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Reinforcement Learning Soccer Teamswith Incomplete World ModelsMARCO WIERING, RAFA L SA LUSTOWICZ, J�URGEN SCHMIDHUBER �marco@idsia.ch, rafal@idsia.ch, juergen@idsia.chIDSIA, Corso Elvezia 36, 6900 Lugano, SwitzerlandReceived 28 October, 1998; RevisedEditors:Abstract. We use reinforcement learning (RL) to compute strategies for multiagent soccer teams. RLmay pro�t signi�cantly from world models (WMs) estimating state transition probabilities and rewards.In high-dimensional, continuous input spaces, however, learning accurate WMs is intractable. Here weshow that incomplete WMs can help to quickly �nd good action selection policies. Our approach isbased on a novel combination of CMACs and prioritized sweeping-like algorithms. Variants thereofoutperform both Q(�)-learning with CMACs and the evolutionary method Probabilistic IncrementalProgram Evolution (PIPE) which performed best in previous comparisons.Keywords: reinforcement learning, CMAC, world models, simulated soccer, Q(�), evolutionary com-putation, PIPE1. IntroductionOur goal is to build teams of autonomous agentsthat learn to play soccer from very sparse rein-forcement signals: only scoring a goal yields re-ward for the successful team. Team members tryto maximize reward by improving their adaptivepolicy mapping sensory inputs to actions. In prin-ciple there are at least two types of learning algo-rithms applicable to such problems: reinforcementlearning (RL), e.g., [23, 29, 33, 31], and evolution-ary approaches, e.g., [9, 17, 7, 19]. Here we de-scribe a novel RL method and compare its resultsto those obtained by previous RL methods and anevolutionary approach.Most existing RL algorithms are based on func-tion approximators (FAs) learning value functions�This research is supported by SNF grant 2100-49'144.96\Long Short-Term Memory"

(VFs) that map state/action pairs to the expectedoutcome (reward) of a trial [5, 33]. In realis-tic, partially observable, multiagent environments,learning value functions is hard though. Thismakes evolutionary methods a promising alterna-tive. For instance, in previous work on learningsoccer strategies [22] we found that Probabilis-tic Incremental Program Evolution (PIPE) [19],a novel evolutionary approach to searching pro-gram space, outperforms Q(�) [16, 33, 37] com-bined with FAs based on linear neural networks[21] or neural gas [20].We identi�ed several reasons for PIPE's superi-ority: (1) In complex environments such as oursRL methods tend to be brittle | once discov-ered, good policies do not stabilize but tend to getdestroyed by subsequent \unlucky" experiences.PIPE is less a�ected by this problem because goodpolicies have a large probability of surviving. (2)



2 Wiering et al.PIPE learns faster by isolating important featuresin the sensory input, combining them in programsof initially low algorithmic complexity, and sub-sequently re�ning the programs. This motivatesour present approach: VF-based RL should alsobe able to (a) stabilize or improve �ne policies (asopposed to unlearning them), (b) pro�t from theexistence of low-complexity solutions, and (c) useincremental search to �nd more complex solutionswhere simple ones do not work.Incomplete world models. Direct RL meth-ods [5, 33] use temporal di�erences (TD) [29] fortraining FAs to approximate the VF from simu-lated trajectories through state/action space. In-direct RL, however, learns a world model (WM)[14, 35] estimating the reward function and thetransition probabilities between states, then usesdynamic programming (DP) [4] or similar, fasteralgorithms such as prioritized sweeping (PS |which we will use in the paper) [14] for computingthe VF. This can signi�cantly improve learningperformance in discrete state/action spaces [14]1.In case of continuous spaces, WMs are most ef-fectively combined with local FAs transformingthe input space into a set of discrete regions andthen learning the VF. Similarly, continuous actionspaces can be transformed in a set of discrete ac-tions. Previous work has already demonstratedthe e�ectiveness of learning discrete world modelsfor robotic localization and navigation tasks, e.g.,[32]. Learning accurate WMs in high-dimensional,continuous, partially observable environments ishard, however, and this motivates our novel ap-proach to learning useful but incomplete modelsinstead.CMAC models. We will present a novel com-bination of CMACs and world models. CMACs[1] use �lters mapping sensor-based inputs to aset of activated cells. Each �lter partitions the in-put space into subsections in a prewired way suchthat each (possibly multi-dimensional) subsectionis represented by exactly one discrete cell of the�lter. For example, a �lter might consist of a �-nite number of cells representing an in�nite setof colors represented by cubes with 3 dimensionsred, blue and yellow, and activate the cell whichencloses the current color input component.In an RL context each cell has a Q-value foreach action. The Q-values of currently active cellsare averaged to compute the overall Q-values re-

