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Abstract. We use reinforcement learning (RL) to compute strategies for multiagent soccer teams. RL
may profit significantly from world models (WMs) estimating state transition probabilities and rewards.
In high-dimensional, continuous input spaces, however, learning accurate WMs is intractable. Here we
show that incomplete WMs can help to quickly find good action selection policies. Our approach is
based on a novel combination of CMACs and prioritized sweeping-like algorithms. Variants thereof
outperform both Q(M)-learning with CMACs and the evolutionary method Probabilistic Incremental

Program Evolution (PIPE) which performed best in previous comparisons.
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1. Introduction

Our goal is to build teams of autonomous agents
that learn to play soccer from very sparse rein-
forcement signals: only scoring a goal yields re-
ward for the successful team. Team members try
to maximize reward by improving their adaptive
policy mapping sensory inputs to actions. In prin-
ciple there are at least two types of learning algo-
rithms applicable to such problems: reinforcement
learning (RL), e.g., [23, 29, 33, 31], and evolution-
ary approaches, e.g., [9, 17, 7, 19]. Here we de-
scribe a novel RL method and compare its results
to those obtained by previous RL methods and an
evolutionary approach.

Most existing RL algorithms are based on func-
tion approximators (FAs) learning value functions
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reinforcement learning, CMAC, world models, simulated soccer, Q(A), evolutionary com-

(VFs) that map state/action pairs to the expected
outcome (reward) of a trial [5, 33]. In realis-
tic, partially observable, multiagent environments,
learning value functions is hard though. This
makes evolutionary methods a promising alterna-
tive. For instance, in previous work on learning
soccer strategies [22] we found that Probabilis-
tic Incremental Program Evolution (PIPE) [19],
a novel evolutionary approach to searching pro-
gram space, outperforms Q(X) [16, 33, 37] com-
bined with FAs based on linear neural networks
[21] or neural gas [20].

We identified several reasons for PIPE’s superi-
ority: (1) In complex environments such as ours
RL methods tend to be brittle — once discov-
ered, good policies do not stabilize but tend to get
destroyed by subsequent “unlucky” experiences.
PIPE is less affected by this problem because good
policies have a large probability of surviving. (2)
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PIPE learns faster by isolating important features
in the sensory input, combining them in programs
of initially low algorithmic complexity, and sub-
sequently refining the programs. This motivates
our present approach: VF-based RL should also
be able to (a) stabilize or improve fine policies (as
opposed to unlearning them), (b) profit from the
existence of low-complexity solutions, and (c) use
incremental search to find more complex solutions
where simple ones do not work.

Incomplete world models. Direct RL meth-
ods [5, 33] use temporal differences (TD) [29] for
training FAs to approximate the VF from simu-
lated trajectories through state/action space. In-
direct RL, however, learns a world model (WM)
[14, 35] estimating the reward function and the
transition probabilities between states, then uses
dynamic programming (DP) [4] or similar, faster
algorithms such as prioritized sweeping (PS —
which we will use in the paper) [14] for computing
the VF. This can significantly improve learning
performance in discrete state/action spaces [14]'.
In case of continuous spaces, WMs are most ef-
fectively combined with local FAs transforming
the input space into a set of discrete regions and
then learning the VF. Similarly, continuous action
spaces can be transformed in a set of discrete ac-
tions. Previous work has already demonstrated
the effectiveness of learning discrete world models
for robotic localization and navigation tasks, e.g.,
[32]. Learning accurate WMs in high-dimensional,
continuous, partially observable environments is
hard, however, and this motivates our novel ap-
proach to learning useful but incomplete models
instead.

CMAC models. We will present a novel com-
bination of CMACs and world models. CMACs
[1] use filters mapping sensor-based inputs to a
set of activated cells. Each filter partitions the in-
put space into subsections in a prewired way such
that each (possibly multi-dimensional) subsection
is represented by exactly one discrete cell of the
filter. For example, a filter might consist of a fi-
nite number of cells representing an infinite set
of colors represented by cubes with 3 dimensions
red, blue and yellow, and activate the cell which
encloses the current color input component.

