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Shifting Inductive Bias with Success-StoryAlgorithm, Adaptive Levin Search, andIncremental Self-ImprovementJ�URGEN SCHMIDHUBER juergen@idsia.chJIEYU ZHAO jieyu@idsia.chMARCO WIERING marco@idsia.chIDSIA, Corso Elvezia 36, CH-6900-Lugano, SwitzerlandEditors: Lorien Pratt and Sebastian ThrunAbstract. We study task sequences that allow for speeding up the learner's average rewardintake through appropriate shifts of inductive bias (changes of the learner's policy). To evaluatelong-term e�ects of bias shifts setting the stage for later bias shifts we use the \success-storyalgorithm" (SSA). SSA is occasionally called at times that may depend on the policy itself. Ituses backtracking to undo those bias shifts that have not been empirically observed to trigger long-term reward accelerations (measured up until the current SSA call). Bias shifts that survive SSArepresent a lifelong success history. Until the next SSA call, they are considered useful and buildthe basis for additional bias shifts. SSA allows for plugging in a wide variety of learning algorithms.We plug in (1) a novel, adaptive extension of Levin search and (2) a method for embeddingthe learner's policy modi�cation strategy within the policy itself (incremental self-improvement).Our inductive transfer case studies involve complex, partially observable environments wheretraditional reinforcement learning fails.Keywords: inductive bias, reinforcement learning, reward acceleration, Levin search, success-story algorithm, incremental self-improvement1. Introduction / OverviewFundamental transfer limitations. Inductive transfer of knowledge from onetask solution to the next (e.g., Caruana et al. 1995, Pratt and Jennings 1996)requires the solutions to share mutual algorithmic information. Since almost allsequences of solutions to well-de�ned problems are incompressible and have max-imal Kolmogorov complexity (Solomono�, 1964, Kolmogorov, 1965, Chaitin, 1969,Li and Vit�anyi, 1993), arbitrary task solutions almost never share mutual informa-tion. This implies that inductive transfer and \generalization" are almost alwaysimpossible | see, e.g., Schmidhuber (1997a); for related results see Wolpert (1996).From a practical point of view, however, even the presence of mutual informationis no guarantee of successful transfer. This is because concepts such as Kolmogorovcomplexity and algorithmic information do not take into account the time con-sumed by learning algorithms computing a new task's solution from previous ones.In typical machine learning applications, however, it is precisely the learning timethat we want to minimize.



106 J. SCHMIDHUBER, J. ZHAO AND M. WIERINGReward acceleration. Given the observations above, all attempts at successfultransfer must be limited to task sequences of a particularly friendly kind. In thecontext of reinforcement learning (RL) we will focus on task sequences that allowfor speeding up the learner's long-term average reward intake. Fortunately, in ourown highly atypical and regular universe such task sequences abound. For instance,often we encounter situations where high reward for some problem's solution can beachieved more quickly by �rst learning easier but related tasks yielding less reward.Our learner's single life lasts from time 0 to time T (time is not reset in caseof new learning trials). Each modi�cation of its policy corresponds to a shift ofinductive bias (Utgo�, 1986). By de�nition, \good" bias shifts are those that helpto accelerate long-term average reward intake. The learner's method for generatinggood bias shifts must take into account: (1) Bias shifts occurring early in thelearner's life generally inuence the probabilities of later bias shifts. (2) \Learning"(modifying the policy) and policy tests will consume part of the learner's limitedlife-time1.Previous RL approaches. To deal with issues (1) and (2), what can welearn from traditional RL approaches? Convergence theorems for existing RL al-gorithms such as Q-learning (Watkins and Dayan, 1992) require in�nite samplingsize as well as strong (usually Markovian) assumptions about the environment, e.g.,(Sutton, 1988, Watkins and Dayan, 1992, Williams, 1992). They are of great the-oretical interest but not extremely relevant to our realistic limited life case. Forinstance, there is no proof that Q-learning will converge within �nite given time,not even in Markovian environments. Also, previous RL approaches do not con-sider the computation time consumed by learning and policy tests in their objectivefunction. And they do not explicitly measure long-term e�ects of early learning onlater learning.Basic ideas (see details in section 2). To address issues (1) and (2), we treatlearning algorithms just like other time-consuming actions. Their probabilities ofbeing executed at a given time may depend on the learner's current internal stateand policy. Their only distinguishing feature is that they may also modify the policy.In case of policy changes or bias shifts, information necessary to restore the oldpolicy is pushed on a stack. At any given time in system life there is only one singletraining example to estimate the long-term usefulness of any previous bias shift B |namely the reward per time since then. This includes all the reward collected afterlater bias shifts for which B may have set the stage, thus providing a simple measureof earlier learning's usefulness for later learning. Occasionally the \success-storyalgorithm" (SSA) uses backtracking to undo those policy modi�cations that havenot been empirically observed2 to trigger long-term reward accelerations (measuredup until the current SSA call). For instance, certain bias shifts may have been toospeci�cally tailored to previous tasks (\over�tting") and may be harmful for futureinductive transfer. Those bias shifts that survive SSA represent a lifelong successhistory. Until the next SSA call, they will build the basis for additional bias shiftsand get another chance to justify their existence.



