use a selection threshold, we de�ne the following intermediate stepbefore calculating the �nal gatesif (gi>STi) then si = sielse si = 0In this equation gi are the intermediate gates, which are computed by normalizing themover all experts by equations 3.6, 3.7, and 3.11. STi is the threshold for the ith clusteror expert and can be changed on-line. After this computation we have eliminated theexperts with low responsibilities. Now we must compute the �nal gates by using the newvector ~s in equations 3.6, 3.7, and 3.11. When learning the new gates we have to makethe partial error derivative with respect to the ith output unit of the gating vector zero, ifthe ith cluster or expert has not been selected. We do this by using 0 for F 0(ii) in equation3.3.3.3.4 The Di�erences between the Two ArchitecturesAs we have seen, the two architecture use two di�erent error-functions for the archi-tectures. The di�erences between the two architectures arise from these chosen error-functions. When one would like to develop other architectures for some kind of task,

26 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKSMeta-Pi architecture HME architecture1 co-operating experts competing experts2 experts learn to reduce the error of experts learn to reduce their ownthe architecture error3 experts may increase their own experts may increase the error of theerror architecture4 experts are adjusted in proportion experts are adjusted in proportion toto their responsibility gigij their joint posterior probability hihij5 experts are shifted to a region of experts are shifted to a region of thethe input space if its output is on input space if its output out-competesthe 'right' side of the error of the other experts' outputsthe architectureTable 3.1: Di�erences between the Meta-Pi Architecture and the HME Architecturee.g. one wants to use multiple experts to solve successive subtasks, one should try toconstruct an architecture with a chosen error-function which, when minimized, will resultin the desired division of the input space. The two error-functions are duplicated here forreaders' convenience.� The HME likelihood function has to be maximizedP (djx) = Xi giXj gije� 12 (d�yij)2From this we may de�ne the error-function asE = 1� P (djx)� The error-function of the Meta-Pi network architecture has to be minimizedE = 12(d� y)2= 12(d�Xi giXj yijgij)2We can see that the desired output is inside the summations for the HME architecture andoutside the summations for the Meta-Pi architecture. From this, the di�erences whichare outlined in table 3.1 arise.In the following section we will see what for consequences these di�erences have whenlearning a simple discontinuous function. We expect that the HME architecture with awinner takes all (WTA) forward propagation will be the best, because it will never usean expert for the function approximation if this expert is located at the wrong side of thediscontinuity. All other approaches may always su�er from the problem that an expert isused which makes a large error on an example.

3.3. HIERARCHICAL NETWORK ARCHITECTURES 273.3.5 Symbolic Rules ArchitectureThe third architecture which has been studied is the use of a knowledge base containingsymbolic rules to decide which expert has to be chosen for evaluating an example. Theknowledge base has to be considered as the gating network, but the symbolic rules are�xed. This means that when no a priori knowledge is available, we can not use thisarchitecture. When the domain is large, a short knowledge engineering period mightmake the decomposition more useful. Again this is an intermediate way between usingknowledge engineering and machine learning. Of course it is almost always possible tomake a simple decomposition of the input space, and because the use of symbolic rulesis very fast, an increased propagating speed can be obtained. Here we consider usingsymbolic rules which produce gate values in which only one expert gets a gate value 1,this means that for every example only one expert network is selected.Gating NetworksThe symbolic rules determine under which conditions which expert has to be chosen. Thenonly one selected expert network is invoked and it produces the output of the architecture.It is possible to invoke multiple expert networks by using symbolic rules, but this wouldslow down the propagating speed of the architecture. Although the linear regions wherethe expert networks are situated are not adjusted, an advantage of using this architectureis that the expert networks can be much larger than when the outputs of multiple expertnetworks are combined. Another advantage is that when the decomposition is very good,it does not have to be learned �rst.if conditionsi then gi = 1:0else gi = 0:0Propagate NodesThe propagate nodes propagate the output of the selected expert network to the top ofthe tree (only one gate value has the value 1.0).y = Xi giyiGradient Descent on a Squared Error FunctionThe error-function of the architecture is the same as the error-function of the Meta-Pinetwork. The di�erence is that only one one expert has a responsibility to produce anoutput for an example. This makes the learning rules the same, but many expert networks

28 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKSdo not have to be adjusted, because their gradients are zero (see 3.12). The symbolic rulesare not adjusted, although it is possible to use machine learning techniques to adjust theregions in which expert networks perform.3.4 Experiment : A Discontinuous FunctionExperiments have been performed to analyze the di�erences between using the three hier-archical architectures and a single network (monolithic architecture). We have discussedthe problem of learning discontinuous functions, so one simple discontinuous function willbe used to validate the methods.3.4.1 Experimental DesignThe di�erent methods have been evaluated on a simple discontinuous function (see �gure3.7). The function is de�ned asf(x) = sin(2�x + �) + 1 0 � x � :5= sin(2�x� �)� 1 :5<x � 1

 -1.00

 -0.80

 -0.60

 -0.40

 -0.20

 -0.00

 0.20

 0.40

 0.60

 0.80

 1.00

 X
 0.00 1.00

f(x)

Figure 3.7: the target discontinuous function.All modular architectures used one linear gating network and two expert networkscontaining 3 hidden units, which is enough to learn the split and the two sub-functions.Simulations were performed with hidden units which used sigmoids with two di�erentneuron sensitivities :

3.4. EXPERIMENT : A DISCONTINUOUS FUNCTION 29� 1.0 (global), which is almost always used� 5.0 (local), which gives the hidden units a more local orientation and updates theirincoming weights faster.Used MethodologiesMonolithic Architectures:� Single Networks with 3 hidden units.� Single Networks with 6 hidden units.Modular Architectures with 2 Expert Networks and 1 Gating Network� Symbolic Rules which choose one expert for values below .5, and the other expertfor values above .5. Thus, they encode a perfect decomposition.� Hierarchical mixtures of experts : Mixing the outputs (MTO).� Hierarchical mixtures of experts : Winner takes all (WTA).� Meta-Pi : Without selection threshold.� Meta-Pi : With increasing selection threshold.The Expert Network Parameters� Learning rate : all expert used a learning rate which was slowly increased in thebeginning of the learning process. This was done so that the decomposition wasfound before the expert networks had stabilized. Good starting learning rates werefound to be between 0.007 for the networks with high neuron sensitivities and 0.04for the networks which use low neuron sensitivities, hereafter they were multipliedby 1.0001 after each cycle for the �rst 20,000 cycles. Thus, the learning rates wereincreased from 0.007 to 0.052 and from 0.04 to 0.30, and kept constant afterwards.� Momentum : 0.3� Initialization of the weights : between -0.2 and 0.2

30 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKSThe Gating Network Parameters� Learning rate : The learning rate of the gating networks was decreased so that oncea decomposition was learned, the regions of the experts did not change too much.The learning rate was initialized at .7 and was multiplied by .999999 after eachcycle.� Momentum : 0.0� Initialization of the weights : When we start we do not know a decomposition so wecan make the responsibilities of the experts equal over the whole example space. Wedid this by setting the connections between units at 0.5 and the bias of the outputunits at 0.0.Presentation of Learning Examples� Examples were drawn randomly and learned on-line, each presentation of an exampleis a cycle or iteration.� The root of the mean squared error (RMS) was computed after each 25,000 cycleson a uniform distribution of thousand points, and the smallest RMS over all testsper simulation was kept as the �nal result. This was done because the error wasnot decreasing all the time.� 1,000,000 cycles was the maximum for one simulation, when the RMS was lowerthan .01 the simulation was stopped earlier.3.4.2 Experimental ResultsIn table 3.2 the simulations are summarized with expert networks which use low neu-ron sensitivities in the hidden units. We can see that single networks are not able toapproximate the function. This is not very surprising, because a global model cannotstore a discontinuous function. What is not very surprising either is that by using rulesto encode a perfect split, the two experts have no problem to learn their sides of thediscontinuity: all simulations reached a RMS < 0.01. More surprising is that the mixturesof experts hierarchy with the winner takes all forward propagation always converged togood solutions, which is as good as using the perfect rules. The HME architecture withthe mixing the outputs strategy does not do as well what was expected, although in thiscase the same good divisions have been learned. The higher error can be explained bythe fact that around the discontinuity the outputs of both experts are mixed, because thegating network cannot learn to switch from one to the other expert at once (this wouldrequire representing the discontinuity, what we want to avoid). Finally the Meta-Pi hi-erarchy could not approximate the function better than the single networks. The single

3.4. EXPERIMENT : A DISCONTINUOUS FUNCTION 31Architecture hidden u. Mean RMS SD RMS Lowest RMSSingle Net 3 .337 .014 .329Single Net 6 .331 .000 .331Rules 3* .0093 .0013 .0072HME WTA 3* .0077 .0023 .0036HME MTO 3* .103 .001 .102Meta-Pi 3* .330 .001 .328Table 3.2: Simulations with a hidden unit sensitivity of 1.0 on the discontinuous function.Simulations were repeated 20 times and each time the best RMS was recorded. Only therules and the winner takes all strategy of the HME architecture converged to solutionswith RMS < .01. * means per expert.networks and Meta-Pi hierarchy were not able to approximate the discontinuous functionwhen neuron sensitivities of 1.0 were used. There were no hidden units which could learnthe discontinuity (�gure 3.8), because the region with the discontinuity is too small andcontains conicting details.Table 3.3 shows that using a neuron sensitivity of 5.0 in the hidden units makes a bigdi�erence for the single networks and also for the Meta-Pi hierarchy. The hidden unitswith a high neuron sensitivity were able to learn the discontinuity, although it is clear thatusing 3 hidden units is not enough, the smallest single network was able to approximatethe function better than the larger single network with the low neuron sensitivity! We canalso see that the rules and HME with the winner takes all propagate strategy do as well asbefore with the low neuron sensitivity. The HME with the mixing the outputs strategy isthe only architecture which obtains worse results with the high neuron sensitivities. Thehigh standard deviation may be explained by the fact that in some cases the architecturelearns to make one expert more responsible than the other for all inputs. Some di�erentapproximations are given in Figure 3.9.Table 3.4 shows the number of cycles needed to converge to an approximation withRMS < .01. It shows no signi�cant di�erence between using the high or low neuronsensitivity, although the fastest simulations were using the high sensitivity. The rulesconverge faster, but this di�erence is not surprising because the division does not have tobe learned �rst.Experiments with the Selection ThresholdSimulations with the use of a selection threshold in the propagate nodes con�rmed ourhypotheses that learning would become much quicker. With a selection threshold of 0.01the time saved is about 30% for the Meta-Pi and HME architectures with low neuronsensitivities. This speed up can be explained by the fact that most examples do not

32 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKS

 -1.20

 -1.00

 -0.80

 -0.60

 -0.40

 -0.20

 -0.00

 0.20

 0.40

 0.60

 0.80

 1.00
 HME WTA

Meta-Pi

Single Network 6 h.u.

x

f(x)

 0.00 0.50 1.00Figure 3.8: the function approximations of the di�erent methods with neuron sensitivities1.0
 HME WTA

Meta-Pi

Single Network 6 h.u.

 -1.00

 -0.80

 -0.60

 -0.40

 -0.20

 -0.00

 0.20

 0.40

 0.60

 0.80

 1.00f(x)

 0.50 1.00

x
 0.00Figure 3.9: The function approximations of the Meta-Pi hierarchy and the single networkwith 6 hidden units. With a neuron sensitivity of 5.0 in the hidden units, they were betterable to learn the target function.