In an RL context each cell has a Q-value for
each action. The Q-values of currently active cells
are averaged to compute the overall Q-values re-

quired for action selection. Previous work already
combined CMACs with Q-learning [33] and Q())
methods [30, 24]. Here we combine CMACs with
WNMs by learning an independent model for each
filter. These models are then exploited by a ver-
sion of prioritized sweeping (PS) [14, 36] for com-
puting the Q-functions. Later we will find that
CMAC models can quickly learn to play a good
soccer game and surpass the performance of PIPE
and an approach combining CMACs and Q(A).

Outline. Section 2 describes our soccer en-
vironment. Section 3 presents CMACs and de-
scribes how they can be combined with model-
based learning. Section 4 describes experimental
results. Section 5 concludes.

2. The Soccer Simulator

Our soccer simulator [22] runs discrete-time sim-
ulations involving two teams consisting of either
1 or 3 players per team. A game lasts from time
t = 0 to time t.,q = 5000. The field is repre-
sented by a two-dimensional continuous Cartesian
coordinate system. As in indoor soccer the field is
surrounded by impassable walls except for the two
goals centered in the east and west walls. There
are fixed initial positions for all players and the
ball (see Figure 1).
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Fig. 1. Players and ball (center) in initial positions.
Players of a 1 player team are those furthest in the back.

Players/Ball. Each player and the ball are
represented by a solid circle and a variable real-
valued position and orientation. A player whose
circle intersects the ball picks it up and then owns
it. The ball owner can move or shoot the ball. A
shot is in the direction of the player’s orientation.
When shot, the ball’s initial speed is 0.12 units per
time step. Each following time step the ball slows
down due to friction by 0.005 units per time step



(unless it is picked up by a player) - the ball can
travel freely at most 1.5 units. At each discrete
time step each player selects one of the following
actions:

¢ go_forward: move 0.025 units in current direc-
tion.

o turn_to_ball:
wards ball.

e turn_to_goal: point player’s orientation to-
wards opponent’s goal.

¢ shoot: if the player owns the ball then
change player’s orientation by a random angle
from the interval [—5°,5°] (to allow for noisy
shots), and shoot ball in the corresponding di-
rection.

point player’s orientation to-

A player that makes a step forward such that
its circle intersects another player’s circle bounces
back to its original position. If one of them owns
the ball prior to collision then it will lose it to the
collision partner.

Action framework. During each time step
all players execute one action each, in randomly
chosen order. Then the ball moves according to
its current speed and direction. If a team scores
or t = tenq then all players and ball will be reset
to their initial positions.

Sensory input. At any given time a player’s
input vector Z consists of 16 (1 player) or 24 (3
players) components:

¢ Three Boolean input components that tell
whether the player/a team member/opponent
team owns the ball.

* Polar coordinates (distance, angle) of both
goals and the ball with respect to the player’s
orientation and position.

» Polar coordinates of both goals relative to the
ball’s orientation and position.

¢ Ball speed.

¢ Polar coordinates of all other players w.r.t.
the player are ordered by (a) teams and (b)
distances to the player.

Policy-sharing. All players share the same Q-
functions or PIPE-programs. Still their behaviors
differ due to different, situation-specific inputs.
Policy-sharing has the advantage of greatly reduc-
ing the number of adaptive free parameters, which
tends to reduce the number of required training
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examples (learning time) and increase generaliza-
tion performance, e.g., [15]. A potential disadvan-
tage of policy sharing, however, is that different
players cannot develop truly different strategies
to be combined in fruitful ways.

3. CMAC Models

CMAC s [1] use multiple, a priori designed filters
to quantize the input space. Each filter consists
of several cells with associated Q-values. Apply-
ing the filters to the current input yields a set of
activated cells (a discrete distributed representa-
tion of the input). Their Q-values are averaged to
compute the overall Q-value.