quired for action selection. Previous work alreadycombined CMACs with Q-learning [33] and Q(�)methods [30, 24]. Here we combine CMACs withWMs by learning an independent model for each�lter. These models are then exploited by a ver-sion of prioritized sweeping (PS) [14, 36] for com-puting the Q-functions. Later we will �nd thatCMAC models can quickly learn to play a goodsoccer game and surpass the performance of PIPEand an approach combining CMACs and Q(�).Outline. Section 2 describes our soccer en-vironment. Section 3 presents CMACs and de-scribes how they can be combined with model-based learning. Section 4 describes experimentalresults. Section 5 concludes.2. The Soccer SimulatorOur soccer simulator [22] runs discrete-time sim-ulations involving two teams consisting of either1 or 3 players per team. A game lasts from timet = 0 to time tend = 5000. The �eld is repre-sented by a two-dimensional continuous Cartesiancoordinate system. As in indoor soccer the �eld issurrounded by impassable walls except for the twogoals centered in the east and west walls. Thereare �xed initial positions for all players and theball (see Figure 1).
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Fig. 1. Players and ball (center) in initial positions.Players of a 1 player team are those furthest in the back.Players/Ball. Each player and the ball arerepresented by a solid circle and a variable real-valued position and orientation. A player whosecircle intersects the ball picks it up and then ownsit. The ball owner can move or shoot the ball. Ashot is in the direction of the player's orientation.When shot, the ball's initial speed is 0:12 units pertime step. Each following time step the ball slowsdown due to friction by 0:005 units per time step



Reinforcement Learning Soccer Teams 3(unless it is picked up by a player) - the ball cantravel freely at most 1.5 units. At each discretetime step each player selects one of the followingactions:� go forward: move 0.025 units in current direc-tion.� turn to ball: point player's orientation to-wards ball.� turn to goal: point player's orientation to-wards opponent's goal.� shoot: if the player owns the ball thenchange player's orientation by a random anglefrom the interval [�5�; 5�] (to allow for noisyshots), and shoot ball in the corresponding di-rection.A player that makes a step forward such thatits circle intersects another player's circle bouncesback to its original position. If one of them ownsthe ball prior to collision then it will lose it to thecollision partner.Action framework. During each time stepall players execute one action each, in randomlychosen order. Then the ball moves according toits current speed and direction. If a team scoresor t = tend then all players and ball will be resetto their initial positions.Sensory input. At any given time a player'sinput vector ~x consists of 16 (1 player) or 24 (3players) components:� Three Boolean input components that tellwhether the player/a team member/opponentteam owns the ball.� Polar coordinates (distance, angle) of bothgoals and the ball with respect to the player'sorientation and position.� Polar coordinates of both goals relative to theball's orientation and position.� Ball speed.� Polar coordinates of all other players w.r.t.the player are ordered by (a) teams and (b)distances to the player.Policy-sharing. All players share the same Q-functions or PIPE-programs. Still their behaviorsdi�er due to di�erent, situation-speci�c inputs.Policy-sharing has the advantage of greatly reduc-ing the number of adaptive free parameters, whichtends to reduce the number of required training