3.4. EXPERIMENT : A DISCONTINUOUS FUNCTION 33Architecture hidden u. Mean RMS SD RMS Lowest RMSSingle Net 3 .263 .015 .214Single Net 6 .093 .013 .083Rules 3* .0097 .0015 .0079HME WTA 3* .0077 .0011 .0060HME MTO 3* .118 .049 .109Meta-Pi 3* .097 .015 .081Table 3.3: Simulations with a hidden unit sensitivity of 5.0 on the discontinuous function.Simulations were repeated 20 times. The single networks and Meta-pi architecture nowhave less problems in approximating the discontinuous function than they had with aneuron sensitivity of 1.0. * means per expert.Architecture � h.u. Mean cycles SD cycles minimumRules 1.0 254 * 103 46 * 103 175 * 103Rules 5.0 139 * 103 127 * 103 60 * 103HME 1.0 428 * 103 203 * 103 150 * 103HME 5.0 439 * 103 241 * 103 125 * 103Table 3.4: Number of cycles needed to converge to states with RMS < .01. The simulationswere repeated 20 times.have to be learned by the gating network and one expert network, but only by oneexpert. Performance levels remain the same with this low threshold. The mixtures ofexperts methodology does not allow a fast rising selection threshold, for often one expertdominates over the other and this would result in a dead expert which is never usedanymore. For the Meta-Pi network, a fast rising selection threshold changes the results ofthe simulations as we can see in table 3.5. Although it is very di�cult to �nd an algorithmwhich increases the selection threshold very carefully, some simulations show good results.Good divisions (between x =.49 and .51) have been found for expert networks with 3,4and 5 hidden units in respectively 70%, 75% and 85% of the simulations. The Meta-Pimethodology can pro�t from the selection threshold to increase the competition betweenthe experts and to minimize the co-operation.Experiments with Extended Back-propagationFinally some experiments have been performed to evaluate the learning rule extendedback-propagation (BP+) [Sperduti92], see Appendix B for a description. We have seenthat the settings of the neuron sensitivities are important for learning the discontinuousfunction. BP+ is able to change neuron sensitivities so that learning rates are adapted

34 CHAPTER 3. FUNCTION APPROXIMATION WITH MULTIPLE NETWORKSArchitecture hidden u. Mean RMS SD RMS Lowest RMSMeta-Pi 3* .110 .082 .0065Meta-Pi 4* .078 .073 .0065Meta-Pi 5* .056 .050 .0064Table 3.5: Simulations with an increasing selection threshold. The threshold is equal forboth experts and is raised from 0.0 until 0.5, so that �nally only one expert is chosen foran example. At �rst the threshold is increased fast, later on it is increased slowly. Thesimulations were repeated 20 times.on-line. E.g. when one wants to decrease the learning rate during the learning process,this is not longer necessary, because BP+ can decrease the neuron sensitivity of the outputunit itself. Table 3.6 summarizes an experiment with the same single network with sixhidden units and high initial neuron sensitivities as before. It is trained by normal back-propagation and with BP+. The learning rates for the neuron sensitivities are :� Hidden unit : 0.05� Output unit : 0.001The number of cycles until convergence (RMS < 0.15) is compared by performing 10simulations in which each 10,000 cycles the network is tested to determine the RMS. Theresults (see table 3.6) indicate that using BP+ results in faster learning, so in the nextChapter BP+ will be used for learning game evaluation functions.Learning Rule Mean cycles SD cycles minimumBP 239 * 103 54 * 103 170 * 103BP+ 157 * 103 30 * 103 120 * 103Table 3.6: The number of cycles needed to converge to a state with a RMS < .15 for asingle network. Simulations were repeated 10 times. The results show that using BP+results in faster learning.3.5 DiscussionIn this Chapter we have described the di�culty of learning discontinuous functions withsingle neural networks. The global network parameters will smooth important details ofthe function around the discontinuity, which results in a large local error. Hierarchicalarchitectures can circumvent this problem by �tting local expert networks on both sidesof the discontinuity. Three methodologies for constructing hierarchical neural network

3.5. DISCUSSION 35architectures are described and the learning rules are given which follow from the chosenerror-functions.The �rst methodology we have described is the hierarchical mixtures of experts hier-archy and it is shown to be a powerful methodology for learning discontinuous functions.In all simulations the gating network learned to decompose the function into two sub-functions which could easily be approximated by two independent expert networks (seetable 3.2). The methodology only works well when a hard division is used, but when theoutputs of the experts are blended, the architecture does not work better than a singlenetwork with high neuron sensitivity in the hidden units (see table 3.3). The secondmethodology which uses the Meta-Pi network was shown to work no better than a singlenetwork with the same amount of parameters. The third modular architecture uses sym-bolic rules to decompose the input space. When learning the discontinuous function anda perfect decomposition is known, this architecture obtains the same performance levelas the winner takes all strategy for the HME architecture. Of course the learning speedis increased, because a decomposition does not have to be learned �rst.Some simulations with neuron sensitivities in the activation function of the hiddenunits have been studied. If these hidden neuron sensitivities are set on higher values,then the slopes of the activation functions are steeper. The results (see tables 3.2 and3.3) showed better local tuning of the parameters for single networks and the Meta-Pihierarchy, if the neuron sensitivities were set on higher values. BP+ is an extension ofnormal back-propagation which can learn the neuron sensitivities. Results have indicatedthat the use of BP+ makes the learning process faster (see table 3.6). The next Chapterwill show how these �ndings can be used to learn to play games by temporal di�erencelearning.

Chapter 4TD Learning with MultipleNetworks
4.1 Learning to Play a GameIn this Chapter we will use the di�erent architectures to learn to play the games oftic-tac-toe and the endgame of backgammon (disengaged bear-o�). Playing games aretasks which require the computer agent to di�erentiate between positions and to decide,depending upon the position, which move to make. Playing a game is a Markov decisionprocess (see Appendix A), because all states, actions, rewards, and transition probabilitiesbetween states are known. The Markov property states that all transitions and rewardsdepend only upon the current state and the current action [Whitehead92]. If we havean evaluation function for positions in the game, we can generate all possible moves, usethe evaluation function to compare them and select the move which results in a positionwith the highest evaluation. When the evaluation function is very accurate, the Markovproperty states that it is useless to use look ahead strategies to improve the evaluation.The generate/evaluate/compare/select procedure is the control policy of the agent.Initially the evaluation function is unknown and we will have to learn it with e.g.neural networks. A neural network models an evaluation function V which is de�ned as :V (~xt) = E(rjxt)with :~xt : the state vector of the position after t moves.E(rjxt) : the expected result r of the game given that we start in xt and follow the currentcontrol policy.So a neural network acts as a predictor of the result of the game when given a state vector.36

4.1. LEARNING TO PLAY A GAME 37A state vector represents a board position and must include all important features of theposition. For the state vector it does not matter if it is white's or black's turn. This isvery useful, because the input-pattern implicitly encodes the fact that the opponent hasto move next.As long as we are improving the evaluation function, the control policy will improve theagent's performance. Learning game evaluation functions with a neural network requirestwo procedures. One for acquiring learning examples and one for training the multi-layernetworks. We have seen that the error back-propagation algorithm can be used for thelatter. In this work acquiring learning examples will be done by performing simulationswith the agent.Several methods exist to create board positions and to calculate evaluations with whichwe can improve our evaluation function. One way to create examples fxt; E(rjxt)g forimproving the evaluation function is by the use of dynamic programming [Whitehead92]in which we compute examples for all possible positions. In dynamic programming, westart with an arbitrary control policy which is iteratively improved by changing it sothat for all possible positions from the endgame until the start of the game, the movewhich maximizes the merits is chosen. The evaluation of each position is the same as theevaluation of the position which results when the chosen move is played. This approach isdi�cult to use however, because for games the number of possible positions is very largeand the computations involved inhibit an e�cient learning process.A more e�cient way is to use heuristic dynamic programming or reinforcement learning(RL) in which the network plays games against itself or a �xed opponent. When playinggames, external feedback or reinforcement r is received when a game is �nished and thegame rules conclude that the agent has won (r = 1), has lost (r = �1), or has playedequal (r = 0). From a played game and reinforcement we can generate examples by thetemporal di�erence (TD) methods (Appendix A).Two RL-formalisms have been developed : AHC-learning [Sutton88] and Q-learning[Watkins92]. Both are able to learn a control policy which maximizes an agent's perfor-mance level, provided that a linear representation of the input (lookup tables) is used,all actions are repeatedly sampled in all states and a proper scheduling of the learningrates is made [Watkins92, Dayan94]. The formalisms are formally described in AppendixA. Here we will concentrate on using both formalisms to learn game evaluation functions.AHC-learning learns an evaluation function for states. This V-function can be used tocompare all possible positions which result from playing a legal move in the current po-sition. The disadvantage of this is that all resulting positions have to be computed �rst.Q-learning learns an evaluation function for state-action pairs. This Q-function can beused to compare all legal moves in the current position, without the need of computingthe resulting positions, although the considered moves have to be encoded in the inputvector of an architecture, which enlarges the input space.In the next section we will use the game of tic-tac-toe, and we will evaluate AHC-

38 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKSlearning and Q-learning with the di�erent architectures. The di�erent architectures willbe compared by their abilities to learn a control policy which beats a �xed opponent asmuch as possible. The succeeding section uses the endgame of backgammon and AHC-learning to test the obtained accuracy of the evaluation function modelled by the di�erentarchitectures. This will be done by the use of the program BOINQ, which uses dynamicprogramming to accurately calculate the evaluation of endgame positions in the game ofbackgammon.4.1.1 AHC-learning of Game Evaluation FunctionsAdaptive heuristic critic (AHC) learning directly learns the V-function. A move is selectedin a position xt by the following procedure (control policy) :� Generate all legal moves� Compute the resulting positions for all legal moves� Evaluate all positions with the V-function� Select the move which results in the positions with the highest evaluation. Thus,mi = argmaxjfV (xj)jmj 2 moves(xt); xj = T (xt; mj)gWhen we assume that the current control policy is followed throughout the future, theevaluation V (~xt) of a position x for white after he has made his move must be equal to thecomplement of the evaluation V (~yt+1) of position y for black after his move. Therefore,the optimal V-function must satisfy :V (~xt) = �V (~xt+1) (4:1)The di�erence between the two evaluations in equation 4.1 is the TD(0) error and can beused to create an example. Suppose we have played a game and stored all positions andtheir evaluations which occurred in that game. Then we can use TD(�) to calculate thetemporal di�erences so that the played game is translated into examples (see �gure 4.1).We will not always follow the same control policy, because this will probably lead to alocal minimum in which the agent repeatedly makes the same mistakes. Therefore somekind of exploration is needed. A natural trade-o� between exploitation for maximizingthe agent's performance level and exploration is to choose moves randomly to a probabil-ity distribution determined by the evaluation of the resulting positions [Thrun92]. Theprobability Pt(mi) of selecting a move mi when looking at position xt is computed by theBoltzmann distribution Pt(mi) = eV (~yi)=TPmk2moves(xt) eV (~yk)=T (4:2)

4.1. LEARNING TO PLAY A GAME 39
TD(�) procedure for AHC-learning:Goal : map a played game onto a set of examples (~xt; V 0(~xt)). One exampleis made for each position which has occurred in the game. V 0(~xt) is thedesired evaluation for the state vector ~xt and is calculated by the TD(�)method. Notice that the V-value of the starting-position is alsocalculated, but never used by the control policy.Input :~xt : t = [0..M]V (~xt) : t = [1..M]r�Output :A set of examples Example(i; ~xt; V 0(~xt)) i = [1..M+1], t = [0..M].Algorithm :1) V 0(~xM) := r;2) store[Example(1; ~xM ; V 0(~xM))];3) i := 2;4) t := M-1;5) While (t � 0) do6) V 0(~xt) := - (�V 0(~xt+1) + (1� �)V (~xt+1));7) store[Example(i; ~xt; V 0(~xt))];8) t := t-1; i := i+1;Figure 4.1: The TD(�) algorithm for AHC-learning to translate a played game into ex-amples for the neural networks. All state vectors ~xi are positions in which we considerthat white has played the last move.