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 107Due to unknown reward delays, there is no a priori good way of triggering SSAcalls. In principle, however, it is possible to build policies that can learn to triggerSSA calls. Since learning algorithms are actions and can be combined (according tothe policy) to form more complex learning algorithms, SSA also allows for embed-ding the learning strategy within the policy itself. There is no pre-wired di�erencebetween \learning", \metalearning", \metametalearning" etc.3Outline of remainder. Section 2 will describe the learner's basic cycle of op-erations and SSA details. It will explain how lifelong histories of reward accelera-tions can be enforced despite possible interference from parallel internal or externalprocesses. Sections 3 and 4 will present two concrete implementations and induc-tive transfer experiments with complex, partially observable environments (POEs).Some of our POEs are bigger and more complex than POEs considered in mostprevious POE work.2. Basic Set-Up and SSAReward/Goal. Occasionally E provides real-valued reward. R(t) is the cumula-tive reward obtained between time 0 and time t > 0, where R(0) = 0. At time tthe learner's goal is to accelerate long-term reward intake: it wants to let R(T )�R(t)T�texceed the current average reward intake. To compute the \current average rewardintake" a previous point t0 < t to compute R(t)�R(t0)t�t0 is required. How to specifyt0 in a general yet reasonable way? For instance, if life consists of many successive\trials" with non-deterministic outcome, how many trials must we look back intime? This question will be addressed by the success-story algorithm (SSA) below.Initialization. At time 0 (system birth), we initialize the learner's variable inter-nal state I, a vector of variable, binary or real-valued components. Environmentalinputs may be represented by certain components of I. We also initialize the vector-valued policy Pol. Pol's i-th variable component is denoted Poli. There is a set ofpossible actions to be selected and executed according to current Pol and I. Fornow, there is no need to specify Pol | this will be done in the experimental sections(typically, Poli will be a conditional probability distribution on the possible nextactions, given current I). We introduce an initially empty stack S that allows forstack entries with varying sizes, and the conventional push and pop operations.Basic cycle. Between time 0 (system birth) and time T (system death) thefollowing basic cycle is repeated over and over again:1. Execute actions selected according to Pol and I (this may change environment andI), until a certain Evaluation Criterion is satis�ed, or until an action is selectedthat will modify Pol.2. IF the Evaluation Criterion is satis�ed, THEN call SSA, which backtracks andundoes certain previous Pol-modi�cations if necessary (to ensure that the history ofstill valid modi�cations corresponds to a history of reward accelerations):SSA.1. Set variable t equal to current time.