examples (learning time) and increase generaliza-tion performance, e.g., [15]. A potential disadvan-tage of policy sharing, however, is that di�erentplayers cannot develop truly di�erent strategiesto be combined in fruitful ways.3. CMAC ModelsCMACs [1] use multiple, a priori designed �ltersto quantize the input space. Each �lter consistsof several cells with associated Q-values. Apply-ing the �lters to the current input yields a set ofactivated cells (a discrete distributed representa-tion of the input). Their Q-values are averaged tocompute the overall Q-value.Filter design. In principle the �lters may yieldarbitrary divisions of the input space, such as hy-percubes. To avoid the curse of dimensionality onemay use hashing to group a random set of inputsinto an equivalence class, or use hyperslices omit-ting certain dimensions in particular �lters [30].Although hashing techniques may help to over-come storage problems, we do not believe thatrandom grouping is the best we can do. Since oursoccer simulation involves a fair number of inputdimensions (16 or 24), we use hyperslices to reducethe number of adjustable parameters. Our �ltersdivide the state-space by splitting it along singleinput dimensions into a �xed number of cells |input components are treated in a mutually inde-pendent way. Multiple �lters are applied to thesame input component to allow for smoother gen-eralization.Partitioning the input space. We use two�lters for each input component, both splitting thesame component. Input components representingBoolean values, distances (or speeds), and angles,are split in various ways (see Figure 2): (1) Fil-ters associated with a Boolean input componentjust return its value. (2) Distance or ball-speed in-put components are rescaled to values between 0and 1. Then the �lters partition the componentsinto nc or nc + 1 quanta. (3) Angle input compo-nents are partitioned in nc equal quanta in a cir-cular (and thus natural) way | one �lter groupsthe angles 359� and 0� to the same cell, the otherseparates them by a cell boundary.
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Fig. 2. We use two �lters for each input component, re-sulting in a total of 32 (1 player) or 48 (3 players) �l-ters. Filters of a Boolean input component just return theBoolean value as cell number. The �gure (activated cellsare marked) illustrates decompositions of (A) a continu-ous distance input component into 10 discrete cells, (B)the same component into 11 cells, (C) a continuous anglecomponent into 10 cells, (D) the same component into 10di�erent cells.Selecting an action. Applying all �lters ona player's current input vector at time t returnsthe active cells ff t1; : : : ; f tzg, where z is the numberof �lters. The Q-value of selecting action a giveninput ~x is calculated by averaging all Q-values ofthe active cells:Q(~x; a) = zXk=1Qk(f tk; a)=z;where Qk is the Q-function of �lter k. After com-puting the Q-values of all actions we select anaction according to the Max-random explorationrule: select the action with maximal Q-value withprobability Pmax, and a uniformly random actionotherwise.Learning with WMs. Learning accuratemodels for high-dimensional input spaces is hard.Usually there are so many possible successor statesthat storing all of them for each di�erent inputwould be infeasible and updates would cost a lotof time. Instead we introduce a novel combinationof model-based RL and CMACs. We use a set ofindependent models to estimate the dynamics ofeach �lter. To estimate the transition model for�lter k, we count the transitions from activatedcell f tk to activated cell f t+1k at the next time-

step, given the selected action. These countersare used to estimate the transition probabilitiesPk(cj jci; a) = P (f t+1k = cj jf tk = ci; a), where cjand ci are cells, and a is an action. For eachtransition we also compute the average rewardRk(ci; a; cj) by summing the immediate reinforce-ments, given that we make a step from active cellci to cell cj by selecting action a.Prioritized sweeping (PS). We could imme-diately apply dynamic programming (DP) [4] tothe estimated models. Online learning with DP,however, is computationally expensive. But for-tunately there are more e�cient update manage-ment methods. We will use a method similar toprioritized sweeping (PS) [14] which may be themost e�cient available update mechanism. PS up-dates the Q-value of the �lter/cell/action triplewith the largest update size before updating oth-ers. Each update is made via the usual Bellmanbackup [4]:Qk(ci; a) Xj Pk(cj jci; a)(Vk(cj) + Rk(ci; a; cj))where Vk(ci) = maxaQk(ci; a) and  2 [0; 1] isthe discount factor. After each player action weupdate all �lter models and use PS to compute thenew Q-functions. PS uses a parameter to set themaximum number of updates per time step and acuto� parameter � preventing tiny updates. Notethat PS may use di�erent numbers of updates fordi�erent �lters, since some �lters tend to makelarger updates than others and the total numberof updates per time step is limited. The completePS algorithm is given in the Appendix.Non-pessimistic value functions. Policysharing requires the fusion of experimental datafrom di�erent players into a single representa-tion. This data, however, is generated by di�er-ent player histories. In fact, certain experiences ofcertain players will probably never occur to others| there is no obvious and straightforward way ofdata fusing. For instance, the unlucky experienceof one particular player may cause the VF approx-imation to assign low values to certain actions forall players. After having identi�ed this problem,we tried a heuristic solution to overcome it. Wecompute non-pessimistic value functions: we de-crease the probability of the worst transition fromeach cell/action and renormalize the other proba-



