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Abstract

This article presents and evaluates best-match learning, a new approach to reinforcement learning

that trades off the sample efficiency of model-based methods with the space efficiency of model-

free methods. Best-match learning works by approximating the solution to a set of best-match

equations, which combine a sparse model with a model-free Q-value function constructed from

samples not used by the model. We prove that, unlike regular sparse model-based methods, best-

match learning is guaranteed to converge to the optimal Q-values in the tabular case. Empirical

results demonstrate that best-match learning can substantially outperform regular sparse model-

based methods, as well as several model-free methods that strive to improve the sample efficiency

of temporal-difference methods. In addition, we demonstrate that best-match learning can be suc-

cessfully combined with function approximation.

Keywords: reinforcement learning, on-line learning, temporal-difference methods, function ap-

proximation, data reuse

1. Introduction

In reinforcement learning (RL) (Kaelbling et al., 1996; Sutton and Barto, 1998), an agent seeks

an optimal control policy for a sequential decision problem in an unknown environment. Unlike

in supervised learning, the agent never sees examples of correct or incorrect behavior. Instead,

it receives only positive and negative rewards for the actions it tries. Its goal is to maximize the
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expected return, which is the cumulative discounted reward. When the sequential decision problem

is modeled as aMarkov decision process (MDP), the agent’s policy can be represented as a mapping

from each state it may encounter to a probability distribution over the available actions.

There are several approaches for learning the optimal policy of an MDP. Model-free, or di-

rect, methods find an optimal policy by using sample experience to directly update the state values,

which predict the return when following a specified policy, or the state-action values, or Q-values,

which predict the return when taking an action in a certain state and following a specified policy

thereafter. Once the optimal state or state-action values have been found, the optimal policy can

easily be constructed. A popular model-free approach is temporal-difference (TD) learning (Sut-

ton, 1988), which bootstraps value estimates from other values using updates based on the Bellman

equations (Bellman, 1957). Temporal-difference methods such as Q-learning (Watkins, 1989) and

Sarsa (Rummery and Niranjan, 1994; Sutton, 1996) require only O(|S ||A |) space and are guaran-

teed to find optimal policies in the limit. However, they often need prohibitively many samples in

practice.

Alternatively,model-based, or indirect, methods (Sutton, 1990; Moore and Atkeson, 1993; Braf-

man and Tennenholtz, 2002; Kearns and Singh, 2002; Strehl and Littman, 2005; Diuk et al., 2009)

use sample experience to estimate a model of the MDP and then compute the optimal values us-

ing this model via off-line planning techniques such as dynamic programming (Bellman, 1957).

Because the sample experience gathered by the agent is incorporated into the model, it is reused

throughout learning. As a result, some model-based methods can find approximately optimal poli-

cies with high probability using only a polynomial number of samples (Brafman and Tennenholtz,

2002; Kearns and Singh, 2002; Strehl and Littman, 2005). However, representing the model requires

O(|S |2|A |) space, which can be prohibitive in problems with large state spaces.

To avoid this limitation, methods can learn smaller, approximate models that require only a frac-

tion of the space used by full model-based methods. Kearns and Singh (1999) show that, when using

such sparse models, it is still possible to learn probably approximately correct policies. However, the

performance of such methods is bounded by the quality of the model approximation. Furthermore,

since the models may remain incorrect regardless of how much sample experience is gathered, such

methods are not guaranteed to find optimal policies even in the limit.

In this article, we present and evaluate best-match learning, a new approach for trading off the

strengths of model-based and model-free methods. Best-match learning works by approximating

the solution to a set of best-match equations, which combine a sparse model with a model-free

Q-value function constructed from samples not used by the model. We prove that, unlike regular

sparse model-based methods, best-match learning is guaranteed to converge to the optimal policy in

the tabular case. This guarantee holds even when using a last-visit model (LVM), which stores only

the last observed reward and transition state for each state-action pair.

In addition, we present an extensive empirical analysis, comparing the performance of best-

match learning to several algorithms with similar space requirements. These results demonstrate that

best-match learning can outperform regular sparse model-based methods, as well as several model-

free methods that strive to improve the sample efficiency of traditional TD methods. These include

eligibility traces (Sutton, 1988; Watkins, 1989), which update recently visited states in proportion to

a trace parameter; experience replay (Lin, 1992), which stores experience sequences and uses them

for repeated TD updates; and delayed Q-learning (Strehl et al., 2006), which uses optimistic Q-value

estimates to follow an approximately correct policy except for O(|S ||A | log(|S ||A |)) timesteps.
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The rest of this article is organized as follows. Section 2 formally defines the RL problem and

summarizes some basic theoretical results. As a conceptual stepping stone, Section 3 presents just-

in-time Q-learning, which postpones updates until the moment of revisit of the corresponding state.

We prove that, although just-in-time Q-learning performs the same number of updates as regular

Q-learning, the Q-values used in its update targets generally have received more updates. Thus, it

can improve performance without extra computation.

Section 4 extends the idea of using improved update targets to best-match learning with an

LVM, in which updates are continually revised such that the update targets constructed from them

are more accurate. We show that best-match LVM learning is related to eligibility traces, by proving

that under certain conditions they compute the same values. However, we also show that in arbitrary

MDPs best-match LVM learning, unlike eligibility traces, performs updates that are unbiased with

respect to initial state values. We demonstrate empirically that, as a result, it can substantially

outperform TD(λ) despite using similar space and computation.

Section 4 also addresses the control case. We propose an efficient best-match LVM algorithm

that uses prioritized sweeping (Moore and Atkeson, 1993), a well-known technique for prioritizing

model-based updates, to trade off extra computation for improved performance. We prove that,

despite the use of a sparse model, this approach converges to the optimal Q-values under the same

conditions as Q-learning. In addition, we demonstrate empirically that it can substantially outper-

form competitors with similar space requirements.

Section 5 proposes a best-match learning algorithm that uses an n-transition model (NTM),

which maintains an estimate of the transition probability for n transition states per state action pair.

By tuning n, the space requirements can be controlled. We prove that the algorithm converges to

the optimal Q-values for any value of n. We demonstrate empirically the resulting performance

improvement over regular sparse model-based methods with equal space requirements, whose per-

formance is bounded by the quality of the model approximation.

Section 6 proposes best-match function approximation, which demonstrates that best-match

learning is useful beyond the tabular case. In particular, we combine best-match learning with

gradient-descent function approximation and show empirically that it can outperform Sarsa(λ) and

experience replay with linear function approximation while using similar computation.

Section 7 discusses the article’s theoretical and empirical results, Section 8 outlines future work,

and Section 9 concludes.

2. Background

Sequential decision problems are often formalized as Markov decision processes (MDPs), which

can be described as 4-tuples 〈S ,A ,P ,R 〉 consisting of S , the set of all states; A , the set of all

actions; P s′

sa = P(s′|s,a), the transition probability from state s ∈ S to state s′ when action a ∈ A is

taken; and R sa = E(r|s,a), the reward function giving the expected reward r when action a is taken
in state s. Actions are selected at discrete timesteps t = 0,1,2, ... and r t+1 is defined as the reward

received after taking action a t in state s t at timestep t. An optimal policy π∗ is a mapping from S to

A that maximizes the expected discounted return

R t = r t+1+ γr t+2+ γ2 r t+3+ ...=
∞

∑
k=0

γkr t+k+1 ,

where γ is a discount factor with 0≤ γ≤ 1.
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Most solution methods are based on estimating a value functionV π(s), which gives the expected
return when the agent is in state s and follows policy π, or an action-value function Qπ(s,a), which
gives the expected return when the agent takes action a in state s and follows policy π thereafter.

In the control case, TD methods seek to learn the optimal action-value function Q∗(s,a), which
is the solution to the Bellman optimality equations (Bellman, 1957):

Q∗(s,a) = R sa+ γ∑
s′

P s′

samax
a′

Q∗(s′,a′) .

By iteratively updating the current estimate Q t(s,a) each time new experience is obtained, TD

methods seek to approximate this function. A common form for these updates is

Q t+1(s t ,a t)← (1−α)Q t(s t ,a t)+αυ t ,

where α is the learning rate and υ t is the update target. Many update targets are possible, such as

the Q-learning (Watkins and Dayan, 1992) update target

υ t = r t+1+ γmax
a

Q t(s t+1,a) .

Once the optimal action-value function has been learned, an optimal policy can be derived by taking

the greedy action with respect to this function.

Alternatively, the agent can take a model-based approach (Sutton, 1990; Moore and Atkeson,

1993), in which its experience is used to compute maximum-likelihood estimates of P andR . Using

this model, the agent can computeQ (or the value functionV ) using dynamic programming methods

(Bellman, 1957) such as value iteration (Puterman and Shin, 1978). Each time new experience is

gathered, the model is updated and Q recomputed.

In the control case, the agent faces the exploration-exploitation dilemma. The agent can either

exploit its current knowledge by taking the action that predicts the highest expected return given

current estimates, or it can explore by taking a different action in order to improve the accuracy of

the Q-value of that action.

Related to the control case is the policy evaluation case. In this case, the goal is to estimate the

value function V π(s) belonging to policy π. TD methods iteratively improve the current estimate,

Vt(s) each time new experience is obtained using the update rule

Vt+1(s t)← (1−α)Vt(s t)+αυ t .

An example of an update target for policy evaluation is the TD(0) update target

υ t = r t+1+ γVt(s t+1) .

3. Just-In-Time Q-Learning

In this section we present just-in-time (JIT) Q-learning, whose underlying principles form a stepping

stone towards best-match learning (introduced in Section 4). Like other lazy learning methods, for

example, Atkeson et al. (1997), JIT Q-learning postpones updates until they are needed. Wiering

and Schmidhuber (1998) showed that by postponing updates a computationally efficient version of

Q(λ) can be constructed that does not rely on placing a bound on the trace length. We prove that by

postponing Q-learning updates until a state is revisited, the update targets involved receive in general
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more updates, while the total number of updates of the current state stays the same. Empirically, we

demonstrate that this leads to a performance gain under a range of settings at similar computational

cost.

When a Q-learning update is postponed, the values on which the update target is based are from

a more recent timestep. This is advantageous, since Q-learning updates cause the expected error

in the values to decrease over time (Watkins and Dayan, 1992) and therefore more recent values

will be on average more accurate. However, postponing the update of a value for too long can

negatively affect performance, since a value that has not been updated might be used for action

selection or for bootstrapping other values. We start by showing that updates can be postponed until

their corresponding states are revisited, without negatively affecting performance.

Figure 1: A state transition sequence in which the initial state sA is revisited at timestep 4. The

small black dots in between states represent actions.

Consider the state-action sequence in Figure 1. State sA is visited at timestep 0 and revisited at

timestep 4. With the regular Q-learning update, the Q-value of state-action pair (sA,a0) gets updated
at timestep 1:

Q1(sA,a0) = (1−α)Q0(sA,a0)+α [r1+ γmax
a

Q0(sB,a)] ,

while at timesteps 2− 4 no update of (sA,a0) occurs, and therefore Q4(sA,a0) = Q1(sA,a0). The

update of the Q-value of (sA,a0) at timestep 1 can be considered premature, since the earliest use

of its value is in the update target for (sD,a3), which uses Q3(sA,a0). Therefore, the update of the
Q-value of (sA,a0) can be postponed until at least timestep 3 without negatively affecting the update

target for (sD,a3). When the update of (sD,a3) is also postponed, the earliest use of the Q-value of

(sA,a0) occurs at timestep 4, where it is used for action selection. Thus, if we postpone the update

of all state-action pairs, the update of the Q-value of (sA,a0) can be postponed until the timestep of

its revisit, without causing dependent state values or the action selection procedure to use a value of

(sA,a0) that has not been updated. We call this type of update a just-in-time update, since the update

is postponed until just before the updated value is needed.

To denote the Q-values resulting from just-in-time updates we use Q̃ throughout this section.

With just-in-time updates, no updates of (sA,a0) occur at timesteps 1-3, so Q̃3(sA,a0) = Q̃0(sA,a0).
Instead, an update occurs when sA is revisited:

Q̃4(sA,a0) = (1−α)Q̃3(sA,a0)+α [r1+ γmax
a

Q̃3(sB,a)] .

The regular and just-in-time update for (sA,a0) can be written in a more similar form by expressing

the value at timestep 4 in terms of the value at timestep 0:

Q4(sA,a0) = (1−α)Q0(sA,a0)+α[r1+ γmax
a

Q0(sB,a)] ,

Q̃4(sA,a0) = (1−α)Q̃0(sA,a0)+α[r1+ γmax
a

Q̃3(sB,a)] . (1)
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This formulation highlights the difference between the two update types. At timestep 4, under

both update schemes, the Q-value of (sA,a0) has received one update based on the same experience

sample. However, a just-in-time update uses the most recent value of the Q-values of sB, while a

regular update uses the value at the timestep of the initial visit of sA. By defining t∗ as the timestep

of the previous visit of state s t , we can write the two update types more generally as

Q t(s t ,a t∗) = (1−α)Q t∗(s t ,a t∗)+α[r t∗+1+ γmax
a

Q t∗(s t∗+1,a)] , (2)

Q̃ t(s t ,a t∗) = (1−α)Q̃ t∗(s t ,a t∗)+α[r t∗+1+ γmax
a

Q̃ t−1(s t∗+1,a)] . (3)

Note that we express the update target using only values from the past, making an implementation

easier to interpret. Note also that while s t = s t∗ per definition (because s t is revisited), s t∗+1 does not

have to be equal to s t+1, since the state transition from s t can be stochastic. Also, a t∗ is in general

not equal to a t .

When comparing the two update targets in more detail, two cases can be distinguished. See

Figure 2 for an example of each case. In the first case, state sB is not revisited before the revisit of

state sA. In this case, neither update type makes use of an updated Q-value for sB in the update target

for sA. The regular update does not since it uses the values of sB at timestep t∗, and the just-in-time

update does not since sB is not revisited and therefore no update has occurred yet at timestep t−1.

In the second case, state sB has been revisited before the revisit of sA. The regular update still uses

the value of sB from timestep t∗ and therefore does not use an updated value. The just-in-time update

on the other hand does use an updated value, since this update occurred at the revisit of sB. Note

that for a returning action (t∗ = t− 1), both update types have exactly the same form and this can

therefore be treated as an example of case 1. From these two cases, we can deduce the following

theorem, which is proven in Appendix A.

Theorem 1 Given the same experience sequence, each Q-value from the current state has received

the same number of updates using JIT updates (Equation 3) as using regular updates (Equation

2). However, each Q-value in the update target of a JIT update has received an equal or greater

number of updates as in the update target of the corresponding regular update.

Figure 2: Two cases in which state sA is revisited. In the first case, neither a regular update nor a

just-in-time update make use of an updated value for sB in the update target of sA, while

in the second case a just-in-time update does.

Algorithm 1 shows pseudocode for the implementation of just-in-time (JIT) Q-learning. The

agent stores the reward and transition state received upon the last visit of a state, that is, the last-

visit sample, in R′(s) and S′(s) respectively, while the action taken at the last visit of a state is stored
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Algorithm 1 JIT Q-Learning

1: initialize Q(s,a) arbitrarily for all s,a
2: initialize S′(s) = /0 for all s

3: loop {over episodes}
4: initialize s

5: repeat {for each step in the episode}
6: if S′(s) 6= /0 then

7: Q(s, ā)← (1−αsā) ·Q(s, ā)+αsā [R′(s)+ γmaxa′ Q(S
′(s),a′)] // ā= A(s)

8: end if

9: select action a, based on Q(s, ·)
10: take action a, observe r and s′

11: S′(s)← s′; R′(s)← r; A(s)← a

12: s← s′

13: until s is terminal

14: end loop

in A(s). If S′(s) = /0, state s has not been visited yet and no update can be performed. Note that the

last-visit sample is not reset at the end of an episode, but maintained across episodes.