40 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKSWhere a move mi (which is an element of the set of possible moves : moves(~xt)) resultsin position yi (T (xt; mi) = yi), and the temperature T adjusts the randomness of moveselection.4.1.2 Q-learning of Game Evaluation FunctionsQ-learning learns a Q-function in which Q(~xt; mt) represents the evaluation of makingmove mt in position ~xt. A move is selected in the current position by the followingcontrol policy :� Generate all legal moves� Evaluate all moves by using the Q-function� Select the move which results in the highest evaluation.Thus, mi = argmaxjfQ(xt; mj)jmj 2 moves(xt)gFor games Q(~xt; mt) is equal to V (~xt+1) where ~xt+1 is the resulting state vector, becausegames are deterministic and the same move in a particular position always results inthe same position. The control policy is to choose the move mt, for which Q(~xt; mt) ismaximal over all moves. Therefore, the optimal Q-function must satisfy :Q(~xt; mt) = �MaxfQ(~xt+1; mt+1)jmt+1 2 moves(xt+1)g (4:3)The di�erence between both sides of equation 4.3 is again the TD(0)-error and will beused to improve the Q-function. Figure 4.2 shows how a played game can be used tocreate a set of examples by the TD(�)-learning Algorithm for Q-learning.The Q-function not only depends on the position, but also on the move. With Q-learning we do not have to generate and compare all possible resulting positions, but onlyall possible moves. The Q-value of the di�erent moves in the position xt will be used toselect a move by the Boltzmann distributionPt(mi) = eQt(~xt;mi)=TPmk2moves(xt) eQt(~xt;mk)=T (4:4)The di�erence with AHC-learning is that the architecture must know which move isevaluated. A possible way is to encode the move in the input vector for the network, butthis might decrease the important discriminating abilities for the di�erent moves. Anotherway to let the architecture know which move is being looked at, is to use a representationin which for each possible move a di�erent expert network is selected, which only has toevaluate the current position [Lin93]. We will use this approach to learn tic-tac-toe byQ-learning. The problem with this is that for a game like backgammon, the set of possiblemoves is very large (� 1,000), so that the amount of required parameters becomes toolarge. When this is the case, we must encode the move in the input vector.

4.1. LEARNING TO PLAY A GAME 41TD(�) procedure for Q-learning:Goal : map a played game onto a set of examples (~xt; mt; Q0(~xt; mt)). Oneexample is made for each position which has occurred in the game. Themove is stored so that it can be used for selecting the correspondingexpert network or for expanding the state vector. Q0(~xt; mt) is thedesired evaluation for playing the move mt when looking at the statevector ~xt, and is calculated by the TD(�) method. Notice that theQ-value of playing no move (m0 = 0) in the starting-position is alsocalculated, but never used by the control policy. The move mM in theposition xM resulted in the final position with reinforcement r.Input :~xt : t = [0..M]mt : t = [0..M]MaxfQ(~xt; mi)jmi 2 movest)g : t = [1..M]r�Output :A set of examples Example(i; ~xt; mt; Q0(~xt; mt)) i = [1..M+1], t = [0..M].Algorithm :1) Q0(~xM ; mM) := r;2) store[Example(1; ~xM ; mM ; Q0(~xM ; mM))];3) i := 2;4) t := M-1;5) While (t � 0) do6) Q0(~xt; mt) := - (�Q0(~xt+1; mt+1) + (1� �) �maxfQ(~xt+1; mi)jmi 2 movest+1g);7) store[Example(i; ~xt; mt; Q0(~xt; mt))];8) t := t-1; i := i+1;Figure 4.2: The TD(�) algorithm for Q-learning to translate a played game into examplesfor the neural networks. All state vectors ~xi are positions in which white has played themove mi.

42 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS4.2 Tic-Tac-Toe4.2.1 Problem De�nitionThe networks have to learn to play tic-tac-toe, therefore I have designed a knowledge base(TTT) which acts as an opponent. The knowledge base contains the following three rulesTTT program1) IF a given move wins the game THEN play this move.2) ELSE IF a given move for the opponent would win the game,THEN block this move by playing on this field.3) ELSE play a random move.This teacher can be beaten by constructing a winning fork, which is a position in whichthe player has two possible moves which win the game on his next turn. The maximalobtainable performance level is about 0.614 (see Appendix C). This performance level(match-equity) stands for (wins - losses)/games when one plays a match of a large numberof games with both white and black against the opponent TTT.Playing games against an opponent with an architecture, instead of playing againstitself, requires some changes to the TD-procedures in �gures 4.1 and 4.2. When we usethe control policy of the network, and use the evaluation of a position which results froman action by this control policy, we might never be able to learn that in some positionsthe opponent makes a lot of mistakes. That is why we use the moves of the opponent andcalculate the V-value and Q-value with the network on this move and position. So insteadof using the maximal Q-value, we use the Q-value of the move which is selected by TTT.This is not only faster, but without this we might learn that a position is non-paying,because the opponent can always play the best move, whereas he can make many mistakesin such a position.The input of the networks will consist of 9 units : each unit encodes one �eld. Theactivation of an input unit will be :� +1 for a circle (white)� -1 for a cross (black)� 0 for an empty �eldThe output V of the networks will lie between +1 () P(white wins) = 100%and -1 () P(white loses) = 100%.

4.2. TIC-TAC-TOE 434.2.2 Experimental DesignFor learning tic-tac-toe against TTT, a priori knowledge of how many expert networksto use is not available. Several di�erent architectures have been tried out and the resultsof the best of them are used in the following. After pilot experiments, the temperatureT , �, and the parameters of the expert and gating networks were chosen to be the samefor all architectures. Extended back-propagation was only used for learning the expertnetworks, which not only produced a small gain in performance compared to normalback-propagation, but also made searching for learning parameters easier and decreasesthe learning rates automatically (which is important for TD learning).List of Experiments� Monolithic architectures with 30, 50 and 80 hidden units.� HME architectures with 2 experts containing 40 hidden units each. One architectureuses a selection threshold of 0.3 and the other does not use a selection threshold(ST = 0.0).� Meta-Pi architectures with 2 experts containing 40 hidden units each. One architec-ture uses a selection threshold of 0.3 and the other does not use a selection threshold(ST = 0.0).� Symbolic rules architectures with 9 experts containing 20 and 30 hidden units.� Lookup tables which store the evaluations of all di�erent positions in di�erent en-tries.� For all neural network architectures, experiments with high (3.0) and low (1.0) initialneuron sensitivities are performed.The Expert Network Parameters� Learning rate : .3� Momentum : .5� Initialization of the weights : between -.2 and .2� Initial hidden unit neuron sensitivity : 3.0� Initial output unit neuron sensitivity : 0.2� Hidden unit neuron sensitivity learning rate : 0.1� Output unit neuron sensitivity learning rate : 0.001

44 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKSThe Gating Network Parameters� Learning rate : .1� Initialization of the weights : between -.2 and .2� Output neuron sensitivity : 1.0Design of the Simulations� After each played game, examples are constructed by the procedure in �gure 4.1 forAHC-learning or the procedure in 4.2 for Q-learning. These examples are passed tothe learning module which uses (extended) back-propagation to alter the weights.� In one simulation an architecture played 40,000 games, alternating with white andblack. This produces about 340,000 learning examples.� After each 2,000 training games, 2,000 test games were played in which always thebest move was selected by the control policy. The match equity ((the number ofwins - the number of losses) / the number of played games) over these 2,000 testgames was used in the results.� The temperature T which is used in equation 4.2 and equation 4.4 for determiningthe amount of exploration, was annealed from .2 to .05� � was annealed from .8 to .24.2.3 Experimental ResultsWe will �rst discuss experiments with the architectures which use high initial neuronsensitivities, because this results in better performances; many simulations reached match-equities which proximate the maximal obtainable match-equity of 0.614.An experiment with an architecture consists of 10 simulations. In the �gures, thelearning curves are presented which are averaged over the 10 simulations. The tablespresent the results which were averaged over the 10 simulations, in which for every simu-lation the 2,000 test games which obtained the highest average was kept as the result ofthat simulation. This was done because the performance is not monotonously improvingwhen more games are played, although we could always copy an architecture when ithas reached its maximal performance level so that the best state of the architecture ina simulation is kept. The most important feature in the experiments is the average ofthe maximal match-equities over all 10 simulations with an architecture; these results arepresented in the tables.

4.2. TIC-TAC-TOE 45The average over all maximal match-equities per simulation often reaches an equitywhich is little below 0.600. The standard deviation over the simulations is decreased fromabout .15 after 2,000 games, to about .1 after 10,000 games to about .02 after 40,000games. Because the standard deviations in the �rst 10,000 games are so high and theequity rises from -.7 to about .4, this part of the simulation is not important and will notbe shown in the �gures.Tic-Tac-Toe Experiment 1 : Monolithic vs. Mixture of ExpertsIn the �rst experiment we compare the performances of single neural networks with theHME architectures. We have tried out several single neural networks and found out thatlarger networks are performing better than smaller ones, although there is a maximumsize after which the performance degrades. After we have found the single network archi-tectures we wanted to use, we searched for hierarchies of expert networks with about thesame amount of parameters as the largest single network. The best HME architecturesused only two expert networks, because larger hierarchies did not perform better. Fi-nally we experimented with using the selection threshold. This resulted in a comparisonbetween the following architectures:� A single network with 30 hidden units.� A single network with 50 hidden units.� A single network with 80 hidden units.� A HME architecture with two expert networks of 40 hidden units each, without theuse of a selection threshold.� A HME architecture with two expert networks of 40 hidden units each, but with aselection threshold of 0.3.Architecture-type h.u. E(equity) SD(equity) timeSingle Network 30 0.526 0.030 51 minSingle Network 50 0.577 0.014 85 minSingle Network 80 0.600 0.010 136 minHME S.T. = 0.0 2 * 40 0.592 0.011 138 minHME S.T. = 0.3 2 * 40 0.592 0.009 78 minTable 4.1: The average maximal match equities obtained by the monolithic and the HMEarchitectures. The HME architectures perform as good as the largest single network, butwith the use of a selection threshold, they become faster.

46 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS
 Single 80 h.u.

Equity

 20000 40000

nr. games

 .60

 .58

 .56

 .54

 .52

 .50

 .48

 .46

 .44

 .42

 .40

HME S.T. 0.0

HME S.T. 0.3

 Single 30 h.u.

 Single 50 h.u.

Figure 4.3: The results obtained by the single networks and the HME architectures. Eachexperiment with an architecture consists of 10 simulations. The �gure shows the averagematch-equity after each 2,000 training games against TTT.Figure 4.3 and table 4.1 show that the HME architectures with two experts (40 hiddenunits) and the largest single network obtained the best results when they are comparedwith the smaller architectures. The largest single network with 80 hidden units performeda little bit better, but the HME architecture with a selection threshold of 0.3 saves alot of time by not invoking one of its experts in 98% of the times! The smaller singlenetworks were not performing much slower, but reached a signi�cant smaller expectedmatch-equity (see table 4.2). The results show that architectures with a lot of parametersperform better than smaller architectures. The selection threshold is an e�cient methodto use more parameters, without decreasing the propagating speed of the architecture.* HME S.T. = 0.0 HME S.T. = 0.3Single 30 � �Single 50 < <Single 80 � �Table 4.2: A comparison between the results obtained by the monolithic and HME ar-chitectures produced by t-tests. < means signi�cantly worse (� = 5%) and � meanssigni�cantly worse (� = .1%).

4.2. TIC-TAC-TOE 47When the WTA strategy was used in the HME architecture, the results were muchworse. This was because often only one expert was chosen to evaluate all positions. Whenthis strategy was used, the combination with TD learning resulted in examples which wereconstructed by using the evaluation of one of the experts. Therefore one expert is betterable to approximate these examples, and will be chosen for all inputs.Tic-Tac-Toe Experiment 2 : Monolithic vs. Meta-PiIn this experiment the results are compared between the single networks from experiment1 and architectures which use the Meta-Pi network. Just as in experiment 1, we haveexperimented with some di�erent hierarchical architectures and kept two Meta-Pi archi-tectures which use two experts with 40 hidden units each, one without and the other witha selection threshold of .3. The learning curves are presented in �gure 4.4.
 Single 80 h.u.

