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Abstract. We use simulated soccer to study multiagent learning. Each team’s players (agents)
share action set and policy, but may behave differently due to position-dependent inputs. All
agents making up a team are rewarded or punished collectively in case of goals. We conduct
simulations with varying team sizes, and compare several learning algorithms: TD-Q learning with
linear neural networks (TD-Q), Probabilistic Incremental Program Evolution (PIPE), and a PIPE
version that learns by coevolution (CO-PIPE). TD-Q is based on learning evaluation functions
(EFs) mapping input/action pairs to expected reward. PIPE and CO-PIPE search policy space
directly. They use adaptive probability distributions to synthesize programs that calculate action
probabilities from current inputs. Our results show that linear TD-Q encounters several difficulties
in learning appropriate shared EFs. PIPE and CO-PIPE, however, do not depend on EFs and find
good policies faster and more reliably. This suggests that in some multiagent learning scenarios
direct search in policy space can offer advantages over EF-based approaches.

Keywords: Multiagent Reinforcement Learning, Soccer, TD-Q Learning, Evaluation Functions,
Probabilistic Incremental Program Evolution, Coevolution.

1. Introduction

Policy-sharing. Multiagent learning tasks often require several agents to learn to
cooperate. In general there may be quite different types of agents specialized in
solving particular subtasks. Some cooperation tasks, however, can also be solved
by teams of essentially identical agents whose behaviors differ only due to different,
situation-specific inputs. Our case study will be limited to such teams of agents
of identical type. Each agent’s modifiable policy is given by a variable data struc-
ture: for each action in a given set of possible actions the current policy determines
the conditional probability that the agent will execute this action, given its cur-
rent input. Each team’s members share both action set and adaptive policy. If
some multiagent cooperation task indeed can be solved by homogeneous agents
then policy-sharing is quite natural as it allows for greatly reducing the number
of adaptive free parameters. This tends to reduce the number of required training
examples (learning time) and increase generalization performance, e.g., (Nowlan &
Hinton, 1992).

Challenges of Multiagent Learning. One challenge is the “partial observabil-
ity problem” (POP): in general no learner’s input will tell the learner everything
about its environment (which includes other changing learners). This means that
each learner’s environment may change in an inherently unpredictable way. Also,
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in multiagent reinforcement learning (RL) scenarios delayed reward/punishment
is typically given to an entire successful/failing team of agents. This provokes the
“agent credit assignment problem” (ACAP): the problem of identifying those agents
that were indeed responsible for the outcome (Weiss, 1996; Crites & Barto, 1996;
Versino & Gambardella, 1997).

Evaluation Functions versus Search through Policy Space. There are
two rather obvious classes of candidate algorithms for learning shared policies in
multiagent RL. Class I includes traditional singleagent RL algorithms based on
adaptive evaluation functions (EFs) (Watkins, 1989; Bertsekas & Tsitsiklis, 1996).
Usually online variants of dynamic programming and function approximators are
combined to learn EFs mapping input-action pairs to expected discounted future
reward. The EFs are then exploited to generate rewarding action sequences.

Methods from class I do not require EFs. Their policy space consists of complete
algorithms defining agent behaviors, and they search policy space directly. Mem-
bers of this class are Levin search (Levin, 1973; Levin, 1984; Solomonoff, 1986; Li &
Vitdnyi, 1993; Wiering & Schmidhuber, 1996; Schmidhuber, 1997a), Genetic Pro-
gramming (Cramer, 1985; Dickmanns et al., 1987; Koza, 1992) and Probabilistic
Incremental Program Evolution (PIPE, Satustowicz & Schmidhuber, 1997).

Comparison. In our case study we compare two learning algorithms, each rep-
resentative of its class: TD-Q learning (Lin, 1993; Peng & Williams, 1996; Wiering
& Schmidhuber, 1997) with linear neural networks (TD-Q) and Probabilistic In-
cremental Program Evolution (PIPE, Satustowicz & Schmidhuber, 1997). We also
report results for a PIPE variant based on coevolution (CO-PIPE, Salustowicz et
al., 1997). We chose TD-Q learning and PIPE because both methods have already
been successfully applied to interesting singleagent tasks (Lin, 1993; Salustowicz &
Schmidhuber, 1997) (another reason for choosing TD learning (Sutton, 1988) is its
popularity due to a successful application to backgammon (Tesauro, 1994)). Linear
TD-Q selects actions according to linear neural networks trained with the delta rule
(Widrow & Hoff, 1960) to map player inputs to evaluations of alternative actions.
We use linear networks to keep simulation time comparable to that of PIPE and
CO-PIPE — more complex approximators would require significantly more compu-
tational resources. PIPE and CO-PIPE are based on probability vector coding of
program instructions (Schmidhuber, 1997b), Population-Based Incremental Learn-
ing (Baluja, 1994; Baluja & Caruana, 1995) and tree coding of programs used in
variants of Genetic Programming (Cramer, 1985; Koza, 1992). They synthesize
programs that calculate action probabilities from inputs. Experiences with pro-
grams are stored in adaptive probability distributions over all possible programs.
The probability distributions then guide program synthesis.

Soccer. To come up with a challenging scenario for our multiagent learning
case study we decided on a non-trivial soccer simulation. Soccer recently received
much attention by various multiagent researchers (Sahota, 1993; Asada et al., 1994;
Littman, 1994; Stone & Veloso, 1996a; Matsubara et al., 1996). Most early research
focused on physical coordination of soccer playing robots (Sahota, 1993; Asada
et al., 1994). There also have been attempts at learning low-level cooperation tasks
such as pass play (Stone & Veloso, 1996a; Matsubara et al., 1996; Nadella & Sen,
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1996). Recently Stone & Veloso (1996b) mentioned that even team strategies might
be learnable by TD()\) or genetic methods.