Because JIT Q-learning uses more recent values in its update targets than regular Q-learning, we

expect a performance improvement over regular Q-learning. We test this hypothesis by comparing

the performance of JIT Q-learning with regular Q-learning on the Dyna Maze task (Sutton, 1990).

In this navigation task, depicted in Figure 3, the agent has to find its way from start to goal. The

agent can choose between four movement actions: up, down, left and right. All actions result in 0

reward, except for when the goal is reached, which results in a reward of +1. The discount factor

γ is set to 0.95. We use a deterministic as well as a stochastic environment to test the generality of

the hypothesis. In the stochastic version, we employ a probabilistic transition function: with a 20%

probability, the agent moves in an arbitrary direction instead of the direction corresponding to the

action.

To compare performance, we measure the average return each method accrues from the start

state during the first 100 episodes in the deterministic case, averaged over 5000 independent runs

per method. For the stochastic version, we measure the return during the first 200 episodes. Each

method uses ε-greedy action selection with ε = 0.1. In the deterministic case, we use a constant

learning rate of 1, while in the stochastic case we use an initial learning rate α0 of 1 that is decayed

in the following manner:1

αsa =
α0

d · [n(s,a)−1]+1
, (4)

where n(s,a) is the total number of times action a has been selected in state s. Note that for d = 0,

αsa = α0, while for d = 1, αsa = α0/n(s,a). We optimize the learning rate decay d between 0 and

1 by taking the decay rate with the maximum average return over the measured number of episodes.

We use two different initialization schemes for the Q-values to determine whether the performance

difference depends on initialization. We use optimistic initialization, by initializing the Q-values to

20, and pessimistic initialization, by setting the Q-values to 0.

1. This decay is similar to the more common form c1
c2+n(s,a)

, but with the free parameters re-arranged.
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S

G

Figure 3: The Dyna Maze task, in which the agent must travel from S to G. The reward is +1 when

the goal state is reached and 0 otherwise.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

episodes

re
tu

rn

 

 

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

episodes

re
tu

rn

 

 

JIT Q−learning, Q
0
 = 20

Q−learning, Q
0
 = 20

JIT Q−learning, Q
0
 = 0

Q−learning, Q
0
 = 0

JIT Q−learning, Q
0
 = 20

Q−learning, Q
0
 = 20

JIT Q−learning, Q
0
 = 0

Q−learning, Q
0
 = 0

Figure 4: Comparison of the performance of JIT Q-learning and regular Q-learning on the de-

terministic (left) and stochastic (right) Dyna Maze task for two different initialization

schemes.

deterministic - 100 eps. stochastic - 200 eps.

d average standard d average standard

return error return error

Q-learning,Q0 = 0 0 0.3506 0.0004 1.0 0.3039 0.0003

JIT Q-learning,Q0 = 0 0 0.3628 0.0004 1.0 0.3083 0.0003

Q-learning,Q0 = 20 0 0.3438 0.0002 0.005 0.2562 0.0002

JIT Q-learning,Q0 = 20 0 0.3714 0.0002 0.010 0.2674 0.0002

Table 1: The performance of JIT Q-learning and regular Q-learning on the Dyna Maze task and the

optimal learning rate decay d.

Figure 4 plots the return as a function of the number of episodes, while Table 1 shows the av-

erage return and optimal learning rate. The computation time for both methods was similar. JIT

Q-learning outperforms regular Q-learning in the deterministic as well as the stochastic environ-
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ment and for both types of initialization, although not always by a large margin. This confirms our

intuition that, since JIT Q-learning uses values from a later time which are in general more accurate,

a performance benefit is gained over regular Q-learning in a broad range of settings. The perfor-

mance benefit in the deterministic case can be explained by exploration, which causes the order in

which states are visited to change despite the deterministic state transitions.

4. Best-Match Last-Visit Model

In this section, we demonstrate that updates can be postponed much further than is done by JIT

Q-learning, without negatively affecting other updates, when best-match updates are performed.

Best-match updates are updates that can correct previous updates when more recent information

becomes available. This insight leads to the derivation of the best-match last-visit model equations,

which combine a last-visit model (LVM), consisting of the last experienced reward and transition

state for each state-action pair, with model-free Q-values, constructed from model-free updates of

all observed samples, except the ones stored in the LVM. We present an evaluation as well as a

control algorithm based on solving these equations and empirically demonstrate that these methods

can outperform competitors with similar space requirements.

4.1 Best-Match LVM Equations

In the example presented in Section 3, the update of Q(sA,a0) is postponed until state sA is revisited.
In this section, we demonstrate that the update can be postponed even further in the case that a

different action is selected upon revisit. Since we will consider multiple updates per timestep in this

section, we denote the Q-value function using two iteration indices: t and i. Each time an update

occurs, i is increased, while each time an action is taken, t is increased and i is reset to 0. Therefore,

if I denotes the total number of updates that occurs at time t, by definition Q t,I = Q t+1,0. Action

selection at time t is based on Q t,I . Using this convention, the regular Q-learning update can be

written as

Q t+1,1(s t ,a t) = (1−α)Q t+1,0(s t ,a t)+α[r t+1+max
a′

Q t+1,0(s t+1,a
′)] .

Now consider the example shown in Figure 5, which extends Figure 1 to include a second revisit

of s0 at timestep t = 7. Suppose that a different action is selected on the first revisit, that is, a4 6= a0.

Using just-in-time updates, the Q-value of state-action pair (sA,a0) gets updated at time t = 4. Using

the two indices convention we can rewrite Equation 1 as2

Q4,1(sA,a0) = (1−α)Q1,0(sA,a0)+α[r1+ γmax
a

Q4,0(sB,a)] . (5)

To perform this update, the experience set (r1,sB) resulting from taking action a0 in sA is tem-

porarily stored. With JIT Q-learning, this experience is stored per state. If the state is revisited and

a new action is taken, the previous experience is overwritten and lost. However, if the experience

is stored per state-action pair, then the previous experience is not overwritten until the same action

is selected again. If the same action is not selected upon revisit, the experience can be used again

2. We use Q now instead of Q̃, since the only purpose of the tilde was to distinguish it from the Q-values of regular

Q-learning.
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Figure 5: A state transition sequence in which best-match updates can enable further postponing.

Timesteps are shown below each state.

to redo the update at a later time, using more recent values for the next state. In the example from

Figure 5, the update of (sA,a0) can be redone at timestep 7:

Q7,1(sA,a0) = (1−α)Q1,0(sA,a0)+α[r1+ γmax
a

Q7,0(sB,a)] . (6)

Since state sB is revisited at timestep 6, (sB,a1) has received an extra update and thereforeQ7,0(sB,a1)
is likely to be more accurate than Q4,0(sB,a1).

Equation 6 is not equivalent to a (postponed) Q-learning update, in contrast to Equation 5, since

Q1,0(sA,a0) is not equal to Q7,0(sA,a0) due to the update at timestep 4. Equation 6 corrects the

update from timestep 4, by redoing it using the most recent Q-values for the update target. We call

this update a best-match update (this name will be explained later in the section), while we call

Q1,0(sA,a0) the model-free Q-value of (sA,a0).

Before formally defining a best-match update, we define the last-visit experience and the model-

free Q-values.

Definition 2 The last-visit experience of state-action pair (s,a) denotes the last-visit reward, R′t(s,a),
that is, the reward received upon the last visit of (s,a), and the last-visit transition state, S′t(s,a),
that is, the state transitioned to upon the last visit of (s,a). For a state-action pair that has not yet

been visited, we define R′t(s,a) = /0 and S′t(s,a) = /0.

The LVM consists of the last-visit experience from all state-action pairs.

Definition 3 The model-free Q-value of a state-action pair (s,a), Q
mf
t (s,a), is a Q-value that has

received updates from all observed samples except those stored in the LVM, that is, R′t(s,a) and

S′t(s,a). For a state-action pair that has not yet been visited, we define Q
mf
t (s,a) = Q0,0(s,a).

While Q can be updated multiple times per timestep, Qmf is updated only once per timestep. There-

fore, it is uses a single time index t. We define a best-match update as:

Definition 4 A best-match update combines the model-free Q-value of a state-action pair with its

last-visit experience from the same timestep according to

Q t,i+1(s,a) = (1−α)Q
mf
t (s,a)+α[R′t(s,a)+ γmax

a′
Q t,i(S

′
t(s,a),a

′)] .

Using best-match updates to extend the postponing period of a sample update requires addi-

tional computation, as the agent typically performs multiple best-match updates per timestep. In

the example, at timestep 7 the agent redoes the update of Q(sA,a0), but also performs an update of

Q(sA,a4).

2054



EXPLOITING BEST-MATCH EQUATIONS FOR EFFICIENT REINFORCEMENT LEARNING

The model-free Q-value function is updated only once per timestep. Specifically, at timestep

t+1 Qmf is updated according to

Q
mf
t+1(s t ,a t) = Q t+1,0(s t ,a t) . (7)

Assuming (s t ,a t) has received a best-match update at timestep t, Equation 7 is equivalent to the

update

Q
mf
t+1(s t ,a t) = (1−α)Q

mf
t (s t ,a t)+α[R′t(s t ,a t)+ γmax

a′
Q t,i(S

′
t(s t ,a t),a

′)] ,

where the value of i depends on the order of best-match updates at timestep t. After Qmf has been

updated, the last-visit experience for (s t ,a t) is overwritten with the new experience

R′t+1(s t ,a t) = r t+1 ,

S′t+1(s t ,a t) = s t+1 .

In the approach described above, best-match updates are used to postpone the update from a

sample without negatively affecting other updates or the action selection process. However, best-

match updates can be exploited far beyond simply avoiding these negative effects. As an example,

consider the state-action sequence in Figure 6. sB is not revisited before the revisit of sA. With the

update strategy described above, best-match updates occur only when a state is revisited. Conse-

quently, the experience from (sB,a1) is not used in the update target of (sA,a0). However, it is not
necessary to wait for a revisit of sB to perform a best-match update. Instead, it can be performed at

the moment it is needed: when sA is revisited. Thus, if at timestep 3 the agent performs a best-match

update of Q(sB,a1), before updating Q(sA,s0), the latter update will exploit more recent Q-values

for sB, just as if sB had been revisited.

Figure 6: A state transition sequence in which sB is not revisited. Timesteps are shown below each

state.

Taking this idea further, the agent can first update the Q-values of sC before updating the Q-

values of sB. In other words, the agent uses the Q-values of sA to perform a best-match update of

sC, then performs a best-match update of sB and finally updates sA. However, once the Q-values

of sA have changed, it is possible to further improve the Q-values of sC by performing a new best-

match update. The new Q-values of sC can then be used to redo the update of sB, which in turn can

be used to re-update sA. This process can repeat until the Q-values reach a fixed point, which is

the solution to a system of |S ||A | best-match LVM equations. We call this solution the best-match

Q-value function, QB, which forms the best match between the LVM and the model-free Q-values.

Definition 5 The best-match LVM equations at timestep t are defined as

QB
t (s,a) =

{

(1−αsa
t )Q

mf
t (s,a)+αsa

t [R′t(s,a)+ γmaxcQ
B
t (S
′
t(s,a),c)] if S′t(s,a) 6= /0

Q
mf
t (s,a) if S′t(s,a) = /0 .
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There are different ways to look at these equations. One way is to see them as the limit case of

redoing updates using (in general) increasingly more accurate update targets. Another way is to see

them as Bellman optimality equations based on an induced model. For state-action pair (s,a) this
induced model can be described as a transition with probability α to state S′(s,a) with a reward of

R′(s,a) and a transition with probability 1−α to a terminal state sT (with a value of 0) and a reward

of Qmf (s,a) (see Figure 7).3

S´
R´

s
a

sT

sa
sa

Qsa
mf

p = α

p = 1- α

Figure 7: Illustration of the induced model for state-action pair (s,a) corresponding with the best-

match LVM equations. The small black dot represents the stochastic action a leading

with probability α to state S′(s,a) and with probability 1-α to state sT .

The advantage of solving the Bellman optimality equations for this induced model, compared

to solving it using only the LVM, is that the bias towards the samples in the LVM can be controlled

using the learning rates. With annealing learning rates, the transition probability to S′t(s,a) is de-
creased over time in favor of transition to the terminal state. On the other hand, when using only

the LVM, the solution of the Bellman equations depends only on the samples of the LVM and does

not take into account any previous samples. Clearly, in a stochastic environment, this will lead to a

sub-optimal policy. Also when the solution is not computed exactly, but approximated by only per-

forming a finite number of updates at each timestep (which is the case for any practical algorithm),

using the induced model leads to a better performance, because of the strong bias towards the most

recent samples that occurs when using only the LVM.

Section 4.3 discusses how to solve the best-match equations. However, we first discuss the

policy evaluation case, for which analogous equations can be defined.

Definition 6 The best-match LVM equations for state values at time t are

V B
t (s) =

{

(1−αs
t)V

mf
t (s)+αs

t [R
′
t(s)+ γV B

t (S
′
t(s))] if S′t(s) 6= /0

V
mf
t (s) if S′t(s) = /0 .

The model-free state values are updated according to V
mf
t+1(s t) =Vt+1,0(s t).

While in general the value function V can be seen as a special case of the action-value function

Q (with all states only having a single action),V has a linear set of best-match equations, in contrast

to Q, a property we exploit in best-match LVM evaluation.

3. We assume S′t(s,a) 6= /0 for (s,a) in this case.
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4.2 Best-Match LVM Evaluation

In the evaluation case, the best-match LVM equations form a linear set that can be solved exactly.

This section proposes an algorithm that does so in a computationally efficient way, using updates

that are unbiased with respect to the initial state values.

The algorithm is based on two observations. First, not all |S | best-match equations necessarily

depend on each other. The subset of equations needed to compute the best-match value for s t can

be found by iterating through the sequence of last-visit transition states, starting with S′(s t). The

corresponding N best-match equations form the linear set of equations to solve. For readability, we

write s t as s[0] and use the notation s[n] = S′(s[n−1]) and r[n] = R′(s[n−1]) for the subsequent transition

state and reward. In addition, we use α [n] for αs[n] . The equations can now be written as

V B(s[n]) = (1−α [n])V mf (s[n])+α [n]
[

r[n+1]+ γV B(s[n+1])
]

, for all n ∈ [0,N−1] .

Second, the last state of this sequence, s[N], is always either a terminal state or the current state.

Furthermore, none of the intermediate states can appear twice, making the N equations independent.

This can be proven by contradiction. First, assume that the sequence has a dead-end, that is, ends

with a state for which S′ = /0. This is impossible because it would cause the agent to get stuck in this

state, preventing it from reaching the current state. Since last-visit information is maintained across

episodes, s[N] is a terminal state if the path followed after the previous visit of s t led to a terminal

state. Next, assume the sequence contains the same intermediate state twice. After the second visit

of this intermediate state, the subsequent sequence would be the same as after the first visit, since

there is only a single last-visit next state defined per state. This would create an infinite sequence of

next states, also preventing the agent from reaching the current state.

The set of equations can be solved by backwards substituting the equations, that is, substituting

the equation for V B(s[n+1]) in the one for V B(s[n]) and so on until a single equation for V B(s[0])
remains of the form

V B(s[0]) = cA+ cBV
B(s[N]) ,

with cA and cB defined as

cA =
N−1

∑
i=0

(

(1−α [i])V mf (s[i])+α [i]r[i+1]

) i−1

∏
k=0

γα [k] , (8)

cB =
N−1

∏
i=0

γα [i] . (9)

If s[N] is a terminal state, its value is 0 and V B(s t) = cA. On the other hand, if s[N] = s t then

V B(s t) = cA/(1− cB).