 Meta-Pi S.T. = .0

 Meta-Pi S.T. = .3

Equity

nr. games

 40000 20000

 .60

 .58

 .56

 .54

 .52

 .50

 .48

 .46

 .44

 .42

 .40

 Single 30 h.u.

 Single 50 h.u.

Figure 4.4: The results obtained by the single networks and hierarchies with a Meta-Pinetwork. The Meta-Pi hierarchies do not reach match-equities which are as good as thelargest single network, but perform better than the single network with 50 hidden units.As we can see in tables 4.3 and 4.4, the Meta-Pi architectures perform worse than thelargest single network, and the fastest Meta-Pi architecture does not perform signi�cantlybetter than the single network with 50 hidden units. The Meta-Pi network with a selectionthreshold could be used to trade-o� learning speed against performance level, but performsslightly worse than the HME architecture.

48 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKSArchitecture-type h.u. E(equity) SD(equity) timeSingle Network 30 0.526 0.030 51 minSingle Network 50 0.577 0.014 85 minSingle Network 80 0.600 0.010 136 minMeta-Pi S.T. = 0.0 2 * 40 0.588 0.011 138 minMeta-Pi S.T. = 0.3 2 * 40 0.587 0.016 78 minTable 4.3: The average maximal match-equities obtained by the monolithic and Meta-Piarchitectures ** Meta-Pi S.T. = 0.0 Meta-Pi S.T. = 0.3Single 30 � �Single 50 < �Single 80 > >Table 4.4: A comparison between the monolithic and Meta-Pi architecturesTic-Tac-Toe Experiment 3 : Monolithic vs. Symbolic RulesThis is another experiment in which we used the single networks. Now we compared themwith an architecture which uses symbolic rules to select an expert network. The symbolicrules select for each move a di�erent expert network to evaluate that move. This reducesthe input space for each expert network, because the chosen �eld always contains a pieceso that one particular bit in the input vector is always on. After some pilot experiments,we decided to keep the architectures which use 10 expert networks with 20 and 30 hiddenunits. Notice that one expert network is used for evaluating playing no move in thestarting position, and therefore it is never used by the control policy.Architecture-type h.u. E(equity) SD(equity) timeSingle Network 30 0.526 0.030 51 minSingle Network 50 0.577 0.014 85 minSingle Network 80 0.600 0.010 136 minSymbolic Rules 10 * 20 0.590 0.013 35 minSymbolic Rules 10 * 30 0.598 0.004 51 minTable 4.5: The average maximal match-equities obtained by the monolithic and symbolicrules architectures.Figure 4.5 and table 4.5 show that having one expert network for evaluating the meritsof playing a particular move gives a very good performance. These architectures have alot of parameters, but each time only one expert needs to be invoked so they perform very

4.2. TIC-TAC-TOE 49

 Rules 20 h.u.

 Single 80 h.u.

nr. games

 40000 20000

 .60

 .58

 .56

 .54

 .52

 .50

 .48

 .46

 .44

 .42

 .40

Equity

 Single 30 h.u.

 Rules 30 h.u.

 Single 50 h.u.

Figure 4.5: The results obtained by the single networks and hierarchies which use symbolicrules to select an individual expert network for evaluating each di�erent move. Thesehierarchies are very fast and the hierarchy which uses expert networks with 30 hiddenunits reaches match-equities which are as good as the largest single network and performsmuch better than the single network with 50 hidden units.
*** Symbolic 20 Symbolic 30Single 30 � �Single 50 < �Single 80 > �Table 4.6: A comparison between single networks and symbolic rules architectures

50 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKSfast. Because the performance level of the largest single network is not better than thehierarchy which uses expert networks with 30 hidden units for di�erent moves, but is muchslower, the use of di�erent action expert networks can be promising if the set of possibleactions is small enough. Maybe this is why in some studies the results of Q-learning withone expert for one action outperformed the use of AHC-learning with one single network[Lin93]. The results of using the one expert for one move and the best HME architectureare not signi�cantly di�erent, although the HME architecture is slower.Tic-Tac-Toe Experiment 4 : AHC-learning vs. Q-learningThis experiment compares AHC-learning to Q-learning. The use of an architecture withsymbolic rules to select di�erent networks for di�erent moves �ts well in Q-learning. Thisprovides a method to let the architecture know which move it is evaluating, instead ofencoding the move in the input vector. Again expert networks with 20 and 30 hiddenunits are used for both TD-paradigms.Architecture-type h.u. E(equity) SD(equity) timeAHC-learning 10 * 20 0.590 0.013 51 minAHC-learning 10 * 30 0.598 0.004 85 minQ-learning 10 * 20 0.590 0.008 51 minQ-learning 10 * 30 0.595 0.011 85 minTable 4.7: The average maximal match-equities obtained by the architectures which useAHC-learning and Q-learning**** Q-learning 20 Q-learning 30AHC-learning 20 � �AHC-learning 30 > �Table 4.8: A comparison between AHC-learning and Q-learningTable 4.7 shows that using the division of selecting one expert for one move whenused for AHC-learning or Q-learning results in almost the same performance levels. Botharchitectures are very fast, but can use a lot of parameters. The only di�erence withthis AHC-learning paradigm and Q-learning in this experiment is that this AHC-learningparadigm shows a position after a move and Q-learning shows the position before themove is played to the chosen network. This makes selecting a move faster if computingthe resulting position is not trivial, but Q-learning can not be used if we do not dis-criminate between di�erent moves when we present a position and a possible move tothe architecture. AHC-learning might use classes of moves, and because the state vector

4.2. TIC-TAC-TOE 51encodes the position after a move has been played, discriminating abilities still exist. So,for a game such as backgammon we can better use AHC-learning and make use of classesof moves or classes of positions to choose between di�erent expert networks.Tic-Tac-Toe Experiment 5 : Lookup TablesIn this experiment we study lookup tables. Lookup tables use a di�erent entry for eachposition to return the evaluation of that position. Lookup tables can store non-linear func-tions, but because they have no generalization ability, they have to use many parameters.Therefore the use of lookup tables is no viable paradigm when the state space is verylarge. However, Dayan has proved that lookup tables trained with temporal di�erencelearning will �nd a global minimum [Dayan94]. Lookup tables are similar to the previousarchitectures with high neuron sensitivities for the hidden units, in the sense that mostparameters are only adjusted in a speci�c part of the input space.The results show that the use of lookup tables requires about 4,600 parameters, whichis much more than the 880 parameters needed by the largest single network. The learningtraject of the lookup tables is shown to be much faster than the use of neural networkarchitectures (�gure 4.6). Furthermore when we look at table 4.9, we can see that thelookup tables obtain the best results of all the architectures which are considered here.This means again that using many local basis functions results in faster learning and abetter performance level when learning a discontinuous game evaluation function. Thetime to train a lookup table depends on its representation. The representation which wasused here, is using a list so that everytime an evaluation of a position was needed, thisposition had to be compared with many entries in the list. This implementation is veryine�cient, but the time needed for a simulation was about the same as for the neuralnetwork architectures. Naturally, a smart representation (e.g. a tree, or a hashing table)would require much less learning time than even the smallest network architecture.Tic-Tac-Toe Experiment 6 : Architectures with low neuron sensitivityIn the last experiment, the use of low initial neuron sensitivities in the activation functionsfor the hidden units in the neural networks is studied. Instead of the previous startingvalues 3.0 for the neuron sensitivities, neuron sensitivities will be initialized on 1.0. Thismakes the networks more globally oriented, and (as we could see in Chapter 3) this makesit more di�cult to learn discontinuous functions. The results of the experiment are givenin table 4.10 and show that the architectures perform worse with low neuron sensitivitiesthan with high hidden unit sensitivities. This con�rms the results obtained in Chapter 3.When discontinuous functions have to be learned it is a good idea to start with activationfunctions with steep slopes. The results also show that using modular architectures workbetter than the monolithic architectures when low neuron sensitivities are used. It appearsthat the modular architectures are able to decrease the number of discontinuities which

52 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

Nr. Games

4000020000

Single 80 h.u.

Rules 30 h.u.

Lookup table

 .30

 .10

-.20

-.30

-.40

-.50

-.10

 .50

.0

 .20

 .40

 .60Equity

Figure 4.6: The results obtained by the lookup tables compared to the large single networkand the architecture which uses symbolic rules to select an expert network. The use oflookup tables results in faster learning and a better �nal performance.Architecture-type h.u. E(equity) SD(equity) timeSingle Network 30 0.526 0.030 51 minSingle Network 50 0.577 0.014 85 minSingle Network 80 0.600 0.010 136 minHME S.T. = 0.0 2 * 40 0.592 0.011 138 minHME S.T. = 0.3 2 * 40 0.592 0.009 78 minMeta-Pi S.T. = 0.0 2 * 40 0.588 0.011 138 minMeta-Pi S.T. = 0.3 2 * 40 0.587 0.016 78 minSymbolic Rules 10 * 20 0.590 0.013 35 minSymbolic Rules 10 * 30 0.598 0.004 51 minLookup table 4,560* 0.606 0.007 102 minTable 4.9: The results obtained by all architectures with high initial neuron sensitivitiesor local basis functions. The lookup tables obtain the best results, but they use thelargest amount of parameters. In general we can say that the amount of parameters inan architecture is a good predictor for its performance.

4.2. TIC-TAC-TOE 53Architecture-type h.u. E(equity) SD(equity) timeSingle Network 30 0.384 0.060 53 minSingle Network 50 0.421 0.019 87 minSingle Network 80 0.434 0.027 138 minHME S.T. = 0.3 2 * 40 0.498 0.031 82 minMeta-Pi S.T. = 0.3 2 * 40 0.485 0.031 80 minSymbolic Rules 10 * 30 0.507 0.042 53 minTable 4.10: The results obtained by the architectures with an initial neuron sensitivity of1.0. The architectures obtain worse results than the architectures which use high initialneuron sensitivities. We can see that the single neural networks obtain worse results thanthe modular architectures.have to be learned by the expert networks. With low neuron sensitivities, the need todecompose the input space appears to be much larger than with high neuron sensitivities.4.2.4 DiscussionWe have seen that TD learning is an e�cient way to learn a control policy for an agent.The obtained results (see table 4.6) show that by using large neural network architectures,we can get close to the maximal performance level of playing games of tic-tac-toe againstan imperfect �xed opponent. The results also show that using many local basis functionsto store the required knowledge results in an improved performance. Using multiple expertnetworks is an e�cient way to use many parameters, because we can select independentneural networks for evaluating di�erent moves and positions, which is much faster thanalways invoking one large monolithic network. The use of lookup tables provides ane�cient way to store an evaluation function. They are not only very accurate, but whena smart representation is used, they are also very fast. Because every possible positionneeds a di�erent entry in a lookup table, the amount of parameters grows prohibitivelyas the number of dimensions of the state space of a game increases. That is why the useof lookup tables is no viable alternative when the state space of a game is very large.We have compared the results between the monolithic architectures and three archi-tectures which use multiple expert networks. The HME architecture could make useof the selection threshold in an e�cient way so that many times only one expert wasinvoked. This made it a lot faster than the largest single network, although the per-formances were about equal. The Meta-Pi architecture performed worse than the HMEarchitecture, which con�rmed the results obtained in Chapter 3. Using symbolic rules toselect an expert to evaluate playing a speci�c move resulted in very good performance.These architectures can use a lot of expert networks, because each time only one expertneeds to be invoked. The results obtained by these architectures were about equal to the

54 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKSresults obtained by the HME and largest monolithic architectures, but they performed alot faster.Another comparison was made between AHC-learning and Q-learning. The experi-ments showed that when both reinforcement learning methods are applied on the samearchitectures, the results are about the same. An advantage of using AHC-learning isthat the architecture does not have to know which move is played. So when we want tolearn a game which allows many possible moves (e.g. go, backgammon, draughts, chess)AHC-learning is the paradigm we have to use. Using Q-learning would require encodingthe move in the state vector which might decrease generalization abilities, because themoves which resulted in a speci�c position might di�er.When we compare the obtained results with [Boyan92], who obtained a maximalmatch-equity of 0.474 after playing more training games, they are impressive. Except fora di�erent input encoding and the use of TD(�) instead of TD(0), the use of high initialneuron sensitivities in the hidden units could be the reason for the di�erence betweenthe results. The results of Chapter 3, which showed that using high neuron sensitivitiesin the activation functions of the hidden units to learn a discontinuous function wasadvantageous, were con�rmed in the considered task of learning a discontinuous gameevaluation function.The next section will show if using modular architectures or high hidden neuron sen-sitivities also improves learning a smooth evaluation function.4.3 The Endgame of Backgammon4.3.1 Problem De�nitionIn this section we study adaptive experts and TD learning for the endgame (bear-o�)of backgammon. In contrast to the previous section where a discontinuous evaluationfunction had to be learned, the game evaluation function considered here is very smooth.However, the number of di�erent positions is 1:5 � 109, which is much larger than the4:6 � 103 positions which are used by the lookup tables to store the evaluation function oftic-tac-toe.Our goal is to learn the V-function given byV (~xt) = E(rj~xt)There exist two possible methods to learn this evaluation function :� Supervised learning on learning samples f(x1; V (x1)); :::::; (xM ; V (xM))g which arecreated by dynamic programming.� Playing games with the architectures and creating examples with the TD methods.