Published results on learning entire soccer strategies, however, have been limited
to extremely reduced scenarios such as Littman’s (1994) tiny 5 x 4 grid world with
two single opponent players'. Our comparatively complex case study will involve
simulations with varying sets of continuous-valued inputs and actions, simple phys-
ical laws to model ball bounces and friction, and up to 11 players (agents) on each
team. We will include certain results reported in (Salustowicz et al., 1997a,b).

Results Overview. Our results indicate: linear TD-Q has severe problems in
learning and keeping appropriate shared EFs. It learns relatively slowly, and once it
achieves fairly good performance it tends to break down. This effect becomes more
pronounced as team size increases. PIPE and CO-PIPE learn faster than linear
TD-Q and continuously increase their performance. This suggests that PIPE-like,
EF-independent techniques can easily be applied to complex multiagent learning
scenarios with policy-sharing agents, while more sophisticated and time consuming
EF-based approaches may be necessary to overcome TD-Q’s current problems.

Outline. Section 2 describes the soccer simulation. Section 3 describes PIPE
and CO-PIPE. Section 4 describes TD-Q. Section 5 reports experimental results.
Section 6 concludes.

2. Soccer Simulations

Our discrete-time simulations involve two teams. There are either 1, 3 or 11 players
per team. Players can move or shoot the ball. Each player’s abilities are limited (1)
by the built-in power of its pre-wired action primitives and (2) by how informative
its inputs are. We conduct two types of simulations. “Simple” simulations involve
less informative inputs and less sophisticated actions than “complex” simulations.

Soccer Field. We use a two dimensional continuous Cartesian coordinate sys-
tem. The field’s southwest and northeast corners are at positions (0,0) and (4,2)
respectively. As in indoor soccer the field is surrounded by impassable walls except
for the two goals centered in the east and west walls (see Figure 1(left)). Only the
ball or a player with ball can enter the goals. Goal width (y-extension) is 0.4, goal
depth (z-extension beyond the field bounds) is 0.01. The east goal’s “middle” is
denoted mge = (xge,yq) with zge = 4.01 and y, = 1.0 (see Figure 1(right)). The
west goal’s middle is at mgy = (Zgw,yy) With x4, = —0.01.

Ball/Scoring. The ball is a circle with variable center coordinates ¢, = (zp, yp),
variable direction &} and fixed radius 7, = 0.01. Its speed at time ¢ is denoted vy (¢).
After having been shot the ball’s initial speed is v,‘;”“ (max. 0.12 units per time
step). Each following time step the ball slows down due to friction: wv,(t + 1) =
vp(t) — 0.005 until vp(¢t) = 0 or it is picked up by a player (see below). The ball
bounces off walls obeying the law of equal reflection angles as depicted in Figure 2.
Bouncing causes an additional slow-down: v, (¢ + 1) = vp(¢) — 0.005 — 0.01. A goal
is scored whenever 0.8 < yp < 1.2 A (zp < 0V x3 > 4.0).

Players. There are two teams consisting of Z homogeneous players Teqst =
{per,pes, ..., pez} and Tyest = {pw1,pws, ..., pwz}. We vary team size: Z can
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Figure 1. Left: Soccer field. Right: Depth and “middle” mge of east goal (enlarged).
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Figure 3. Player: center ¢, = (zp,¥yp), radius

. . . - d
Figure 2. Ball “reflected” by wall. rp and orientation op = (dZ:)'

be 1, 3 or 11. At a given time step each player p € Tepst U Tyest is represented
by a circle with variable center ¢, = (zp,yp), fixed radius r, = 0.025 and variable
orientation 4, = (gz;) (see Figure 3). Players are “solid”. If player p, coming from
a certain angle, attempts to traverse a wall then it “glides” on it, loosing only that
component of its speed which corresponds to the movement direction hampered by
the wall. Players p; and p; collide if dist(cp,,c,;) < rp, where dist(c;,c;) denotes
Euclidean distance between points ¢; and ¢;. Collisions cause both players to bounce
back to their positions at the previous time step. If one of them has owned the ball
then the ball will change owners (see below).

Initial Set-up. A game lasts from time ¢t = 0 to time t.,q. There are fixed
initial positions for all players and the ball (see Figure 4). Initial orientations are
3y = (') ¥p € Teast and 8, = ({) Vp € Toest-

Action Framework/Cycles. Until one of the teams scores, at each discrete
time step 0 < t < teng each player executes a “cycle” (the temporal order of the
2 Z cycles is chosen randomly). A cycle consists of: (1) attempted ball collection,
(2) input computation, (3) action selection, (4) action execution and (5) attempted
ball collection. Once all 2-Z cycles have been executed we move the ball if v, > 0. If
a team scores or t = t.,4 then all players and ball are reset to their initial positions.

(1) Attempted Ball Collection. A player p successfully collects ball b if its
radius r, < dist(cp,cp). We then set ¢, := ¢p,vp := 0. Now the ball will move with
p and can be shot by p.

(2) Input Computation. In simple simulations player p’s input at a given time
is a simple input vector iy (p,t). In complex simulations it is a complez input vector

ie(p,t).
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Figure 4. 22 players and ball in initial positions. Players of a 1 or 3 player team are those furthest
in the back (defenders and/or goalkeeper).

Simple vector is(p,t) has 14 components: (1) Three boolean inputs (coded with
1=true and -1=false) that tell whether player p/a team member/an opponent has
the ball. (2) Polar coordinates (distance, angle) of both goals and the ball with
respect to pole ¢, and polar axis 6, (player-centered coordinate system). (3) Polar
coordinates of both goals relative to a ball-centered coordinate system with pole
¢y and polar axis 0, — if v, = 0, then &, = 0 and the angle towards both goals
is defined as 0. (4) Ball speed. Note that these inputs are not sufficient to make
the environment fully observable — e.g, there is no information about positions of
other players.