108 J. SCHMIDHUBER, J. ZHAO AND M. WIERINGIF there is no \tag" (a pair of time and cumulative reward until then) storedsomewhere in S,THEN push the tag (t, R(t)) onto S, and go to 3 (this ends the current SSAcall).ELSE denote the topmost tag in S by (t0, R(t0)). Denote the one below by (t00,R(t00)) (if there is not any tag below, set variable t00 = 0 | recall R(t00) = R(0) =0).SSA.2. IFR(t)�R(t0)t� t0 > R(t)�R(t00)t� t00THEN push tag (t, R(t)), and go to 3. This ends the current SSA call.ELSE pop o� all stack entries above the one for tag (t0, R(t0)) (these entries willbe former policy components saved during earlier executions of step 3), and usethem to restore Pol as it was be before time t0. Then also pop o� the tag (t0,R(t0)). Go to SSA.1.3. IF the most recent action selected in step 1 will modify Pol, THEN push copies ofthose Poli to be modi�ed onto S, and execute the action.4. IF some Termination Criterion is satis�ed, THEN die. ELSE go to step 1.SSA ensures life-time success stories. At a given time in the learner's life,de�ne the set of currently valid times as those previous times still stored in tagssomewhere in S. If this set is not empty right before tag (t; R(t)) is pushed in stepSSA.2 of the basic cycle, then let ti (i 2 f1; 2; : : : ; V (t)g) denote the i-th validtime, counted from the bottom of S. It is easy to show (Schmidhuber, 1994, 1996)that the current SSA call will have enforced the following \success-story criterion"SSC (t is the t in the most recent step SSA.2):R(t)t < R(t)�R(t1)t� t1 < R(t)�R(t2)t� t2 < : : : < R(t)�R(tV (t))t� tV (t) : (1)SSC demands that each still valid time marks the beginning of a long-term rewardacceleration measured up to the current time t. Each Pol-modi�cation that sur-vived SSA represents a bias shift whose start marks a long-term reward speed-up.In this sense, the history of still valid bias shifts is guaranteed to be a life-timesuccess story (in the worst case an empty one). No Markov-assumption is required.SSA's generalization assumption. Since life is one-way (time is never reset),during each SSA call the system has to generalize from a single experience concern-ing the usefulness of any previous policy modi�cation: the average reward per timesince then. At the end of each SSA call, until the beginning of the next one, the onlytemporary generalization assumption for inductive inference is: Pol-modi�cationsthat survived all previous SSA calls will remain useful. In absence of empiricalevidence to the contrary, each still valid sequence of Pol-modi�cations is assumedto have successfully set the stage for later ones. What has appeared useful so farwill get another chance to justify itself.



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 109When will SSC be satis�able in a non-trivial way? In irregular andrandom environments there is no way of justifying permanent policy modi�ca-tions by SSC. Also, a trivial way of satisfying SSC is to never make a modi-�cation. Let us assume, however, that E , I, and action set A (representingthe system's initial bias) do indeed allow for Pol-modi�cations triggering long-term reward accelerations. This is an instruction set-dependent assumption muchweaker than the typical Markovian assumptions made in previous RL work, e.g.,(Kumar and Varaiya, 1986, Sutton, 1988, Watkins and Dayan, 1992, Williams, 1992).Now, if we prevent all instruction probabilities from vanishing (see concrete imple-mentations in sections 3/4), then the system will execute Pol-modi�cations occa-sionally, and keep those consistent with SSC. In this sense, it cannot help gettingbetter. Essentially, the system keeps generating and undoing policy modi�cationsuntil it discovers some that indeed �t its generalization assumption.Greediness? SSA's strategy appears greedy. It always keeps the policy thatwas observed to outperform all previous policies in terms of long-term reward/timeratios. To deal with unknown reward delays, however, the degree of greedinessis learnable | SSA calls may be triggered or delayed according to the modi�ablepolicy itself.Actions can be almost anything. For instance, an action executed in step3 may be a neural net algorithm. Or it may be a Bayesian analysis of previousevents. While this analysis is running, time is running, too. Thus, the complexityof the Bayesian approach is automatically taken into account. In section 3 wewill actually plug in an adaptive Levin search extension. Similarly, actions maybe calls of a Q-learning variant | see experiments in (Schmidhuber et al., 1996).Plugging Q into SSA makes sense in situations where Q by itself is questionablebecause the environment might not satisfy the preconditions that would make Qsound. SSA will