4.3. THE ENDGAME OF BACKGAMMON 55We will compare supervised learning to TD learning with the di�erent architectures, toevaluate the e�ciency of TD learning. For supervised learning, learning samples consistingof the evaluation V for a given state ~x are generated from a program BOINQ whichis able to compute these evaluations for the endgame directly. BOINQ uses dynamicprogramming to create a lookup table with the evaluations for all possible positions from1 to 14 stones for both sides.The networks used 68 inputs, 56 inputs encode the possible �elds 0-6 where the stonesfor both players are allowed to stand. The maximal number of stones that can be on aparticular �eld is 14, and so the number of stones on a �eld is binary encoded by 4 inputs.For the other 12 inputs some features are used which are hard to learn for the networkitself. The following features were used (which were scaled between -3.0 and 3.0)� Features for both players :{ the pip-count.{ the number of pieces out.{ the standard deviation of the placement of the stones on all �elds.{ the mean of the placement of the stones on the �elds.� Overall features{ A bit which indicates which player has taken o� the largest amount of stones.{ The di�erence in pip-counts.{ A bit which indicates whether this di�erence has passed 15%.{ A bit which indicates if the player has taken all pieces o�.4.3.2 Experimental DesignWe compared temporal di�erence learning to supervised learning. The experiments existof two parts : the �rst part of the simulations compare the performances of the di�erentarchitectures on TD learning and supervised learning for a short learning time. Thesecond part of the experiments compare the use of TD learning to supervised learning fora longer training time.Experiment 1 : E�ect of ArchitecturesIn this experiment, small training times are studied to compare the di�erent architectures.For supervised learning the experimental setup is as follows. The architectures aretrained on-line, repeatedly presented with a learning set of 500 samples for 120 epochs.The experiment is repeated 10 times, each time with a di�erent set of 500 learning samples.

56 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKSWe have used 10 di�erent learning sets, so that the results do not depend on one arbitrarydrawn learning set. The total amount of iterations in a simulation is 60,000.A simulation with temporal di�erence learning consisted of 10,000 games of self-playstarting with randomly drawn positions in the endgame with a maximum of 14 against14 stones. The mean number of pieces on the board in a starting position for a player is7.5. Playing one game produces about 6 positions, which makes the amount of learningexamples equal to the supervised paradigm. The di�erence in the presented learningsamples is that for TD learning the distribution of the shown positions are on averagecloser to an end-position than the uniform distribution of the supervised learning set.This could be a disadvantage for TD learning, but is almost inevitable.For both learning strategies, an independent test set of 2,000 randomly drawn perfectexamples generated with dynamic programming was used. The best results of one sim-ulation was kept as the �nal result of that simulation. For this, the supervised trainedarchitectures were tested after each epoch, and the architectures which were trained byTD learning were tested after each 100 games. The experimental results were averagedover all simulations.After a coarse search through the parameter space, we decided to keep the followingarchitectures :� Monolithic architectures with 0, 5 and 10 hidden units.� The HME architecture with two expert networks with 5 hidden units without selec-tion threshold.� The Meta-Pi architecture with two expert networks with 5 hidden units withoutselection threshold.� A symbolic rules architecture to choose one out of six expert networks with 10 hiddenunits. The symbolic rules use the di�erence in pip-count between both players (pip-count player 1 - pip-count player 2). The pip-count is the total number of �elds allpieces have to advance from their current �eld before they can be taken o�. Weconstructed the following division :1) IF the difference < -34 THEN category := 12) ELSE IF the difference < -14 THEN category := 23) ELSE IF the difference < -4 THEN category := 34) ELSE IF the difference < 6 THEN category := 45) ELSE IF the difference < 26 THEN category := 56) ELSE category := 6Although the propagate speeds of these architectures are the same (except for thesmaller single networks), the architecture which uses symbolic rules has the largest numberof parameters. For TD learning, initial neuron sensitivities of 1.0 and 3.0 were used in

4.3. THE ENDGAME OF BACKGAMMON 57the hidden units, so that we were able to compare the use of the di�erent initial neuronsensitivities when learning a smooth evaluation function. Extended back-propagation wasagain used to train the expert networks.Experiment 2 : TD vs. Supervised LearningIn this experiment, we use the single network architecture with 10 hidden units. Wecompare its performances on learning on a learning set, learning by self-play and learningby a combination of a learning set and self-play. We study the following experiments� 1,600 epochs on 500 learning samples.� 160 epochs on 5,000 learning samples.� 130,000 games of self-play.� 65,000 games of self-play combined with 800 epochs on 500 learning samples.Each experiment is repeated �ve times. After each 40,000 iterations, the architecturesare tested on a test set of 5,000 examples created by BOINQ. When the combination of self-play and TD learning is used, TD learning is continuously interchanged with supervisedlearning during the learning process. The architecture is tested after playing 3,250 gamesand learning on the learning set of 500 examples for 40 epochs.For both experiments the same parameters were used :The Expert Network Parameters� Learning rate : .3� Momentum : .0� Initialization of the weights : between -.2 and .2� Initial hidden unit neuron sensitivity : 1.0� Initial output unit neuron sensitivity : 0.25� Hidden unit neuron sensitivity learning rate : 0.05� Output unit neuron sensitivity learning rate : 0.001

58 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKSThe Gating Network Parameters� Learning rate : .1� Initialization of the weights : between -.1 and .1� Output neuron sensitivity : 1.0Design of the Simulations� TD learning{ After each played game, examples are constructed and passed to the learningmodule which uses (extended) back-propagation to alter the weights.{ The temperature T which is used in equation 4.2 for determining the amountof exploration, was annealed from .005 to .0025.{ � was annealed from .3 to .0.� Supervised learning{ Examples were learned on-line.4.3.3 Experimental ResultsExperiment 1 : E�ect of ArchitecturesWe present separately supervised and TD learning, for the latter we also study the ef-fect of neuron sensitivity. We will �rst discuss the results of networks with low neuronsensitivities in the activation functions of the hidden units, because they obtained betterresults than the architectures with steeper activation functions.Experiment 1.1 : Low Neuron SensitivityTable 4.11 shows that when the architectures are trained by supervised learning on 500examples, the single networks with 5 and 10 hidden units give the best results. The linearnetwork obtains the worst results. The supervised trained single networks with hiddenunits obtain the best generalization performance on this amount of examples. When amodular architecture is used to decompose the input space, the generalization performancedecreases. This is especially shown by the results of the architecture which uses symbolicrules to decompose the input space. In �gure 4.7 we can see the learning curves of thearchitectures when supervised learning is used. We can see that the architecture whichuses the symbolic rules is not able to decrease its error after a while during learning. Thereason for this might be that the architecture is being overtrained, because the di�erent

4.3. THE ENDGAME OF BACKGAMMON 59Architecture h.u. RMS SDSingle 0 0.189 .008Single 5 0.107 .007Single 10 0.103 .010HME 2*5 0.115 .006Meta-Pi 2*5 0.111 .018Symbolic 6*10 0.145 .005Table 4.11: The performances of the di�erent architectures when supervised learning isused. A supervised learning set consists of 500 examples. This learning set is presented120 times to the architectures. For each simulation a di�erent learning set is randomlyselected from a lookup table created by dynamic programming. Simulations were repeated10 times. The best RMS after a test was kept as the �nal result of a simulation.expert networks contain too many parameters and do not receive enough learning samples.The architecture �nds a good approximation for the learning set but generalizes poorly.So when we have to choose an architecture for supervised learning of a smooth evaluationfunction with a small learning set, it is best to use a small single network.Architecture h.u. RMS SDSingle 0 0.219 .005Single 5 0.113 .005Single 10 0.115 .005HME 2*5 0.112 .004Meta-Pi 2*5 0.113 .005Symbolic 6*10 0.124 .004Table 4.12: The performances of the di�erent architectures when TD learning is used.One simulation consists of 10,000 games of self-play. Simulations were repeated 10 times.The best RMS after a test was kept as the �nal result of a simulation.The results when TD learning is used are shown in table 4.12. For TD learning, thearchitecture which uses symbolic rules to select an expert network obtains almost the worstperformance. The worst performance is obtained by the linear neural network, but thisis not very surprising. It is more surprising that the architecture with the largest amountof parameters works worst for TD learning of a smooth evaluation function. Again thisarchitecture obtains worse generalization performance, because the architecture containstoo many hidden units to be trained with so few accurate learning samples.The Meta-Pi, HME and single network architectures work about the same. Becausethe evaluation function is very smooth and the number of parameters in the architectures

60 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKS

 Single 10 h.u.

 Meta-Pi

 Rules

 24

 23

 22

 21

 20

 19

 18

 17

 16

 15

 14

 13

 12

 11

 10

RMS

Nr. Epochs0 50 100

 HME

Figure 4.7: The learning curves for the architectures which use supervised learning. Thecurves are averaged over 10 simulations.
are about equal, it is not surprising that one of the architectures does not generalizebetter. The small advantage of the performance of the single network with 5 hidden unitscompared to the single network with 10 hidden units is more surprising. This meansthat the generalization performance of an architecture is maximal with a low number ofparameters. When longer training times are used and more accurate learning samples areshown, this di�erence will probably change its sign. The learning curves for TD learningare presented in �gure 4.8. We can see that for all architectures the RMS error graduallydecreases.When we compare supervised to TD learning with the architectures, we can see that itis to be expected that TD learning will give better and better generalization performance,while supervised learning will end up in overtraining the network on the learning set.After 60,000 iterations, the results are about equal for most architectures. Obtaining alearning set for supervised learning might be very di�cult, because we would have todo this by dynamic programming or asking a human expert which is very expensive. Soheuristic dynamic programming is a viable alternative for supervised learning when it isdi�cult to construct a large learning set.