The 56-dimensional complex vector fc(p, t) is a concatenation of iy (p,t) and 21
¢p/0p-based polar coordinates of all other players ordered by (a) teams and (b)
ascending distances to p. The environment still remains partially observable, how-
ever, since the player orientations and changing behaviors are not included in the
inputs.

TD-Q’s, PIPE’s, and CO-PIPE’s input representation of distance d (angle «) is
5;—‘1 (6*20'0‘2). This helps TD-Q since it makes close distances and small angles
appear more important to TD-Q’s linear networks.

(3) Action Selection. See Sections 3 and 4.

(4) Action Execution. Depending on the simulation type, player p may execute
either simple actions from action set ASETs or complexr actions from action set
ASETq. ASETs contains:

e go_forward: move player p 0.025 units in its current direction g, if without ball
and 0.8 - 0.025 units otherwise.
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e turn_to_ball: change direction g, of player p such that g, := (?°_77)

Y —Yp
e turn_to_goal: change direction ¢, of player p such that o, := (’”yge:;P), if pe
g p
Tyest and 6 := (’”;:’:yzp), if p€ Tenst-

e shoot: If p does not own the ball then do nothing. Otherwise, to allow for imper-
. . = noise) dTp—8iN(Anoise ) d

fect, noisy shots, execute turn(ameise ) which sets @, := (zgﬁznmeg-dﬁ’;ﬁg&mg-d‘Z:)’
where ayoise 18 picked uniformly random from —5° < aiypise < 5°. Then shoot
ball in direction 0} := d,. Initial ball speed is v/"* = 0.12. Noise makes long

shots less precise than close passes.

Complex actions in ASET¢ are parameterized. They allow for pre-wired coopera-
tion but also increase action space. Parameter a stands for an angle, P/O stands for
some teammate player’s/opponent’s index from {1..Z — 1}/{1..Z}. Indices P and
O are sorted by distances to the player currently executing an action, where closer
teammate players/opponents have lower indices. For TD-Q « is either picked from
s1=10,%,%2, -2, —Z} or from sy = {0, 2, 7w, — 27, —2r}. PIPE uses continuous
angles. Player p may execute the following complex actions from ASET¢:

e goto_ball(a): If p owns ball do nothing. Otherwise execute turn_to_ball, then
turn(a) (TD-Q: a € s1) and finally go_forward,

e goto_goal(a): First execute turn_to_goal, then turn(a) (TD-Q: a € s;) and
finally go_forward.

e goto_own_goal(a): First execute turn(3) such that &, := (’”;:’:yzp) (if p € Twest)

or Op 1= (zyggfip) (if p € Teqst); then turn(a) (TD-Q: « € s1); finally go_forward.

o goto_player(P,a): First execute turn(3) such that 6, := (37 77), then turn(a)
P

(TD-Q: a € s2) and finally go_forward. Here (P,p € Teast VP, p € Tyest) AP # p.

e goto_opponent(O,a): First execute turn(B) such that g, := (’;2:;?), then turn(«)

(TD-Q: a € s2) and finally go_forward. Here (p € Teast A O Ep Twest) V (p €
Twest A O € Teast)-

o pass_to_player(P): First execute turn((3) such that o, := (77 77), then shoot.
Here P,p € Tegst V P,p € Tyest. Initial ball speed is set to vi"* = 0.005 +
V/2:0.005 - dist(cp,cp). If v > 0.12 then v{"® := 0.12. This ensures that
the ball will arrive at cp at a slow speed, if the distance to the player is not

larger than 1.5 (“maximal shooting distance”).

e shoot_to_goal: First execute turn_to_goal, then shoot, where initial ball speed is
set to v,’;”” = 0.005 + \/2 -0.005 - dist(cp,my), where my = mge if p € Tyest
and my = mygy if p € Teqse. If i > 0.12 then vj" := 0.12.
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3. Probabilistic Incremental Program Evolution (PIPE)

We use Probabilistic Incremental Program Evolution (PIPE) to synthesize pro-
grams which, given player p’s input vector ;(p, ), select actions from ASET. In
simple 51mulat10ns we set ASET := ASETS and z(p, t) := =1, (p,t). In complex sim-
ulatlons we set ASET := ASETq and i(p,t) := i.(p,t). We use PIPE as described

n (Satustowicz & Schmidhuber, 1997), except for “elitist learning” which we omit
due to high environmental stochasticity.

A PIPE alternative for searching program space would be Genetic Programming
(GP) (Cramer, 1985; Dickmanns et al., 1987; Koza, 1992). We chose PIPE over
GP because it compared favorably with Koza’s GP variant in previous experiments
(Satustowicz & Schmidhuber, 1997).

Action Selection. Action selection depends on 5 (8) variables when simple
(complex) actions are used: the “greediness” parameter g € IR, and 4 (7) “action
values” A, € R, Va € ASET. Action a € ASET is selected with probability P4,
according to the Boltzmann-Gibbs distribution at temperature é

P el Va € ASET (1)
_=— a e
e Yvjeaspr €

All A, and g are calculated by a program.

3.1. Basic Data Structures and Procedures

Programs. In simple simulations a main program PROGRAM consists of a program
ProaY which computes the greediness parameter g and 4 “action programs” PrRoOG*
(a € ASETs). In complex simulations we need PROGY, 7 action programs PROG®
(a € ASET.), programs PROG®® for each angle parameter, programs ProG?" for
each player parameter and programs PrROG?? for each opponent parameter (for
actions using these parameters). The result of applying PROG to data z is denoted
PRrOG(z). Given i(p,t), PROG*(i(p,t)) returns A, and g := |PROGI(i(p,1))|. An
action a € ASET is then selected according to the Boltzmann-Gibbs rule — see
Assignment (1). In the case of complex actions programs PrRoG*®, PRoG*" and
PRrROG®© return values for all parameters of action a: « := PROG‘W( i(p, t), P :=
1 + (|round(PrOG®F (i(p,t)))| mod (Z — 1)), O := 1 + (|round(PrROG (i(p,t)))|
mod Z). Recall that Z is the number of players per team.