ensure, however, that at least each policy change in the historyof all still valid policy changes will represent a long-term improvement, even innon-Markovian settings.Limitations. (1) In general environments neither SSA nor any other schemeis guaranteed to continually increase reward intake per �xed time interval, or to�nd the policy that will lead to maximal cumulative reward. (2) No reasonablestatements can be made about improvement speed which indeed highly dependson the nature of the environment and the choice of initial, \primitive" actions(including learning algorithms) to be combined according to the policy. This lackof quantitative convergence results is shared by many other, less general RL schemesthough (recall that Q-learning is not guaranteed to converge in �nite time).Outline of remainder. Most of our paper will be about plugging various policy-modifying algorithms into the basic cycle. Despite possible implementation-speci�ccomplexities the overall concept is very simple. Sections 3 and 4 will describetwo concrete implementations. The �rst implementation's action set consists of asingle but \strong" policy-modifying action (a call of a Levin search extension).The second implementation uses many di�erent, less \powerful" actions. Theyresemble assembler-like instructions from which many di�erent policies can be built



110 J. SCHMIDHUBER, J. ZHAO AND M. WIERING(the system's modi�able learning strategy is able to modify itself). Experimentalcase studies will involve complex environments where standard RL algorithms fail.Section 5 will conclude.3. Implementation 1: Plugging LS into SSAOverview. In this section we introduce an adaptive extension of Levin search(LS) (Levin, 1973, Levin, 1984) as only learning action to be plugged into the basiccycle. We apply it to partially observable environments (POEs) which recently re-ceived a lot of attention in the RL community, e.g., (Whitehead and Ballard, 1990,Schmidhuber, 1991, Chrisman, 1992, Lin, 1993, Littman, 1994, Cli� and Ross, 1994,Ring, 1994, Jaakkola et al., 1995, Kaelbling et al., 1995, McCallum, 1995). We �rstshow that LS by itself can solve partially observable mazes (POMs) involving manymore states and obstacles than those solved by various previous authors (we willalso see that LS can easily outperform Q-learning). We then extend LS to combineit with SSA. In an experimental case study we show dramatic search time reductionfor sequences of more and more complex POEs (\inductive transfer").3.1. Levin Search (LS)Unbeknownst to many machine learning researchers, there exists a search algorithmwith amazing theoretical properties: for a broad class of search problems, Levinsearch (LS) (Levin, 1973, Levin, 1984) has the optimal order of computational com-plexity. See (Li and Vit�anyi, 1993) for an overview. See (Schmidhuber 1995, 1997a)for recent implementations/applications.Basic concepts. LS requires a set of nops primitive, prewired instructionsb1; :::; bnops that can be composed to form arbitrary sequential programs. Essen-tially, LS generates and tests solution candidates s (program outputs representedas strings over a �nite alphabet) in order of their Levin complexities Kt(s) =minqf�logDP (q) + log t(q; s)g, where q stands for a program that computes sin t(q; s) time steps, and DP (q) is the probability of guessing q according to a�xed Solomono�-Levin distribution (Li and Vit�anyi, 1993) on the set of possibleprograms (in section 3.2, however, we will make the distribution variable).Optimality. Given primitives representing a universal programming language,for a broad class of problems LS can be shown to be optimal with respect to totalexpected search time, leaving aside a constant factor independent of the problemsize (Levin, 1973, Levin, 1984, Li and Vit�anyi, 1993). More formally: a problem isa symbol string that conveys all information about another symbol string called itssolution, where the solution can be extracted by some (search) algorithm, given theproblem. Suppose there is an algorithm that solves certain time-limited optimiza-tion problems or inversion problems in O(f(n)) steps, where f is a total recursivefunction and n is a positive integer representing problem size. Then universal LSwill solve the same problems in at most O(f(n)) steps (although a large constant