Algorithm 2 shows pseudocode of the on-line policy evaluation algorithm, which computes the

best-match value of the current state at each timestep. Lines 7-12 compute the values of cA and

cB in a forward, incremental way by going from one next state to the other. Note that it is not

necessary to store V mf and R′ separately, since they are always used in the same combination,

(1−α)V mf (s)+αR′(s), which is stored in a single variable, V
mf
r , saving space and computation.

Line 20 combines the assignments V mf (s t) = V (s t), R
′(s t) = r t+1 and the computation of V

mf
r

in a single update. Note that the algorithm makes use of the just-in-time learning principle, that

is, updating states at the moment of their revisit. In JIT Q-learning, it is used to improve the
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Algorithm 2 Best-Match LVM Evaluation

1: initialize V (s) arbitrarily for all s
2: initialize S′(s) = /0 for all s

3: loop {over episodes}
4: initialize s

5: repeat {for each step in the episode}
6: if S′(s) 6= /0 then

7: cA←V
mf
r (s); cB← γαs; s′← S′(s); n← 0

8: while s′ 6= s∧ s′ is not terminal do

9: cA← cA+ cB ·V
mf
r (s′)

10: cB← cB · γα
s′

11: s′← S′(s′)
12: end while

13: if s′ = s then

14: V (s)← cA/(1− cB)
15: else

16: V (s)← cA
17: end if

18: end if

19: take action π(s), observe r and s′

20: V
mf
r (s)← (1−αs)V (s)+αs · r

21: S′(s)← s′; s← s′

22: until s is terminal

23: end loop

performance without increasing the computation cost, while in the best-match evaluation algorithm

it is used to efficiently compute the best-match values.

Algorithm 2 is an on-line algorithm that computes at each timestep the best-match value of the

current state. We define the off-line version as one that computes at the end of each episode the best-

match values of the states that were visited during that episode. This off-line algorithm is related to

off-line TD(λ), as demonstrated by the following theorem. We prove this theorem in Appendix B.

Theorem 7 For an episodic, acyclic, evaluation task, off-line best-match LVM evaluation computes

the same values as off-line TD(λ) with λ t = α t(s t).

For acyclic tasks, that is, episodic tasks with no revisits of states within an episode, TD(λ) with
λ t = α t(s t) can perform TD updates that are unbiased with respect to the initial values (Sutton and

Singh, 1994). Because of Theorem 7, this also holds for best-match LVM evaluation. However, in

contrast to TD(λ), best-match LVM evaluation can perform unbiased updates for any MDP, as we

demonstrate with the following theorem, also proven in Appendix B.

Theorem 8 The state values computed by the on-line best-match LVM evaluation algorithm (Algo-

rithm 2) are unbiased with respect to the initial state values, when the initial learning rates α0(s)
are set to 1 for all s.

Because best-match LVM evaluation can perform unbiased updates for any MDP, it can often

substantially outperform TD(λ) while requiring similar space and computation. We demonstrate
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this empirically using the two tasks shown in Figure 8. Besides comparing against TD(λ), we also

compare against experience replay (Lin, 1992), which stores the n last experience samples and uses

them for repeated TD updates.

Task A features a small circular network consisting of four identical states, each having a de-

terministic transition to a neighbor. The reward received after each transition is +1. Task B is a

stochastic variation on the first task, with stochastic transitions and a reward drawn from a normal

distribution with mean 1 and standard deviation 0.5. The discount factor is 0.95, resulting in a

state value of 20 on both tasks for all states. We compare the RMS error of the current state value

Vt(s t) for all three methods. For experience replay, we performed a TD update for each of the last 4

samples at every timestep, resulting in a computation time similar to best-match LVM and TD(λ).

In addition, we implemented a version where all observed samples are stored and updated at each

timestep. The learning rate is initialized to 1 and decayed according to

αs =
α0

d · [n(s)−1]+1
.

where n(s) is the total number of times state s has been visited. We optimize d as well as λ between

0 and 1. Results are averaged over 5000 runs.

Figure 8: Two tasks for policy evaluation. Task A has deterministic state transitions and a deter-

ministic reward of +1, while task B has stochastic transitions and a reward drawn from a

normal distribution with mean +1 and standard deviation 0.5.

Figure 9 shows the experimental results in these tasks. In task A, at timestep 4 the start state is

revisited and the RMS error for best-match LVM drops to 0. The reason is that in the deterministic

case the last-visit model is equal to the full model once every state has been visited. Furthermore,

with learning rates of 1, the best-match LVM equations reduce to the Bellman optimality equations.

Therefore best-match LVM effectively performs model-based learning. TD(λ), on the other hand,

has to incrementally improve upon the initial values of 0. The spiky behavior of TD(λ) is caused

by the combination of a λ of 1, with zero learning rate decay (which were the optimal settings in

this case). Experience replay has a performance in between best-match LVM and TD(λ). In task

B, the RMS error drops more smoothly. Best-match LVM again substantially outperforms TD(λ)

and experience replay, even when all samples are stored and updated. The total computation time

for the 5000 runs was marginally higher for experience replay with N=4, which has to maintain a

queue of recent samples, than for best-match LVM and TD(λ): on task A, around 90 ms compared
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Figure 9: Comparison of the performance of best-match LVM, TD(λ) and experience replay on

tasks A (left) and task B (right) of Figure 8.

to 80 ms for both best-match LVM and TD(λ). Experience replay with all samples updated had a

computation time of 280 ms. On task B, all methods were about 10 ms slower.

4.3 Best-Match LVM Control

The best-match LVM equations for the control case form a nonlinear set. Therefore, it is in general

not possible to compute the exact best-match Q-values at each timestep. However, they can be

approximated to arbitrary accuracy via update sweeps through the state-action space, in a manner

similar to value iteration, as we prove in the following lemma.

Lemma 9 For the best-match Q-values the following equation holds for all (s,a):

QB
t (s,a) = lim

i→∞
Q t,i(s,a) ,

where Q t,i is initialized arbitrarily for i= 0 and is defined for i> 0 as

Q t,i(s,a) =

{

(1−α)Q
mf
t (s,a)+α [R′t(s,a)+ γmaxa′Q t,i−i(S

′
t(s,a),a

′)] if S′t(s,a) 6= /0

Q
mf
t (s,a) if S′t(s,a) = /0 .

Proof For state-action pairs (s,a) with S′t(s,a) = /0 the proof follows directly from the definition of

QB
t and Q t,i. For (s,a) with S

′
t(s,a) 6= /0, the absolute difference between Q t,i(s,a) and Q

B
t (s,a) can

be written as

|Q t,i(s,a)−QB
t (s,a)| = αγ |max

c
Q t,i−i(S

′
t(s,a),c)−max

c
QB

t (S
′
t(s,a),c)|

≤ αγmax
c
|Q t,i−i(S

′
t(s,a),c)−QB

t (S
′
t(s,a),c)|

≤ αγ ||Q t,i−i−QB
t || .
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From this it follows that

||Q t,i−QB
t || ≤ αγ ||Q t,i−i−QB

t || .

For αγ< 1, it follows that for i→ ∞, Q t,i→ QB
t .

Lemma 9 shows that QB
t can be approximated to arbitrary accuracy with a finite number of best-

match updates.

Algorithm 3 shows the pseudocode for a general class of algorithms that approximate the best-

match Q-values by performing best-match updates.4 Lines 9 to 12 perform a series of best-match

updates. Note that while only a single Qmf value is updated per timestep, many Q-values can be up-

dated at the same timestep. By varying the way state-action pairs are selected for updating (line 10)

and changing the stopping criterion (line 12), a whole range of algorithms can be constructed that

trade off computation cost per timestep for better approximations of the best-match Q-values. Note

that JIT Q-learning and even regular Q-learning are members of this general class of algorithms. If

the state-action pair selection criterion is the state-action pair visited at the previous timestep and

the stopping criterion allows only a single update, the algorithm reduces to the regular Q-learning

algorithm. Thus, Q-learning is a form of best-match control with a simplistic approximation of the

best-match Q-values. However, we reserve the term ‘best-match learning’ for algorithms that use

the same sample multiple times to redo updates.

Algorithm 3 General Best-Match LVM Control

1: initialize Q(s,a) arbitrarily for all s,a
2: initialize S′(s,a) = /0 for all s,a

3: loop {over episodes}
4: initialize s

5: repeat {for each step in the episode}
6: select action a, based on Q(s, ·)
7: take action a, observe r and s′

8: Qmf (s,a)← Q(s,a);S′(s,a)← s′;R′(s,a)← r

9: repeat

10: select some (s̄, ā) pair with S′(s̄, ā) 6= /0 {each pair is selected at least once before its

revisit}
11: Q(s̄, ā)← (1−α s̄ā)Qmf (s̄, ā)+α s̄ā [R′(s̄, ā)+ γmaxcQ(S

′(s̄, ā),c)]
12: until some stopping criterion has been met

13: s← s′

14: until s is terminal

15: end loop

The following theorem states that, for any member of the best-match LVM control class, the

Q-values converge to the optimal Q-values.

Theorem 10 The Q-values of a member of the best-match LVM control class, shown in Algorithm

3, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

4. Similar to the variable V
mf
r of Algorithm 2, a variable Q

mf
r can be defined that combines the variables Qmf and R′,

saving space and computation. For readability we do not show this for Algorithm 3.
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2. α t(s,a) ∈ [0,1] , ∑ t α t(s,a) = ∞ , ∑ t(α t(s,a))
2 < ∞ w.p.1

and α t(s,a) = 0 unless (s,a) = (s t ,a t).

3. Var{R(s,a,s′)}< ∞.

4. γ< 1.

We prove this theorem in Appendix D.

4.4 Best-Match LVM Prioritized Sweeping

A wide range of methods can be constructed within the general class of best-match LVM control

algorithms that trade off increased computation time for better approximation of the best-match

Q-values in different ways. This section proposes one method that performs this trade-off with a

strategy based on prioritized sweeping (PS) (Moore and Atkeson, 1993).

PS makes the planning step of model-based RL more efficient by focusing on the updates ex-

pected to have the largest effect on the Q-value function. The algorithm maintains a priority queue

of state-action pairs in consideration for updating. When a state-action pair (s,a) is updated, all
predecessors (i.e., those state-action pairs whose estimated transition probabilities to s are greater

than 0) are added to the queue according to a heuristic estimating the impact of the update. At

each timestep, the top N state-action pairs from this queue are updated, with N depending on the

available computation time. Because PS maintains a full model, it requires O(|S |2|A |) space.

This same idea can be applied to the best-match equations for efficient approximation of the

best-match values. A priority queue of state-action pairs is maintained whose corresponding best-

match updates have the largest expected effect on the best-match Q-value estimates. When a state-

action pair has received an update, all state-action pairs whose last-visit transition state equals the

state from the updated state-action pair are placed into the priority queue with a priority equal to

the absolute change an update would cause in its Q-value. Since this approach uses only an LVM,

it requires only O(|S ||A |) space.

Algorithm 4 shows the pseudocode of this algorithm, which we call best-match LVM prioritized

sweeping (BM-LVM). By always putting the state-action pair from the previous timestep on top of

the priority queue (line 10), the requirement that each visited state-action pair receives at least one

best-match update is fulfilled, guaranteeing convergence in the limit.

On the surface, this algorithm resembles deterministic prioritized sweeping (DPS) (Sutton and

Barto, 1998), a simpler variation that learns only a deterministic model, uses a slightly different

priority heuristic, and performs Q-learning updates to its Q-values. While clearly designed for

deterministic tasks, it can also be applied to stochastic tasks, in which case updates are based on an

LVM.

However, there is a crucial difference between DPS and BM-LVM. By performing updates with

respect to Qmf instead of Q, BM-LVM corrects previous updates instead of performing multiple

updates based on the same sample. This ensures proper averaging of experience and enables con-

vergence to the optimal Q-values using only an LVM, even in stochastic environments. This is not

guaranteed for DPS since if some samples are used more often than others a bias towards these

samples is created, which can prevent convergence to the optimal Q-values.

We compare the performance of PS, DPS, and BM-LVM on the deterministic and stochastic

variation of the Dyna Maze task shown in Figure 3. In addition, we also compare to Q(λ) as
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Algorithm 4 Best-Match LVM Prioritized Sweeping (BM-LVM)

1: initialize Q(s,a) arbitrarily for all s,a
2: initialize S′(s,a) = /0 for all s,a

3: initialize PQueue as an empty queue

4: loop {over episodes}
5: initialize s

6: repeat {for each step in the episode}
7: select action a, based on Q(s, ·)
8: Take action a, observe r and s′

9: S′(s,a)← s′;R′(s,a)← r;Qmf (s,a)← Q(s,a)
10: promote (s,a) to top of priority queue

11: n← 0

12: while (n< N)∧ (PQueue is not empty) do

13: s1,a1← f irst(PQueue)
14: Q(s1,a1)← (1−αs1a1)Qmf (s1,a1)+αs1a1 [R′(s1,a1)+ γmaxc Q(S

′(s1,a1),c)]
15: Vs1 ← maxa′Q(s1,a

′)
16: for all (s̄, ā) with S′(s̄, ā) = s1 do

17: p← |(1−α s̄ā)Qmf (s̄, ā)+α s̄ā [R′(s̄, ā)+ γVs1 ]−Q(s̄, ā)|
18: if p> θ then

19: insert (s̄, ā) into PQueue with priority p

20: end if

21: end for

22: n← n+1

23: end while

24: s← s′

25: until s is terminal

26: end loop

described by Watkins (1989). This is an off-policy control version of eligibility traces. We also

tried Sarsa(λ), the on-policy version, since it can sometimes outperform Q(λ) considerably, but saw

no significant difference for these experiments and present only the Q(λ) results. Note that when a

greedy behavior policy is used, as in the deterministic experiment, Q(λ) computes exactly the same

values as Sarsa(λ). As in Section 4.2, we also compare to experience replay.

Finally, we compare to delayed Q-learning (Strehl et al., 2006), a model-free method that, like

some model-based methods (Brafman and Tennenholtz, 2002; Kearns and Singh, 2002; Strehl and

Littman, 2005), is proven to be probably approximately correct (PAC), that is, its sample complex-

ity is polynomial with high probability. Delayed Q-learning initializes its Q-values optimistically

and ensures that value estimates are not reduced until the corresponding state-action pairs have been

sufficiently explored. Because it does not maintain a model, it has the sameO(|S ||A |) space require-
ments as best-match prioritized sweeping. However, to our knowledge, its empirical performance

has never been evaluated before.

For each method, the free parameters are optimized within a certain range. In the deterministic

case, for Q(λ) we optimized the λ value in the range from 0 to 1, and the learning rate decay d (using

Equation 4) in the range from 0 to 1, while α0 was set to 1. We also optimized the (unbounded) trace
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type (replacing versus accumulating). For delayed Q-learning we optimized m in the range from 1

to 5 with steps of 1 and e1 in the range 0 to 0.020 with steps of 0.001. For DPS and BM-LVM, we

did not optimize any parameters in the deterministic case, but simply used a constant α of 1. In the

stochastic case, we also optimized the learning rate decay d for DPS and BM-LVM.