All programs PrROG®, PROG**, PROG*", and PrRoG®? are generated according
to distinct probabilistic prototype trees PPT*, PPT**, PPT*F and PPT*C, respec-
tively. The PPTs contain adaptive probability distributions over all programs that
can be constructed from a predefined instruction set. In what follows we will ex-
plain how programs and probabilistic prototype trees are represented and how a
program ProG € {PRoG?, PROG*, PROGF, PROG?} is generated from the cor-
responding probabilistic prototype tree PPT € {PPT*, PPT**, PPT*Y, PPT"°}.
A more detailed description can be found in (Satustowicz & Schmidhuber, 1997).

Program Instructions. A program PROG contains instructions from a function
set F' = {f1, fo,..., fr.} with k functions and a terminal set T = {t,¢2,...,%;} with
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I terminals. We use F = {4, —, x,%, sin, cos,exp,rlog} and T = {f(p, 1, ---,
f(p, t)y, R}, where % denotes protected division (Vy,z € R,z # 0: y%z = y/z and
y%0 = 1), rlog denotes protected logarithm (Vy € IR,y # 0: rlog(y)=log(abs(y))
and rlog(0) = 0), Z(p, t); 1 < j <o denotes component j of a vector Z(p, t) with v
components and R represents the generic random constant € [0;1).

Generic Random Constants. A generic random constant (compare also “ephe-
meral random constant” (Koza, 1992)) is a zero argument function (a terminal).
When accessed during program creation, it is either instantiated to a random value
from a predefined, problem-dependent set of constants (here: [0;1)) or a value
previously stored in the PPT (see below).

Program Representation. Programs are encoded in n-ary trees, with n being
the maximal number of function arguments. Each nonleaf node encodes a function
from F' and each leaf node a terminal from 7. The number of subtrees each node
has corresponds to the number of arguments of its function. Each argument is
calculated by a subtree. The trees are parsed depth first from left to right.

Probabilistic Prototype Tree. A probabilistic prototype tree (PPT) is gen-
erally a complete n-ary tree. At each node Ny, it contains a random constant
R4, and a variable probability vector ﬁd7w, where d > 0 denotes the node’s depth
(root node has d = 0) and w defines the node’s horizontal position when tree nodes
with equal depth are read from left to right (0 < w < n?). The probability vectors
I3d7w have [ + k components. Each component P;,,(I) denotes the probability of
choosing instruction I € FUT at Ng,. We maintain: Y, pp Prw(l) = 1.

Program Generation. To generate a program PROG from PPT, an instruction
I € FUT is selected with probability Py, (I) for each accessed node Ny ,, of PPT.
This instruction is denoted as I ,,. Nodes are accessed in a depth-first way, starting
at the root node Ny, and traversing PPT from left to right. Once I;, € F is
selected, a subtree is created for each argument of Iy,. If I;, = R, then an
instance of R, called Vy,,(R), replaces R in PROG. If P;,,(R) exceeds a threshold
TR, then Vy ,,(R) = Rgq. Otherwise Vg, (R) is generated uniformly random from
the interval [0;1).

Tree Shaping. A complete PPT is infinite. A “large” PPT is memory intensive.
To reduce memory requirements we incrementally grow and prune PPT5s.

Growing. Initially a PPT contains only the root node (node initialization is
described in Section 3.2). Further nodes are created “on demand” whenever I, €
F is selected and the subtree for an argument of I, ,, is missing.

Pruning. We prune PPT subtrees attached to nodes that contain at least one
probability vector component above a threshold Tp. In case of functions, we prune
only subtrees that are not required as function arguments.

3.2.  Learning

We first describe how the PPTs are initialized. Then we explain how PIPE guides
its search to promising search space areas by incrementally building on previous
solutions.
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PPT Initialization. For all PPT’s, each PPT node Ny, requires an initial
random constant R4, and an initial probability Py, (I) for each instruction I €
FUT. We pick R4, uniformly random from the interval [0;1). To initialize
instruction probabilities we use a constant user-defined probability Pr for selecting
an instruction from T and (1 — Pr) for selecting an instruction from F. Z3d7w is
then initialized as follows:

1-P
Pyo(I) = - X

VYI:TeT and Pyw(I):= A , VI:TeF

Generation-Based Learning. PIPE learns in successive generations, each com-
prising 5 distinct phases: (1) creation of program population, (2) population eval-
uation, (3) learning from population, (4) mutation of prototype trees and (5) pro-
totype tree pruning.

(1) Creation of Program Population. A population of programs PROGRAM;
(0 < j < PS; PS is population size) is generated using the prototype trees as
described in Section 3.1. All PPTs are grown “on demand”.

(2) Population Evaluation. Each program PROGRAM; of the current popu-
lation is evaluated and assigned a scalar, non-negative “fitness value” FIT(PROG-
RAM;), reflecting the program’s performance. To evaluate a program we play one
entire soccer game. We define FIT(PROGRAM;) = 100 - number of goals scored
by PROGRAM; + number of goals scored by opponent. The offset 100 is sufficient
to ensure a positive score difference needed by the learning algorithm (see below).
If FIT(PROGRAM;) < FIT(PROGRAM;), then program PROGRAM; is said to em-
body a better solution than program PROGRAM;. Among programs with equal
fitness we prefer shorter ones (Occam’s razor), as measured by number of nodes.