Reinforcement Learning Soccer Teams 5bilities. Then we apply PS to the adjusted prob-abilities (details of the algorithm are given in theAppendix). The e�ect is that only frequently oc-curring bad experiences have high impact on theQ-function. Experiments showed small but signif-icant improvements over the basic algorithm. Themethod is quite similar to Model-Based Interval-Estimation [36], an exploration algorithm extend-ing Interval Estimation [10] by computing opti-mistic value functions for action selection.Multiple restarts. The method sometimesmay get stuck with continually losing policieswhich hardly ever score and fail to prevent (many)opponent goals (also observed with our previoussimulations based on linear networks and neuralgas). We could not overcome this problem byadding standard exploration techniques (evaluat-ing alternative actions of losing policies is hard,since the perturbed policy will usually still leadto negative rewards). Instead we reset Q-functionsand WMs once the team has not scored for 5 suc-cessive games but the opponent scored during themost recent game (we check these conditions every5 games). After each restart, the team will gatherdi�erent experiences a�ecting policy quality. Wefound that multiple restarts can signi�cantly in-crease the probability of �nding good policies.We use Pmax = 1:0 in the Max-random ex-ploration rule, since that worked best. The rea-son multiple restarts works better without explo-ration is that it makes the detection of losing poli-cies easier. Hopeless greedy policies will loose 0-something, whereas with exploration our agentsmay still score although they remain unable to im-prove their policy from the generated experiences.Thus, using greedy policies we may use a simplerrule for restarting.Learning with Q(�). Possibly the mostwidely used RL algorithm is Q-learning [33], whichtries out sequences of actions through state/actionspace according to its policy and uses environmen-tal rewards to estimate the expected long-term re-ward for executing speci�c actions in particularstates. Q-learning repeatedly performs a one-steplookahead backup, meaning that the Q-value ofthe current state/action pair (SAP) becomes morelike the immediately received reward plus the es-timated value of the next state.

Q(�)-learning [33, 16, 37] combines TD(�)methods [29] with Q-learning to propagatestate/action updates back in time such that multi-ple SAPs which have occurred in the past are up-dated based on a single current experience. Q(�)-learning has outperformed Q-learning in a num-ber of experiments [13, 18, 37]. For purposes ofcomparison we also use online Q(�)-learning fortraining the CMACs to play soccer. The detailsof the algorithm are given in the Appendix.PIPE. The other competitor is Probabilistic In-cremental Program Evolution (PIPE) [19]. PIPEis a novel technique for automatic program synthe-sis. It combines probability vector coding of pro-gram instructions [25, 26, 27], Population-BasedIncremental Learning [2], and tree-coded pro-grams like those used in some variants of GeneticProgramming (GP) [7, 8, 12]. PIPE iterativelygenerates successive populations of functional pro-grams according to an adaptive probability distri-bution over all possible programs. Each iterationit lets all programs play one soccer game; thenthe best program is used to re�ne the distribu-tion. Thus PIPE stochastically generates betterand better programs. All details can be found in[22].4. ExperimentsWe compare the CMAC model to CMAC-Q(�)and PIPE [19], which outperformed Q(�)-learningcombined with various FAs in previous compar-isons [20, 22].Task. We train and test the learners againsthandmade programs of di�erent strengths. Theopponent programs are mixtures of a programwhich randomly executes actions (random pro-gram) and a (good) program which moves play-ers towards the ball as long as they do not ownit, and shoots it straight at the opponent's goalotherwise. Our �ve opponent programs, calledOpponent(Pr), use the random program to selectan action with probability Pr 2 f0; 14 ; 12 ; 34 ; 1g, re-spectively, and the good program otherwise.CMAC model set-up. We play a total of 200games. Every 10 games we test current perfor-mance by playing 20 test games against the oppo-nent and summing the score results. The rewardis +1 if the team scores and -1 if the opponent



