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Learning Team Strategies: Soccer Case StudiesRAFA L P. SA LUSTOWICZ rafal@idsia.chMARCO A. WIERING marco@idsia.chJ�URGEN SCHMIDHUBER juergen@idsia.chIDSIA, Corso Elvezia 36, 6900 Lugano, SwitzerlandEditors: Michael Huhns and Gerhard WeissAbstract. We use simulated soccer to study multiagent learning. Each team's players (agents)share action set and policy, but may behave di�erently due to position-dependent inputs. Allagents making up a team are rewarded or punished collectively in case of goals. We conductsimulations with varying team sizes, and compare several learning algorithms: TD-Q learning withlinear neural networks (TD-Q), Probabilistic Incremental Program Evolution (PIPE), and a PIPEversion that learns by coevolution (CO-PIPE). TD-Q is based on learning evaluation functions(EFs) mapping input/action pairs to expected reward. PIPE and CO-PIPE search policy spacedirectly. They use adaptive probability distributions to synthesize programs that calculate actionprobabilities from current inputs. Our results show that linear TD-Q encounters several di�cultiesin learning appropriate shared EFs. PIPE and CO-PIPE, however, do not depend on EFs and �ndgood policies faster and more reliably. This suggests that in some multiagent learning scenariosdirect search in policy space can o�er advantages over EF-based approaches.Keywords: Multiagent Reinforcement Learning, Soccer, TD-Q Learning, Evaluation Functions,Probabilistic Incremental Program Evolution, Coevolution.1. IntroductionPolicy-sharing. Multiagent learning tasks often require several agents to learn tocooperate. In general there may be quite di�erent types of agents specialized insolving particular subtasks. Some cooperation tasks, however, can also be solvedby teams of essentially identical agents whose behaviors di�er only due to di�erent,situation-speci�c inputs. Our case study will be limited to such teams of agentsof identical type. Each agent's modi�able policy is given by a variable data struc-ture: for each action in a given set of possible actions the current policy determinesthe conditional probability that the agent will execute this action, given its cur-rent input. Each team's members share both action set and adaptive policy. Ifsome multiagent cooperation task indeed can be solved by homogeneous agentsthen policy-sharing is quite natural as it allows for greatly reducing the numberof adaptive free parameters. This tends to reduce the number of required trainingexamples (learning time) and increase generalization performance, e.g., (Nowlan &Hinton, 1992).Challenges of Multiagent Learning. One challenge is the \partial observabil-ity problem" (POP): in general no learner's input will tell the learner everythingabout its environment (which includes other changing learners). This means thateach learner's environment may change in an inherently unpredictable way. Also,



2 SA LUSTOWICZ, WIERING AND SCHMIDHUBERin multiagent reinforcement learning (RL) scenarios delayed reward/punishmentis typically given to an entire successful/failing team of agents. This provokes the\agent credit assignment problem" (ACAP): the problem of identifying those agentsthat were indeed responsible for the outcome (Weiss, 1996; Crites & Barto, 1996;Versino & Gambardella, 1997).Evaluation Functions versus Search through Policy Space. There aretwo rather obvious classes of candidate algorithms for learning shared policies inmultiagent RL. Class I includes traditional singleagent RL algorithms based onadaptive evaluation functions (EFs) (Watkins, 1989; Bertsekas & Tsitsiklis, 1996).Usually online variants of dynamic programming and function approximators arecombined to learn EFs mapping input-action pairs to expected discounted futurereward. The EFs are then exploited to generate rewarding action sequences.Methods from class II do not require EFs. Their policy space consists of completealgorithms de�ning agent behaviors, and they search policy space directly. Mem-bers of this class are Levin search (Levin, 1973; Levin, 1984; Solomono�, 1986; Li &Vit�anyi, 1993; Wiering & Schmidhuber, 1996; Schmidhuber, 1997a), Genetic Pro-gramming (Cramer, 1985; Dickmanns et al., 1987; Koza, 1992) and ProbabilisticIncremental Program Evolution (PIPE, Sa lustowicz & Schmidhuber, 1997).Comparison. In our case study we compare two learning algorithms, each rep-resentative of its class: TD-Q learning (Lin, 1993; Peng & Williams, 1996; Wiering& Schmidhuber, 1997) with linear neural networks (TD-Q) and Probabilistic In-cremental Program Evolution (PIPE, Sa lustowicz & Schmidhuber, 1997). We alsoreport results for a PIPE variant based on coevolution (CO-PIPE, Sa lustowicz etal., 1997). We chose TD-Q learning and PIPE because both methods have alreadybeen successfully applied to interesting singleagent tasks (Lin, 1993; Sa lustowicz &Schmidhuber, 1997) (another reason for choosing TD learning (Sutton, 1988) is itspopularity due to a successful application to backgammon (Tesauro, 1994)). LinearTD-Q selects actions according to linear neural networks trained with the delta rule(Widrow & Ho�, 1960) to map player inputs to evaluations of alternative actions.We use linear networks to keep simulation time comparable to that of PIPE andCO-PIPE | more complex approximators would require signi�cantly more compu-tational resources. PIPE and CO-PIPE are based on probability vector coding ofprogram instructions (Schmidhuber, 1997b), Population-Based Incremental Learn-ing (Baluja, 1994; Baluja & Caruana, 1995) and tree coding of programs used invariants of Genetic Programming (Cramer, 1985; Koza, 1992). They synthesizeprograms that calculate action probabilities from inputs. Experiences with pro-grams are stored in adaptive probability distributions over all possible programs.The probability distributions then guide program synthesis.Soccer. To come up with a challenging scenario for our multiagent learningcase study we decided on a non-trivial soccer simulation. Soccer recently receivedmuch attention by various multiagent researchers (Sahota, 1993; Asada et al., 1994;Littman, 1994; Stone & Veloso, 1996a; Matsubara et al., 1996). Most early researchfocused on physical coordination of soccer playing robots (Sahota, 1993; Asadaet al., 1994). There also have been attempts at learning low-level cooperation taskssuch as pass play (Stone & Veloso, 1996a; Matsubara et al., 1996; Nadella & Sen,