(8) Learning from Population. We define b to be the index of the best
program of the current generation and preserve the best fitness found so far in
FIT(ProGRrRAM®) (fitness of the elitist). Prototype tree probabilities are modified
such that the probabilities P(PROGE®"?) of creating each PROGY™™ € PROGRAM,,
increase, where part € {a,acx,aP,a0}. To compute P(PROG?“”) we look at all
PPTP" nodes NJ%* used to generate PrOGH*™:

P(PrOGI"™) = II Py (I,w(PrROGE®™)),
dw:NP°r* used to generate PROGY"™

t

sz)ﬂ/”

where I,,(PROGF*™") denotes the instruction of program PRO at node posi-
part

tion d,w. Then we calculate a target probability PE%4h, 57 for each ProGE*":

¢ + FIT(PROGRAM®)

Ppart -p PROGpart 1—-P PROGpart Ar - .
TARGET ( )+ ( ( b))l £+ FIT(PROGRAM,)

Here Ir is a constant learning rate and e a positive user-defined constant. The
¢+ FIT(PROGRAM®)
e+ FIT(PROGRAM,)
larger steps towards programs with higher quality (lower fitness) than towards

programs with lower quality (higher fitness). Constant ¢ determines the degree of

fraction implements fitness dependent learning (fdl). We take
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fdl's influence. If V FIT(PROGRAM®!): ¢ < FIT(PROGRAM®!), then PIPE can use
small population sizes, as generations containing only low-quality individuals (with
FIT(PROGRAM;) > FIT(PROGRAM®)) do not affect the PPT's much.

Given P2} . o, all single node probabilities Py, (I1,..(PROGE"™)) are increased
iteratively (in parallel):

REPEAT UNTIL z:(PRoef,’a”) > P%ZTEGETt: .
Pd,w(Id,w(PROGimr )) = Pd,w(Id,w(PROGgar ))+Clr'lr' (1 _Pd,w(Iiw(PROGimr )))

Here ¢!" is a constant influencing the number of iterations. The smaller ¢ the
higher the approximation precision of P2%% .7 and the number of required it-
erations. We use ¢!” = 0.1, which turned out to be a good compromise between
precision and speed.

Finally, each random constant in PROG?“” is copied to the appropriate node in
PPt if I;,,(PROGP™™) = R then RY"' := VI'(R).

(4) Mutation of Prototype Trees. Mutation is one of PIPE’s major explo-
ration mechanisms. Mutation of probabilities in all PPTs is guided by the current
best solution PROGRAM;. We want to explore the area “around” PROGRAM;. Prob-
abilities Py’ (1) stored in all nodes N, gﬁ;t that were accessed to generate program
PROGRAM; are mutated with a probability P}CZ}”, defined as:

Ppart _ PM
M, - )
" (l+k)-/|ProGP™|

where the user-defined parameter Py defines the overall mutation probability and
|PROGP*™| denotes the number of nodes in program PROGY*"?. Selected probability

vector components are then mutated as follows:
PPUH(T) i= PPUN(T) + mr - (1 — PPY"Y(T)),

where mr is the mutation rate, another user-defined parameter. All mutated vectors
ﬁ; ‘Zt are finally renormalized.

(5) Prototype Tree Pruning. At the end of each generation we prune all
prototype trees, as described in Section 3.1.

3.8.  Coevolution

We also use PIPE to coevolve programs. Each population consists of only two pro-
grams with mutually dependent performance. Coevolutionary PIPE (CO-PIPE)
works just like PIPE, except that: (1) To evaluate both programs of a population
(PROGRAM; and PROGRAM>) we let them play against each other: FIT(PROGRAM;)
= 100 - number of goals scored by PROGRAM; + number of goals scored by PROGRAMj,
where i,j € {1,2} and i # j. (2) The next generation consists of the winner and
a new program generated according to the adapted PPT. (3) Among programs
with equal fitness and length we prefer former winners. (4) We do not use fitness
dependent learning, as the fitness function changes over time.
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4. TD-Q Learning

One of the most widely known and promising EF-based approaches to reinforcement
learning is TD-Q learning (Sutton, 1988; Watkins, 1989; Peng & Williams, 1996;
Wiering & Schmidhuber, 1997). We use an offline TD(X) Q-variant (Lin, 1993).
For efficiency reasons our TD-Q version uses linear neural networks (networks with
hidden units require too much simulation time). To implement policy-sharing we
use the same networks for all players of a team. The goal of the networks is to map
the player-specific input f(p, t) to action evaluations Q(f(p, t),a1),-.- ,Q(f(p, t),an),
where N denotes the number of possible actions. We reward the players equally
whenever a goal has been made or the game is over.

Simple Action Selection. In simple simulations we use a different network for
each of the four actions {ay,...,a4}. To select an action a(p,t) at time ¢ for player
p we first calculate Q-values of all actions. The Q-value of action ay, given input

i(p,t) is
Q(i(p, 1), ar) = @ - i(p,t) + b (2)

where " is the weight vector for action network k and b* is its bias strength.
Once all Q-values have been calculated, a single action a(p, t) is chosen according
to the Boltzmann-Gibbs rule — see Assignment (1). Unlike PIPE, which evolves
the greediness parameter, TD-Q needs an a priori value for g.

Complex Action Selection. Since complex actions may have 0, 1, or 2 param-
eters we use a natural, modular, tree-based architecture. Instead of using continu-
ous angles we use discrete angles (see Section 2). The root node contains networks

N ..., N% for evaluating “abstract” complex actions neglecting the parame-
ters, e.g., pass_to_player. Some specific root-network N%’s “angle son networks”
Ngk,...,Ngk are then used for selecting the angle parameter. Similarly, player

and opponent parameters are selected using “player son networks” and “opponent
son networks”, respectively. For instance, if an action contains both player and
angle parameters, then there are “son networks” for player-parameters and “son
networks” for angle parameters. The complete tree contains 64 linear networks.

After computing the seven “abstract” complex action Q-values according to Equa-
tion (2), one of the seven is selected according to the Boltzmann-Gibbs rule — see
Assignment (1). If the selected action requires parameters we use Equation (2)
to compute the Q-values of all required parameters and select a value for each
parameter according to the Boltzmann-Gibbs rule.