6 Wiering et al.scores. The discount factor is set to 0.98. Aftera coarse search through parameter space we chosethe following parameters: 2 �lters per input com-ponent (total of 32 or 48 �lters) number of cellsnc = 20 (21 for the second �lters of distance/speedinput components). Q-values are initially zero.PS uses � = 0:01 and a maximum of 1000 updatesper time step. We only compute non-pessimisticvalue functions for the 3-player teams for whichwe use z� = 1.96.CMAC Q(�) set-up. We play a total of 200games. Every 20 games we test current perfor-mance of the policy (during tests we continueselecting actions according to the current explo-ration scheme) by playing 20 test games againstthe opponent and summing the score results. Thereward is +1 if the team scores and -1 if the op-ponent scores. The discount factor is set to 0.98.We conducted a coarse search through parame-ter space to select the best learning parameters.We use online Q(�) with replacing traces [28] and� = 0:8 for the 1-player case, and � = 0:5 for the3-player case. The initial learning rate is set to�c = 1:0, the learning rate decay rate to � = 0:3.We use Max-random exploration with Pmax lin-early increased from 0.7 in the beginning of thesimulation to 1.0 at the end. As for CMAC-modelswe use two �lters per input component (total of 32or 48 �lters). The number of cells is set to nc = 10(11 for the second �lters of distance/speed inputcomponents). All Q-values are initially zero. Ingeneral, learning performance does not very sensi-tively depend on the used parameters. E.g., usingnc = 20 results in only slightly worse performance.Small values for � (< 0:3) do make things worsethough.PIPE set-up. For PIPE we play a total of1000 games. Every 50 games we test performanceof the best program found during the most recentgeneration. Parameters for all PIPE runs are thesame as in previous experiments [22].Results : 1-Player case. We plot number ofpoints (2 for scoring more goals than the opponentduring the 20 test games, 1 for a tie, and 0 forscoring less) against number of training games inFigure 3.We observe that on average our CMAC modelwins against almost all training programs. Onlyagainst the best 1-player team (Pr = 0) it wins

as often as it loses, and often plays ties (it �nds ablocking strategy leading to a 0-0 result). Againstthe worst two teams, CMAC model always �ndswinning strategies.
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Fig. 3. Number of points (means of 20 simulations) dur-ing test phases for teams consisting of 1 player. Note thevarying x-axis scalings.CMAC-Q(�) �nds programs that on averagewin against the random team, although they donot always win. It learns to play about as well asthe 75% random and 50% random teams. CMAC-Q(�) is no match against the best opponent, andalthough it seems that performance jumps up at