Filter design. In principle the filters may yield
arbitrary divisions of the input space, such as hy-
percubes. To avoid the curse of dimensionality one
may use hashing to group a random set of inputs
into an equivalence class, or use hyperslices omit-
ting certain dimensions in particular filters [30].
Although hashing techniques may help to over-
come storage problems, we do not believe that
random grouping is the best we can do. Since our
soccer simulation involves a fair number of input
dimensions (16 or 24), we use hyperslices to reduce
the number of adjustable parameters. Our filters
divide the state-space by splitting it along single
input dimensions into a fixed number of cells —
input components are treated in a mutually inde-
pendent way. Multiple filters are applied to the
same input component to allow for smoother gen-
eralization.

Partitioning the input space. We use two
filters for each input component, both splitting the
same component. Input components representing
Boolean values, distances (or speeds), and angles,
are split in various ways (see Figure 2): (1) Fil-
ters associated with a Boolean input component
just return its value. (2) Distance or ball-speed in-
put components are rescaled to values between 0
and 1. Then the filters partition the components
into n. or n. + 1 quanta. (3) Angle input compo-
nents are partitioned in n. equal quanta in a cir-
cular (and thus natural) way — one filter groups
the angles 359° and 0° to the same cell, the other
separates them by a cell boundary.
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Fig. 2. We use two filters for each input component, re-
sulting in a total of 32 (1 player) or 48 (3 players) fil-
ters. Filters of a Boolean input component just return the
Boolean value as cell number. The figure (activated cells
are marked) illustrates decompositions of (A) a continu-
ous distance input component into 10 discrete cells, (B)
the same component into 11 cells, (C) a continuous angle
component into 10 cells, (D) the same component into 10
different cells.

Selecting an action. Applying all filters on
a player’s current input vector at time ¢ returns
the active cells {ff, ..., ft}, where z is the number
of filters. The Q-value of selecting action a given
input & is calculated by averaging all Q-values of
the active cells:

Qa) =3 Qul(fha)/=
k=1

where @ is the Q-function of filter k. After com-
puting the Q-values of all actions we select an
action according to the Max-random exploration
rule: select the action with maximal Q-value with
probability Pp,qz, and a uniformly random action
otherwise.

Learning with WMs. Learning accurate
models for high-dimensional input spaces is hard.
Usually there are so many possible successor states
that storing all of them for each different input
would be infeasible and updates would cost a lot
of time. Instead we introduce a novel combination
of model-based RL and CMACs. We use a set of
independent models to estimate the dynamics of
each filter. To estimate the transition model for
filter k, we count the transitions from activated
cell f} to activated cell f,ﬁ“ at the next time-

step, given the selected action. These counters
are used to estimate the transition probabilities
Pi(cjlei,a) = P(fit' = ¢j|f} = ci,a), where ¢;
and ¢; are cells, and a is an action. For each
transition we also compute the average reward
Ry (¢;,a,cj) by summing the immediate reinforce-
ments, given that we make a step from active cell
¢; to cell ¢; by selecting action a.

Prioritized sweeping (PS). We could imme-
diately apply dynamic programming (DP) [4] to
the estimated models. Online learning with DP,
however, is computationally expensive. But for-
tunately there are more efficient update manage-
ment methods. We will use a method similar to
prioritized sweeping (PS) [14] which may be the
most efficient available update mechanism. PS up-
dates the Q-value of the filter/cell/action triple
with the largest update size before updating oth-
ers. Each update is made via the usual Bellman
backup [4]:

Qr(ci,a) ZPk(Cﬂcia a)(7Vi(cj) + Ri(ci,a,cj))

where Vi (¢;) = max, Qr(ci,a) and v € [0,1] is
the discount factor. After each player action we
update all filter models and use PS to compute the
new Q-functions. PS uses a parameter to set the
maximum number of updates per time step and a
cutoff parameter € preventing tiny updates. Note
that PS may use different numbers of updates for
different filters, since some filters tend to make
larger updates than others and the total number
of updates per time step is limited. The complete
PS algorithm is given in the Appendix.
Non-pessimistic value functions. Policy
sharing requires the fusion of experimental data
from different players into a single representa-
tion. This data, however, is generated by differ-
ent player histories. In fact, certain experiences of
certain players will probably never occur to others
— there is no obvious and straightforward way of
data fusing. For instance, the unlucky experience
of one particular player may cause the VF approx-
imation to assign low values to certain actions for
all players. After having identified this problem,
we tried a heuristic solution to overcome it. We
compute non-pessimistic value functions: we de-
crease the probability of the worst transition from
each cell/action and renormalize the other proba-



bilities. Then we apply PS to the adjusted prob-
abilities (details of the algorithm are given in the
Appendix). The effect is that only frequently oc-
curring bad experiences have high impact on the
Q-function. Experiments showed small but signif-
icant improvements over the basic algorithm. The
method is quite similar to Model-Based Interval-
Estimation [36], an exploration algorithm extend-
ing Interval Estimation [10] by computing opti-
mistic value functions for action selection.

Multiple restarts. The method sometimes
may get stuck with continually losing policies
which hardly ever score and fail to prevent (many)
opponent goals (also observed with our previous
simulations based on linear networks and neural
gas). We could not overcome this problem by
adding standard exploration techniques (evaluat-
ing alternative actions of losing policies is hard,
since the perturbed policy will usually still lead
to negative rewards). Instead we reset Q-functions
and WMs once the team has not scored for 5 suc-
cessive games but the opponent scored during the
most recent game (we check these conditions every
5 games). After each restart, the team will gather
different experiences affecting policy quality. We
found that multiple restarts can significantly in-
crease the probability of finding good policies.

We use P, = 1.0 in the Max-random ex-
ploration rule, since that worked best. The rea-
son multiple restarts works better without explo-
ration is that it makes the detection of losing poli-
cies easier. Hopeless greedy policies will loose 0-
something, whereas with exploration our agents
may still score although they remain unable to im-
prove their policy from the generated experiences.
Thus, using greedy policies we may use a simpler
rule for restarting.

Learning with Q(X). Possibly the most
widely used RL algorithm is Q-learning [33], which
tries out sequences of actions through state/action
space according to its policy and uses environmen-
tal rewards to estimate the expected long-term re-
ward for executing specific actions in particular
states. Q-learning repeatedly performs a one-step
lookahead backup, meaning that the Q-value of
the current state/action pair (SAP) becomes more
like the immediately received reward plus the es-
timated value of the next state.
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Q(M)-learning [33, 16, 37] combines TD(X)
methods [29] with Q-learning to propagate
state/action updates back in time such that multi-
ple SAPs which have occurred in the past are up-
dated based on a single current experience. Q(M)-
learning has outperformed Q-learning in a num-
ber of experiments [13, 18, 37]. For purposes of
comparison we also use online Q(M)-learning for
training the CMACs to play soccer. The details
of the algorithm are given in the Appendix.

PIPE. The other competitor is Probabilistic In-
cremental Program FEwvolution (PIPE) [19]. PIPE
is a novel technique for automatic program synthe-
sis. It combines probability vector coding of pro-
gram instructions [25, 26, 27], Population-Based
Incremental Learning [2], and tree-coded pro-
grams like those used in some variants of Genetic
Programming (GP) [7, 8, 12]. PIPE iteratively
generates successive populations of functional pro-
grams according to an adaptive probability distri-
bution over all possible programs. Each iteration
it lets all programs play one soccer game; then
the best program is used to refine the distribu-
tion. Thus PIPE stochastically generates better
and better programs. All details can be found in
[22].

4. Experiments

We compare the CMAC model to CMAC-Q(\)
and PIPE [19], which outperformed Q())-learning
combined with various FAs in previous compar-
isons [20, 22].