For all methods, we used optimistic initialization with Q0 = 20 in order to get a fair comparison

with delayed Q-learning, for which initialization to Rmax/(1− γ) is part of the algorithm.5

In the deterministic case we used a greedy behavior policy, while we used an ε-greedy policy

with ε = 0.1 in the stochastic variant. For all prioritized-sweeping algorithms we performed a

maximum of 20 updates per timestep (i.e., N = 20). For experience replay we used the last 20

samples, which also results in 20 updates per timestep. Results are averaged over 1000 independent

runs.
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Figure 10: Comparison of the performance of BM-LVM and several competitors on the determin-

istic (left) and stochastic (right) Dyna Maze task.

Figure 10 shows the return as a function of the number of episodes, while Tables 2 and 3 show

the average return over the measured episodes and the optimal parameter values. In the determinis-

tic experiment, we see that the performance of PS, DPS, and BM-LVM is exactly equal, as expected

when α= 1, since the last-visit experience is equal to the model of the environment. Q(λ) performs

considerably worse than the prioritized sweeping methods and does not converge to the optimal pol-

icy. In contrast, the combination of a greedy behavior policy with optimistic initialization enables

the prioritized sweeping methods to converge to the optimal policy in a deterministic environment.

Experience replay performs similarly to Q(λ), though it does converge to the optimal policy. De-

layed Q-learning also converges to the optimal policy, as predicted by the theory, but does so much

more slowly.

In the stochastic experiment, PS has a clear performance advantage. However, the goal of BM-

LVM is not to match or even come close to the performance of PS. It cannot match this performance

in general, since PS takes advantage of its higher space complexity. Instead, the goal of BM-LVM

5. For this task r = Rmax only when the exit is reached and 0 otherwise. Thus, the Q-values can never be higher than 1

and Q0 = 20 is overly optimistic. However, since realizing that an initialization of 1 is possible would require extra

prior knowledge, we initialize to 20.
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deterministic - 50 eps.

optimal parameters average standard time per step

return error (·10−6s)

Q(λ) λ: 0.8, d: 0 0.3606 0.0007 0.68

exp. replay d: 0 0.3602 0.0004 0.37

delayed Q m: 1, e1 = 0 0.1878 0.0004 0.11

BM-LVM d: 0 0.4769 0.0002 0.88

DPS d: 0 0.4774 0.0002 0.85

PS - 0.4772 0.0002 0.95

Table 2: Average return and optimal parameters (d = α decay rate) of best-match prioritized sweep-

ing and several competitors on the deterministic Dyna Maze task.

stochastic - 100 eps.

optimal parameters average standard time per step

return error (·10−6s)

Q(λ) λ: 0.9, d: 0.03 0.2417 0.0007 0.59

exp. replay d: 0.18 0.2272 0.0006 0.43

delayed Q m: 2, e1:0.015 0.0668 0.0004 0.12

BM-LVM d: 0.02 0.2911 0.0006 3.2

DPS d: 0.30 0.2683 0.0008 3.7

PS - 0.3603 0.0004 4.7

Table 3: Average return and optimal parameters (d = α decay rate) of best-match prioritized sweep-

ing and several competitors on the stochastic Dyna Maze task.

is to optimally perform at a space complexity of O(|S ||A |). The results confirm that BM-LVM

is considerably better than the other methods with this space complexity, like Q(λ) and DPS. DPS

initially performs well, but cannot keep up with BM-LVM after about 10 episodes, even though BM-

LVM has similar space and computation costs per timestep. Experience replay performs slightly

worse than Q(λ). We tested whether doubling the size of the stored experience sequence improves

the performance of experience replay, but this led to no significant performance increase. Delayed

Q-learning also performs poorly in the stochastic case, despite its PAC bounds.

The computation time of BM-LVM, DPS and PS is in the deterministic experiment considerably

lower than in the stochastic case. The reason for this is that while in both cases the maximum

number of updates per timestep is 20, in the deterministic case the priority queue often has fewer

than 20 samples, so fewer updates occur. The computation time of Q(λ) is slightly better than that

of BM-LVM, while experience replay is about twice as fast as BM-LVM.

In the stochastic experiment, the computation time of Q(λ) is much better than that of any of

the prioritized sweeping algorithms, which could suggest that Q(λ) is a better choice than BM-LVM

when computation power is scarce. To test this hypothesis, we performed additional experiments

with smaller values of N. The computation time for BM-LVM for N = 4 (0.61 ·10−6 s) was similar

to that of Q(λ). The average return of BM-LVM dropped to 0.2598 in this case, which is still
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considerably better than the average return of Q(λ). This demonstrates that BM-LVM is a better

choice than Q(λ) even under severe computational constraints.

Together, these results clearly demonstrate the strength of best-match learning, since BM-LVM

outperforms several competitors with similar space complexity. However, the results also show that

the performance gap with full model-based learning can be considerable. Therefore, if more space

is available, a better approximate model would be preferred. We address this need in the next section

by applying best-match learning to an n-transition model, which estimates the transition function for

n next states per state-action pair, allowing increased space requirements to be traded for improved

performance.

5. Best-Match n-Transition Model

The best-match LVM equations described above combine model-free Q-values with the last-visit

model. When state-action pairs have only a small number of possible next states, the last-visit

model can effectively approximate the full model. In other cases, however, the last-visit model

captures only a fraction of the full model and the effect of the best-match updates will be small.

In this section, we combine best-match learning with the n-transition model, which estimates the

transition probability for n possible next states of each state-action pair. By tuning n, increased

space requirements can be traded for improved performance.

5.1 Generalized Best-Match Equations

Best-match LVM learning takes the idea of using more accurate update targets to the extreme by

continuously revising update targets with best-match updates. For a specific sample, the update

target is revised until the moment of revisit of the corresponding state-action pair, since at that

moment the sample is overwritten with the newly collected sample. However, if space allows, the

new sample can be stored along with the old sample instead of overwriting it, allowing the update

target from the new as well as the old sample to be further improved. We explain with an example

how this changes the best-match equations.

6

Figure 11: A state transition sequence in which best-match updates can enable further postponing.

Timesteps are shown below each state.

Consider the state-action sequence from Figure 11 and assume the best-match Q-values are

computed at each timestep. At the revisit of sA, action a0 is retaken. Therefore, when using the LVM,

at timestep 5 the old experience sample is overwritten with the new experience. Before this occurs,

the old experience is used in a final update ofQmf . Let υxy indicate the update target from the sample

collected at timestep x based on the best-match Q-value of timestep y: υxy = rx+ γmaxaQ
B
y (sx,a).

Using this convention the update of Qmf at timestep 5 becomes

Q
mf
5 (sA,a0) = (1−α)Q

mf
0 (sA,a0)+αυ14 .
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At timestep 7, the best-match LVM equation for (sA,a0) can be written as

QB
7 (sA,a0) = (1−α)Q

mf
7 (sA,a0)+αυ57

= (1−α)Q
mf
5 (sA,a0)+αυ57

= (1−α)2Q
mf
0 (sA,a0)+α(1−α)υ14+αυ57 .

Thus, the best-match Q-value of (sA,a0) at timestep 7 is equal to a weighted average of Q
mf
0 , υ14

and υ57. On the other hand, if both the old and the new sample are stored, Q-values from timestep 7

could also be used for the update target of the old sample, yielding

QB
7 (sA,a0) = (1−α)2Q

mf
0 (sA,a0)+α(1−α)υ17+αυ57 . (10)

For the state-sequence from Figure 11 this means that the experience resulting from (sB,a6) is also
taken into account in the update target for (sA,a0).

The above example shows how the best-match LVM equations can be naturally extended to two

samples per state-action pair. Following the same pattern, we can define best-match equations given

an arbitrary set of samples. Consider the set of samples X of size NX , where a sample x ∈ X has the

form {s,a,r,s′ }. These samples can be grouped according to their state-action pairs. We define Xsa

as the subset of X containing all samples belonging to state-action pair (s,a) and Nx
sa as the size of

Xsa. Without loss of generality, we index the samples from Xsa as x
sa
k for 1 ≤ k ≤ Nx

sa. In addition,

we defineWsa as a set consisting of N
x
sa+1 weights wsa

k ∈ IR such that 0≤ wsa
k ≤ 1 for 0≤ k ≤ Nx

sa

and ∑
Nx
sa

k=0w
sa
k = 1. We defineW as the union of the weight sets from all state-action pairs.

Definition 11 The generalized best-match equations with respect to Q
mf
t , X and W are

QB
t (s,a) = wsa

0 Q
mf
t (s,a)+wsa

1 υsa
1 +wsa

2 υsa
2 + ...+wsa

Nx
sa
υNx

sa
, for all s,a , (11)

where υsa
k = r+ γmaxcQ

B
t (s
′,c) |r,s′ ∈ xsak .

Note that Equation 11 reduces to QB
t (s,a) = Q

mf
t (s,a) for state-action pairs with no samples in X .

Within this context, Qmf is defined as a model-free Q-value constructed from all observed sam-

ples except those in X . Consequently, when a sample is removed from X , it is used for a model-free

update of Qmf .

Using Definition 11, a range of algorithms can be constructed based on different sets of samples

X and weights W . When the samples are combined by incremental Q-learning updates, like in

Equation 10, the weights have the values

wsa
0 =

Nx
sa

∏
i=1

(1−αsa
i ) , (12)

wsa
k = αsa

k

Nx
sa

∏
i=k+1

(1−αsa
i ) , for 1≤ k ≤ Nx

sa . (13)

With this weight distribution, the update targets from older samples have lower weights than more

recent samples. In Q-learning, more recent samples in general have more accurate update targets so

giving them higher weight makes sense. However, in best-match learning the update targets from
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all stored samples have the same time index so there is no reason to use different weights for them.

A better weight distribution gives all samples the same weights:

wsa
k = (1−wsa

0 )/Nx
sa , for 1≤ k ≤ Nx

sa ,

for some value of wsa
0 .

The last-visit model, storing one sample for each state-action pair, is one possible sample set.

A straightforward extension is to store n samples per state-action pair. In the following section,

however, we propose a different sample set, called the n-transition model, which can be stored more

compactly.

5.2 Best-Match Learning based on the n-transition Model

While BM-LVM outperforms model-free methods with the same space complexity, it does not per-

form as well as PS, which stores a full model. This is symptomatic of an important limitation

of BM-LVM: it offers only a single trade-off between space and performance. When there is not

enough space available to store the full model, but more than enough to store the LVM, a more

sophisticated method is needed to make maximal use of the available space. Using the generalized

best-match equations, we can construct such a method.

An obvious approach is to store n samples per state-action pair. However, obtaining an accurate

model often requires a large n, even when the number of next states per state-action pair is small.

A more space-efficient solution is to group together samples that have the same next state. If we

store the size of such a group in Nx
sas′ and give each sample a weight of 1/Nsa, where Nsa is the

total number of times state-action pair (s,a) is visited, then we can rewrite the contribution from all

samples of Xsa to the best-match equations as

Nx
sa

∑
k=1

wkυk =
1

Nsa

[

∑
X

rsa+ γ∑
s′

Nx
sas′max

a′
QB(s′,a′)

]

,

where ∑X rsa is the sum of the rewards from all samples in the sample set belonging to (s,a). Using
wsa
0 = 1−Nx

sa/Nsa, P̂
s′

sa =Nx
sas′/N

x
sa and R̂ sa =∑X rsa/N

x
sa, the generalized best-match equations can

now be rewritten as

QB(s,a) = wsa
0 Qmf (s,a)+(1−wsa

0 )

[

R̂ sa+ γ∑
s′

P̂ s′

samax
a′

QB(s′,a′)

]

, for all s,a .

In these equations, P̂ and R̂ constitute a sparse, approximate model, whose size can be controlled

by limiting the number of next states per state-action pair for which P̂ is estimated. wsa
0 is the

fraction of all samples belonging to (s,a) not used by the sparse model. We define an n-transition

model (NTM) to be one that estimates the transition probability P̂ for n next states per state action

pair. Once a sample enters the model, that is, is used to update P̂ , it stays in the model. Each sample

not used to update the model is used for a model-free update of Qmf . Different strategies can be

used to determine which samples enter the model. A simple approach is to use the first n unique

next states that are encountered for a specific state-action pair.

Algorithm 5 shows general pseudocode for best-match NTM learning. The algorithm presents

two trade-offs. First, the space complexity can be traded off with performance by selecting n.
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Algorithm 5 General Best-Match NTM Control

1: initialize Q(s,a) = Qmf (s,a) arbitrarily for all s,a
2: initialize Nsa,N

x
sa,R

sum
sa to 0 for all s,a

3: initialize Nx
sas′ to 0 for all s,a and s′ ∈ NTM(s,a)

4: initialize wsa
0 to 1 for all s,a

5: loop {over episodes}
6: initialize s

7: repeat {for each step in the episode}
8: select action a, based on Q(s, ·)
9: take action a, observe r and s′

10: if s′ ∈ NTM(s,a) then
11: Nx

sa = Nx
sa+1; Nx

sas′ = Nx
sas′+1; Rsum

sa = Rsum
sa + r

12: P̂ s′

sa = Nx
sas′/N

x
sa; R̂ sa = Rsum

sa /Nx
sa

13: else

14: Qmf (s,a)← (1−αsa)Qmf (s,a)+αsa [r+ γmaxcQ(s
′,c)]

15: end if

16: Nsa = Nsa+1

17: wsa
0 = 1−Nx

sa/Nsa

18: repeat

19: select some (s̄, ā) pair with Ns̄ā > 0 {each pair is selected at least once before its

revisit}

20: Q(s̄, ā)← ws̄ā
0 Q

mf (s̄, ā)+(1−ws̄ā
0 )

[

R̂ s̄ā+ γ∑s′ P̂
s′

s̄āmaxcQ(s
′,c)

]

21: until some stopping criterion has been met

22: s← s′

23: until s is terminal

24: end loop

Second, the computation time per simulation step can be traded off with performance by controlling

the number of best-match updates performed per timestep.

Based on this general control algorithm, various specific algorithms can be constructed using

different stopping criteria and strategies for selecting state-action pairs to receive best-match up-

dates. The following theorem states that, for any member of this class, the Q-values converge to the

optimal Q-values. We prove this theorem in Appendix E.

Theorem 12 The Q-values of a member of the best-match NTM control class, shown in Algorithm

5, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. α t(s,a) ∈ [0,1] , ∑ t α t(s,a) = ∞ , ∑ t(α t(s,a))
2 < ∞ w.p.1

and α t(s,a) = 0 unless (s,a) = (s t ,a t) and s t+1 /∈ NTM(s t ,a t).

3. Var{R(s,a,s′)}< ∞.

4. γ< 1.
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5.3 Experimental Results

As in BM-LVM, prioritized sweeping can be used to trade off computation time and performance

in Algorithm 5, yielding a method we call BM-NTM. We compare its performance to BM-LVM,

Q-learning, and a sparse model-based method that combines prioritized sweeping with an NTM

without best-match updates, which we call PS-NTM. While BM-NTM uses the samples that are not

part of the NTM to update Qmf , PS-NTM ignores these samples. The priority of a state-action pair

(s,a) for BM-NTM is defined as

p= (1−wsa
0 )P̂ s1

sa · |∆V (s1)| ,

where ∆V (s1) is the difference in the state value of s1 before and after the best-match update of one

of the Q-values of s1. For PS-NTM, the priority is defined similarly:

p= P̂ s1
sa · |∆V (s1)| .

The NTM we use for BM-NTM and PS-NTM is defined by the first n unique next states that

are encountered for a specific state-action pair. Although more sophisticated models could be used

(e.g., by estimating the n most likely transition states), this model is sufficient for our experimental

setting since most transition states have similar transition probabilities.

We consider the large maze task shown at the left in Figure 12. For this maze, the reward

received by the agent is −0.1 at each timestep, while reaching the goal state results in a reward

of +100. The discount factor is 0.99. The agent can take four actions, ‘north’,‘south’,‘east’ and

‘west’. The action outcomes are made very stochastic, in order to compare different model sizes.