4.3. THE ENDGAME OF BACKGAMMON 61
 Meta-Pi TD

Nr. Games

 .26

 .25

 .24

 .23

 .22

 .21

 .20

 .19

 .18

 .17

 .16

 .15

 .14

 .13

 10000 5000

 HME TD

 Single TD

 Rules TD

RMS

Figure 4.8: The average learning curves for the four architectures trained by TD learning.The simulations were repeated 10 times, one simulation consists of 10,000 games of self-play starting with randomly drawn positions in the endgame with a maximum of 14against 14 pieces.Experiment 1.2 : High Neuron SensitivityTable 4.13 shows all results of the experiments when TD learning of architectures withinitial neuron sensitivities of 3.0 were used. The results show that when using high neuronArchitecture h.u. RMS SDSingle 10 0.143 .004HME 2*5 0.141 .011Meta-Pi 2*5 0.144 .007Symbolic 6*10 0.125 .004Table 4.13: The performances of the di�erent architectures with high neuron sensitivitywhen TD learning is applied. Simulations were repeated 10 times. The best RMS after atest was kept as the �nal result of a simulation.sensitivities, the symbolic rules architecture obtains the best results. When using highneuron sensitivities, the architectures must consist of many parameters to be able togeneralize well. The symbolic rules architecture is the only architecture which obtains thesame performance levels when low or high initial neuron sensitivities are used. The other

62 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKSarchitectures obtain much better results when using a low number of hidden units withlow neuron sensitivity to learn the smooth game evaluation function for the endgame ofbackgammon.Experiment 2 : Supervised vs. TD LearningFor this experiment we used longer training times to really compare supervised to TDlearning. For all simulations a single network is used with 10 hidden units. We compareits performance on supervised learning on a learning set size of 500 and 5,000 examples,and on TD learning with or without combining supervised learning on 500 examples.Table 4.14 shows all results of the experiments when initial neuron sensitivities of 1.0 areused. The RMS is computed after every 40,000 presented learning samples. The totalnumber of iterations for all methods is 800,000, so the RMS is computed 20 times for eachsimulation. Method nr games or epochs RMS SD500 examples 1,600 0.101 0.0065,000 examples 160 0.044 0.002TD learning 130,000 0.080 0.002TD + 500 examples 65,000 + 800 0.068 0.003Table 4.14: The results of training a single network with 10 hidden units on supervisedlearning and TD learning. The method speci�es if supervised learning is used, TD learningis used or a mixture of TD and supervised learning is used. The simulations were repeated5 times.The results show that using a large example set works best. Overtraining does notoccur and the obtained RMS show that the single network is able to accurately approx-imate the desired game evaluation function. Further training and using larger learningsets will improve the obtained approximation.We can see in �gure 4.9 that with a learning set size of 500 examples overtrainingoccurs. This problem does not occur with TD learning or the mixture of TD learning andsupervised learning. Both methods obtain better results than supervised learning on thesmall learning set of 500 examples. The mixture of TD learning and supervised learningworks better than either one of these methods alone. So it seems that this combination isadvantageous. When using TD learning, one could try to construct a small set of learningexamples, so that the combination of TD learning and supervised learning can be triedout. In our experiment, the supervised learning set is very accurate, but some researchershave tried to use action replay so that examples acquired by TD learning can be reused[Lin93]. When these examples are known to be accurate, it might be a good idea to storethese examples so that a supervised learning set is created.

4.3. THE ENDGAME OF BACKGAMMON 63

 500

 TD + 500

 5000

 0.13

 0.12

 0.11

 0.10

 0.09

 0.08

 0.07

 0.06

 0.05

 0.04

 500000

RMS

iterations

 TD

Figure 4.9: The learning curves for a single network with 10 hidden units when longertraining times are used. The methods which are studied are : supervised learning on 500and 5,000 examples, TD learning and a mixture of TD learning and supervised learning on500 examples. After each 40,000 learning examples the RMS is computed. The learningcurves were averaged over 5 simulations.

64 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKSFinally we studied if a lower error of the approximation of the evaluation functionmeans that the control policy of the agent is better. For this we used the trained architec-tures from the previous experiment. A tournament between the following architectureswith the given RMS error was held� 5,000 examples architecture : RMS = 0.046� 500 examples architecture : RMS = 0.100� TD learning architecture : RMS = 0.080� Mixture TD + 500 architecture : RMS = 0.070� Rules which bear-o� as many pieces as possible. If di�erent moves take o� the sameamount of pieces, one is chosen randomly.Each competition is repeated 5 times in which every time 5,000 games are played. TableMethod player A Method player B equity player A SD500 examples 5,000 examples 0.014 0.011500 examples TD learning 0.002 0.008500 examples Mixture TD+500 0.013 0.010500 examples Rules 0.012 0.0195,000 examples TD learning 0.007 0.0105,000 examples Mixture TD+500 -0.006 0.0105,000 examples Rules -0.013 0.017TD learning Mixture TD+500 0.005 0.007TD learning Rules 0.006 0.011Mixture TD+500 Rules 0.016 0.004Table 4.15: The tournament between the single network which is trained by di�erentmethods and a simple knowledge base which takes o� as many pieces as possible. Eachcompetition consists of 5,000 test games and is repeated 5 times.4.15 shows that when the di�erences in the accuracy of the evaluation function are sig-ni�cant, this does not mean that the control policy is also better. It is a big surprise thatthe architecture which is trained on 500 supervised learning samples wins against thearchitecture which is trained on 5,000 supervised learning samples. Although the latterarchitecture approximates the desired evaluation function much more accurate, this doesnot mean that the control policy is also better. It is possible that the �rst architecturehas better learned to discriminate between possible positions, and that minor di�erencesin the evaluation of di�erent moves are less of a problem for this architecture, because it

4.3. THE ENDGAME OF BACKGAMMON 65has reached its maximal approximation. The other architectures were all able to improvetheir approximation, and maybe this is why small di�erences in the evaluation of di�erentpositions are more of a problem for these architectures. Look ahead strategies might bea method to exploit the di�erences in the accuracy of the evaluation function, but we didnot research this possibility.Although higher accuracy of an approximation of an evaluation function does notmean that the control policy of the agent performs better, it is very useful to have anaccurate approximation. When we would like to learn the whole game of backgammon,we will use the approximation for the endgame situation to adapt evaluations of positions.When the approximation of the endgame is very accurate, there is no need to play thegame further, because reinforcement can be returned when we reach the endgame.4.3.4 DiscussionThe di�erent architectures have been used to learn the game evaluation function for theendgame of backgammon. When supervised learning on a small learning set is used tolearn the evaluation function, there is no need to use a modular architecture to learnthis part of the game (see table 4.11). The game evaluation function of the endgame ofbackgammon is very smooth so when an architecture decomposes the input space, thegeneralization performance only decreases.When TD learning is used, the HME, Meta-Pi and monolithic architectures obtain thesame performance levels, and the symbolic rules architecture obtains a lower performancelevel (see table 4.12). This latter may be caused, because the architecture uses moreexperts, so that some experts are trained on a small number of learning samples. The e�ectof neuron sensitivity was studied and the results show that increasing the initial neuronsensitivity results in lower performance levels, except for the symbolic rules architecture.We have also compared supervised learning to TD learning with a single network.When a large amount of perfect examples is available, supervised learning on these learn-ing samples obtains the best results. However, when only a small amount of perfect exam-ples is available, this results in overtraining of the network. That is why TD learning worksbetter. When TD learning is applied, the generalization error gradually decreases if moregames are being played. This is not surprising, because Dayan has proved that TD learn-ing always converges to at least a local minimum [Dayan94]. We have also studied usinga mixture of supervised and TD learning. This method works better than either of thesemethods alone. So when only a small learning set is available, this may computationallybe more e�ective than constructing a large learning set with dynamic programming. An-other method which might be advantageous is to store examples acquired by TD learning,so that these examples can be reused [Lin93].TD learning of the game evaluation function for the endgame of backgammon is rea-sonable e�cient. When a large amount of training games are played, the architecture

66 CHAPTER 4. TD LEARNING WITH MULTIPLE NETWORKScan reach a high level of precision. One surprising result is that when an architecturebetter approximates the game evaluation function than another architecture, this doesnot mean that the architecture also plays better (see table 4.15). However, it is veryimportant to have a very precise approximation of the game evaluation function for theendgame, because this approximation may be used to return reinforcement for learningstages before the endgame. By using this kind of hierarchical learning [Lin93], there is noneed to play the game any further, so that the learning process will become faster.

Chapter 5Conclusion
5.1 DiscussionWe have studied learning game evaluation functions with modular neural network archi-tectures. Game evaluation functions usually contain many discontinuities, which makesthem di�cult to learn. To make the learning process faster and the acquired approxi-mation more accurate, we studied using multiple expert networks which are located insubspaces of the total input space. We have described two learning algorithms to dividethe input space in subspaces. The �rst is the hierarchical mixtures of experts (HME)methodology in which a likelihood function of generating the desired outputs is maxi-mized, so that expert networks are located in regions where they outperform the otherexperts. The second methodology uses a Meta-Pi gating network to learn to locate expertnetworks where they can help to minimize the error of the architecture as a whole. Thesearchitectures are compared with monolithic architectures and architectures which use apriori knowledge to divide the input space in non-overlapping regions.All architectures have been studied on learning a simple discontinuous function. Theresults show that using the HME architecture with a winner takes all selection strategyof the experts, and the architecture which uses symbolic rules to divide the input spaceat the discontinuity, outperform the other architectures.In our work we have used an extension of back-propagation, which is able to adaptneuron sensitivities. An activation function of a neuron multiplies the neuron sensitivitywith the input, after which the output is computed as normal. We have studied ini-tializing the neuron sensitivities on high values, so that the activation functions becomesteeper. The results of using low and high neuron sensitivities indicate a big advan-tage of using hidden units with high neuron sensitivities when learning a discontinuousfunction (see section 3.4.2). The results also show that using the learning rule extendedback-propagation which learns neuron sensitivities results in faster learning compared tonormal back-propagation. 67

68 CHAPTER 5. CONCLUSIONThe methodologies are used to learn to play the games of tic-tac-toe and the endgameof backgammon. We have described how temporal di�erence (TD) learning can be usedto generate learning samples from played games. We have seen that TD learning is ane�cient way to learn a control policy for an agent. The obtained results on learning thediscontinuous game evaluation function of tic-tac-toe show that by using architectureswhich contain many adjustable parameters and high neuron sensitivities, we can getclose to the maximal performance level of playing tic-tac-toe against a �xed opponent.When more parameters are used in an architecture, the performance improves. Usingmultiple expert networks is an e�cient way to use many parameters, because we canselect independent neural networks for evaluating di�erent moves and positions, which ismuch faster than always invoking one large single network.Experiments with the endgame of backgammon show that TD learning is a viablealternative for supervised learning when only a small amount of training examples isavailable. Overtraining of the architectures does not occur with TD learning, and itis to be expected that the generalization error will gradually decrease. A combinationof supervised learning and TD learning obtains better results than using one of theselearning paradigms alone. For supervised learning on a small example set, it was notadvantageous to use modular neural network architectures. This can be explained by thefact that the evaluation function is very smooth in this part of the game. For learning asmooth evaluation function, the use of modular architectures and high neuron sensitivityis not advantageous. However, when learning a discontinuous game evaluation function,the opposite is true.5.2 Prospects and Future WorkThe recent interest in neural networks and reinforcement learning might make an enor-mous contribution to machine learning. When computers are getting larger and faster,new challenging domains could be conquered. We want to make a contribution to thisresearch by showing how accurate game evaluation function can be approximated, andhow modular architectures can be applied to speed up the learning process.For this we want to use the game of backgammon. The state space of backgammonwill be divided in some non-overlapping subspaces by symbolic rules, which results inthe fastest architecture. These symbolic rules will be acquired by a short knowledgeengineering period. Hereafter, many expert neural networks and TD learning will be usedto learn to evaluate positions which fall in the di�erent classes.When this learning process is in an advanced state, we will study how the architec-ture can be combined with the HME and Meta-Pi architectures, CMACS or fuzzy logic.This could improve the generalization performance which results in a smooth evaluationfunction. To save time, we will look at ways to improve the generalization performancewithout having to invoke too many experts at the same time.

5.2. PROSPECTS AND FUTURE WORK 69Finally, we want to study the use of modular architectures and high neuron sensitivitiesby researching TD learning of game evaluation functions of games like draughts, checkersand chess, because these games contain a large number of discontinuities. We hope thatthis research will be performed so that in future more di�cult games can be solved, andthe expressive power of large neural network architectures can be really evaluated.