LEARNING TEAM STRATEGIES 31996). Recently Stone & Veloso (1996b) mentioned that even team strategies mightbe learnable by TD(�) or genetic methods.Published results on learning entire soccer strategies, however, have been limitedto extremely reduced scenarios such as Littman's (1994) tiny 5� 4 grid world withtwo single opponent players1. Our comparatively complex case study will involvesimulations with varying sets of continuous-valued inputs and actions, simple phys-ical laws to model ball bounces and friction, and up to 11 players (agents) on eachteam. We will include certain results reported in (Sa lustowicz et al., 1997a,b).Results Overview. Our results indicate: linear TD-Q has severe problems inlearning and keeping appropriate shared EFs. It learns relatively slowly, and once itachieves fairly good performance it tends to break down. This e�ect becomes morepronounced as team size increases. PIPE and CO-PIPE learn faster than linearTD-Q and continuously increase their performance. This suggests that PIPE-like,EF-independent techniques can easily be applied to complex multiagent learningscenarios with policy-sharing agents, while more sophisticated and time consumingEF-based approaches may be necessary to overcome TD-Q's current problems.Outline. Section 2 describes the soccer simulation. Section 3 describes PIPEand CO-PIPE. Section 4 describes TD-Q. Section 5 reports experimental results.Section 6 concludes.2. Soccer SimulationsOur discrete-time simulations involve two teams. There are either 1, 3 or 11 playersper team. Players can move or shoot the ball. Each player's abilities are limited (1)by the built-in power of its pre-wired action primitives and (2) by how informativeits inputs are. We conduct two types of simulations. \Simple" simulations involveless informative inputs and less sophisticated actions than \complex" simulations.Soccer Field. We use a two dimensional continuous Cartesian coordinate sys-tem. The �eld's southwest and northeast corners are at positions (0,0) and (4,2)respectively. As in indoor soccer the �eld is surrounded by impassable walls exceptfor the two goals centered in the east and west walls (see Figure 1(left)). Only theball or a player with ball can enter the goals. Goal width (y-extension) is 0.4, goaldepth (x-extension beyond the �eld bounds) is 0.01. The east goal's \middle" isdenoted mge = (xge; yg) with xge = 4:01 and yg = 1:0 (see Figure 1(right)). Thewest goal's middle is at mgw = (xgw ; yg) with xgw = �0:01.Ball/Scoring. The ball is a circle with variable center coordinates cb = (xb; yb),variable direction ~ob and �xed radius rb = 0:01. Its speed at time t is denoted vb(t).After having been shot the ball's initial speed is vinitb (max. 0:12 units per timestep). Each following time step the ball slows down due to friction: vb(t + 1) =vb(t) � 0:005 until vb(t) = 0 or it is picked up by a player (see below). The ballbounces o� walls obeying the law of equal re
ection angles as depicted in Figure 2.Bouncing causes an additional slow-down: vb(t + 1) = vb(t)� 0:005� 0:01. A goalis scored whenever 0:8 < yb < 1:2 ^ (xb < 0 _ xb > 4:0).Players. There are two teams consisting of Z homogeneous players Teast =fpe1; pe2; : : : ; peZg and Twest = fpw1; pw2; : : : ; pwZg. We vary team size: Z can
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Figure 1. Left: Soccer �eld. Right: Depth and \middle" mge of east goal (enlarged).
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(x  , y  )Figure 3. Player: center cp = (xp; yp), radiusrp and orientation ~op = �dxpdyp�.be 1, 3 or 11. At a given time step each player p 2 Teast [ Twest is representedby a circle with variable center cp = (xp; yp), �xed radius rp = 0:025 and variableorientation ~op = �dxpdyp� (see Figure 3). Players are \solid". If player p, coming froma certain angle, attempts to traverse a wall then it \glides" on it, loosing only thatcomponent of its speed which corresponds to the movement direction hampered bythe wall. Players pi and pj collide if dist(cpi ; cpj ) < rp, where dist(ci; cj) denotesEuclidean distance between points ci and cj . Collisions cause both players to bounceback to their positions at the previous time step. If one of them has owned the ballthen the ball will change owners (see below).Initial Set-up. A game lasts from time t = 0 to time tend. There are �xedinitial positions for all players and the ball (see Figure 4). Initial orientations are~op = ��10 � 8p 2 Teast and ~op = �10� 8p 2 Twest.Action Framework/Cycles. Until one of the teams scores, at each discretetime step 0 � t < tend each player executes a \cycle" (the temporal order of the2 �Z cycles is chosen randomly). A cycle consists of: (1) attempted ball collection,(2) input computation, (3) action selection, (4) action execution and (5) attemptedball collection. Once all 2�Z cycles have been executed we move the ball if vb > 0. Ifa team scores or t = tend then all players and ball are reset to their initial positions.(1) Attempted Ball Collection. A player p successfully collects ball b if itsradius rp � dist(cp; cb). We then set cb := cp; vb := 0. Now the ball will move withp and can be shot by p.(2) Input Computation. In simple simulations player p's input at a given timeis a simple input vector~is(p; t). In complex simulations it is a complex input vector~ic(p; t).