TD-Q Learning. For both simple and complex simulations we use an offline
TD(A) Q-variant similar to Lin’s (1993). Each game consists of separate trials. At
trial start we set time-pointer ¢ to current game time ¢°. We increment ¢ after each
cycle. The trial stops once one of the teams scores or the game is over. Denote the
final time-pointer by t*. We want the Q-value Q(f(p, t), ay) of selecting action ay
given input Z(p, t) to approximate

QUi(p,1), ax) ~ E(Y" I R(1)),
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where £ denotes the expectation operator, 0 < v < 1 the discount factor which
encourages quick goals (or a lasting defense against opponent goals), and R(t*)
denotes the reinforcement at trial end (-1 if opponent team scores, 1 if own team
scores, 0 otherwise).

To learn these Q-values we monitor player experiences in player-dependent history
lists with maximum size H,,q... At trial end player p’s history list H(p) is

H(p) == {{i(p,t"), alp,t"), V(i(p, ')}, ..., {i(p,t"), alp, t*), V(i(p, t*))}}-

Here V (i(p,t)) := Maz,{Q(i(p,t),ar,)}, and t* denotes the start of the history list:
th:=1t° if t* < Hpaa, and t' :=t* — H,,4. + 1 otherwise.

After each trial we calculate examples using offline TD-Q learning. For each player
history list H(p), we compute desired Q-values Q™" (p, t) for selecting action a(p, t),
given i(p,t) (t =t',...,t*) as follows:

Q" (p,t7) := R(t").
QU (p,t) i= 7 [A- Q" (p,t +1) + (1= A) - V(ilp,t + 1))].

A determines future experiences’ degree of influence.

To evaluate the selected complex action parameters we store them in history
lists as well. Their evaluations are updated on the Q"*“-values of their (parent)
“abstract” complex actions — Q-values of selected action parameters are not used
for updates of other previously selected action parameters (or selected actions).

Once all players have created TD-Q training examples, we train the selected
networks to minimize their TD-Q errors. All player history-lists are processed by
dovetailing as follows: we train the networks starting with the first history list entry
of player 1, then we take the first entry of player 2, etc. Once all fist entries have
been processed we start processing the second entries, and so on. The networks are
trained using the delta-rule (Widrow & Hoff, 1960) with learning rate Ir,.

5. Experiments

We conduct two different types of simulations — simple and complex. During simple
simulations we use simple input vectors Zs(p, t) and simple actions from ASETs.
During complex simulations we use complex input vectors fc(p, t) and complex
actions from ASETs. In simple simulations we compare TD-Q’s, PIPE’s and CO-
PIPE’s behavior as we vary team size. In complex simulations we study the algo-
rithms’ performances in case of more sophisticated action sets and more informative
inputs. Informative inputs are meant to decrease POP’s significance. On the other
hand, they increase the number of adaptive parameters. For a statistical evaluation
we perform 10 independent runs for each combination of simulation type, learning
algorithm and team size.
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5.1.  Simple Simulations

We play 3300 games of length t.,q = 5000 for team sizes 1, 3 and 11. Every 100
games we test current performance by playing 20 test games (no learning) against
a “biased random opponent” BRO and summing the score results.

BRO randomly executes simple actions from ASETs. BRO is not a bad player
due to the initial bias in the action set. For instance, BRO greatly prefers shooting
at the opponent’s goal over shooting at its own. If we let BRO play against a
non-acting opponent NO (all NO can do is block) for twenty 5000 time step games
then BRO wins against NO with on average 71.5 to 0.0 goals for team size 1, 44.5
to 0.1 goals for team size 3, 108.6 to 0.5 goals for team size 11.

We also designed a simple but good team GO by hand. GO consists of players
which move towards the ball as long as they do not have it, and shoot it at the
opponent’s goal otherwise. If we let GO play against BRO for twenty 5000 time
step games then GO wins with on average 417 to 0 goals for team size 1, 481 to 0
goals for team size 3, and 367 to 3 goals for team size 11. Note that GO implements
a non-cooperative (singleagent) strategy. Small GO teams perform extremely well
— larger GO teams with many interacting agents, however, do not (see team size
11).

PIPE and CO-PIPE Set-ups. Parameters for all PIPE and CO-PIPE runs
are: Pr=0.8,¢ =1, Ir=0.2, P»;=0.1, mr=0.2, Tp=0.3, Tp=0.999999. For PIPE we
use a population size of PS=10, while for CO-PIPE we use P5S=2, as mentioned in
Section 3.3. During performance evaluations we test the current best-of-generation
program (except for the first evaluation where we test a random program).

TD-Q Set-up. After a coarse search through parameter space we used the
following parameters for all TD-Q runs: y=0.99, Ir,=0.0001, A=0.9, H,,4,=100.
All network weights are randomly initialized in [—0.01,0.01]. During each run the
Boltzmann-Gibbs rule’s greediness parameter g is linearly increased from 0 to 60.

Results. We compare average score differences achieved during all test phases.
Figure 5 shows results for PIPE, CO-PIPE, and TD-Q. It plots goals scored by
learner and opponent (BRO) against number of games used for learning. Larger
teams score more frequently because some of their players start out closer to the
ball and the opponent’s goal.

PIPE learns fastest and always finds quickly an appropriate policy regardless of
team size. Its score differences continually increase. CO-PIPE performs worse than
PIPE, but is still able to find good policies with respect to BRO. Note, however,
that CO-PIPE’s task is more difficult than PIPE’s or TD-Q’s. It never “sees” BRO
during training and therefore has no reason for optimizing its strategy against it.
Stochastic fluctuations in CO-PIPE’s performance tend to level out with increasing
team size.