Task. We train and test the learners against
handmade programs of different strengths. The
opponent programs are mixtures of a program
which randomly executes actions (random pro-
gram) and a (good) program which moves play-
ers towards the ball as long as they do not own
it, and shoots it straight at the opponent’s goal
otherwise. Our five opponent programs, called
Opponent(P,), use the random program to select
an action with probability P, € {0,4,1,2 1}, re-
spectively, and the good program otherwise.

CMAC model set-up. We play a total of 200
games. Every 10 games we test current perfor-
mance by playing 20 test games against the oppo-
nent and summing the score results. The reward
is +1 if the team scores and -1 if the opponent
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scores. The discount factor is set to 0.98. After
a coarse search through parameter space we chose
the following parameters: 2 filters per input com-
ponent (total of 32 or 48 filters) number of cells
n. = 20 (21 for the second filters of distance/speed
input components). Q-values are initially zero.
PS uses € = 0.01 and a maximum of 1000 updates
per time step. We only compute non-pessimistic
value functions for the 3-player teams for which
we use 2, = 1.96.

CMAC Q()) set-up. We play a total of 200
games. Every 20 games we test current perfor-
mance of the policy (during tests we continue
selecting actions according to the current explo-
ration scheme) by playing 20 test games against
the opponent and summing the score results. The
reward is +1 if the team scores and -1 if the op-
ponent scores. The discount factor is set to 0.98.
We conducted a coarse search through parame-
ter space to select the best learning parameters.
We use online Q(A) with replacing traces [28] and
A = 0.8 for the 1-player case, and A = 0.5 for the
3-player case. The initial learning rate is set to
a. = 1.0, the learning rate decay rate to 8 = 0.3.

We use Max-random exploration with Py, lin-
early increased from 0.7 in the beginning of the
simulation to 1.0 at the end. As for CMAC-models
we use two filters per input component (total of 32
or 48 filters). The number of cells is set to n, = 10
(11 for the second filters of distance/speed input
components). All Q-values are initially zero. In
general, learning performance does not very sensi-
tively depend on the used parameters. E.g., using
n. = 20 results in only slightly worse performance.
Small values for A (< 0.3) do make things worse
though.

PIPE set-up. For PIPE we play a total of
1000 games. Every 50 games we test performance
of the best program found during the most recent
generation. Parameters for all PIPE runs are the
same as in previous experiments [22].

Results : 1-Player case. We plot number of
points (2 for scoring more goals than the opponent
during the 20 test games, 1 for a tie, and 0 for
scoring less) against number of training games in
Figure 3.

We observe that on average our CMAC model
wins against almost all training programs. Only
against the best 1-player team (P, = 0) it wins

as often as it loses, and often plays ties (it finds a
blocking strategy leading to a 0-0 result). Against
the worst two teams, CMAC model always finds
winning strategies.

CMAC Model 1-Player
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Fig. 3. Number of points (means of 20 simulations) dur-
ing test phases for teams consisting of 1 player. Note the
varying r-axis scalings.

CMAC-Q()) finds programs that on average
win against the random team, although they do
not always win. It learns to play about as well as
the 75% random and 50% random teams. CMAC-
Q(A) is no match against the best opponent, and
although it seems that performance jumps up at



the end of the trial, longer trials do not lead to
better performances.

PIPE is able to find programs beating the ran-
dom team and quite often discovers programs
that win against 75% random teams. It encoun-
ters great difficulties in learning good strategies
against the better teams, though: although PIPE
may execute more games (1000 vs. 200), the prob-
ability of generating programs that perform well
against the good opponents is very small. For this
reason it tends to learn from the best of the losing
programs. This in turn does not greatly facilitate
the discovery of winning programs.

Results : 3-Players case. We plot number
of points (2 for scoring more goals than the oppo-
nent during the 20 testgames) against number of
training games in Figure 4.