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Figure 4. 22 players and ball in initial positions. Players of a 1 or 3 player team are those furthestin the back (defenders and/or goalkeeper).Simple vector ~is(p; t) has 14 components: (1) Three boolean inputs (coded with1=true and -1=false) that tell whether player p/a team member/an opponent hasthe ball. (2) Polar coordinates (distance, angle) of both goals and the ball withrespect to pole cp and polar axis ~op (player-centered coordinate system). (3) Polarcoordinates of both goals relative to a ball-centered coordinate system with polecb and polar axis ~ob | if vb = 0, then ~ob = ~0 and the angle towards both goalsis de�ned as 0. (4) Ball speed. Note that these inputs are not su�cient to makethe environment fully observable | e.g, there is no information about positions ofother players.The 56-dimensional complex vector ~ic(p; t) is a concatenation of ~is(p; t) and 21cp/~op-based polar coordinates of all other players ordered by (a) teams and (b)ascending distances to p. The environment still remains partially observable, how-ever, since the player orientations and changing behaviors are not included in theinputs.TD-Q's, PIPE's, and CO-PIPE's input representation of distance d (angle �) is5�d5 (e�20��2). This helps TD-Q since it makes close distances and small anglesappear more important to TD-Q's linear networks.(3) Action Selection. See Sections 3 and 4.(4) Action Execution. Depending on the simulation type, player p may executeeither simple actions from action set ASETS or complex actions from action setASETC . ASETS contains:� go forward: move player p 0.025 units in its current direction ~op if without balland 0:8 � 0:025 units otherwise.



6 SA LUSTOWICZ, WIERING AND SCHMIDHUBER� turn to ball: change direction ~op of player p such that ~op := �xb�xpyb�yp�� turn to goal: change direction ~op of player p such that ~op := �xge�xpyg�yp �, if p 2Twest and ~op := �xgw�xpyg�yp �, if p 2 Teast.� shoot: If p does not own the ball then do nothing. Otherwise, to allow for imper-fect, noisy shots, execute turn(�noise) which sets ~op := �cos(�noise)�dxp�sin(�noise)�dypsin(�noise)�dxp+cos(�noise)�dyp�,where �noise is picked uniformly random from �5� � �noise � 5�. Then shootball in direction ~ob := ~op. Initial ball speed is vinitb = 0:12. Noise makes longshots less precise than close passes.Complex actions in ASETC are parameterized. They allow for pre-wired coopera-tion but also increase action space. Parameter � stands for an angle, P=O stands forsome teammate player's/opponent's index from f1::Z � 1g/f1::Zg. Indices P andO are sorted by distances to the player currently executing an action, where closerteammate players/opponents have lower indices. For TD-Q � is either picked froms1 = f0; �4 ; �2 ;��4 ;��2 g or from s2 = f0; 25�; 45�;� 25�; � 45�g. PIPE uses continuousangles. Player p may execute the following complex actions from ASETC :� goto ball(�): If p owns ball do nothing. Otherwise execute turn to ball, thenturn(�) (TD-Q: � 2 s1) and �nally go forward,� goto goal(�): First execute turn to goal, then turn(�) (TD-Q: � 2 s1) and�nally go forward.� goto own goal(�): First execute turn(�) such that ~op := �xgw�xpyg�yp � (if p 2 Twest)or ~op := �xge�xpyg�yp � (if p 2 Teast); then turn(�) (TD-Q: � 2 s1); �nally go forward.� goto player(P,�): First execute turn(�) such that ~op := �xP�xpyP�yp�, then turn(�)(TD-Q: � 2 s2) and �nally go forward. Here (P; p 2 Teast_P; p 2 Twest)^P 6= p.� goto opponent(O,�): First execute turn(�) such that ~op := �xO�xpyO�yp�, then turn(�)(TD-Q: � 2 s2) and �nally go forward. Here (p 2 Teast ^ O 2 Twest) _ (p 2Twest ^ O 2 Teast).� pass to player(P): First execute turn(�) such that ~op := �xP�xpyP�yp�, then shoot.Here P; p 2 Teast _ P; p 2 Twest. Initial ball speed is set to vinitb = 0:005 +p2 � 0:005 � dist(cp; cP ). If vinitb > 0:12 then vinitb := 0:12. This ensures thatthe ball will arrive at cP at a slow speed, if the distance to the player is notlarger than 1.5 (\maximal shooting distance").� shoot to goal: First execute turn to goal, then shoot, where initial ball speed isset to vinitb = 0:005 +p2 � 0:005 � dist(cp;mg), where mg = mge if p 2 Twestand mg = mgw if p 2 Teast. If vinitb > 0:12 then vinitb := 0:12.



LEARNING TEAM STRATEGIES 73. Probabilistic Incremental Program Evolution (PIPE)We use Probabilistic Incremental Program Evolution (PIPE) to synthesize pro-grams which, given player p's input vector ~i(p; t), select actions from ASET. Insimple simulations we set ASET := ASETS and ~i(p; t) := ~is(p; t). In complex sim-ulations we set ASET := ASETC and ~i(p; t) := ~ic(p; t). We use PIPE as describedin (Sa lustowicz & Schmidhuber, 1997), except for \elitist learning" which we omitdue to high environmental stochasticity.A PIPE alternative for searching program space would be Genetic Programming(GP) (Cramer, 1985; Dickmanns et al., 1987; Koza, 1992). We chose PIPE overGP because it compared favorably with Koza's GP variant in previous experiments(Sa lustowicz & Schmidhuber, 1997).Action Selection. Action selection depends on 