TD-Q also improves, but in a less spectacular way. It always learns more slowly
than PIPE and CO-PIPE. It tends to increase score differences until it scores
roughly twice as many goals as in the beginning (when actions are still random).
Then, however, the score differences start declining. There are several reasons for
TD-Q’s slowness and breakdown: (1) POP makes learning appropriate EFs diffi-
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Figure 5. Average number of goals scored during all test phases, for team sizes 1, 3, 11.

cult. (2) The linear neural networks cannot keep useful EFs but tend to unlearn
them instead. (3) Unlike PIPE, linear TD-Q suffers from ACAP: it needs to as-
sign proper credit to individual player actions but fails to pick out the truly useful
ones. Below we will describe a deeper investigation of a catastrophic performance
breakdown in the 11 player TD-Q run.

For each learning algorithm and GO, Table 1 lists results against BRO (averages
over ten runs).

Table 1. Results of PIPE, CO-PIPE, TD-Q, and GO playing against BRO.

team size GO PIPE CO-PIPE | TD-Q
max. score difference 417 310 192 42
av. goals + st.d. 417+6 320442 212497 52+14
1 av. BRO goals =+ st.d. 040 1047 20+10 1043
achieved after games n.a. 3300 3000 1700
max. score difference 481 359 310 70
av. goals + st.d. 48148 373486 324462 102+14
3 av. BRO goals + st.d. 0+1 14+6 14+11 3248
achieved after games n.a. 3300 3200 1700
max. score difference 364 481 357 154
av. goals + st.d. 367+18 | 5124129 | 393453 212484
11 av. BRO goals + st.d. 3+1 31423 36427 58+23
achieved after games n.a. 3100 1900 2500
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The hand-made GO team outperforms (in terms of score difference) any of the
1 and 3 player teams. In the 11 player case, however, it plays worse than PIPE,
while CO-PIPE’s performance is comparable. This indicates that: (1) Successful
singleagent strategies may not suit larger teams. (2) Useful strategies for large
teams are learnable by direct policy search.

How do PIPE and CO-PIPE solve the task? Comparing best programs of
several successive generations revealed that both algorithms are able to: (1) quickly
identify the inputs that are relevant for selecting actions, and (2) find programs
that compute useful action probabilities given the selected inputs. PIPE’s and CO-
PIPE’s ability to set the greediness parameter helps to control exploration as it
makes action selection more or less stochastic depending on the inputs.

TD-Q’s Instability Problems. Some linear TD-Q runs led to good perfor-
mance. This implies clusters (or niches) in weight vector space that contain good
solutions. TD-Q’s dynamics, however, do not always lead towards such niches.
Furthermore, sudden performance breakdowns hint at a lack of stability of good
solutions. To understand TD-Q’s problems in the 11 player case we saved a “good”
network just before breakdown (after 2300 games). Ten times we continued training
it for 25 games, testing it every game by playing twenty test games. To achieve
more pronounced score differences we set the greedy parameter g to 90 — this leads
to more deterministic behavior than the value 42 used before saving the network.

Figure 6(left) plots the average number of goals scored by TD-Q and BRO during
all test games against the number of training games. Although initial performance
is quite good (the score difference is 418 goals), the network fails to keep it up.
To analyze a particular breakdown we focus on a single run. Figure 6(middle)
shows the number of goals scored during all test phases, Figure 6(right) the relative
frequencies of selected actions.

TD-Q 11-players TD-Q 11-players TD-Q 11-players
T T T T T T T T T
500 - learner B 500 |- leamer E 1t P(go_forward) ——— B
opponent ------ opponent ------ g shoot) —————-
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Figure 6. BRO against TD-Q starting out with a well-trained linear TD-Q network: performance
breakdown study for 11 players. Left: average numbers of goals (means of 10 runs). Middle: plot
for a single run. Right: relative frequencies of actions selected by TD-Q during the single run.

Figure 6(middle) shows a performance breakdown occuring within just a few
games. It is accompanied by dramatic policy changes displayed in Figure 6(right).
Analyzing the learning dynamics we found the following reason for the instability:
Since TD-Q’s linear networks learn a global EF approximation, they compute an
average expected reward for all game constellations. This makes the Q-values of
many actions quite similar: their weight vectors differ only slightly in size and
direction. Hence small updates can create large policy changes. This becomes more
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likely with increasing g, which enhances the effects of small Q-value differences (a
large g, however, is necessary to obtain more deterministic policies).

TD-Q does adapt some weight vectors more than others, however. The weight
vector of the most frequent action of some rewarding (unrewarding) trial will grow
(shrink) most. For example, according to Figures 6(middle) and 6(right), the action
go_forward is selected most frequently by the initially good policy. Two more games,
however, cause the behavior to be dominated by this action. This results in worse
performance and provokes a strong correction in the third game. This suddenly
makes the action unlikely even in game constellations where it should be selected,
and leads to even worse performance. (Note that in this particular case after 25
games the policy performs well again — niches can occasionally be rediscovered.)

For 11 player teams the effect of update steps on the policy is 11-fold (as compared
to 1 player teams) and the instability is much more pronounced. We could not get
rid of the instability problem, neither by (1) bounding error updates nor by (2)
lowering learning rates or lambda. Case (2) actually just causes slower learning,
without stifling the effects caused by relatively equal Q-value assignments to actions.

A promising remedy may be to use action frequency dependent learning rates.
This will make update steps for all actions almost equal such that successes/failures
will not easily lead to dominating actions. Another remedy may be the pocket algo-
rithm (Gallant, 1993) (which stores the best EF found so far) or the more complex
success-story algorithm (Wiering & Schmidhuber, 1996; Schmidhuber et al., 1997a;
Schmidhuber et al., 1997b) that backtracks once the reward per time interval de-
creases.

Yet another promising remedy may be to use local (but more time-consuming)
function approximators such as CMACS (Albus, 1975; Sutton, 1996). CMACS-
based TD-Q learners will not break down as easily, although our preliminary ex-
periments indicate that in case of simple input vectors they do suffer from the POP.
Preliminary CMACS/TD-Q experiments with complex inputs and simple actions,
however, already led to promising results.