Reinforcement Learning Soccer Teams 7the end of the trial, longer trials do not lead tobetter performances.PIPE is able to �nd programs beating the ran-dom team and quite often discovers programsthat win against 75% random teams. It encoun-ters great di�culties in learning good strategiesagainst the better teams, though: although PIPEmay execute more games (1000 vs. 200), the prob-ability of generating programs that perform wellagainst the good opponents is very small. For thisreason it tends to learn from the best of the losingprograms. This in turn does not greatly facilitatethe discovery of winning programs.Results : 3-Players case. We plot numberof points (2 for scoring more goals than the oppo-nent during the 20 testgames) against number oftraining games in Figure 4.Again, CMAC model always learns winningstrategies against the worst 2 opponents. It loseson average against the best 3-player team (withPr = 0:25) though. Note that this strategy mix-ture works better than always using the deter-ministic program (Pr = 0) against which CMACmodel plays ties or even wins. In fact, the de-terministic program tends to clutter agents suchthat they obstruct each other. The deterministicopponent's behavior also is easier to model. All ofthis makes the stochastic version a more di�cultopponent.CMAC-Q is clearly worse than CMAC model |it learns to win only against the worst opponent.PIPE performs well only against random and75% random opponents. For the better oppo-nents it runs into the same problems as mentionedabove.Score di�erences. We show maximal ob-tained score di�erences in Table 1 (1 player) andTable 2 (3 players). Although PIPE performs bet-ter against the weakest opponent than CMAC-models or CMAC-Q, PIPE often cannot scoreagainst strong opponents. CMAC-models, how-ever, do score against the good opponents, and

are able to �nd (at least once) winning policiesagainst all opponents.
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Fig. 4. Number of points (means of 20 simulations) dur-ing test phases for teams consisting of 3 players. Note thevarying x-axis scalings.We should keep in mind that score di�erencesmay have a large variance. For instance, in someexperiments with the 1-player CMAC model, op-ponent(0.0) may continuously win 760-0 in testmatches. This extreme score di�erence is causedby resetting the (losing) CMAC model just beforetesting. PIPE has a small advantage here, sinceit uses the best program of the last generation for



8 Wiering et al.testing and thus almost lets vanish the probabilityof testing a really bad policy.Table 1. Best average score di�erences for di�erentlearning methods against 1-player opponents of varyingstrengths. * = Although CMAC-models were sometimesable to score 7 goals, they also sometimes lost 0-760.Learning Alg. 1.0 0.75 0.5 0.25 0.0CMAC model 85-2 68-3 27-1 6-15 1-146*CMAC-Q 92-6 52-23 10-7 1-4 0-13PIPE 225-18 127-35 19-13 0-3 0-10Table 2. Best average score di�erences for di�erentlearning methods against 3-player opponents of varyingstrengths.Learning Alg. 1.0 0.75 0.5 0.25 0.0CMAC model 161-31 236-100 84-70 6-20 0.3-0CMAC-Q 111-26 36-73 13-58 3-23 0-24PIPE 297-18 163-64 30-31 0-11 0-21Discussion. Despite treating all componentsindependently the CMAC model is able to learngood reactive soccer strategies preferring actionsthat activate those cells of a �lter which promisehighest average reward. The use of a model oftenquickly stabilizes good strategies: given su�cientexperiences (5-20 learning games), the policy willhardly change anymore. The reason is that deter-ministic policies generate similar experiences.Early experiences with a random initial pol-icy may greatly impact the �nal policy's qual-ity. They may result in continually losing poli-cies (especially against better opponents) that areunable to improve, due to the near-impossibilityof learning from bad experiences. For such rea-sons we performed multiple restarts (1 up to morethan 10). Since tested strategies often remain ei-ther winners or losers, the step-wise improvementsshown in the learning curves are mainly due tomultiple restarts. The ups and downs in the learn-