5 (8) variables when simple(complex) actions are used: the \greediness" parameter g 2 IR, and 4 (7) \actionvalues" Aa 2 IR, 8a 2 ASET . Action a 2 ASET is selected with probability PAaaccording to the Boltzmann-Gibbs distribution at temperature 1g :PAa := eAa�gP8j2ASET eAj �g 8a 2 ASET (1)All Aa and g are calculated by a program.3.1. Basic Data Structures and ProceduresPrograms. In simple simulations a main program Program consists of a programProgg which computes the greediness parameter g and 4 \action programs"Proga(a 2 ASETS). In complex simulations we need Progg, 7 action programs Proga(a 2 ASETC), programs Proga� for each angle parameter, programs ProgaP foreach player parameter and programs ProgaO for each opponent parameter (foractions using these parameters). The result of applying Prog to data x is denotedProg(x). Given ~i(p; t), Proga(~i(p; t)) returns Aa and g := jProgg(~i(p; t))j. Anaction a 2 ASET is then selected according to the Boltzmann-Gibbs rule | seeAssignment (1). In the case of complex actions programs Proga�, ProgaP andProgaO return values for all parameters of action a: � := Proga�(~i(p; t)), P :=1 + (jround(ProgaP (~i(p; t)))j mod (Z � 1)), O := 1 + (jround(ProgaO(~i(p; t)))jmod Z). Recall that Z is the number of players per team.All programs Proga, Proga�, ProgaP , and ProgaO are generated accordingto distinct probabilistic prototype trees PPTa, PPTa�, PPTaP , and PPTaO , respec-tively. The PPTs contain adaptive probability distributions over all programs thatcan be constructed from a prede�ned instruction set. In what follows we will ex-plain how programs and probabilistic prototype trees are represented and how aprogram Prog 2 fProga, Proga�, ProgaP , ProgaOg is generated from the cor-responding probabilistic prototype tree PPT 2 fPPTa, PPTa�, PPTaP , PPTaOg.A more detailed description can be found in (Sa lustowicz & Schmidhuber, 1997).Program Instructions. A program Prog contains instructions from a functionset F = ff1; f2; : : : ; fkg with k functions and a terminal set T = ft1; t2; : : : ; tlg with



8 SA LUSTOWICZ, WIERING AND SCHMIDHUBERl terminals. We use F = f+;�; �;%; sin; cos; exp; rlogg and T = f~i(p; t)1, . . . ,~i(p; t)v; Rg, where % denotes protected division (8y; z 2 IR; z 6= 0: y%z = y=z andy%0 = 1), rlog denotes protected logarithm (8y 2 IR; y 6= 0: rlog(y)=log(abs(y))and rlog(0) = 0), ~i(p; t)j 1 � j � v denotes component j of a vector ~i(p; t) with vcomponents and R represents the generic random constant 2 [0;1).Generic Random Constants. A generic random constant (compare also \ephe-meral random constant" (Koza, 1992)) is a zero argument function (a terminal).When accessed during program creation, it is either instantiated to a random valuefrom a prede�ned, problem-dependent set of constants (here: [0;1)) or a valuepreviously stored in the PPT (see below).Program Representation. Programs are encoded in n-ary trees, with n beingthe maximal number of function arguments. Each nonleaf node encodes a functionfrom F and each leaf node a terminal from T . The number of subtrees each nodehas corresponds to the number of arguments of its function. Each argument iscalculated by a subtree. The trees are parsed depth �rst from left to right.Probabilistic Prototype Tree. A probabilistic prototype tree (PPT) is gen-erally a complete n-ary tree. At each node Nd;w it contains a random constantRd;w and a variable probability vector ~Pd;w, where d � 0 denotes the node's depth(root node has d = 0) and w de�nes the node's horizontal position when tree nodeswith equal depth are read from left to right (0 � w < nd). The probability vectors~Pd;w have l + k components. Each component Pd;w(I) denotes the probability ofchoosing instruction I 2 F [ T at Nd;w. We maintain: PI2F[T Pd;w(I) = 1.Program Generation. To generate a program Prog from PPT, an instructionI 2 F [T is selected with probability Pd;w(I) for each accessed node Nd;w of PPT.This instruction is denoted as Id;w. Nodes are accessed in a depth-�rst way, startingat the root node N0;0, and traversing PPT from left to right. Once Id;w 2 F isselected, a subtree is created for each argument of Id;w. If Id;w = R, then aninstance of R, called Vd;w(R), replaces R in Prog. If Pd;w(R) exceeds a thresholdTR, then Vd;w(R) = Rd;w. Otherwise Vd;w(R) is generated uniformly random fromthe interval [0;1).Tree Shaping. A complete PPT is in�nite. A \large" PPT is memory intensive.To reduce memory requirements we incrementally grow and prune PPTs.Growing. Initially a PPT contains only the root node (node initialization isdescribed in Section 3.2). Further nodes are created \on demand" whenever Id;w 2F is selected and the subtree for an argument of Id;w is missing.Pruning. We prune PPT subtrees attached to nodes that contain at least oneprobability vector component above a threshold TP . In case of functions, we pruneonly subtrees that are not required as function arguments.3.2. LearningWe �rst describe how the PPTs are initialized. Then we explain how PIPE guidesits search to promising search space areas by incrementally building on previoussolutions.