The right side of Figure 12 shows the relative action outcome for a ‘north’ action. In free space,

there are 15 possible next states, each with equal transition probability. On the other hand, walls

prevent not only the transition to the square the wall is located on, but also any squares behind the

wall. Therefore, close to a wall the number of possible next states is less than 15. When transition

to a square is blocked by a wall, the transition probability of that square is added to the transition

probability of the square in front of the wall. In order to make reaching the goal feasible despite the

stochastic actions, we use a goal area consisting of four goal states.

To compare performance, we measure the average return for each method over the first 500

episodes. For all methods, we use an ε-greedy policy with ε = 0.05 and initialize Q-values to 0.

BM-NTM, PS-NTM and BM-LVM perform a maximum of 5 updates per timestep. For all learning

rate based methods, we use an initial learning rate of 1 and decay the learning rate according to

Equation 4, while optimizing the decay rate d. Results are averaged over 200 independent runs. An

episode is stopped prematurely if the goal is not reached within 500 steps.

Table 4 presents the results, including the average return, optimal parameters, and computation

time per simulation step. The model sizes used are N = 1, 3, 5, and 15. For N = 15, all samples

enter the model. Therefore, BM-NTM has no decay rate in this case. The model weight indicates

the fraction of samples that entered the model. BM-NTM has in general a slightly higher weight

than PS-NTM, indicating the agent spends less time in open spaces and more time close to a wall.

For model sizes N = 1 and N = 3, the average return of BM-NTM is much better than that of

PS-NTM, despite the fact that for N = 3 more than a third of the samples are stored in the model.

For N = 1, the average return of PS-NTM is even worse than that of Q-learning. Figure 13 shows the

return as a function of the number of episodes for BM-NTM and PS-NTM with N = 1 and N = 3.

Unlike BM-NTM, the asymptotic performance for PS-NTM is clearly bounded by the size of the
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Figure 12: Left, the large maze task, in which the agent must travel from S to one of the G’s.

Right, transition probabilities (· 1
15
) of a ‘north’ action for different positions of the agent

(indicated by the circle) with respect to the walls (black squares). When the transition

to a square is blocked by a wall, its transition probability is added to that of the square

in front of the wall.

model. Thus, PS-NTM can match the performance of BM-NTM only when the space reduction

over the full model is quite small (i.e., less than a factor of 2).

Interestingly, when N = 1, BM-LVM outperforms BM-NTM despite having the same space

complexity. Thus, when space is scarce, BM-LVM is a good option. In contrast, BM-NTM can

exploit larger models to further improve performance. The computation time per simulation step

for BM-NTM is comparable to that of PS-NTM, with the exception of N = 1, for which it is four

times larger. The reason is that the priority queue of PS-NTM is often close to empty in this case

and thus the 5 updates per timestep are often not reached.

Overall, these results clearly demonstrate the strength of best-match NTM learning. When a

significant space reduction over storing the full model is required, BM-NTM performs dramatically

better than PS-NTM at similar computational cost.

6. Best-Match Function Approximation

The BM-NTMmethod described in the previous section has a space complexity of O(n|S ||A |) com-

pared to O(|S |2|A |) for full model-based methods. However, in problems with large state spaces,

this space complexity may be prohibitive even when n= 1. In addition, BM-NTM cannot be applied

in problems with continuous state spaces. To address these limitations, this section demonstrates

that the principles behind best-match learning can also be applied to function approximation. We

show that the resulting algorithm, which combines the N most recent samples with the model-free

Q-value function, outperforms both linear Sarsa(λ) and linear experience replay on the mountain

car task. We start by describing best-match learning based on the N most recent samples for the

tabular case, and then we show how this can be extended to the function approximation case.
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model model optimal average standard time per step

size weight parameters return error (·10−6 s)

PS-NTM 1 0.12 - -16.9 0.4 0.21

3 0.36 - 9.8 0.3 1.5

5 0.57 - 22.6 0.2 2.1

15 1.00 - 28.9 0.2 3.1

BM-NTM 1 0.14 d = 0.04 15.4 0.3 0.85

3 0.40 d = 0.09 19.6 0.2 1.7

5 0.60 d = 0.06 22.3 0.2 2.2

15 1.00 - 29.3 0.2 3.1

BM-LVM - - d = 0.09 17.4 0.3 1.5

Q-learning - - d = 0.03 2.4 0.2 0.09

Table 4: Average return over the first 500 episodes, optimal parameters (d: α decay rate) and com-

putation time per simulation step on the Large Maze task.
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Figure 13: Performance of BM-NTM and PS-NTM on the large maze task.
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6.1 Tabular Sequence Based Best-Match Learning

The generalized best-match equations are defined for an arbitrary set of samples (see Definition 11),

which can be stored in a model or as an explicit set. To combine best-match principles with function

approximation, we employ an explicit set consisting of the last N observed samples, an approach

we call sequence based best-match learning. In this section we describe sequence based best-match

learning for the tabular case and its advantage over experience replay, which also exploits a set of

recent samples. In the next section, we extend the tabular version of sequence based best-match

learning to function approximation.

Assume that a queue of the last N samples is maintained. When the queue is full and a new

sample is added to the back of the queue, the sample at the front of the queue is removed and used

to perform a model-free update of Qmf (s,a). The queue may contain multiple samples that belong

to the same state-action pair. If there are Nx
sa samples belonging to state-action pair (s,a), then the

best-match update based on these samples is

Q t,i+1(s,a) = wsa
0 Q

mf
t (s,a)+wsa

1 υsa
1 +wsa

2 υsa
2 + ...+wsa

Nx
sa
υNx

sa
, (14)

where υsa
k = r+ γmaxcQ t,i(s

′,c) |r,s′ ∈ xsak . When the weights are defined according to Equations

12 and 13, this update can be implemented incrementally by performing Nx
sa Q-learning updates:

Q<k>(s,a) = (1−α)Q<k−1>(s,a)+α [rk+ γmax
a′

Q t,i(s
′
k,a
′)] , for 1≤ k ≤ Nx

sa ,

with Q<0>(s,a) = Q
mf
t (s,a) and Q t,i+1(s,a) = Q<Nx

sa>(s,a).
By stepping through the queue from front to back and using each sample to perform an incre-

mental Q-learning update, all state-action pairs with samples in the queue receive one full best-

match update, according to Equation 14. By storing the intermediate Q<k> values at the same

location as the final Q-value, Q<Nx
sa> automatically becomes Q t,i+1 after all incremental updates

have been performed. This implementation requires that the Q-values from the state-action pairs

with samples in the queue are set equal to Q<0>, that is, to Q
mf
t , before the update sweep begins.

Before resetting these Q-values, the update targets of the samples must be recomputed.

Despite a superficial resemblance, sequence based best-match learning is fundamentally differ-

ent from experience replay. Best-match learning uses the stored samples to correct previous updates

based on those samples, whereas experience replay performs additional updates with the same sam-

ple. To illustrate the effect of this difference, suppose that sample (s,a,r,s′) is observed at timestep

t = 1 and used for an update n timesteps in a row. For simplicity, assume there are no other sam-

ples belonging to (s,a) in the sample queue and that the learning rate α is constant. We indicate

the update target of the sample with ῡi, where i corresponds to the timestep at which the update is

performed. Therefore, ῡi+1 is likely to be more accurate than ῡi since it uses more recent Q-values

for s′. Since experience replay performs additional updates we can express Qn(s,a), the Q-value

of (s,a) at timestep n, in terms of Q0(s,a) and the update targets from the different timesteps as

follows:

Qn(s,a) = w0Q0(s,a)+w1ῡ1+w2ῡ2+ ...+wnῡn ,

with w0 =∏n
i=1 (1−α) and wk =α∏n

i=k+1 (1−α) for k> 0. If α≪ 1, the weights can be accurately

described with first-order approximations in α, yielding w0 ≈ 1−nα and wk ≈ α for k > 0. Using

these approximations, we can write for Qn(s,a):

Qn(s,a)≈ (1−β)Q0(s,a)+β
∑n
i=1 ῡi
n

, (15)
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with β = nα. On the other hand, best-match learning uses the sample for best-match updates, that

is, Qn(s,a) = (1−α)Q
mf
n (s,a)+αῡn. However, since Q

mf
i (s,a) gets updated only when a sample

is removed from the queue, Q
mf
n (s,a) = Q0(s,a) in this case. Therefore, the following holds for

best-match learning:

Qn(s,a) = (1−α)Q0(s,a)+αῡn . (16)

The difference between Equation 15 and Equation 16 illustrates the fundamental advantage of se-

quence based best-match learning, for which Qn can be seen as an update with sample (s,a,r,s′)
using the most recent update target. In contrast, experience replay effectively performs an update

using an update target that is an average of the update targets from the different timesteps. There-

fore, the older, less accurate update targets still have an effect on Qn.

6.2 Best-Match Gradient Descent Learning

Since tabular sequence based best-match learning can be implemented by incremental Q-learning

updates, it can be easily extended to function approximation by combining it with the general gra-

dient descent update for Q-values (Sutton and Barto, 1998)

θ t+1 = θ t +α [υ t −Q t(s t ,a t)]∇θ tQ t(s t ,a t) , (17)

where θ t is a weight vector corresponding to the basis functions of the approximation.

Algorithm 6 shows pseudocode for general gradient descent best-match function approximation.

Note that a learning rate and the most recent update target are stored per sample. The updates of θ

and θmf are based on Equation 17.

We evaluate a linear version of the best-match gradient descent algorithm by comparing its

performance with linear Sarsa(λ) as well as a linear version of experience replay on the mountain car

task (Boyan and Moore, 1995; Sutton, 1996; Sutton and Barto, 1998) using the settings as described

in Sutton and Barto (1998). This involves tile coding with ten 9x9 tilings, a discount factor of 1,

an exploration parameter ε= 0, and Q-values optimistically initialized to 0. Additionally, to bound

the run-time of an experiment, an episode is stopped prematurely if the goal is not reached within

1000 steps. Linear Sarsa(λ) is known for its good performance on this task (Sutton and Barto,

1998) and is therefore a good benchmark test. For Sarsa(λ), we use the settings that showed the

best performance over the first 20 episodes: α= 0.14 and λ= 0.9 with replacing traces. We tested

whether decaying the learning rate improves the performance for a number of different α values

around 0.14 but did not find a significant improvement. To make Sarsa(λ) more computationally

efficient, traces are cut-off for state-action pairs that were visited longer than 20 timesteps ago. For

best-match and experience replay, a queue of the 20 most recent samples is used and a single update

sweep through this sample set is performed at every timestep. We optimize the initial learning rate

α0 and the learning rate decay d (see Equation 4). Results are averaged over 5000 independent runs.

Table 5 shows the average return over the first 20 episodes, the optimal parameters, and the

computation time per simulation step for the 5000 runs. Figure 14 shows the return as a function

of the number of episodes. For trace length/N = 20, the performance of linear best-match is about

27% better than that of linear Sarsa(λ).6 On the other hand, Sarsa(λ) is about twice as fast.

Surprisingly, while experience replay performed comparably to Sarsa(λ) in the tabular case, in

the mountain car task it performs 16% better than linear Sarsa(λ). However, as expected, it performs

6. The linear Sarsa(λ) performance is in accordance with the performance found by several other researchers (http:

//webdocs.cs.ualberta.ca/˜sutton/book/errata.html).
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Algorithm 6 General Gradient-Descent Best-Match

1: set N, γ

2: initialize θ,α and set θmf = θ

3: initialize SampleQueue to empty

4: loop {over episodes}
5: initialize s

6: while s 6= terminal state do

7: select action a, based on θ

8: take action a, observe s′,r

9: if size SampleQueue= N then

10: pop sample x from front of the SampleQueue

11: update θmf using x

12: end if

13: decay α; υ= /0

14: push new sample {s,a,r,s′,α,υ} to back of SampleQueue

15: for all samples x update υx← rx+ γ ·Vs′x using θ
16: for all samples x do

17: for all features from x: θ← θmf

18: end for

19: for all samples x (from front to back of SampleQueue) do

20: update θ using υx
21: end for

22: s← s′

23: end while

24: end loop

optimal parameters average standard time per step

return error (·10−6s)

best-match, N=20 α0 = 0.10, d = 0.09 -170.1 0.4 3.0

exp. replay, N=20 α0 = 0.10, d = 0.16 -195.1 0.4 2.5

Sarsa(λ), trace=20 λ= 0.9, α0 = 0.14, d = 0.0 -231.9 0.4 1.5

best-match, N=15 α0 = 0.10, d = 0.03 -176.3 0.4 2.5

best-match, N= 5 α0 = 0.10, d = 0.03 -215.1 0.4 1.5

Sarsa(λ), trace=∞ λ= 0.9, α0 = 0.14, d = 0.0 -228.2 0.4 6.7

Table 5: Average performance over the first 20 episodes and the computation time per simulation

step on the Mountain Car task (‘trace’ indicates trace length)

worse than linear best-match. Thus, a substantial portion of the performance improvement linear

best-match offers over Sarsa(λ) is due to the use of best-match principles, not simply the reuse of

data.

Besides a comparison with equal number of samples/updates, it is interesting to make a compar-

ison with equal computation time. To achieve this, we can either increase the sample set size used

by experience replay and Sarsa(λ), or decrease the sample set size used by linear best-match, in such

2075



VAN SEIJEN, WHITESON, VAN HASSELT AND WIERING

2 4 6 8 10 12 14 16 18 20
−800

−700

−600

−500

−400

−300

−200

−100

0

episodes

re
tu

rn

 

 

linear best−match, N = 20

linear exp. replay, N = 20

linear Sarsa(λ), trace length = 20

Figure 14: Performance of linear best-match, experience replay and linear Sarsa(λ) on the Moun-

tain Car task using the 20 most recent samples.

a way that the computation times approximately match. We chose to decrease the sample set size of

linear best-match. Using N = 15 and N = 5 resulted in a computation time matching that of expe-

rience replay and Sarsa(λ), respectively. Table 5 shows that the performance of linear best-match is

also better with equal amount of computation time. In addition, we performed an experiment with

Sarsa(λ) without bound on the trace length. This resulted in an average return of −228.2, demon-

strating that the performance of Sarsa(λ) cannot be improved significantly by increasing the trace

length.

Overall, these results show that best-match learning can be successfully applied to function

approximation. Furthermore, they demonstrate that using samples to correct previous updates can

lead to better performance that using them to perform additional updates.

7. Discussion

The methods presented in this article approximate solutions to different instantiations of the gen-

eralized best-match equations (Definition 11). These best-match equations provide a theoretical

foundation for combining model-free learning (through updates of Qmf ) with model-based learn-

ing (through updates of Q). The resulting methods offer two trade-offs. First, the selection of a

sparse, approximate model provides a trade-off between space and performance. Second, the num-

ber of best-match updates performed per timestep provides a trade-off between computation cost per

timestep and performance. The performance gain offered by best-match learning can be explained

from the perspective of the update targets. By performing best-match updates, the update targets

from the samples stored in the model are continually recomputed and the Q-values are updated to

incorporate any resulting changes.
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In the case of best-match LVM, this produces an evaluation method that leads to the same values

as TD(λ) with λ t = α t(s t) for acyclic tasks, as proven in Theorem 7. This equivalence arises from

the fact that both best-match LVM learning and eligibility traces outperform 1-step methods by

correcting previous updates with newly obtained samples. However, our theoretical and empirical

results suggest that the best-match LVM equations provide a much stronger basis for exploiting this

principle.