5.2.  Complex Simulations

From now on we focus on team size 11. One run with complex actions and more
informative inputs consists of 1200 games, each lasting for t.,q = 5000 time steps.
Again we train PIPE and TD-Q against the “biased random opponent” BRO, while
CO-PIPE learns through coevolution. Every 100 games we test current performance
by playing 20 test games (no learning) against BRO and summing the score results.

PIPE and CO-PIPE Set-ups. Parameters for all PIPE and CO-PIPE runs
are the same as used in simple simulations.

TD-Q Set-up. Parameters for all TD-Q runs are also the same as used in simple
simulations with the exception that Ir,=0.001 (several other parameter values led
to worse results).

Results. Figure 7 shows the average number of goals scored by PIPE, CO-PIPE,
and TD-Q (learners) in comparison to BRO (opponent) during all test phases.
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Figure 7. Average number of goals (means of 10 independent runs) for PIPE (left), CO-PIPE
(middle), and TD-Q (right) vs. BRO using complex actions and inputs.

PIPE and CO-PIPE quickly find successful strategies. PIPE’s performance steadily
increases while CO-PIPE’s is slightly more stochastic. In the long run (after 3300
games — not shown), however, both are very similar. Note again, though, that
CO-PIPE solves a more difficult task — it is tested against an opponent that it
never meets during training.

Linear TD-Q initially does worse than its opponent. It does learn to beat BRO
by about 50 % but then breaks down completely. Examining all single runs we
found that TD-Q’s average score results were strongly influenced by a single good
run that scored up to 471 goals. Once this run’s performance broke down after
1000 games the average declined to 16 goals.

We compare maximal average score differences in Table 2. PIPE and CO-PIPE
both achieve score differences that are significantly better than GO’s. Linear TD-Q
does not.

Table 2. Maximal average score differences against BRO for different
learning methods and GO.

GO PIPE CO-PIPE | TD-Q
max. score difference 364 530 536 46
av. goals & st.d. || 367£18 | 551+£215 | 5394220 | 764140
av. BRO goals =+ st.d. 3+1 21435 3+4 30+29
achieved after games n.a. 1200 1200 900

Complex actions embody stronger initial bias and make cooperation easier, while
more informative inputs make the POP less severe. In principle, this allows for
better soccer strategies. PIPE and CO-PIPE are able to exploit this and perform
better than with simple actions (compare Figures 5 and 7 and Tables 1 and 2).
Linear TD-Q does not. It still suffers from the problems described in Section 5.1.

6. Conclusion

In a simulated soccer case study with policy-sharing agents we compared direct pol-
icy search methods (PIPE and coevolutionary CO-PIPE) and an EF-based one (lin-
ear TD-Q). All competed against a biased random opponent (BRO). PIPE and CO-
PIPE always easily learned to beat this opponent regardless of team size, amount
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of information conveyed by the inputs, or complexity of actions. In particular,
CO-PIPE outperformed BRO without ever meeting it during the training phase.
TD-Q achieved performance improvements, too, but its results were less exciting,
especially in case of several agents per team, more informative inputs, and more
sophisticated actions.

PIPE and CO-PIPE found good strategies by simultaneously: (1) identifying
relevant inputs, (2) making action probabilities depend on relevant inputs only, (3)
evolving programs that calculate useful conditional action probabilities. Another
important aspect is: unlike TD-Q, PIPE and CO-PIPE learn to map inputs to
“greediness values” used in the (Boltzmann-Gibbs) exploration rule. This enables
them to pick actions more or less stochastically and control their own exploration
process.

TD-Q’s problems are due to a combination of reasons. (1) Linear networks. Lin-
ear networks have limited expressive power. They seem unable to learn and keep
appropriate evaluation functions (EFs). Increasing expressive power by adding hid-
den units (time-consuming!) or using local function approximators such as CMACS
(Albus, 1975; Sutton, 1996) (as proposed by Sutton, personal communication, 1997)
may significantly improve TD-Q’s performance. In fact, initial experiments with
CMACS and complex inputs already led to promising results. (2) Partial observ-
ability. Q-learning assumes that the environment is fully observable; otherwise it is
not guaranteed to work. Still, Q-learning variants already have been successfully ap-
plied to partially observable environments, e.g., (Crites & Barto, 1996). Our soccer
scenario’s POP, however, seems harder to overcome than POPs of many scenarios
studied in previous work. (3) Agent credit assignment problem (ACAP) (Weiss,
1996; Versino & Gambardella, 1997): how much did some agent contribute to team
performance? ACAP is particularly difficult in the case of multiagent soccer. For
instance, a particular agent may do something truly useful and score. Then all
the other agents will receive reward, too. Now the TD networks will have to learn
an evaluation function (EF) mapping input-action pairs to expected discounted re-
wards based on experiences with player actions that have little or nothing to do with
the final reward signal. This problem is actually independent of whether policies
are shared or not. (4) Instability. Using player-dependent history lists, each player
learns to evaluate actions given inputs by computing updates based on its own TD
return signal. The players collectively update their shared EF which can lead to
significant “shifts in policy space” and to “unlearning” of previous knowledge. This
may lead to performance breakdowns.

Our multiagent scenario seems complex enough to require more sophisticated and
time-consuming EF-based approaches than the one we tried. In principle, however,
EFs are not necessary for finding good or optimal policies. Sometimes, particularly
in the presence of POPs and ACAPs, it can make more sense to search policy
space directly. That is what PIPE and CO-PIPE do. Currently PIPE-like, EF-
independent techniques seem to learn faster and be easier applicable to complex
multiagent learning scenarios.
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Notes

1. After submission of this paper another recent attempt at learning soccer team strategies in
more complex environments was published (Luke et al., 1997).
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