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 111may be buried in the O() notation). Despite this strong result, until recently LShas not received much attention except in purely theoretical studies | see, e.g.,(Watanabe, 1992).Of course, LS and any other algorithm will fail to quickly solve problems whosesolutions all have high algorithmic complexity. Unfortunately, almost all possibleproblems are of this kind (Kolmogorov, 1965, Chaitin, 1969, Solomono�, 1964). Infact, the realm of practical computer science is limited to solving the comparativelyfew tasks with low-complexity solutions. Fortunately such tasks are rather commonin our regular universe.Practical implementation. In our practical LS version there is an upper boundm on program length (due to obvious storage limitations). ai denotes the addressof the i-th instruction. Each program is generated incrementally: �rst we selectan instruction for a1, then for a2, etc. DP is given by a matrix P , where Pij(i 2 1; :::;m, j 2 1; :::; nops) denotes the probability of selecting bj as the instructionat address ai, given that the �rst i�1 instructions have already been selected. Theprobability of a program is the product of the probabilities of its constituents.LS' arguments are P and the representation of a problem denoted by N . LS'output is a program that computes a solution to the problem if it found any. Inthis section, all Pij = 1nops will remain �xed. LS is implemented as a sequence oflonger and longer phases:Levin search(problem N , probability matrix P )(1) Set Phase, the number of the current phase, equal to 1. In what follows,let �(Phase) denote the set of not yet executed programs q satisfying DP (q)� 1Phase .(2) Repeat(2.1) While �(Phase) 6= fg and no solution found do: Generatea program q 2 �(Phase), and run q until it either halts or until itused up DP (q)�Phasec steps. If q computed a solution for N , returnq and exit.(2.2) Set Phase := 2Phaseuntil solution found or Phase � PhaseMAX .Return empty program fg.Here c and PhaseMAX are prespeci�ed constants. The procedure above is essen-tially the same (has the same order of complexity) as the one described in the secondparagraph of this section | see, e.g., (Solomono�, 1986, Li and Vit�anyi, 1993).3.2. Adaptive Levin Search (ALS)LS is not necessarily optimal for \incremental" learning problems where experi-ence with previous problems may help to reduce future search costs. To makean incremental search method out of non-incremental LS, we introduce a simple,



112 J. SCHMIDHUBER, J. ZHAO AND M. WIERINGheuristic, adaptive LS extension (ALS) that uses experience with previous prob-lems to adaptively modify LS' underlying probability distribution. ALS essentiallyworks as follows: whenever LS found a program q that computed a solution for thecurrent problem, the probabilities of q's instructions q1; q2; : : : ; ql(q) are increased(here qi 2 fb1; : : : ; bnopsg denotes q's i-th instruction, and l(q) denotes q's length |if LS did not �nd a solution (q is the empty program), then l(q) is de�ned to be 0).This will increase the probability of the entire program. The probability adjustmentis controlled by a learning rate  (0 <  < 1). ALS is related to the linear reward-inaction algorithm, e.g., (Narendra and Thathatchar, 1974, Kaelbling, 1993) | themain di�erence is: ALS uses LS to search through program space as opposed to sin-gle action space. As in the previous section, the probability distribution DP isdetermined by P . Initially, all Pij = 1nops . However, given a sequence of problems(N1; N2; :::; Nr), the Pij may undergo changes caused by ALS:ALS (problems (N1; N2; :::; Nr), variable matrix P )for i := 1 to r do:q := Levin search(Ni, P ); Adapt(q, P ).where the procedure Adapt works as follows:Adapt(program q, variable matrix P )for i := 1 to l(q), j := 1 to nops do:if (qi = bj) then Pij := Pij + (1� Pij)else Pij := (1� )Pij3.3. Plugging ALS into the Basic SSA CycleCritique of adaptive LS. Although ALS seems a reasonable �rst step towardsmaking LS adaptive (and actually leads to very nice experimental results | seesection 3.5), there is no proof that it will generate only probability modi�cationsthat will speed up the process of �nding solutions to new tasks. Like any learningalgorithm, ALS may sometimes produce harmful instead of bene�cial bias shifts,depending on the environment. To address this issue, we simply plug ALS into thebasic cycle from section 2. SSA ensures that the system will keep only probabilitymodi�cations representing a lifelong history of performance improvements.ALS as primitive for SSA cycle. At a given time, the learner's current policyis the variable matrix P above. To plug ALS into SSA, we replace steps 1 and 3 insection 2's basic cycle by:1. If the current basic cycle's problem is Ni, then set q := Levin search (Ni; P ). If asolution was found, generate reward of +1:0. Set Evaluation Criterion = TRUE.The next action will be a call of Adapt, which will change the policy P .3. Push copies of those Pi (the i-th column of matrix P ) to be modi�ed by Adapt ontoS, and call Adapt(q; P ).