LEARNING TEAM STRATEGIES 9PPT Initialization. For all PPT's, each PPT node Nd;w requires an initialrandom constant Rd;w and an initial probability Pd;w(I) for each instruction I 2F [ T . We pick Rd;w uniformly random from the interval [0;1). To initializeinstruction probabilities we use a constant user-de�ned probability PT for selectingan instruction from T and (1 � PT ) for selecting an instruction from F . ~Pd;w isthen initialized as follows:Pd;w(I) := PTl ; 8I : I 2 T and Pd;w(I) := 1� PTk ; 8I : I 2 FGeneration-Based Learning. PIPE learns in successive generations, each com-prising 5 distinct phases: (1) creation of program population, (2) population eval-uation, (3) learning from population, (4) mutation of prototype trees and (5) pro-totype tree pruning.(1) Creation of Program Population. A population of programs Programj(0 < j � PS; PS is population size) is generated using the prototype trees asdescribed in Section 3.1. All PPTs are grown \on demand".(2) Population Evaluation. Each program Programj of the current popu-lation is evaluated and assigned a scalar, non-negative \�tness value" FIT (Prog-ramj), re
ecting the program's performance. To evaluate a program we play oneentire soccer game. We de�ne FIT(Programj) = 100 - number of goals scoredby Programj + number of goals scored by opponent. The o�set 100 is su�cientto ensure a positive score di�erence needed by the learning algorithm (see below).If FIT (Programj) < FIT (Programi), then program Programj is said to em-body a better solution than program Programi. Among programs with equal�tness we prefer shorter ones (Occam's razor), as measured by number of nodes.(3) Learning from Population. We de�ne b to be the index of the bestprogram of the current generation and preserve the best �tness found so far inFIT(Programel) (�tness of the elitist). Prototype tree probabilities are modi�edsuch that the probabilities P (Progpartb ) of creating each Progpartb 2 Programbincrease, where part 2 fa,a�,aP,aOg. To compute P (Progpartb ) we look at allPPTpart nodes Npartd;w used to generate Progpartb :P (Progpartb ) = Yd;w:Npartd;w used to generate Progpartb Pd;w(Id;w(Progpartb ));where Id;w(Progpartb ) denotes the instruction of program Progpartb at node posi-tion d; w. Then we calculate a target probability P partTARGET for each Progpartb :P partTARGET = P (Progpartb ) + (1� P (Progpartb )) � lr � " + FIT (Programel)" + FIT (Programb) :Here lr is a constant learning rate and " a positive user-de�ned constant. Thefraction "+FIT (Programel)"+FIT (Programb) implements �tness dependent learning (fdl). We takelarger steps towards programs with higher quality (lower �tness) than towardsprograms with lower quality (higher �tness). Constant " determines the degree of



10 SA LUSTOWICZ, WIERING AND SCHMIDHUBERfdl's in
uence. If 8 FIT(Programel): " � FIT(Programel), then PIPE can usesmall population sizes, as generations containing only low-quality individuals (withFIT(Programb) � FIT(Programel)) do not a�ect the PPT s much.Given P partTARGET , all single node probabilities Pd;w(Id;w(Progpartb )) are increasediteratively (in parallel):REPEAT UNTIL P (Progpartb ) � P partTARGET :Pd;w(Id;w(Progpartb )) := Pd;w(Id;w(Progpartb ))+clr � lr �(1�Pd;w(Id;w(Progpartb )))Here clr is a constant in
uencing the number of iterations. The smaller clr thehigher the approximation precision of P partTARGET and the number of required it-erations. We use clr = 0:1, which turned out to be a good compromise betweenprecision and speed.Finally, each random constant in Progpartb is copied to the appropriate node inPPTpart: if Id;w(Progpartb ) = R then Rpartd;w := V partd;w (R).(4) Mutation of Prototype Trees. Mutation is one of PIPE's major explo-ration mechanisms. Mutation of probabilities in all PPTs is guided by the currentbest solution Programb. We want to explore the area \around" Programb. Prob-abilities P partd;w (I) stored in all nodes Npartd;w that were accessed to generate programProgramb are mutated with a probability P partMp , de�ned as:P partMp = PM(l + k) �qjProgpartb j ;where the user-de�ned parameter PM de�nes the overall mutation probability andjProgpartb j denotes the number of nodes in program Progpartb . Selected probabilityvector components are then mutated as follows:P partd;w (I) := P partd;w (I) + mr � (1� P partd;w (I));where mr is the mutation rate, another user-de�ned parameter. All mutated vectors~P partd;w are �nally renormalized.(5) Prototype Tree Pruning. At the end of each generation we prune allprototype trees, as described in Section 3.1.3.3. CoevolutionWe also use PIPE to coevolve programs. Each population consists of only two pro-grams with mutually dependent performance. Coevolutionary PIPE (CO-PIPE)works just like PIPE, except that: (1) To evaluate both programs of a population(Program1 and Program2) we let them play against each other: FIT(Programi)= 100 - number of goals scored by Programi + number of goals scored by Programj ,where i; j 2 f1; 2g and i 6= j. (2) The next generation consists of the winner anda new program generated according to the adapted PPT. (3) Among programswith equal �tness and length we prefer former winners. (4) We do not use �tnessdependent learning, as the �tness function changes over time.



LEARNING TEAM STRATEGIES 114. TD-Q LearningOne of the most widely known and promising EF-based approaches to reinforcementlearning is TD-Q learning (Sutton, 1988; Watkins, 1989; Peng & Williams, 1996;Wiering & Schmidhuber, 1997). We use an o�ine TD(�) Q-variant (Lin, 1993).For e�ciency reasons our TD-Q version uses linear neural networks (networks withhidden units require too much simulation time). To implement policy-sharing weuse the same networks for all players of a team. The goal of the networks is to mapthe player-speci�c input~i(p; t) to action evaluations Q(~i(p; t); a1); : : : ;Q(~i(p; t); aN ),where N denotes the number of possible actions. We reward the players equallywhenever a goal has been made or the game is over.Simple Action Selection. In simple simulations we use a di�erent network foreach of the four actions fa1; : : : ; a4g. To select an action a(p; t) at time t for playerp we �rst calculate Q-values of all actions. The Q-value of action ak, given input~i(p; t) isQ(~i(p; t); ak) := ~wk �~i(p; t) + bk (2)where ~wk is the weight vector for action network k and bk is its bias strength.Once all Q-values have been calculated, a single action a(p; t) is chosen accordingto the Boltzmann-Gibbs rule | see Assignment (1). Unlike PIPE, which evolvesthe greediness parameter, TD-Q needs an a priori value for g.Complex Action Selection. Since complex actions may have 0, 1, or 2 param-eters we use a natural, modular, tree-based architecture. Instead of using continu-ous angles we use discrete angles (see Section 2). The root node contains networksNa1 ; : : : ; Na7 for evaluating \abstract" complex actions neglecting the parame-ters, e.g., pass to player. Some speci�c root-network Nak 's \angle son networks"Nak�1 ; : : : ; Nak�5 are then used for selecting the