ing curves are caused by unstable policies withunstable score results.CMAC model tends to be quite robust undervariations of �lter design (e.g., combining multipleinput components) and number of cells. Conduct-ing additional experiments with �lters combiningdistance and angle input components, or 10/11 in-stead of 20/21 cells per �lter, we obtained similarlevels of performance.Multiple restarts helped CMAC model to avoidgetting stuck with losing policies. When we triedCMAC-Q with multiple restarts and without ex-ploration, it often found blocking strategies (lead-ing to 0-0 results) against all 1-player opponents,but did not learn to win. Learning blocking strate-gies against multiagent teams, however, is muchharder.All methods perform better in the single agentcase. This can probably be explained by the factthat the multiagent case yields more signi�cantlydi�erent game con�gurations so that �nding a pol-icy that works �ne for all of them is more di�cult.5. ConclusionModel-based RL is a promising method for learn-ing to control autonomous agents. Since learn-ing accurate world models in high dimensional,continuous spaces is di�cult, we have focusedon learning useful but incomplete models in-stead. Here we have described a novel combi-nation of CMACs and incomplete world mod-els which allows for discovering successful soccerstrategies and tends to outperform both PIPE anda Q(�)/CMAC combination. Especially againstbetter opponents CMAC models proved superior.In some environments certain more complex �l-ters grouping multiple context-dependent inputcomponents may be necessary. Filters combiningmany di�erent, mutually dependent input compo-nents for a particular task may require a lot ofstorage space. Many of the possible input com-binations, however, will never be experienced. Amore space-e�cient approach will use decision treemodels to keep track of rewards and transitionprobabilities between leaf nodes de�ning \inter-esting" input component combinations. Start-ing with an initial set of low-complexity decisiontrees consisting of single root components, new



Reinforcement Learning Soccer Teams 9leaf nodes may be generated online using statisti-cal tests as done in, e.g., the G-algorithm [6].Appendix Prioritized SweepingAn e�cient method determining which updatesto perform is prioritized sweeping (PS) [14]. PSassigns priorities to updating the Q-values of dif-ferent states according to a heuristic estimate ofthe size of the Q-values' updates. The algorithmkeeps track of a \backward model" relating statesto predecessor state/action pairs. After the up-date of a state value the state's predecessors areinserted in a priority queue which is then usedfor updating the Q-values of actions that can beperformed in those states which have the highestpriority.Our Prioritized Sweeping. Moore and Atke-son's PS (M+A's PS) calculates the priority ofsome state by checking all transitions to updatedsuccessor states and identifying the one whose up-date contribution is largest. Our variant allowsfor computing the exact size of updates of statevalues since they have been used for updating theQ-values of their predecessors, and yields more ap-propriate priorities. Unlike our PS, M+A's PScannot detect large state-value changes due tomany small update steps, and will not process thecorresponding states. A complete description ofboth algorithms is given in [35].Our implementation for CMAC models uses aset of predecessor lists Predsk(j) containing allpredecessor cells of cell j in �lter k. We denote thepriority of cell i of �lter k by j�k(i)j, where thevalue �k(i) equals the change of Vk(i) since thelast time it was processed by the priority queue.To calculate it, we constantly update all Q-valuesof predecessor cells of currently processed cells,and track changes of Vk(i).The model-based update of the Q-valueQk(c; a), Q-update(k; c; a) looks as follows:Qk(c; a) Xj P kcj(a)(Rk(c; a; j) + Vk(j));where P kcj(a) = Pk(jjc; a). The details of our PSlook as follows:

1. Our-Prioritized-Sweeping(x):2. Compute active cells: f1; : : : ; fz;3. For k = 1 to z do:4. Update fk | 8a do:5. Q-update(k; fk; a);6. Set j�k(fk)j to 1;7. Promote (k; fk) to top of queue;8. While (n < Umax & queue 6= nil)9. Remove top (k; c) from the queue;10. �k(c) 0;11. 8 Predecessor cells k; i of k; c do:12. V 0k(i) Vk(i);13. 8a do:14. Q-update(k; i; a);15. Vk(i) maxaQk(i; a);16. �k(i) �k(i) + Vk(i)� V 0k(i)17. If j�k(i)j > �18. Insert i at priority j�k(i)j;19. n n + 1;20. Empty queue, but keep �k(i) values;Here Umax is the maximal number of updatesto be performed per update-sweep. The parame-ter � 2 IR+ controls update accuracy. Note thatanother di�erence to M+A's PS is that we removeall entries from the queue after having processedall updates.Appendix Non-Pessimistic Value FunctionsTo compute non-pessimistic value functions we de-crease the probability of the worst transition fromeach �lter/cell/action and then renormalize theother probabilities. Then we use the adjustedprobabilities to compute the Q-functions. Thuswe substitute the following for Q-update(k; c; a):1. Q-update-Non-Pessimistic(k,i,a):2. m arg minjfRk(i; a; j) + Vk(j)g;3. n Cki (a);4. P  P̂ kim(a);5. P kim(a) (P� z2�2n+ z�pnqP (1�P )+ z2�4n )1+ z2�n ;