Again, CMAC model always learns winning
strategies against the worst 2 opponents. It loses
on average against the best 3-player team (with
P, = 0.25) though. Note that this strategy mix-
ture works better than always using the deter-
ministic program (P, = 0) against which CMAC
model plays ties or even wins. In fact, the de-
terministic program tends to clutter agents such
that they obstruct each other. The deterministic
opponent’s behavior also is easier to model. All of
this makes the stochastic version a more difficult
opponent.

CMAC-Q is clearly worse than CMAC model —
it learns to win only against the worst opponent.

PIPE performs well only against random and
75% random opponents. For the better oppo-
nents it runs into the same problems as mentioned
above.

Score differences. We show maximal ob-
tained score differences in Table 1 (1 player) and
Table 2 (3 players). Although PIPE performs bet-
ter against the weakest opponent than CMAC-
models or CMAC-Q, PIPE often cannot score
against strong opponents. CMAC-models, how-
ever, do score against the good opponents, and
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are able to find (at least once) winning policies
against all opponents.

CMAC Model 3-Players
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Fig. 4. Number of points (means of 20 simulations) dur-
ing test phases for teams consisting of 3 players. Note the
varying r-azxis scalings.

We should keep in mind that score differences
may have a large variance. For instance, in some
experiments with the 1-player CMAC model, op-
ponent(0.0) may continuously win 760-0 in test
matches. This extreme score difference is caused
by resetting the (losing) CMAC model just before
testing. PIPE has a small advantage here, since
it uses the best program of the last generation for
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testing and thus almost lets vanish the probability
of testing a really bad policy.

Table 1. Best average score differences for different
learning methods against 1-player opponents of warying
strengths. * = Although CMAC-models were sometimes
able to score 7 goals, they also sometimes lost 0-760.

Learning Alg. 1.0 0.75 0.5 0.25 0.0
CMAC model 85-2 68-3 27-1  6-15  1-146*
CMAC-Q 92-6 52-23 10-7 1-4 0-13
PIPE 225-18  127-35  19-13 0-3 0-10

Table 2. Best average score differences for different
learning methods against 3-player opponents of varying
strengths.

Learning Alg. 1.0 0.75 0.5 0.25 0.0
CMAC model 161-31  236-100 84-70 6-20 0.3-0
CMAC-Q 111-26 36-73  13-58 3-23  0-24
PIPE 297-18 163-64 30-31 0-11  0-21

Discussion. Despite treating all components
independently the CMAC model is able to learn
good reactive soccer strategies preferring actions
that activate those cells of a filter which promise
highest average reward. The use of a model often
quickly stabilizes good strategies: given sufficient
experiences (5-20 learning games), the policy will
hardly change anymore. The reason is that deter-
ministic policies generate similar experiences.

Early experiences with a random initial pol-
icy may greatly impact the final policy’s qual-
ity. They may result in continually losing poli-
cies (especially against better opponents) that are
unable to improve, due to the near-impossibility
of learning from bad experiences. For such rea-
sons we performed multiple restarts (1 up to more
than 10). Since tested strategies often remain ei-
ther winners or losers, the step-wise improvements
shown in the learning curves are mainly due to
multiple restarts. The ups and downs in the learn-

ing curves are caused by unstable policies with
unstable score results.

CMAC model tends to be quite robust under
variations of filter design (e.g., combining multiple
input components) and number of cells. Conduct-
ing additional experiments with filters combining
distance and angle input components, or 10/11 in-
stead of 20/21 cells per filter, we obtained similar
levels of performance.

Multiple restarts helped CMAC model to avoid
getting stuck with losing policies. When we tried
CMAC-Q with multiple restarts and without ex-
ploration, it often found blocking strategies (lead-
ing to 0-0 results) against all 1-player opponents,
but did not learn to win. Learning blocking strate-
gies against multiagent teams, however, is much
harder.

All methods perform better in the single agent
case. This can probably be explained by the fact
that the multiagent case yields more significantly
different game configurations so that finding a pol-
icy that works fine for all of them is more difficult.