Theorem 8 proves that best-match LVM evaluation can perform updates that are unbiased with

respect to the initial values for an arbitrary MDP, while for TD(λ) this can only be achieved for

acyclic tasks. In the control case, Theorem 10 proves convergence in the limit to the optimal Q-

values for a general class of best-match LVM control algorithms. Similar converge guarantees do

not exist for eligibility traces. In addition, best-match LVM learning avoids the need to choose be-

tween different trace types (accumulating or replacing) and does not require an extra λ parameter.

Furthermore, in deterministic problems, best-match LVM learning, reduces to model-based learn-

ing, as one would expect for an algorithm that makes optimal use of the O(|S ||A |) space complexity.

Our empirical results show that best-match LVM evaluation substantially outperforms TD(λ)

and experience replay (Figure 9), despite having similar computational costs. For the control case,

we show that BM-LVM, which uses prioritized sweeping to trade-off computation cost with perfor-

mance, substantially outperforms not only Q(λ), but also other methods with a space complexity of

O(|S ||A |) (Figure 10). These results illustrate how best-match LVM learning efficiently exploits its

stored samples.

Alternatively, best-match learning can be combined with an n-transition model, yielding space

complexity betweenO(|S ||A |) andO(|S |2|A |). Without using best-match learning, the performance

of an NTM is bounded by the quality of the model approximation. In contrast, Theorem 12 proves

that BM-NTM converges in the limit to the optimal Q-values. Empirically, we demonstrate that, for

any significant space reduction compared to the full model, BM-NTM performs much better than

using only the NTM (Figure 13).

Finally, our results demonstrate that the ideas behind best-match learning can be successfully

extended to function approximation by combining sequence based best-match learning with gradient

descent updates (Algorithm 6). In particular, a linear implementation outperforms Sarsa(λ) and

experience replay on a benchmark task (Figure 14).

8. Future Work

Several avenues of future research are suggested by the work presented in this article. For example,

in Section 4.2 we proved that the best-match LVM evaluation algorithm can eliminate bias with

respect to the initial values. It may be possible to extend this result to the control case. One approach

would be to define a state value as the maximum of the Q-values over previously taken actions

instead of the maximum over all available actions. However, a potential problem is that the control

algorithms compute an approximation of the best-match Q-values, instead of the exact values. It is

an open question whether efficient approximations exist that are also unbiased. A second potential

problem is that many exploration schemes, such as optimistic initialization, depend on the Q-values

and might not work as well when updates are unbiased.

The convergence results for the tabular best-match methods are similar to those of Q-learning:

convergence in the limit to the optimal policy. It may be possible, however, to construct best-match
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methods that are probably approximately correct (PAC). Since Strehl et al. (2006) showed that a full

model is not required for a method to be PAC, we are optimistic that such methods exist.

Finally, it may be possible to develop novel combinations of best-match function approxima-

tion with other sample-based approaches such as fitted Q-iteration (Ernst et al., 2005) or LSPI

(Lagoudakis and Parr, 2003). By combining the strengths of each approach, such methods could

yield even better on-line performance. Fitted Q-iteration, for example, is an off-line algorithm that

computes a policy based on a large set of samples, by performing iterative update sweeps through

the sample set. For a good approximation, the number of samples should be much larger than the

number of parameters of the approximation. By using a combination between a model-free Q-value

function and a sample set, a smaller sample set might be possible, reducing the requirements with

respect to space and computation, and potentially producing an efficient on-line version of fitted

Q-iteration.

9. Conclusion

This article introduced best-match learning, a reinforcement learning approach that combines model-

free and model-based learning by using some samples to update a sparse model and the rest to update

a model-free Q-value. The final Q-values are computed from best-match updates that combine the

model-free Q-values with the sparse model. By controlling which samples enter the model, the size

of the model, and hence the space requirements, can be controlled. In the tabular case, the combi-

nation with the model-free Q-values ensures convergence to the optimal Q-values for a variety of

model approximations.

Our empirical results demonstrate that in the tabular case, when there is not enough space avail-

able to store the full model, methods that exploit the best-match equations perform substantially

better than methods based on only model-free learning or sparse model-based methods. This sug-

gests that best-match learning should be the strategy of choice when limited space is available.

In addition, we demonstrated that best-match learning can be successfully extended to the func-

tion approximation domain, where the sparse model is replaced by an explicit set of samples. An

interesting result in this domain is that best-match learning, which uses the sample set to correct

previous updates, outperforms experience replay, which uses the same sample set but performs ad-

ditional updates.

Overall, we believe that best-match learning provides an important missing link between model-

free and model-based learning and that the methods introduced in this article constitute a new

benchmark for reinforcement learning algorithms that are efficient with respect to both space and

computation.
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Appendix A. Proof of Theorem 1

Theorem 1 Given the same experience sequence, each Q-value from the current state has received

the same number of updates using JIT updates (Equation 3) as using regular updates (Equation
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2). However, each Q-value in the update target of a JIT update has received an equal or greater

number of updates as in the update target of the corresponding regular update.

Proof To prove the theorem, we need to prove

U [Q̃ t(s t ,a)] = U [Q t(s t ,a)] , for all a , (18)

U [Q̃ t−1(s t∗+1,a)] ≥ U [Q t∗(s t∗+1,a)] , for all a , (19)

whereU [Qk] is the total number of updates a Q-value has received at time k. From Equation 2 and

3 it follows that for both update types (s t ,a t∗) is updated once between timestep t∗ and timestep t,

while the Q-values of the other actions of s t are not updated during this period. Since this applies

to all visits and U [Q̃0(s,a)] = U [Q0(s,a)] = 0 for all s and a, the total number of updates for a

state-action pair is always equal for just-in-time updates and regular updates, when the state is the

current state, proving (18).

To prove (19), first assume that a t∗ is a returning action, that is, t− 1 = t∗. In this case clearly

(19) is true. Now, assume a t∗ is not a returning action, that is, t−1> t∗. From (18) it follows that

U [Q̃ t∗+1(s t∗+1,a)] =U [Q t∗+1(s t∗+1,a)]. Since t−1≥ t∗+1 andU [Q̃] increases monotonically over

time, it follows that (19) is true. When state s t∗+1 is revisited before t, an extra update is performed

and there is at least one action a, for whichU [Q̃ t−1(s t∗+1,a)]>U [Q t∗(s t∗+1,a)].

Appendix B. Relationship between Best-Match LVM and TD(λ)

Sutton and Singh (1994) showed that it is possible to perform TD updates that are unbiased with

respect to the initial values, by using TD(λ) where λ is made time-dependent and set equal to α t(s t).
However, TD(λ) can be made unbiased only for acyclic tasks, that is, episodic tasks with no revisits

of states within an episode. In this appendix, we prove that best-match LVM evaluation and TD(λ)

can lead to the same values for acyclic tasks and that best-match LVM evaluation can perform

unbiased updates for all MDPs.

B.1 Background on TD(λ)

The forward view of TD(λ) relates it to the λ-return (Watkins, 1989; Jaakkola et al., 1994), defined

by

Rλ
t = (1−λ)

∞

∑
n=1

λn−1R
(n)
t ,

where R
(n)
t indicates the n-step return, defined by

R
(n)
t = r t+1+ γr t+2+ γ2 r t+3+ ...+ γn−1 r t+n+ γnVt(s t+n) .

The λ-return algorithm updates state s t with R
λ
t . It can only be implemented off-line, since it makes

use of values from timesteps larger than t for the update of state s t . While the off-line version of

TD(λ) computes the same state values as the λ-return algorithm (Sutton and Barto, 1998), TD(λ)

can also be implemented on-line, since it does not rely on values from the future. On-line TD(λ)

can lead to more accurate updates than off-line TD(λ), although the interpretation as an incremental
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implementation of the λ-return holds only by approximation for the on-line case (Sutton and Barto,

1998).

The backward view of TD(λ) interprets λ as the trace decay parameter of an eligibility trace.

Each sample is used to update, not just the current state, but all states, proportional to their trace

parameter. At each timestep the trace of the current state is increased, while the other traces are

decreased by γλ. Accumulating traces increase the trace parameter of a visited state by 1, while

replacing traces set it equal to 1.

Sutton and Singh (1994) proposed several ways for setting α and λ that eliminate bias towards

initial state values, normally inherent to temporal-difference methods. One of these is to use TD(λ)

where λ t = α t(s t) and α0(s) = 1 for all s. This produces the same values as processing a state

backwards with TD(0). All the proposed methods eliminate the bias only for acyclic tasks.

The equation for the λ-return with time-dependent λ is (Sutton and Barto, 1998)

R
λ t
t =

∞

∑
n=1

R
(n)
t (1−λ t+n)

n−1

∏
i=1

λ t+i

=
T−t−1

∑
n=1

R
(n)
t (1−λ t+n)

n−1

∏
i=1

λ t+i+R t

T−t−1

∏
i=1

λ t+i , (20)

where T is the last timestep of the episode and R t is the complete return. Note that R t = R
(T−t)
t .

B.2 Forward View Best-Match LVM Values

The λ-return is based on the experience sequence encountered by the agent when interacting with

the environment. We can define for each visited state a last-visit experience sequence based on the

LVM by going through the transition states defined in the LVM. Using this sequence we define a

last-visit version of the n-step return and of a special version of the λ-return.

Definition 13 The last-visit experience sequence for state s is

s[0],r[1],s[1],r[2],s[2], ...,r[N],s[N] ,

where s[0] = s, s[n] = S′(s[n−1]) for n > 0 and r[n] = R′(s[n−1]). The sequence ends when a state is

encountered that is terminal, equal to s[0] or that has no transition state. We call s[N] the last-visit

sequence end state.

Using this definition, we define a last-visit version of the n-step return.

Definition 14 The last-visit n-step return of s is the n-step return applied to the last-visit experience

sequence of s:

R̆
(n)
s = r[1]+ γr[2]+ γ2 r[3]+ ...+ γn−1 r[n]+ γnV mf (s[n]) . (21)

We can now define a special version of the λ-return, which we call the last-visit α-return: a last-visit

version of the time dependent λ-return (Equation 20) with λ t = α t(s t).

Definition 15 The last-visit α-return of s is

R̆α
s =

N−1

∑
n=1

R̆
(n)
s (1−α [n])

n−1

∏
i=1

α [i]+ R̆
(N)
s

N−1

∏
i=1

α [i] , (22)
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where α [k] is shorthand for α(s[k]), s[k] is the kth state from the last-visit experience sequence of s

and N is the index of the last-visit sequence end state.

The following lemma relates the last-visit α-return of s to the best-match value of s. The lemma

is proven in Appendix C.

Lemma 16 If the last-visit sequence end state of s is a terminal state, the following equation holds

for the best-match value of s:

V B(s) = (1−αs)V mf (s)+αsR̆α
s .

This lemma forms the basis for the proof of the following theorem.

Theorem 7 For an episodic, acyclic, evaluation task, off-line best-match LVM evaluation computes

the same values as off-line TD(λ) with λ t = α t(s t).
Proof Let Vk be the state value function after the off-line updates at the end of episode k. For all

states that are visited during an episode, V is updated according to Lemma 16, since the last-visit

sequence end state is a terminal state for all these visited states. For the off-line algorithm, before

Vk(s) is computed, the update V
mf

k (s) = Vk−1(s) is performed for all visited states. Therefore, the

value updates of the visited states can be written as

Vk(s) = (1−αs)Vk−1(s)+αsR̆α
s .

If the task is acyclic, the last-visit experience sequence of a visited state s is equal to the experience

sequence followed by the agent from this state to the terminal state. Therefore, R̆α
s = R

λ=α t(s t)
t . Fi-

nally, since the values computed by off-line TD(λ) are equal to the values computed by the λ-return

algorithm, off-line TD(λ) with λ t = α t(s t) performs the same updates as off-line best-match LVM

evaluation.

It follows from Theorem 7 that best-match evaluation can also eliminate the bias for acyclic

tasks. The next theorem extends this property to a general MDP.

Theorem 8 The state values computed by the on-line best-match LVM evaluation algorithm (Al-

gorithm 2) are unbiased with respect to the initial state values, when the initial learning rates α0(s)
are set to 1 for all s.

Proof Algorithm 2 computes at each timestep the best-match value of the current state. We will

prove that if the best-match values of visited states computed at timesteps smaller than t are unbiased

with respect to the initial state values, then so is the best-match value computed at timestep t. Since

for t = 0 there are no visited states, it follows by induction that the values computed for all timesteps

t are unbiased.

The best-match values are computed using V B(s[0]) = cA+ cBV
B(s[N]) with cA and cB defined

as in (8) and (9) respectively. In Section 4.2 we showed that for the current state, s[N] is either

a terminal state or equal to s[0]. If s[N] is a terminal state, V B(s[0]) = cA, while if s[0] = s[N], then

V B(s[0]) = cA/(1−cB). In either case, the computed best-match value depends only on the variables

in cA and cB, which consists of the learning rates, V mf (s[i]), s[i] and r[i] for 0≤ i≤ N. Clearly, only

V mf (s[i]) can be affected by the initial state values. s[i] has been visited at least once, else it would

not appear in the last-visit experience sequence. If s[i] has been visited once,V
mf (s[i]) is equal to the
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initial value V0(s[i]). However, since we assumed initial learning rates of 1, this value of V mf (s[i]) is
removed from cA. If s[i] has been visited more than once, it is equal to the best-match value of s[i]
computed at a timestep smaller than t. From this it follows that if the best-match values computed

at timesteps smaller than t are unbiased with respect to the initial values, then so is the best-match

value computed at timestep t.

Appendix C. Proof of Lemma 16

For the sake of brevity, we present only the proof of Lemma 16 for constant α. The proof for state

dependent α follows the same pattern.

Lemma 16 If the last-visit sequence end state of s is a terminal state, the following equation holds

for the best-match value of s:

V B(s) = (1−αs)V mf (s)+αsR̆α
s .

Proof The best-match values in case of an LVM are defined as the solution of the set of best-match

LVM equations (Definition 6). In Section 4.2 we showed that by backward substitution of best-

match equations we can express the best-match value of s[0] in terms of the best-match value of s[N].

If s[N] is a terminal state, V B(s[N]) = 0 and V B(s[0]) is equal to cA defined as in (8). This yields

V B(s[0]) =
N−1

∑
i=0

(

(1−α)V mf (s[i])+αr[i+1]

)

i−1

∏
k=0

γα ,

= α
N

∑
k=1

(αγ)k−1 r[k]+(1−α)
N−1

∑
k=0

(αγ)kV mf (s[k]) . (23)

On the other hand, by substituting the definitions of the last-visit α-return (22) and the last-visit

n-step return (21) into the lemma, the following equation for V B(s[0]) appears:

V B(s[0]) = (1−α)V mf (s[0])+α

[

(1−α)
N−1

∑
k=1

αk−1

(

k

∑
p=1

γ p−1r[p]+ γkV mf (s[k])

)

+ αN−1
N

∑
p=1

γ p−1r[p]

]

. (24)

The rest of this proof shows that (23) is equal to (24).

We start by separating (24) into its state value components (V c) and its reward components (Rc).