angle parameter. Similarly, playerand opponent parameters are selected using \player son networks" and \opponentson networks", respectively. For instance, if an action contains both player andangle parameters, then there are \son networks" for player-parameters and \sonnetworks" for angle parameters. The complete tree contains 64 linear networks.After computing the seven \abstract" complex action Q-values according to Equa-tion (2), one of the seven is selected according to the Boltzmann-Gibbs rule | seeAssignment (1). If the selected action requires parameters we use Equation (2)to compute the Q-values of all required parameters and select a value for eachparameter according to the Boltzmann-Gibbs rule.TD-Q Learning. For both simple and complex simulations we use an o�ineTD(�) Q-variant similar to Lin's (1993). Each game consists of separate trials. Attrial start we set time-pointer t to current game time tc. We increment t after eachcycle. The trial stops once one of the teams scores or the game is over. Denote the�nal time-pointer by t�. We want the Q-value Q(~i(p; t); ak) of selecting action akgiven input ~i(p; t) to approximateQ(~i(p; t); ak) � E(
t��tR(t�));



12 SA LUSTOWICZ, WIERING AND SCHMIDHUBERwhere E denotes the expectation operator, 0 � 
 � 1 the discount factor whichencourages quick goals (or a lasting defense against opponent goals), and R(t�)denotes the reinforcement at trial end (-1 if opponent team scores, 1 if own teamscores, 0 otherwise).To learn these Q-values we monitor player experiences in player-dependent historylists with maximum size Hmax. At trial end player p's history list H(p) isH(p) := ff~i(p; t1); a(p; t1); V (~i(p; t1))g; : : : ; f~i(p; t�); a(p; t�); V (~i(p; t�))gg:Here V (~i(p; t)) := MaxkfQ(~i(p; t); ak)g, and t1 denotes the start of the history list:t1 := tc, if t� < Hmax, and t1 := t� �Hmax + 1 otherwise.After each trial we calculate examples using o�ine TD-Q learning. For each playerhistory list H(p), we compute desired Q-values Qnew(p; t) for selecting action a(p; t),given ~i(p; t) (t = t1; : : : ; t�) as follows: Qnew(p; t�) := R(t�):Qnew(p; t) := 
 � [� �Qnew(p; t + 1) + (1� �) � V (~i(p; t + 1))]:� determines future experiences' degree of in
uence.To evaluate the selected complex action parameters we store them in historylists as well. Their evaluations are updated on the Qnew-values of their (parent)\abstract" complex actions | Q-values of selected action parameters are not usedfor updates of other previously selected action parameters (or selected actions).Once all players have created TD-Q training examples, we train the selectednetworks to minimize their TD-Q errors. All player history-lists are processed bydovetailing as follows: we train the networks starting with the �rst history list entryof player 1, then we take the �rst entry of player 2, etc. Once all �st entries havebeen processed we start processing the second entries, and so on. The networks aretrained using the delta-rule (Widrow & Ho�, 1960) with learning rate lrn.5. ExperimentsWe conduct two di�erent types of simulations { simple and complex. During simplesimulations we use simple input vectors ~is(p; t) and simple actions from ASETS .During complex simulations we use complex input vectors ~ic(p; t) and complexactions from ASETC . In simple simulations we compare TD-Q's, PIPE's and CO-PIPE's behavior as we vary team size. In complex simulations we study the algo-rithms' performances in case of more sophisticated action sets and more informativeinputs. Informative inputs are meant to decrease POP's signi�cance. On the otherhand, they increase the number of adaptive parameters. For a statistical evaluationwe perform 10 independent runs for each combination of simulation type, learningalgorithm and team size.



LEARNING TEAM STRATEGIES 135.1. Simple SimulationsWe play 3300 games of length tend = 5000 for team sizes 1, 3 and 11. Every 100games we test current performance by playing 20 test games (no learning) againsta \biased random opponent" BRO and summing the score results.BRO randomly executes simple actions from ASETS . BRO is not a bad playerdue to the initial bias in the action set. For instance, BRO greatly prefers shootingat the opponent's goal over shooting at its own. If we let BRO play against anon-acting opponent NO (all NO can do is block) for twenty 5000 time step gamesthen BRO wins against NO with on average 71.5 to 0.0 goals for team size 1, 44.5to 0.1 goals for team size 3, 108.6 to 0.5 goals for team size 11.We also designed a simple but good team GO by hand. GO consists of playerswhich move towards the ball as long as they do not have it, and shoot it at theopponent's goal otherwise. If we let GO play against BRO for twenty 5000 timestep games then GO wins with on average 417 to 0 goals for team size 1, 481 to 0goals for team size 3, and 367 to 3 goals for team size 11. Note that GO implementsa non-cooperative (singleagent) strategy. Small GO teams perform extremely well| larger GO teams with many interacting agents, however, do not (see team size11).PIPE and CO-PIPE Set-ups. Parameters for all PIPE and CO-PIPE runsare: PT=0.8, " = 1, lr=0.2, PM=0.1, mr=0.2, TR=0.3, TP=0.999999. For PIPE weuse a population size of PS=10, while for CO-PIPE we use PS=2, as mentioned inSection 3.3. During performance evaluations we test the current best-of-generationprogram (except for the �rst evaluation where we test a random program).TD-Q Set-up. After a coarse search through parameter space we used thefollowing parameters for all TD-Q runs: 
=0.99, lrn=0.0001, �=0.9, Hmax=100.All network weights are randomly initialized in [�0:01; 0:01]. During each run theBoltzmann-Gibbs rule's greediness parameter g is linearly increased from 0 to 60.Results. We compare average score di�erences achieved during all test phases.Figure 5 shows results for PIPE, CO-PIPE, and TD-Q. It plots goals scored bylearner and opponent (BRO) against number of games used for learning. Largerteams score more frequently because some of their players start out closer to theball and the opponent's goal.PIPE learns fastest and always �nds quickly an appropriate policy regardless ofteam size. Its score di�erences continually increase. CO-PIPE performs worse thanPIPE, but is still able to �nd good policies with respect to BRO. Note, however,that CO-PIPE's task is more di�cult than PIPE's or TD-Q's. It never \sees" BROduring training and therefore has no reason for optimizing its strategy against it.Stochastic 
uctuations in CO-PIPE's performance tend to level out with increasingteam size.TD-Q also improves, but in a less spectacular way. It always learns more slowlythan PIPE and CO-PIPE. It tends to increase score di�erences until it scoresroughly twice as many goals as in the beginning (when actions are still random).Then, however, the score di�erences start declining. There are several reasons forTD-Q's slowness and breakdown: (1) POP makes learning appropriate EFs di�-