5. Conclusion

Model-based RL is a promising method for learn-
ing to control autonomous agents. Since learn-
ing accurate world models in high dimensional,
continuous spaces is difficult, we have focused
on learning useful but incomplete models in-
stead. Here we have described a novel combi-
nation of CMACs and incomplete world mod-
els which allows for discovering successful soccer
strategies and tends to outperform both PIPE and
a Q(A)/CMAC combination. Especially against
better opponents CMAC models proved superior.

In some environments certain more complex fil-
ters grouping multiple context-dependent input
components may be necessary. Filters combining
many different, mutually dependent input compo-
nents for a particular task may require a lot of
storage space. Many of the possible input com-
binations, however, will never be experienced. A
more space-efficient approach will use decision tree
models to keep track of rewards and transition
probabilities between leaf nodes defining “inter-
esting” input component combinations. Start-
ing with an initial set of low-complexity decision
trees consisting of single root components, new



leaf nodes may be generated online using statisti-
cal tests as done in, e.g., the G-algorithm [6].

Appendix Prioritized Sweeping

An efficient method determining which updates
to perform is prioritized sweeping (PS) [14]. PS
assigns priorities to updating the Q-values of dif-
ferent states according to a heuristic estimate of
the size of the Q-values’ updates. The algorithm
keeps track of a “backward model” relating states
to predecessor state/action pairs. After the up-
date of a state value the state’s predecessors are
inserted in a priority queue which is then used
for updating the Q-values of actions that can be
performed in those states which have the highest
priority.

Our Prioritized Sweeping. Moore and Atke-
son’s PS (M+A’s PS) calculates the priority of
some state by checking all transitions to updated
successor states and identifying the one whose up-
date contribution is largest. Our variant allows
for computing the ezact size of updates of state
values since they have been used for updating the
Q-values of their predecessors, and yields more ap-
propriate priorities. Unlike our PS, M+A’s PS
cannot detect large state-value changes due to
many small update steps, and will not process the
corresponding states. A complete description of
both algorithms is given in [35].

Our implementation for CMAC models uses a
set of predecessor lists Predsy(j) containing all
predecessor cells of cell 7 in filter k. We denote the
priority of cell ¢ of filter k by |Ag ()|, where the
value Ag(7) equals the change of Vi (7) since the
last time it was processed by the priority queue.
To calculate it, we constantly update all Q-values
of predecessor cells of currently processed cells,
and track changes of V(7).

The model-based update of the Q-value
Qr(c,a), Q-update(k, c,a) looks as follows:

Qr(c,a) — ZPg(a)(Rk(c,a,j) +Vi(4)),

where PF(a) = Py(jlc,a). The details of our PS
look as follows:
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1. Our-Prioritized-Sweeping(x):

2. Compute active cells: fi,..., f;

3. For k =1 to z do:

4. Update f;, — Va do:

5. Q-update(k, fi,a);

6. Set |Ag(fr)| to oo;

7. Promote (k, fi) to top of queue;

8. While (n < Upqe & queue # nil)

9. Remove top (k,c¢) from the queue;
10. Ag(c) < 0;
11. V Predecessor cells k,i of k, ¢ do:
12. VI(i) — Vi(i);
13. Ya do:
14. Q-update(k, i, a);
15. Vi (1) < max, Qi (,a);
16. Ap(7) — Ag(d) + Vi (i) — VI(9)
17. If |Ag(i)| > €
18. Insert ¢ at priority |A(4)|;
19. n«—n+1,;
20. Empty queue, but keep Ay (i) values;

Here Uyqz is the maximal number of updates
to be performed per update-sweep. The parame-
ter € € IRT controls update accuracy. Note that
another difference to M+A’s PS is that we remove
all entries from the queue after having processed
all updates.