Bibliography[Aarts89] E.H.L. Aarts & Jan Korst. Simulated Annealing and Boltzmann Machines.Wiley, Chichester, 1989.[Anthony91] M. Anthony. Uniform Convergence and Learnability. PhD thesis, Univer-sity of London, 1991.[Berliner77] H. Berliner. Experiences in evaluation with BKG - a program that playsbackgammon. Proceedings of IJCAI, (428-433), 1977.[Boyan92] J. Boyan. Modular Neural Networks for Learning Context-DependentGame Strategies. Thesis report B.S. , University of Chicago, 1992.[Cybenko89] G. Cybenko. Approximation by Superpositions of a Sigmoidal Function.Math. Control Signals Systems, 2, (303-314), 1989.[Dayan92] P. Dayan. The convergence of TD(�) for general �. Machine Learning, 8,(341-362), 1992.[Dayan94] P. Dayan & T.J. Sejnowski. TD(�) Converges with Probability 1. MachineLearning, 14, (295-301), 1994.[Esposito93] F. Esposito, D. Malerba & G. Semeraro. Decision Tree Pruning as a Searchin the State Space. In P. B. Brazdil (ed.), Proceedings of the 1993 EuropeanConference on Machine Learning, (166-184), Vienna, 1993.[Fox91] D. Fox, V. Heinze, K. M�oller, S. Thrun & G. Veenker. Learning by error-driven decomposition. In T.Kohonen, K. Mkisara, O. Simular & J. Kangas(eds.), Proceedings of the 1991 International Conference on Arti�cial Neu-ral Networks, (207 - 212), Amsterdam, North-Holland, 1991.[Gruau92] F. Gruau. Genetic synthesis of boolean neural networks with a cell rewrit-ing developmental process. In L.D. Whitley & J.D. Scha�er (eds.), Inter-national Workshop on Combinations of Genetic Algorithms and NeuralNetworks, (55-72), Baltimore, MD: IEEE, June 1992.70

BIBLIOGRAPHY 71[Hakala94] J. Hakala, C. Koslowski & R. Eckmiller. 'Partition of Unity' RBF Net-works are Universal Function Approximators. Neural Networks, 5, (459-462), 1994.[Hampshire89] J.B. Hampshire & A. Waibel. The Meta-Pi network: Building distributedknowledge representations for robust pattern recognition. Tech. ReportCMU-CS-89-166, Carnegie Mellon University, August 1989.[Hashem93] S. Hashem. Optimal Linear Combinations of Neural Networks. PhD thesis,Tech. Report SMS 94-4. Purdue University, December 1993.[Jacobs91] R.A. Jacobs, M.I. Jordan, S.J. Nowlan & G.E. Hinton. Adaptive mixturesof local experts. Neural Computation, 3(1), 1991.[Jordan92] M.I. Jordan & R.A. Jacobs. Hierarchies of adaptive experts. In J. Moody, S.Hanson & R. Lippmann (eds.), Advances in Neural Information ProcessingSystems, 4, (985-993), San Mateo, CA: Morgan Kaufmann, 1992.[Jordan93] M.I. Jordan & R.A. Jacobs. Hierarchical mixtures of experts and the EMalgorithm. Submitted to Neural Computation, Tech. Rep. 9301, April 1993.[Judd90] J.S. Judd. Neural Network Design and the Complexity of Learning. TheMIT press, Cambridge, 1990.[Krose92] B.J.A. Kr�ose & P. van den Smagt. An Introduction to Neural Networks.July 1992.[Lin93] L.J. Lin. Reinforcement Learning for Robots Using Neural Networks. PhDthesis, Tech. report CMU-CS-93-103, Carnegie Mellon University, Pitts-burgh, January 1993.[Nadi91] F. Nadi. Topological Design of Modular Neural Networks. In T. Koho-nen, K. M�akisara, O. Simular & J. Kangas (eds.), Proceedings of the 1991International Conference on Arti�cial Neural Networks, (213 - 218), Ams-terdam, North-Holland, 1991.[Nowlan91] S.J. Nowlan. Soft Competitive Adaption: Neural Network Learning Al-gorithms based on Fitting Statistical Mixtures. PhD thesis, Tech. reportCMU-CS-91-126, Carnegie Mellon University, Pittsburgh, April 1991.[Rumelhart86] D.E. Rumelhart, G.E. Hinton & R.J. Williams. Learning internal rep-resentations by error propagation. In D.E. Rumelhart & J.L. McClelland(eds.), Parallel Distributed Processing: Explorations in the Microstructureof Cognition, Volume 1, Chapter 8, The MIT press, 1986.

72 BIBLIOGRAPHY[Samuel59] A. Samuel. Some studies in machine learning using the game of checkers.IBM Journal of Research and Development, 3, (210-229), 1959.[Samuel67] A. Samuel. Some studies in machine learning using the game of checkers:II - recent progress . IBM Journal of Research and Development, 11, (601-617), 1967.[Scha�er92] J.D. Scha�er, D. Whitley & L.J. Eshelman. Combinations of Genetic Al-gorithms and Neural Networks: A Survey of the State of the Art. In L.D.Whitley & J.D. Scha�er (eds.), International Workshop on Combinationsof Genetic Algorithms and Neural Networks, (1-37), Baltimore, MD: IEEE,June 1992.[Schraudol94] N.N. Schraudolph, P. Dayan & T.J. Sejnowski. Temporal di�erence learn-ing of Position evaluation in the Game of Go. In J.D. Cowan, G. Tesauro &J. Alspector (eds.), Advances in Neural Information Processing, 6, MorganKaufmann, San Fransisco, 1994.[Simon92] N. Simon, H. Corporaal & E. Kerckho�s. Variations on the Cascade-Correlation learning architecture for fast convergence in robot control.Neuro Nimes, 5, (455-464), 1992.[Sperduti92] A. Sperduti. Speed Up Learning and Network Optimization With Ex-tended Back Propagation. Tech. report TR-10/92, University of Pisa, May1992.[Sutton88] R. Sutton. Learning to predict by the methods of temporal di�erences.Machine Learning, 3, (9-44), 1988.[Tesauro89] G. Tesauro. Neurogammon : A neural network backgammon learning pro-gram. In D.N.L. Levy & D.F. Beal, (eds.), Heuristic Programming in Ar-ti�cial Intelligence : The �rst Computer Olympiad, Chichester, England,Ellis Horwood lim, 1989.[Tesauro92] G. Tesauro. Practical issues in temporal di�erence learning. MachineLearning, 8(3/4), (257-277), Kluwer Academic Publishers, May 1992.[Thrun92] S.B. Thrun. E�cient Exploration in Reinforcement Learning. Tech. ReportCMU-CS-92-102, Carnegie Mellon University, Pittsburgh, 1992.[Tresp93] V. Tresp, J. Hollatz & S. Ahmad. Network structuring and training us-ing rule-based knowledge. Advances in Neural Information Processing Sys-tems, 5, (871-878), 1993.

BIBLIOGRAPHY 73[Vysniausk93] V. Vy~sniauskas, F.C.A. Groen & B.J.A. Kr�ose. The optimal numberof learning samples and hidden units in function approximation with afeedforward network. Tech. Report CS-93-15, University of Amsterdam,November 1993.[Watkins92] C.J.C.H. Watkins & P. Dayan. Q-Learning, Machine Learning, 8, (279-292), 1992.[Whitehead92] S.D. Whitehead. Reinforcement Learning for the Adaptive Control of Per-ception and Action. PhD thesis, University of Rochester, February 1992.

Appendix ATemporal Di�erence Learning
A.1 TD(�)-methodsTemporal di�erence (TD) methods [Sutton88] are a class of learning procedures specializedfor prediction problems. In prediction problems, an observation or state vector is usedto predict the �nal outcome with e.g. a neural network. So we can predict the outcomeof a game when we see a board position, and use this prediction as the evaluation ofthe position. With such an evaluation function, we can perform tasks by comparing theevaluations of the states which result from taking all possible actions in the current state.So we want to use a neural network to model an evaluation function V given byV (xt) = E(rjxt)with :xt : the state or observation at time t.E(rjxt) : the expected outcome or result r of the game when we are in state xt.We would like to learn this model with a neural network which is based on minimizingthe error over a learning set. We can generate a learning set by playing a game withour network. Weights are adjusted according to an error measure Et. We can de�ne twopossible ways to de�ne the error measure. We might use a supervised learning procedurewhich de�nes the error as the di�erence between V (xt) (the predicted outcome) and r(the actual outcome) Et = 12(r � V (xt))2The total error E of a played game is E = MXt=1Et74

A.1. TD(�)-METHODS 75We minimize the total error by gradient descent with learning rate ��W = MXt=1�� @Et@Wt = MXt=1�� @Et@V (xt) @V (xt)@WtWe may write this as �W = MXt=1 �(r � V (xt))rwV (xt) (A:1)in which the gradient rwV (xt) is computed by the back-propagation procedure. Thissupervised paradigm compares the evaluations of the state vectors with the actual out-come of the experience, but does not use the di�erences between temporally successivepredictions. Thus, learning is not possible when the result of the game is unknown.Unlike the previous method which compares V (xt) with r, there are TD methodswhich are driven by the error or di�erence between temporally successive predictionsV (xt+1)�V (xt). This makes learning possible when the result is (still) unknown. We canconstruct a TD method which makes the same updates as equation A.1 by rewriting theerror r � V (xt) as r � V (xt) = MXk=t(V (xk+1)� V (xk)) (A:2)Where V (xM+1) = r. Now by using A.2, we can rewrite A.1 as�W = MXt=1 � MXk=t(V (xk+1)� V (xk))rwV (xt)= MXt=1 �(V (xt+1)� V (xt)) tXk=1rwV (xk)We can convert this rule to an incremental update rule�Wt = �(V (xt+1)� V (xt)) tXk=1rwV (xk) (A:3)Equation A.3 is the supervised or TD(1) rule. The advantage of TD(1) compared to A.1 isthat the computations to perform back-propagation are spread out over time. However itdoes not really use the information in successive predictions either. The advantage of theTD-methods is that they can use the information contained in intermediate predictionsand do not rely too much on the actual outcome. When the di�erence V (xt+1)� V (xt) isvery large, this di�erence is in equation A.3 used to equally adjust the evaluation of statesx1,: : :,xt. TD(�) methods make greater alterations to more recent states by weighting therecency exponentially with �. The general TD(�) algorithm has the following form�Wt = �(V (xt+1)� V (xt)) tXk=1�t�krwV (xk)

76 APPENDIX A. TEMPORAL DIFFERENCE LEARNINGwith :�Wt : the adaptions of the weights of the network at time t.V (xt) : the network's evaluation of state xt.� : the learning rate.0 � � � 1 : the discount factor which is used to weight TD(0) errors exponentially byrecency.The case � = 1 corresponds to the supervised pairing of each input pattern with the�nal reward signal r (= V (xM+1)). The case � = 0 corresponds to an explicit pairingof each input pattern xt with the next prediction V (xt+1). In this case the di�erenceV (xt+1)� V (xt) is used to direct the network through the weight space. We will call thisdi�erence the TD(0) error.Until now we have seen that temporal di�erence learning can be used after a sequenceof M actions which results in a �nal reinforcement. It can also be used for other classes ofproblems. A class which generalizes the previous class is when actions at from nonterminalstates xt are allowed to return reinforcement r(xt; at). When we allow non-absorbinggoal states, we might want the evaluation V (xt) of a state to approximate the expecteddiscounted cumulative reward Vt when we start in state xtVt = E(1Xk=0 kr(xt+k; at+k)jxt)Where is the discount factor and determines how much the agent has to aim at im-mediate and future rewards. For this class of problems we can write down the followingrecursive equation [Sutton88] V (xt) = r(xt; at) + V (xt+1)The di�erence between both sides is the TD(0) error : r(xt; at) + V (xt+1)� V (xt). Weuse this TD(0) error to construct the following incremental TD learning rule�Wt = �(r(xt; at) + V (xt+1)� V (xt)) tXk=1�t�krwV (xk)Example : What is the e�ect of � ?Suppose we have taken two actions which results in a win, the starting position is x1 andwhite's evaluations of the positions are :V (x1) = 0:6 V (x2) = 0:4 V (x3) = 0:8.For notational purposes we will de�ne the �nal reinforcement r as V (x4) = 1:0.