We then simplify these components separately:

V c = (1−α)V mf (s[0])+α(1−α)
N−1

∑
k=1

αk−1 γkV mf (s[k])

= (1−α)

(

V mf (s[0])+
N−1

∑
k=1

(αγ)kV mf (s[k])

)

= (1−α)
N−1

∑
k=0

(αγ)kV mf (s[k]) ,
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Rc = (1−α)
N−1

∑
k=1

k

∑
p=1

αk γ p−1r[p]+αN
N

∑
p=1

γ p−1r[p]

= (1−α)
N−1

∑
p=1

N−1

∑
k=p

αk γ p−1r[p]+αN
N−1

∑
p=1

γ p−1r[p]+αN γN−1 r[N]

=
N−1

∑
p=1

[

(1−α)
N−1

∑
k=p

αk γ p−1r[p]+αN γ p−1r[p]

]

+αN γN−1 r[N]

=
N−1

∑
p=1

[(

N−1

∑
k=p

αk−
N−1

∑
k=p

αk+1+αN

)

γ p−1 r[p]

]

+αN γN−1 r[N]

=
N−1

∑
p=1

[(

N

∑
k=p

αk−
N−1

∑
k=p

αk+1

)

γ p−1 r[p]

]

+αN γN−1 r[N]

=
N−1

∑
p=1

[(

N−1

∑
j=p−1

α j+1−
N−1

∑
k=p

αk+1

)

γ p−1 r[p]

]

+αN γN−1 r[N]

=
N−1

∑
p=1

[

αp γ p−1 r[p]

]

+αN γN−1 r[N]

= α
N

∑
p=1

(αγ)p−1 r[p] .

Adding these simplified components back together yields Equation 23.

Appendix D. Proof of Theorem 10

Theorem 10 The Q-values of a member of the best-match LVM control class, shown in Algorithm

3, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. α t(s,a) ∈ [0,1] , ∑ t α t(s,a) = ∞ , ∑ t(α t(s,a))
2 < ∞ with probability 1 (w.p.1)

and α t(s,a) = 0 unless (s,a) = (s t ,a t).

3. Var{R(s,a,s′)}< ∞.

4. γ< 1.

Proof We prove that the Q-values of an arbitrary instantiation of Algorithm 3 converge in the limit

w.p.1 to those of the regular Q-learning algorithm. Because the algorithm requires that each visited

state action pair is updated at least once before its revisit, the following equation holds

Q
mf
t+1(s t ,a t) = (1−α t(s t ,a t))Q

mf
t (s t ,a t)+α t(s t ,a t)

(

r t∗+1+max
a′

Qτ,i(s t∗+1,a
′)

)

,
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where t∗ is the timestep of the previous visit of (s t ,a t) and Qτ,i is the Q-value of s t∗+1 that is

used in the update target of the last best-match update of (s t ,a t), at timestep τ. Note that t∗+
1 ≤ τ ≤ t. Assume that Q-learning is applied to the same state-action sequence produced by the

given instantiation of Algorithm 3. We denote the Q-values from Q-learning by Q̃. Subtracting the

update equation for Q-learning at time t∗+ 1 using learning rate α t(s t ,a t) and defining ∆ t(s,a) =

Q
mf
t (s,a)− Q̃ t∗(s,a) yields

∆ t+1(s t ,a t) = (1−α t(s t ,a t))∆ t(s t ,a t)+α t(s t ,a t)Ft(s t ,a t) , (25)

where Ft(s t ,a t) = γ
(

maxcQτ,i(s t∗+1,c)−maxc Q̃ t∗(s t∗+1,c)
)

.

We now prove that Q
mf
t and Q t∗ converge in the limit to each other using the same lemma used

to prove the convergence of Sarsa (Singh et al., 2000):

Lemma 17 Consider a stochastic process (α t ,∆ t ,Ft), t ≥ 0, where α t ,∆ t ,Ft : X → IR satisfy the

equations:

∆ t+1(x) = (1−α t(x))∆ t(x)+α t(x)Ft(x) ,

where x ∈ X and t = 0,1,2, . . .. Let Pt be a sequence of increasing σ-fields such that α0 and ∆0

are P0-measurable and ζ t ,∆ t and Ft−1 are Pt-measurable, t = 1,2, . . . . Assume that the following
conditions hold:

1. The set X is finite.

2. α t(x) ∈ [0,1] , ∑ t α t(x) = ∞ , ∑ t(α t(x))
2 < ∞ w.p.1 .

3. ‖E{Ft |Pt}‖ ≤ κ‖∆ t‖+ c t , where κ ∈ [0,1) and c t converges to zero w.p.1, and

4. Var{Ft(x t)|Pt} ≤ K(1+κ‖∆ t‖)
2, where K is some constant,

where ‖ · ‖ denotes a maximum norm. Then ∆ t converges to zero with probability one.

The correspondence of (25) to Lemma 17 follows from associating X with the set of state-action

pairs (s,a) and α t(x) with α t(s,a). We now prove that the 4 conditions hold.

The first two conditions follow from the first two conditions of Theorem 10. We define Pt
as the set {Q0,α0,a0,s0, ...,r t−1,α t ,a t ,s t}. With this definition, Var{Ft(s t ,a t)|Pt} = 0, satisfying

condition 4, and E{Ft(s t ,a t)|Pt}= Ft(s t ,a t). For |Ft(s t ,a t)| the following holds:

|Ft(s t ,a t)| = γ |max
b

Qτ,i(s t∗+1,b)−max
b

Q̃ t∗(s t∗+1,b)|

≤ γ||Qτ,i(u,b)− Q̃ t∗(u,b)||

= γ||∆ t(u,b)+Qτ,i(u,b)−Q
mf
t (u,b)||

≤ γ||∆ t ||+ ||Qτ,i(u,b)−Q
mf
t (u,b)|| .

We further define Ft(s,a) = 0 if (s,a) 6= (s t ,a t). Therefore, ||Ft(s,a)||= |Ft(s t ,a t)| ≤ γ||∆ t ||+Ct ,

where Ct = ||Qτ,i(u,b)−Q
mf
t (u,b)||. We now show that Ct converges to zero w.p.1. For Ct , the

following holds:

Ct ≤ ||Qτ,i(u,b)−Q
mf
τ∗ (u,b)||+ ||Q

mf
τ∗ (u,b)−Q

mf
t (u,b)|| ,
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where τ∗ is the timestep of the last visit of (u,b) before timestep τ. Qτ,i(u,b) is the result of a best-

match update of Q
mf
τ∗ (u,b) or is equal to it if no best-match update has been performed yet. In the

latter case, the first term is zero; in the former case it is

Qτ,i(u,b) = (1−ατ(u,b))Q
mf
τ∗ (u,b)+ατ(u,b)υ

ub
τ .

Because of condition 2 of Theorem 10, ατ(u,b) converges to 0 w.p.1 and Qτ,i(u,b) converges to

Q
mf
τ∗ (u,b) w.p.1. Therefore, the first term converges to 0 w.p.1. For the same reason, the second

term converges to zero.

Thus, the third condition of the lemma also holds and Qmf (s,a) converges to Q̃(s,a), the Q-

values from Q-learning. Because of the convergence guarantee of Q-learning, Qmf (s,a) also con-

verges to Q∗(s,a). Finally, since the Q-values of the given instantiation are a best-match update

of Qmf (s,a) and because α t(s,a) converges to zero w.p.1, this also proves that the Q-values of the

instantiation converge to Q∗.

Appendix E. Proof of Theorem 12

Theorem 12 The Q-values of a member of the best-match NTM control class, shown in Algorithm

5, converge to Q∗ if the following conditions are satisfied:

1. S and A are finite.

2. αsa
t ∈ [0,1] , ∑ t α

sa
t = ∞ , ∑ t(α

sa
t )

2 < ∞ with probability 1 (w.p.1),

and αsa
t = 0 unless (s,a) = (s t ,a t) and s t+1 /∈ NTM(s t ,a t).

3. Var{R(s,a,s′)}< ∞.

4. γ< 1.

E.1 Preliminaries

In this proof, we indicate the NTM by M . Also, we indicate the model-free Q-value, Qmf , by Q̆.

In addition, we use a single iteration index j for Q as well as Q̆. This global index is increased each

time an update (of either Q̆ or Q) occurs. Thus, j is equal to the total number of model-free updates

plus best-match updates that have occurred since the start of an episode. Clearly, t → ∞ implies

j→ ∞.

By denoting the state-action pair that gets updated by the j-th update as (s j,a j), we can write

the model-free (mf) update as

Q̆ j+1(s j,a j) = (1−αs ja j)Q̆ j(s j,a j)+αs ja j [r j+1+ γmax
a′

Q j(s
′
j+1,a

′)] , (26)

where r j+1 and s′j+1 are the reward and transition state from the sample (s t ,a t ,r t+1,s t+1) corre-
sponding to (s j,a j). We use s′j+1 instead of s j+1, since s

′
j+1, the transition state for s j, is in general

not equal to s j+1, the state that receives an update at iteration step j+1. The best-match (bm) update

is

Q j+1(s j,a j) = w
s j,a j

0 Q̆ j(s j,a j)+(1−w
s ja j

0 )

[

R̂ s ja j
+ γ∑

s′

P̂ s′

s ja j
max
a′

Q j(s
′,a′)

]

.
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Note that there is no specific sample corresponding to a best-match update, since the update is based

on the model estimate and can occur multiple times per timestep.

Let PM
sa = ∑s′∈M P s′

sa. If P
M
sa = 0, wsa

0 will always be 1 and the best-match update reduces to

Q j+1(s j,a j) = Q̆ j(s j,a j). We make this explicit by the following equation:

Q j+1(s j,a j) =

{

Q̆ j(s j,a j) if PM
sa = 0

Yj(s j,a j) if PM
sa > 0 ,

(27)

with

Yj(s j,a j) = w
s j,a j

0 Q̆ j(s j,a j)+(1−w
s ja j

0 )

[

R̂ s ja j
+ γ∑

s′

P̂ s′

s ja j
max
a′

Q j(s
′,a′)

]

.

Each time a sample is observed by the algorithm, w0 gets updated. In addition, when the sample

is part of M , R̂ and P̂ get updated. Therefore, the values of these variables can change between

iteration steps. However, for readability, we omit the j subscript for these variables. From the

definition of w0, R̂ and P̂ , and the law of large numbers, it follows that in the limit the following

holds:7

lim
j→∞

wsa
0 = 1−PM

sa , (28)

lim
j→∞

R̂ sa = ∑
s′∈M

P s′

saR
s′

sa/P
M
sa , (29)

lim
j→∞

P̂ s′

sa = P s′

sa/P
M
sa . (30)

In general, the model-free Q-values, Q̆, will not converge to Q∗, since they do not receive

updates from samples corresponding to the next states stored by the NTM. However, as part of the

proof, we show that the model-free Q-values converge to an alternative value, which we indicate by

Q̆∗. This value is defined as8

Q̆∗(s,a) = ∑
s′ /∈M

P s′

sa [R
s′

sa+ γmax
a′

Q∗(s′,a′)]/(1−PM
sa ) . (31)

Using this equation, we can express Q∗ as

Q∗(s,a) = ∑
s′ /∈M

P s′

sa[R
s′

sa+ γmax
a′

Q∗(s′,a′)]+ ∑
s′∈M

P s′

sa[R
s′

sa+ γmax
a′

Q∗(s′,a′)]

= (1−PM
sa )Q̆∗(sa)+ ∑

s′∈M

P s′

sa[R
s′

sa+ γmax
a′

Q∗(s′,a′)] . (32)

Note that it follows from (32), that

Q∗(s,a) = Q̆∗(s,a) , if PM
sa = 0 . (33)

Convergence of Q j to Q∗ requires convergence of Q̆ j to Q̆∗, and vice versa. To deal with this

mutual dependence relation, we simultaneously prove their convergence. To achieve this, we define

7. Note that R̂ sa and P̂
s′

sa do not converge to R sa and P
s′

sa, but to normalized values of these variables.

8. For PM
sa = 1, that is, when all samples are stored by the NTM, Q̆∗(s,a) is not defined. However, in this case, Q̆(s,a)

does not receive any updates, nor is it used by any other update. Therefore, we can safely ignore the value Q̆(s,a),

and consequently Q̆∗(s,a), if PM
sa = 1.
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a function U : S ×A ×B → IR that encompasses both functions Q and Q̆. B is a set consisting of

only two elements: ‘mf’ and ‘bm’, which indicate the Q-value type. We defineU j as

U j(s,a,b) =

{

Q̆ j(s,a) if b = ‘mf’

Q j(s,a) if b = ‘bm’ .
(34)

Both updates (26) and (27) can now be interpreted as updates ofU j(s j,a j,b j). It follows from (34)

that when the model-free update is performed, b j = ‘mf’, while for the best-match update b j = ‘bm’.

We will prove convergence ofU j toU
∗
j , defined as

U∗(s,a,b) =

{

Q̆∗(s,a) if b = ‘mf’

Q∗(s,a) if b = ‘bm’ .

The difficulty with this proof is that we cannot simply apply Lemma 17 (or similar stochastic

approximation lemmas), used to prove convergence of BM-LVM, since the ∑ t(α t(x t))
2 < ∞ con-

dition of Lemma 17 is not met for b = ‘bm’. On the other hand, a related lemma can be deduced

(see Appendix F), that does not require ∑ t(α t(x t))
2 < ∞, however, it requires that the contraction

condition holds for the value of Ft , instead of its expected value. Hence, also this lemma cannot be

directly applied.

To deal with this, we define a related function U ′j, that does comply with the ∑ t(α t(x t))
2 < ∞

condition, hence we can prove convergence of it to U∗ using Lemma 17. On the other hand, the

difference between U ′j and U j complies with all the conditions of Lemma 20, hence we can prove

thatU j converges toU
′
j using Lemma 20. Adding these two results together, proves the theorem.

We defineU ′j as

U ′j(s,a,b) =

{

Q̆′(s,a) if b = ‘mf’

Q′(s,a) if b = ‘bm’ .

Q̆′ and Q′ are updated using the same sample sequence as used for Q̆ and Q. The update for Q̆′ is

Q̆′j+1(s j,a j) = (1−αs ja j)Q̆′j(s j,a j)+αs ja j [r j+1+ γmax
a′

Q′j(s
′
j+1,a

′)] ,

while the update for Q′ is

Q′j+1(s j,a j) =

{

Q̆′j(s j,a j) if PM
sa = 0

(1−βs ja j)Q′j(s j,a j)+βs ja jY ′j(s j,a j) if PM
sa > 0 ,

(35)

with

Y ′j(s j,a j) = w
s j,a j

0 Q̆′j(s j,a j)+(1−w
s ja j

0 )

[

R̂ s ja j
+ γ∑

s′

P̂ s′

s ja j
max
a′

Q′j(s
′,a′)

]

.

Note that the only difference with the updates of Q and Q̆ is the way Q′ is updated for PM
sa > 0.

Instead of setting Q′j+1(s j,a j) equal to Y
′
j(s j,a j), it is set equal to a weighted average of Y ′j(s j,a j)

and Q′j(s j,a j). The weighting is controlled by β j, which is an arbitrary learning rate with properties

βsa
j ∈ [0,1], ∑ j β

sa
j = ∞ , ∑ j(β

sa
j )

2 < ∞ w.p.1., and βsa
j = 0 unless (s,a) = (s j,a j) and b j = ‘bm’.9

Because of this learning rate, Lemma 17 can be used to prove convergence ofU ′j toU
∗.

9. Note that such a β always exists.
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E.2 Convergence ofU ′j toU
∗

Lemma 18 U ′j(s,a,b) converges in the limit to U
∗(s,a,b) w.p.1.