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Figure 5. Average number of goals scored during all test phases, for team sizes 1, 3, 11.cult. (2) The linear neural networks cannot keep useful EFs but tend to unlearnthem instead. (3) Unlike PIPE, linear TD-Q su�ers from ACAP: it needs to as-sign proper credit to individual player actions but fails to pick out the truly usefulones. Below we will describe a deeper investigation of a catastrophic performancebreakdown in the 11 player TD-Q run.For each learning algorithm and GO, Table 1 lists results against BRO (averagesover ten runs).Table 1. Results of PIPE, CO-PIPE, TD-Q, and GO playing against BRO.team size GO PIPE CO-PIPE TD-Qmax. score di�erence 417 310 192 42av. goals � st.d. 417�6 320�42 212�97 52�141 av. BRO goals � st.d. 0�0 10�7 20�10 10�3achieved after games n.a. 3300 3000 1700max. score di�erence 481 359 310 70av. goals � st.d. 481�8 373�86 324�62 102�143 av. BRO goals � st.d. 0�1 14�6 14�11 32�8achieved after games n.a. 3300 3200 1700max. score di�erence 364 481 357 154av. goals � st.d. 367�18 512�129 393�53 212�8411 av. BRO goals � st.d. 3�1 31�23 36�27 58�23achieved after games n.a. 3100 1900 2500



LEARNING TEAM STRATEGIES 15The hand-made GO team outperforms (in terms of score di�erence) any of the1 and 3 player teams. In the 11 player case, however, it plays worse than PIPE,while CO-PIPE's performance is comparable. This indicates that: (1) Successfulsingleagent strategies may not suit larger teams. (2) Useful strategies for largeteams are learnable by direct policy search.How do PIPE and CO-PIPE solve the task? Comparing best programs ofseveral successive generations revealed that both algorithms are able to: (1) quicklyidentify the inputs that are relevant for selecting actions, and (2) �nd programsthat compute useful action probabilities given the selected inputs. PIPE's and CO-PIPE's ability to set the greediness parameter helps to control exploration as itmakes action selection more or less stochastic depending on the inputs.TD-Q's Instability Problems. Some linear TD-Q runs led to good perfor-mance. This implies clusters (or niches) in weight vector space that contain goodsolutions. TD-Q's dynamics, however, do not always lead towards such niches.Furthermore, sudden performance breakdowns hint at a lack of stability of goodsolutions. To understand TD-Q's problems in the 11 player case we saved a \good"network just before breakdown (after 2300 games). Ten times we continued trainingit for 25 games, testing it every game by playing twenty test games. To achievemore pronounced score di�erences we set the greedy parameter g to 90 | this leadsto more deterministic behavior than the value 42 used before saving the network.Figure 6(left) plots the average number of goals scored by TD-Q and BRO duringall test games against the number of training games. Although initial performanceis quite good (the score di�erence is 418 goals), the network fails to keep it up.To analyze a particular breakdown we focus on a single run. Figure 6(middle)shows the number of goals scored during all test phases, Figure 6(right) the relativefrequencies of selected actions.
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Figure 6. BRO against TD-Q starting out with a well-trained linear TD-Q network: performancebreakdown study for 11 players. Left: average numbers of goals (means of 10 runs). Middle: plotfor a single run. Right: relative frequencies of actions selected by TD-Q during the single run.Figure 6(middle) shows a performance breakdown occuring within just a fewgames. It is accompanied by dramatic policy changes displayed in Figure 6(right).Analyzing the learning dynamics we found the following reason for the instability:Since TD-Q's linear networks learn a global EF approximation, they compute anaverage expected reward for all game constellations. This makes the Q-values ofmany actions quite similar: their weight vectors di�er only slightly in size anddirection. Hence small updates can create large policy changes. This becomes more



16 SA LUSTOWICZ, WIERING AND SCHMIDHUBERlikely with increasing g, which enhances the e�ects of small Q-value di�erences (alarge g, however, is necessary to obtain more deterministic policies).TD-Q does adapt some weight vectors more than others, however. The weightvector of the most frequent action of some rewarding (unrewarding) trial will grow(shrink) most. For example, according to Figures 6(middle) and 6(right), the actiongo forward is selected most frequently by the initially good policy. Two more games,however, cause the behavior to be dominated by this action. This results in worseperformance and provokes a strong correction in the third game. This suddenlymakes the action unlikely even in game constellations where it should be selected,and leads to even worse performance. (Note that in this particular case after 25games the policy performs well again | niches can occasionally be rediscovered.)For 11 player teams the e�ect of update steps on the policy is 11-fold (as comparedto 1 player teams) and the instability is much more pronounced. We could not getrid of the instability problem, neither by (1) bounding error updates nor by (2)lowering learning rates or lambda. Case (2) actually just causes slower learning,without sti
ing the e�ects caused by relatively equal Q-value assignments to actions.A promising remedy may be to use action frequency dependent learning rates.This will make update steps for all actions almost equal such that successes/failureswill not easily lead to dominating actions. Another remedy may be the pocket algo-rithm (Gallant, 1993) (which stores the best EF found so far) or the more complexsuccess-story algorithm (Wiering & Schmidhuber, 1996; Schmidhuber et al., 1997a;Schmidhuber et al., 1997b) that backtracks once the reward per time interval de-creases.Yet another promising remedy may be to use local (but more time-consuming)function approximators such as CMACS (Albus, 1975; Sutton, 1996). CMACS-based TD-Q learners will not break down as easily, although our preliminary ex-periments indicate that in case of simple input vectors they do su�er from the POP.Preliminary CMACS/TD-Q experiments with complex inputs and simple actions,however, already led to promising results.5.2. Complex SimulationsFrom now on we focus on team size 11. One run with complex actions and moreinformative inputs consists of 1200 games, each lasting for tend = 5000 time steps.Again we train PIPE and TD-Q against the \biased random opponent" BRO, whileCO-PIPE learns through coevolution. Every 100 games we test current performanceby playing 20 test games (no learning) against BRO and summing the score results.PIPE and CO-PIPE Set-ups. Parameters for all PIPE and CO-PIPE runsare the same as used in simple simulations.TD-Q Set-up. Parameters for all TD-Q runs are also the same as used in simplesimulations with the exception that lrn=0.001 (several other parameter values ledto worse results).Results. Figure 7 shows the average number of goals scored by PIPE, CO-PIPE,and TD-Q (learners) in comparison to BRO (opponent) during all test phases.