A.2. MARKOV DECISION PROCESSES 77� = 1 gives :�W1 = � * (0.4 - 0.6) * rwV (x1)�W2 = � * (0.8 - 0.4) * (rwV (x1) + rwV (x2))�W3 = � * (1.0 - 0.8) * (rwV (x1) + rwV (x2) + rwV (x3))This sums up to :�W = � * ((1.0 - 0.6) * rwV (x1) + (1.0 - 0.4) * rwV (x2) + (1.0 - 0.8) * rwV (x3))which is a supervised pairing of each prediction with the actual outcome of the experience.� = 0 gives :�W1 = � * (0.4 - 0.6) * rwV (x1)�W2 = � * (0.8 - 0.4) * rwV (x2)�W3 = � * (1.0 - 0.8) * rwV (x3)Which associates each observation vector with only the next time-step's prediction.� = 0.5 gives :�W1 = � * (0.4 - 0.6) * rwV (x1)�W2 = � * (0.8 - 0.4) * (0.5 * rwV (x1) + rwV (x2))�W3 = � * (1.0 - 0.8) * (0.25 * rwV (x1) + 0.5 * rwV (x2) + rwV (x3))This sums up to :�W = � * (0.05 * rwV (x1) + 0.5 * rwV (x2) + 0.2 * rwV (x3))which lies in between the two extremes.A.2 Markov Decision ProcessesWe want to learn a control policy which maximizes an agent's performance level. Thecontrol policy has to be able to di�erentiate between possible actions in a particular stateand to choose the action with the highest merit. Like [Whitehead92], we will use Markovdecision processes to de�ne a mathematical framework with which we can describe thetask. The Markov property states that a description of the current state is su�cient tochoose between the possible actions so that the agent's performance level is maximized.The Markov property is violated when an action depends on actions which have beenperformed earlier (e.g. when a box might contain a banana, because the agent has put abanana in the box, but is not able to see this in the current state). For such tasks, re-current networks have been proposed [Lin93], but in this work we concentrate on playinggames and the Markov property holds. We will also concentrate on deterministic worlds,so an action in a particular state always results in the same next state (the transitionprobability function of states and actions is a true function). The discussion can be ex-tended to non-deterministic world by taking the probabilities of multiple action outcomesinto consideration.

78 APPENDIX A. TEMPORAL DIFFERENCE LEARNINGWe will �rst de�ne the Markov decision process :xt : the state in which the agent is at time t.at : the action the agent makes at time t.A(xt) : the set of possible actions in state xt.T (xt; at) : the state xt+1 which results from performing action at in state xt.r(xt; at) : the reinforcement which is emitted when the agent makes action at in state xt.�(xt) : the action the agent will select when it is in state xt and follows the control policy�.In TD learning we learn an evaluation function of states (AHC-learning) or an evaluationfunction of state-action pairs (Q-learning). The control policy can use this evaluationfunction to choose an action in a particular state. To learn the evaluation function, sim-ulations with the agent are performed, so that the agent can evaluate its own actionsand the states it was in. When the agent has repeatedly tried all state-action pairs, shecan learn which actions are expected to have the highest merit in each state. For tryingout all state-action pairs, the control policy is usually not strictly followed while learning.Instead some kind of exploration strategy is used, in which the action which is expectedto have the highest merit has the largest probability of being chosen. This means thatat = �(xt) is not always valid.A.3 AHC-learningAHC-learning is used to learn an evaluation function (V-function) of states. We want theevaluation V (xt) of a state to approximate the discounted cumulative reward Vt when westart in state xt Vt = E(M�tXk=0 kr(xt+k;�(xt+k))jxt) (A:4)Where is the discount factor and determines how much the agent has to aim at im-mediate and future rewards. For learning a game evaluation function, we set to -1which expresses the fact that the evaluation of a position for player 1 is the negative ofthe evaluation of a succeeding position for player 2. For such classes of problems, thereinforcement r(xM ; aM) or r which is returned when the last move is played, is the onlyreinforcement we can use. When an optimal V-function has been learned and the controlpolicy � is followed throughout the future, the V-function must satisfyV (xt) = r(xt;�(xt)) + V (xt+1) (A:5)

A.4. Q-LEARNING 79When the V-function is not optimal, the di�erence between both sides in equation A.5can be used to change the V-function. This di�erence or TD(0)-error is de�ned byE0t = [r(xt; at) + V (xt+1)]� V (xt)Where we have de�ned V (xM+1) = 0. We will use [Lin93] to de�ne the TD(�)-error asE�t = M�tXk=0 (�)kE0k+t (A:6)Now we de�ne V 0(xM) = r(xM ; aM)V 0(xt) = V (xt) + E�tThis can be rewritten as V 0(xM) = r(xM ; aM)V 0(xt) = r(xt; at) + [(1� �)V (xt+1) + �V 0(xt+1)]V 0(xt) is the estimated evaluation for state xt. We can create the following set of examples:f(x1; V 0(x1)); : : : ; (xM ; V 0(xM))g and present these to the back-propagating module tominimize the TD(�)-errors.A.4 Q-learningQ-learning learns an evaluation of state-action pairs. We want the Q-value Q(xt;�(xt))to approximate the discounted cumulative reward in equation A.4. When an optimalQ-function has been learned, and the control policy � chooses the action which results inthe maximal Q-value, the Q-function must satisfyQ(xt; at) = r(xt; at) + MaxfQ(xt+1; at+1)jat+1 2 A(xt+1)gWe can rewrite this as followsQ(xt; at) = r(xt; at) + Q(xt+1;�(xt+1)) (A:7)When the Q-function is not optimal, the di�erence between both sides in equation A.7can again be used to change the Q-function. The TD(0)-error is now de�ned byE0t = [r(xt; at) + Q(xt+1;�(xt+1))]�Q(xt; at)

80 APPENDIX A. TEMPORAL DIFFERENCE LEARNINGThe TD(�)-error can be de�ned as in equation A.6. We de�neQ0(xM ; aM) = r(xM ; aM)Q0(xt; at) = Q(xt; at) + E�t() Q0(xM ; aM) = r(xM ; aM)Q0(xt; at) = r(xt; at) + [(1� �)Q(xt+1;�(xt+1)) + �Q0(xt+1; at+1)]Q0(xt; at) is the estimated evaluation for performing action at in state xt. We can presentthe set of examples f(x1; Q0(x1; a1)); : : : ; (xM ; Q0(xM ; aM))g to the back-propagating mod-ule to minimize the TD(�)-errors.

Appendix BExtended Back-propagationExtended back-propagation [Sperduti92] is a learning rule which introduces a new pa-rameter to speed up the learning process of normal back-propagation and to make thenetwork �nd learning rates for individual neurons itself. Neuron sensitivity is used in theactivation function Fi(x), e.g. a sigmoid, in the following wayai = Fi(ii) = 11 + e�ii�iSo the activation ai of a unit depends on the weighted sum over its input ii multiplied withits neuron sensitivity �i. When the sensitivity of a neuron is very low, its activation willalways vary around the same value so that the neuron is less important for the overallnetwork and it will adapt itself slower. Sperduti found the following learning rule foradapting the neuron sensitivities by using gradient descent��i = �ii�i (B:1)With � as the learning rate for the neuron sensitivity and �i the gradient which is com-puted by back-propagation (see equations 3.3 and 3.4).Proof :The error function which is to be minimized is the mean squared error over the outputsE =Xj 12(dj � aj)2By using gradient descent we can change the neuron sensitivities. We can de�ne theneuron sensitivity update rule as��i = ��2 Xj @(dj � aj)2@�i81

82 APPENDIX B. EXTENDED BACK-PROPAGATION= �Xj @aj@�i (dj � aj) (B.2)1) For an output unit the learning rule follows from the steps:From equation B.2 and because ai only depends on �i��i = �@ai@�i (di � ai) (B:3)A simple derivation gives @ai@�i = iiF 0i (ii) (B:4)Substituting equation B.4 in B.3 gives��i = �iiF 0i (ii)(di � ai)When we use the fact that back-propagation computes �i = F 0i (ii)(di � ai) (see equation3.3) we get the learning rule B.1.2) For a hidden unit the learning rule follows from the steps:First we use the back-propagation chain rule and change indices to de�ne equation B.2 as��k = �Xi F 0i (ii)(di � ai)Xj wij @aj@�kBecause ak only depends on �k��k = �Xi F 0i (ii)(di � ai)wik @aj@�k (B:5)Substituting B.4 in B.5 gives��k = �Xi F 0i (ii)(di � ai)wikikF 0k(ik)Again we make use of the fact that back-propagation has computed �k = F 0k(ik)Pi �iwikand this results again in the learning rule B.1.The steepness parameters are adjusted after the weight changes. When the networkhas been loading examples for a long time and is not able to learn them, the sensitiv-ity of the output neurons will gradually decrease. Sperduti showed that a method toprune hidden units away can be easily integrated in the architecture. Neurons with avery low neuron sensitivity can be pruned away, because this hardly changes the overallperformance.

Appendix CPerfect Performance against TTTThe maximal obtainable performance level against the knowledge base which plays tic-tac-toe (see section 4.2) is about 0.614. In the following we will call this opponent TTT.The maximal performance level against TTT can be computed in two steps by forwarddynamic programming:C.1 The Agent Begins the Game- When the agent begins, she must play in a corner to maximize the probability that TTTwill make a mistake.- TTT plays a random move : If this move is not in the middle (see �gure C.1), then theagent can win. The chance that TTT will not play in the middle is 7/8. This means thatthe expected payo� E(rjxt) = 7/8.- if TTT plays in the middle then the agent must play in the corner of the same diagonalXFigure C.1: X wins when TTT plays at . =) E(rjxT) = 7/8.to maximize her winning probability (see �gure C.2). X wins when TTT plays at . =)Probability = 1/3 83

84 APPENDIX C. PERFECT PERFORMANCE AGAINST TTT=) The expected payo� when the agent begins the game:7/8 * 1 + 1/8 * 1/3 * 1 = 11/12C.2 TTT Begins the GameWhen TTT (O) begins the game, there are three possible ways :- Possibility 1 (see �gure C.3), TTT plays in a corner and the agent must play in theopposite corner.� When TTT plays at . he will lose the game.� When TTT plays at a �eld with 1/5 in it, this means that the agent can play amove after which she has an expected game-result of 1/5.� When TTT plays on an empty �eld the result of the game is maximal a draw.=) equity = 2/7 + 2/7 * 1/5 = 12/35- Possibility 2 (see �gure C.4), TTT plays in the middle of a line, but not in the centre.The agent plays in the corner aligned to white's piece.=) equity = 2/7 + 2/7 * 1/5 = 12/35- Possibility 3 (see �gure C.5), TTT plays in the centre.=) equity = 2/7 * 1/5 = 2/35=) expected payo� for the agent when TTT begins : 4/9 * 12/35 + 4/9 * 12/35 + 1/9* 2/35 = 98/315C.3 Total EquityThe total expected payo� for the agent = 1/2 * 11/12 + 1/2 * 98/315 = 1547/2520,1547/2520 � 0.614

C.3. TOTAL EQUITY 85
X .O. XFigure C.2: X wins when TTT plays at . E(rjxt) = 1/3.O .. 1/51/5 XFigure C.3: Possibility 1 : TTT plays in a corner, the agent plays in the opposite corner.E(rjxt) = 12/35. X O .1/5 .1/5Figure C.4: Possibility 2 : TTT plays in the middle of a line, but not in the centre.The agent must play in an aligned corner for maximizing the expected payo�. E(rjxt) =12/35. X 1/51/5 O

Figure C.5: Possibility 3 : TTT plays in the centre, the agent plays in a corner to maximizethe expected payo�. E(rjxt) = 2/35.