10 Wiering et al.6. �P  P kim(a)� P̂ kim(a);7. 8j 6= m8. P kij(a) P̂ kij(a)� �PCkij(a)Cki (a)�Ckim(a) ;9. Q-update(k; i; a);Here Ckij(a) counts the number of transitions ofcell i to j in �lter k after selecting action a andCki (a) counts the number of times action a wasselected and cell i of �lter k was activated. Weobtain P̂ kij(a), the estimated transition probabil-ity, by dividing them.The variable z� determines the step size for de-creasing worst transition probabilities. To selectthe worst transition in step 2, we only compareexisting transitions (we check whether P̂ kij(a) > 0holds). Note that if there is only one transition fora given �lter/cell/action triplet then there will notbe any renormalization. Hence the \probabilities"may not sum up to 1. Consequentially, if some �l-ter/cell/action has not occurred frequently then itwill contribute just a comparatively small Q-valueand thus have less impact on the computation ofthe overall Q-value.Appendix Q(�)-learningQ-learning [33, 34] enables an agent to learn a pol-icy by repeatedly executing actions given the cur-rent state. At each time step the algorithm uses1-step lookahead to update the currently selected�lter/cell/action pairs (FCAPs):1. Q-learning(k, ct, at, rt, ct+1):2. e0t  (rt + Vk(ct+1)�Qk(ct; at));3. Qk(ct; at) Qk(ct; at) + �n(k; ct; a)e0t;Here Vk(c) = maxaQk(c; a), �n(k; c; a) is thelearning rate for the nth update of FCAP (k; c; a),and e0t is the temporal di�erence or TD(0)-error,which tends to decrease over time.The learning rate �n(k; c; a) should decrease on-line, such that it ful�lls two conditions for stochas-tic iterative algorithms [34, 5]. The conditions onthe learning rate �n(k; c; a) are:(1) P1n=1 �n(k; c; a) =1, and

(2) P1n=1 �2n(k; c; a) <1.Learning rate adaptions for which the conditionsare satis�ed may be of the form : �n = 1n� , wheren is a variable that counts the number of times anFCAP has been updated.Q(�)-learning uses eligibility traces lt(k; c; a) [3,29] to allow for updating multiple FCAPs whichhave occurred in the past. We use the replacingtraces algorithm [28]:lt+1(k; c; a) �lt(k; c; a) if fkt 6= clt+1(k; c; a) 1 if fkt = c and at = alt+1(k; c; a) 0 if fkt = c and at 6= awhere � discounts the inuence of FCAPs occur-ing in the distant future relative to immediateFCAPs. After updating the eligibility traces weupdate the Q-values: 8(k; c; a) do :Qk(c; a) Qk(c; a) + �[e0t�tk(c; a) + etlt(k; c; a)]where �tk(c; a) denotes the indicator functionwhich returns 1 if (k; c; a) occurred at time t,and 0 otherwise (� = �n(k; c; a)). The TD-error et of the value function is de�ned as: et  (rt + Vk(ct+1)� Vk(ct)).The procedure described here updates all oc-curred FCAPs at each time step. This is compu-tationally expensive. We actually used a fastermethod which allows for updating Q-values intime proportional to O(zjAj), the number of �l-ters times actions [37].AcknowledgementsWe would like to thank Rich Sutton for inspir-ing suggestions concerning the potential bene�tsof CMACs.
Notes1. A recent theoretical result [11] suggests that computa-tional complexities of certain direct and indirect meth-ods for MDPs are of the same order. This result, how-ever, is irrelevant for most real world RL applications,because its stringent assumptions are violated by FA-based set-ups such as the one studied in this paper.
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