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Figure 7. Average number of goals (means of 10 independent runs) for PIPE (left), CO-PIPE(middle), and TD-Q (right) vs. BRO using complex actions and inputs.PIPE and CO-PIPE quickly �nd successful strategies. PIPE's performance steadilyincreases while CO-PIPE's is slightly more stochastic. In the long run (after 3300games { not shown), however, both are very similar. Note again, though, thatCO-PIPE solves a more di�cult task | it is tested against an opponent that itnever meets during training.Linear TD-Q initially does worse than its opponent. It does learn to beat BROby about 50 % but then breaks down completely. Examining all single runs wefound that TD-Q's average score results were strongly in
uenced by a single goodrun that scored up to 471 goals. Once this run's performance broke down after1000 games the average declined to 16 goals.We compare maximal average score di�erences in Table 2. PIPE and CO-PIPEboth achieve score di�erences that are signi�cantly better than GO's. Linear TD-Qdoes not. Table 2. Maximal average score di�erences against BRO for di�erentlearning methods and GO. GO PIPE CO-PIPE TD-Qmax. score di�erence 364 530 536 46av. goals � st.d. 367�18 551�215 539�220 76�140av. BRO goals � st.d. 3�1 21�35 3�4 30�29achieved after games n.a. 1200 1200 900Complex actions embody stronger initial bias and make cooperation easier, whilemore informative inputs make the POP less severe. In principle, this allows forbetter soccer strategies. PIPE and CO-PIPE are able to exploit this and performbetter than with simple actions (compare Figures 5 and 7 and Tables 1 and 2).Linear TD-Q does not. It still su�ers from the problems described in Section 5.1.6. ConclusionIn a simulated soccer case study with policy-sharing agents we compared direct pol-icy search methods (PIPE and coevolutionary CO-PIPE) and an EF-based one (lin-ear TD-Q). All competed against a biased random opponent (BRO). PIPE and CO-PIPE always easily learned to beat this opponent regardless of team size, amount



18 SA LUSTOWICZ, WIERING AND SCHMIDHUBERof information conveyed by the inputs, or complexity of actions. In particular,CO-PIPE outperformed BRO without ever meeting it during the training phase.TD-Q achieved performance improvements, too, but its results were less exciting,especially in case of several agents per team, more informative inputs, and moresophisticated actions.PIPE and CO-PIPE found good strategies by simultaneously: (1) identifyingrelevant inputs, (2) making action probabilities depend on relevant inputs only, (3)evolving programs that calculate useful conditional action probabilities. Anotherimportant aspect is: unlike TD-Q, PIPE and CO-PIPE learn to map inputs to\greediness values" used in the (Boltzmann-Gibbs) exploration rule. This enablesthem to pick actions more or less stochastically and control their own explorationprocess.TD-Q's problems are due to a combination of reasons. (1) Linear networks. Lin-ear networks have limited expressive power. They seem unable to learn and keepappropriate evaluation functions (EFs). Increasing expressive power by adding hid-den units (time-consuming!) or using local function approximators such as CMACS(Albus, 1975; Sutton, 1996) (as proposed by Sutton, personal communication, 1997)may signi�cantly improve TD-Q's performance. In fact, initial experiments withCMACS and complex inputs already led to promising results. (2) Partial observ-ability. Q-learning assumes that the environment is fully observable; otherwise it isnot guaranteed to work. Still, Q-learning variants already have been successfully ap-plied to partially observable environments, e.g., (Crites & Barto, 1996). Our soccerscenario's POP, however, seems harder to overcome than POPs of many scenariosstudied in previous work. (3) Agent credit assignment problem (ACAP) (Weiss,1996; Versino & Gambardella, 1997): how much did some agent contribute to teamperformance? ACAP is particularly di�cult in the case of multiagent soccer. Forinstance, a particular agent may do something truly useful and score. Then allthe other agents will receive reward, too. Now the TD networks will have to learnan evaluation function (EF) mapping input-action pairs to expected discounted re-wards based on experiences with player actions that have little or nothing to do withthe �nal reward signal. This problem is actually independent of whether policiesare shared or not. (4) Instability. Using player-dependent history lists, each playerlearns to evaluate actions given inputs by computing updates based on its own TDreturn signal. The players collectively update their shared EF which can lead tosigni�cant \shifts in policy space" and to \unlearning" of previous knowledge. Thismay lead to performance breakdowns.Our multiagent scenario seems complex enough to require more sophisticated andtime-consuming EF-based approaches than the one we tried. In principle, however,EFs are not necessary for �nding good or optimal policies. Sometimes, particularlyin the presence of POPs and ACAPs, it can make more sense to search policyspace directly. That is what PIPE and CO-PIPE do. Currently PIPE-like, EF-independent techniques seem to learn faster and be easier applicable to complexmultiagent learning scenarios.
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