Proof We define ∆′(s,a,b) =U ′j(s,a,b)−U∗j (s,a,b) and will prove that ∆′(s,a,b) converges to 0

using Lemma 17. For b j = ‘bm’, we use the contraction factor κsa, defined as

κsa = (1−PM
sa )+ γPM

sa . (36)

To ensure that κsa < 1, PM
sa has to be larger than 0. Therefore, we exclude (s,a,b) triples for which

b = ‘bm’∧PM
sa = 0 from the domain of ∆′. This can be done, because Algorithm 5 states that at

least one best-match update occurs in between two model-free updates. Therefore, if PM
sa = 0 ,

Q′j(s,a) is either equal to Q̆′j(s,a) or one (model-free) update apart. Since αsa
j converges to 0, it

follows that Q′j(s,a) converges in the limit to Q̆′j(s,a). Alternatively, we can say

Q′j(s,a) = Q̆′j(s,a)+ c′j(s,a) , if PM
sa = 0 , (37)

with c′j(s,a) converging to 0 w.p.1.
10 Combining this with (33), the following holds:

lim
j→∞

Q̆′j(s,a) = Q̆∗(s,a) ⇒ lim
j→∞

Q′j(s,a) = Q∗(s,a) , if PM
sa = 0 . (38)

Note, ‖Q̆′j−Q̆∗‖≤ ‖∆′j‖. However, because of the exclusion of (s,a, ‘bm’) triples with PM
sa = 0,

‖Q′j−Q∗‖ ≤ ‖∆ j‖ does not hold in general. Instead, the following holds:

‖Q′j−Q∗‖ = max(‖Q′j−Q∗‖PMsa >0,‖Q
′
j−Q∗‖PMsa =0)

≤ max(‖Q′j−Q∗‖PMsa >0,‖Q̆
′
j− Q̆∗‖PMsa =0+‖c

′
j‖)

≤ max(‖U ′j−U
∗‖,‖U ′j−U

∗‖+‖c′j‖)

= ‖U ′j−U
∗‖+‖c′j‖

= ‖∆′‖+‖c′j‖ .

Because of the exclusion of the (s,a,b) triples mentioned above, for all (s,a, ‘bm’) triples in the
domain of ∆′j, P

M
sa > 0.

∆′j is updated according to

∆′j+1(s,a,b) = (1−ζ′j(s,a,b))∆
′
j(s,a,b)+ζ′j(s,a,b)F

′
j(s,a,b) .

For (s,a,b) 6= (s j,a j,b j), ζ
′
j(s,a,b) = 0 and F ′j (s,a,b) = 0. For (s j,a j,b j) the following holds:

ζ′j(s j,a j,b j) =

{

α
s ja j

j if b j = ‘mf’

β
s ja j

j if b j = ‘bm’ ,

F ′j (s j,a j,b j) =

{

r j+1+ γmaxa′Q
′
j(s
′
j+1,a

′)− Q̆∗(s j,a j) if b j = ‘mf’

Y ′j(s j,a j)−Q∗(s j,a j) if b j = ‘bm’ .

10. We use the notational convention to indicate variables that converge to 0 with probability 1 with lowercase, Latin

letters: c, d, e, ... .
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We now prove that ∆′j converges to zero, by showing the conditions for Lemma 17 hold, using

the σ-field Pj, defined as
11

P0 = {Q′0, Q̆
′
0,ζ0,w0,0, P̆0, R̆ 0,s0,a0} ,

Pj = Pj−1∩{r j,s
′
j,ζ j,w0, j, P̆ j, R̆ j,s j,a j} .

Conditions 1, 2 and 4 of the Lemma 17 follow from conditions 1,2, and 3 of Theorem 12 and the

conditions that hold for βsa
j . Condition 3 of the lemma, we prove below.

For b j = ‘mf’, using (31), the following holds:

|E{F ′j(s j,a j, ‘mf’)|Pj}| =
∣

∣

∣ ∑
s′ /∈M

P s′

s ja j
[R s′

s ja j
+ γmax

a′
Q′j(s

′,a′)]/(1−PM
s ja j

)− Q̆∗(s j,a j)
∣

∣

∣

= γ ∑
s′ /∈M

P s′

s ja j

∣

∣

∣
max
a′

Q′j(s
′,a′)−max

a′
Q∗(s′,a′)

∣

∣

∣
/(1−PM

s ja j
)

≤ γ‖Q′j−Q∗‖

≤ γ‖∆′j‖+ γ‖c′j‖ . (39)

For b j = ‘bm’, using (32), we can write

|F ′j(s j,a j, ‘bm’)| = |Y ′j(s j,a j)−Q∗(s j,a j)|

≤
∣

∣

∣
(1−PM

s ja j
)(Q̆′j(s j,a j)− Q̆∗(s j,a j))

+ γ ∑
s′∈M

P s′

s ja j
[max

a′
Q′j(s

′,a′)−max
a′

Q∗(s′,a′)]
∣

∣

∣

+
∣

∣

∣

[

w
s ja j

0 − (1−PM
s ja j

)
]

· Q̆′j(s j,a j)
∣

∣

∣

+
∣

∣

∣
(1−w

s ja j

0 )R̂ s ja j
− ∑

s′∈M

P s′

s ja j
R s′

s ja j

∣

∣

∣

+ γ
∣

∣

∣ ∑
s′∈M

[

(1−w
s ja j

0 )P̂ s′

s ja j
−P s′

s ja j

]

·max
a′

Q′j(s
′,a′)

∣

∣

∣
.

The sum of the last three terms we call d j(s j,a j). By substituting (28), (29) and (30) in these three

terms, it follows that lim j→∞ d j(s j,a j) = 0. We can further bound |F ′j (s j,a j, ‘bm’)| as follows:

|F ′j(s j,a j, ‘bm’)| ≤ (1−PM
s ja j

)‖Q̆ j− Q̆∗‖+ γPM
s ja j
‖Q j−Q∗‖+d j(s j,a j)

≤ (1−PM
s ja j

)‖∆′j‖+ γPM
s ja j

(

‖∆′j‖+‖c j‖
)

+d j(s j,a j)

≤
(

(1−PM
s ja j

)+ γPM
s ja j

)

· ‖∆′j‖+ γPM
s ja j
‖c′j‖+d j(s j,a j)

= κs ja j ‖∆′j‖+ γPM
s ja j
‖c′j‖+d j(s j,a j) . (40)

Note ‖c′j‖, as well as d j(s j,a j), converge to 0. Note also that κs ja j < 1, since PM
s ja j

> 0 and γ < 1.

From (39) and (40) it follows that the third condition of Lemma 17 is also satisfied. Hence, all

conditions hold and ∆′j converges to 0 w.p.1. Combining this with (38), proves Lemma 18.

11. There is no explicit sample related to a best-match update. For consistency, we define r j = /0 and s′j = /0 if b j−1 = ‘bm′.
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E.3 Convergence ofU j toU
′
j

Lemma 19 U j(s,a,b) converges in the limit to U
′
j(s,a,b) w.p.1.

Proof We define ∆(s,a,b) = U ′j(s,a,b)−U j(s,a,b) and will prove that ∆(s,a,b) converges to 0

using Lemma 20. We exclude (s,a, ‘bm’) triples for which PM
sa = 0 from the domain of ∆. Similar

to the reasoning behind (38) and (37), we can deduce

Q j(s,a) = Q̆ j(s,a)+ c j(s,a) , if PM
sa = 0 ,

with c j(s,a) converging to 0 in the limit, as well as

lim
j→∞

(

Q̆′j(s,a)− Q̆ j(s,a)
)

= 0 ⇒ lim
j→∞

(

Q′j(s,a)−Q j(s,a)
)

= 0 , if PM
sa = 0 . (41)

Note, ‖Q̆′j− Q̆ j‖ ≤ ‖∆ j‖. However, ‖Q
′
j−Q j‖ ≤ ‖∆ j‖ does not hold in general, because of the

exclusion of (s,a,‘bm’) triples with PM
sa = 0 from the domain of ∆ j. Instead, the following holds:

‖Q′j−Q j‖ = max(‖Q′j−Q j‖PMsa >0,‖Q
′
j−Q j‖PMsa =0)

≤ max(‖Q′j−Q j‖PMsa >0,‖Q̆
′
j− Q̆ j‖PMsa =0+‖c j‖+‖c

′
j‖)

≤ max(‖U ′j−U j‖,‖U
′
j−U

∗‖+‖c j‖+‖c
′
j‖)

= ‖U ′j−U j‖+‖c j‖+‖c
′
j‖

= ‖∆′j‖+ c′′j ,

with c′′j = ‖c j‖+‖c
′
j‖ converging to 0 w.p.1.

For PM
sa > 0 we can rewrite (35) as

Q′j+1(s j,a j) = (1−βs ja j)Q′j(s j,a j)+βs ja jY ′j(s j,a j)

= Y ′j(s j,a j)+(1−βs ja j)[Q′j(s j,a j)−Y
′
j(s j,a j)] .

In Section E.2 we proved that ∆′j(s,a, ‘bm’) = Q′(s,a)−Q∗(s,a) j converges to 0 w.p.1. On the

other hand, it follows from (40), that F ′j (s j,a j, ‘bm’), which is equal to Y ′j(s j,a j)−Q∗(s j,a j), also
converges to 0 w.p.1. Therefore, both Q′j(s j,a j) and Y ′j(s j,a j) converge to the same value, so we

can write

Q′j+1(s j,a j) = Y ′j(s j,a j)+ e j(s j,a j) , if PM
s ja j

> 0 ,

with e j(s j,a j) converging to 0 w.p.1.
∆ j is updated according to

∆ j+1(s,a,b) = (1−ζ j(s,a,b))∆ j(s,a,b)+ζ j(s,a,b)Fj(s,a,b) .

For (s,a,b) 6= (s j,a j,b j), ζ j(s,a,b) = 0 and Fj(s,a,b) = 0. While for (s j,a j,b j) the following

holds:

ζ j(s j,a j,b j) =

{

α
s ja j

j if b j = ‘mf’

1 if b j = ‘bm’ ,

and

Fj(s j,a j,b j) =

{

γmaxa′Q
′
j(s
′
j+1,a

′)− γmaxa′Q j(s
′
j+1,a

′) if b j = ‘mf’

Y ′j(s j,a j)−Yj(s j,a j,b j)+ e j(s j,a j) if b j = ‘bm’ .
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We now check the three conditions of Lemma 20. Conditions 1 and 2 from the lemma follow

from conditions 1 and 2 of Theorem 12. Condition 3, we prove below.

For b j = ‘mf’, the following holds:

|Fj(s j,a j, ‘mf’)| = γ

∣

∣

∣

∣

max
a′

Q′j(s
′
j+1,a

′)−max
a′

Q j(s
′
j+1,a

′)

∣

∣

∣

∣

≤ γ‖Q′j−Q j‖

≤ γ‖∆ j‖+ γc′′j , (42)

while for b j = ‘bm’, we can write

|Fj(s j,a j, ‘bm’)| = |Y ′j(s j,a j)−Yj(s j,a j)+ e j(s j,a j,b j)|

≤ w
s j,a j

0 |Q̆′j(s j,a j)− Q̆ j(s j,a j)|+ |e j(s j,a j)|+

γ(1−w
s ja j

0 )∑
s′

P̂ s′

s ja j

∣

∣

∣

∣

max
a′

Q′j(s
′,a′)−max

a′
Q j(s

′,a′)

∣

∣

∣

∣

≤ w
s j,a j

0 ‖∆ j‖+ γ(1−w
s ja j

0 )‖∆ j‖+ |e j(s j,a j)|+ γ(1−w
s ja j

0 )c′′j

=
(

(1−PM
s ja j

)+ γPM
s ja j

)

‖∆ j‖+ |e j(s j,a j)|+ γ(1−w
s ja j

0 )c′′j +
(

w
s j,a j

0 + γ(1−w
s ja j

0 )− (1−PM
s ja j

)− γPM
s ja j

)

‖∆ j‖ .

We define

f j(s j,a j) =
(

w
s j,a j

0 + γ(1−w
s ja j

0 )− (1−PM
s ja j

)− γPM
s ja j

)

‖∆ j‖

+|e j(s j,a j)|+ γ(1−w
s ja j

0 )c′′j .

Note that lim j→∞ f j = 0, since e j and c′′j converge to 0 and w
s j,a j

0 converges to 1−PM
s ja j

. Using this

definition and (36), we can write

|Fj(s j,a j, ‘bm’)| ≤ κs ja j‖∆ j‖+ f j(s j,a j) . (43)

Note that κs ja j < 1. From (42) and (43) it follows that the third condition of Lemma 20 is also

satisfied. Hence, all conditions hold and ∆ j converges to 0 w.p.1.Combining this with (41), proves

Lemma 19.

E.4 Proof of Theorem 12

Because U ′j converges to U
∗ (Lemma 18) and U j converges to U

′
j (Lemma 19), it follows that also

U j converges toU
∗. From this it follows that Q converges to Q∗, proving Theorem 12.

Appendix F. Lemma 20

Lemma 20 Consider a stochastic process (α t ,∆ t ,Ft), t ≥ 0, where α t ,∆ t ,Ft : X → IR satisfy the

equations:

∆ t+1(x) = (1−α t(x))∆ t(x)+α t(x)Ft(x) ,

where x ∈ X and t = 0,1,2, . . .. Assume that the following conditions hold:
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1. The set X is finite.

2. α t(x) = [0,1], ∑ t α t(x) = ∞.

3. ‖Ft‖ ≤ κ‖∆ t‖+ c t , where κ ∈ [0,1) and c t converges to zero w.p. 1 ,

where ‖ · ‖ denotes a maximum norm. Then ∆ t converges to zero with probability one.

Note that this lemma is similar to Lemma 17, but the conditions for the learning rates are less

strict (∑ t(α t(x t))
2 < ∞ is missing), while the condition for Ft is more strict (condition 3 uses the

value of Ft instead of its expected value).

Proof The outline of this proof is that we define a related process ∆′t that converges to 0 and show

that ‖∆ t‖≤ ‖∆
′
t‖ for all t. We will ignore c t in this proof. This can be safely done, since c t converges

to zero, κ< 1 and ∑ t α t(x) = ∞ for all x. Therefore, this term is asymptotically unimportant.

We define ∆′0(x) = ‖∆0‖ for all x. For t > 0, ∆′t(x) is defined as

∆′t+1(x) = (1−β t(x))∆
′
t(x)+β t(x)κ‖∆

′
t‖ , (44)

with β t(x) ≤ α t(x) and β t(x) ∈ [0,1], ∑ t β t(x) = ∞ , ∑ t(β t(x))
2 < ∞ w.p.1. It follows from (44)

that ‖∆′t+1‖ ≤ ‖∆
′
t‖. It also follows that if ∆′t(x) ≥ κ‖∆′t‖ then ∆′t+1(x) ≥ κ‖∆′t‖ ≥ κ‖∆′t+1‖. And

since ∆′0(x)≥ κ‖∆′0‖ it follows that

∆′t(x)≥ κ‖∆′t‖ , for all t . (45)

Using Lemma 17, it can easily be shown that ∆′ converges in the limit to 0 w.p.1.

We now prove that ‖∆ t‖ ≤ ‖∆
′
t‖ for all t. We start by proving

|∆ t(x)| ≤ ∆′t(x) for all x ⇒ |∆ t+1(x)| ≤ ∆′t+1(x) for all x . (46)

Assuming the left part of (46), for |∆ t+1(x)| the following holds:

|∆ t+1(x)| ≤ (1−α t(x))|∆ t(x)|+α t(x)κ‖∆ t‖

≤ (1−α t(x))∆
′
t(x)+α t(x)κ‖∆

′
t‖ .

Since (45) and β t(x)≤ α t(x), we can continue as

|∆ t+1(x)| ≤ (1−β t(x))∆
′
t(x)+β t(x)κ‖∆

′
t‖

≤ ∆′t+1(x) .

This proves (46). And since |∆0(x)| ≤ ∆′0(x), it follows that |∆ t(x)| ≤ ∆′t(x) holds for all t, and
hence, ‖∆ t‖ ≤ ‖∆

′
t‖ proving the lemma.
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