Appendix Non-Pessimistic Value Functions

To compute non-pessimistic value functions we de-
crease the probability of the worst transition from
each filter/cell/action and then renormalize the
other probabilities. Then we use the adjusted
probabilities to compute the Q-functions. Thus
we substitute the following for Q-update(k, ¢, a):

1. Q-update-Non-Pessimistic(k,i,a):
2. m — argmin;{Ry(i,a,j) + 7Vi(j) };
3. n «— CF(a);
4. P — Pk (a);
22 22
P-iaxyzaq/p1-pP)tia
5. Pi’;‘n(a)<—( st o=/ P )+4n);

n
sk

1+
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Ap « Pj,(a) - pi];n(a);
Vj#m
: Sk ApCE
Pli(a) — Ph(a) = arpm i

Q-update(k,i,a);

© % N>

Here C’{?(a) counts the number of transitions of
cell 7 to j in filter k after selecting action a and
CF(a) counts the number of times action a was
selected and cell ¢ of filter k was activated. We
obtain }52’3 (a), the estimated transition probabil-
ity, by dividing them.

The variable z, determines the step size for de-
creasing worst transition probabilities. To select
the worst transition in step 2, we only compare
existing transitions (we check whether }A)Z’;(a) >0
holds). Note that if there is only one transition for
a given filter/cell/action triplet then there will not
be any renormalization. Hence the “probabilities”
may not sum up to 1. Consequentially, if some fil-
ter/cell/action has not occurred frequently then it
will contribute just a comparatively small Q-value
and thus have less impact on the computation of
the overall Q-value.

Appendix Q())-learning

Q-learning [33, 34] enables an agent to learn a pol-
icy by repeatedly executing actions given the cur-
rent state. At each time step the algorithm uses
1-step lookahead to update the currently selected
filter/cell/action pairs (FCAPs):

1. Q-learning(k, c¢, as, ry, Cty1):
2. ey — (re + YVi(cip1) — Qrler,ar));
3. Qr(ct,ar) — Qrlcs,ar) + an(k, e,y a)el;

Here Vi(¢) = max, Qr(c,a), an(k,c,a) is the
learning rate for the nt* update of FCAP (k,c,a),
and e} is the temporal difference or TD(0)-error,
which tends to decrease over time.

The learning rate a,(k, ¢, a) should decrease on-
line, such that it fulfills two conditions for stochas-
tic iterative algorithms [34, 5]. The conditions on
the learning rate ay,(k,c,a) are:

(1) >0, ay(k,c,a) = oo, and

(2) Y0, @ (kyc,a) < .

Learning rate adaptions for which the conditions
are satisfied may be of the form : o, = -5, where
n is a variable that counts the number of times an
FCAP has been updated.

Q(X)-learning uses eligibility traces I;(k, ¢, a) [3,
29] to allow for updating multiple FCAPs which
have occurred in the past. We use the replacing
traces algorithm [28]:

lt-l—l(kac:a) — ’yAlt(kac:a) if ftk 7é c

liv1(k,c,a) « 1 if ff=canda;=ua

liv1(k,c,a) «— 0 if ffl=canda;#a
where A discounts the influence of FCAPs occur-
ing in the distant future relative to immediate
FCAPs. After updating the eligibility traces we
update the Q-values: V(k,c,a) do:

Qi(c,a) — Qulc,a) +aleini(c,a) + ey (k, ¢, a)]

where ni(c,a) denotes the indicator function
which returns 1 if (k,c¢,a) occurred at time ¢,
and 0 otherwise (o« = ay(k,c,a)). The TD-
error e¢; of the value function is defined as: e; «
(re +vVi(etr1) — Vi(er)).

The procedure described here updates all oc-
curred FCAPs at each time step. This is compu-
tationally expensive. We actually used a faster
method which allows for updating Q-values in
time proportional to O(z|A]|), the number of fil-
ters times actions [37].
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Notes

1. A recent theoretical result [11] suggests that computa-
tional complexities of certain direct and indirect meth-
ods for MDPs are of the same order. This result, how-
ever, is irrelevant for most real world RL applications,
because its stringent assumptions are violated by FA-
based set-ups such as the one studied in this paper.
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