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 113Each call of Adapt causes a bias shift for future learning. In between two calls ofAdapt, a certain amount of time will be consumed by Levin search (details abouthow time is measured will follow in the section on experiments). As always, the goalis to receive as much reward as quickly as possible, by generating policy changesthat minimize the computation time required by future calls of Levin search andAdapt.Partially observable maze problems. The next subsections will describe ex-periments validating the usefulness of LS, ALS, and SSA. To begin with, in anillustrative application with a partially observable maze that has more states andobstacles than those presented in other POE work (see, e.g., (Cli� and Ross, 1994)),we will show how LS by itself can solve POEs with large state spaces but low-complexity solutions (Q-learning variants fail to solve these tasks). Then we willpresent experimental case studies with multiple, more and more di�cult tasks (in-ductive transfer). ALS can use previous experience to speed-up the process of�nding new solutions, and ALS plugged into the SSA cycle (SSA+ALS for short)always outperforms ALS by itself.3.4. Experiment 1: A Big Partially Observable Maze (POM)The current section is a prelude to section 3.5 which will address inductive transferissues. Here we will only show that LS by itself can be useful for POE problems.See also (Wiering and Schmidhuber, 1996).Task. Figure 1 shows a 39� 38-maze with 952 free �elds, a single start position(S) and a single goal position (G). The maze has more �elds and obstacles thanmazes used by previous authors working on POMs | for instance, McCallum'smaze has only 23 free �elds (McCallum, 1995). The goal is to �nd a program thatmakes an agent move from S to G.Instructions. Programs can be composed from 9 primitive instructions. Theseinstructions represent the initial bias provided by the programmer (in what follows,superscripts will indicate instruction numbers). The �rst 8 instructions have thefollowing syntax : REPEAT step forward UNTIL condition Cond, THEN rotatetowards direction Dir.Instruction 1 : Cond = front is blocked, Dir = left.Instruction 2 : Cond = front is blocked, Dir = right.Instruction 3 : Cond = left �eld is free, Dir = left.Instruction 4 : Cond = left �eld is free, Dir = right.Instruction 5 : Cond = left �eld is free, Dir = none.Instruction 6 : Cond = right �eld is free, Dir = left.Instruction 7 : Cond = right �eld is free, Dir = right.Instruction 8 : Cond = right �eld is free, Dir = none.Instruction 9 is: Jump(address, nr-times). It has two parameters: nr-times2 1; 2; : : : ;MAXR (with the constant MAXR representing the maximum numberof repetitions), and address 2 1; 2; : : : ; top, where top is the highest address inthe current program. Jump uses an additional hidden variable nr-times-to-go
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Figure 1. An apparently complex, partially observable 39�38-maze with a low-complexity shortestpath from start S to goal G involving 127 steps. Despite the relatively large state space, the agentcan implicitly perceive only one of three highly ambiguous types of input, namely \front is blockedor not", \left �eld is free or not", \right �eld is free or not" (compare list of primitives). Hence,from the agent's perspective, the task is a di�cult POE problem. The S and the arrow indicatethe agent's initial position and rotation.which is initially set to nr-times. The semantics are: If nr-times-to-go > 0,continue execution at address address. If 0 < nr-times-to-go < MAXR, decre-ment nr-times-to-go. If nr-times-to-go = 0, set nr-times-to-go to nr-times.Note that nr-times = MAXR may cause an in�nite loop. The Jump instruc-tion is essential for exploiting the possibility that solutions may consist of repeat-able action sequences and \subprograms", thus having low algorithmic complexity(Kolmogorov, 1965, Chaitin, 1969, Solomono�, 1964). LS' incrementally growingtime limit automatically deals with those programs that do not halt, by preventingthem from consuming too much time.As mentioned in section 3.1, the probability of a program is the product of theprobabilities of its constituents. To deal with probabilities of the two Jump param-eters, we introduce two additional variable matrices, �P and P̂ . For a program withl � k instructions, to specify the conditional probability �Pij of a jump to address aj ,given that the instruction at address ai is Jump (i 2 1; :::; l, j 2 1; :::; l), we �rst nor-malize the entries �Pi1, �Pi2, ..., �Pil (this ensures that the relevant entries sum up to



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 1151). Provided the instruction at address ai is Jump, for i 2 1; :::; k, j 2 1; :::;MAXR,P̂ij speci�es the probability of the nr-times parameter being set to j. Both �P andP̂ are initialized uniformly and are adapted by ALS just like P itself.Restricted LS-variant. Note that the instructions above are not su�cientto build a universal programming language | the experiments in this paper arecon�ned to a restricted version of LS. From the instructions above, however, onecan build programs for solving any maze in which it is not necessary to completelyreverse the direction of movement (rotation by 180 degrees) in a corridor. Notethat it is mainly the Jump instruction that allows for composing low-complexitysolutions from \subprograms" (LS provides a sound way for dealing with in�niteloops).Rules. Before LS generates, runs and tests a new program, the agent is reset toits start position. Collisions with walls halt the program | this makes the problemhard. A path generated by a program that makes the agent hit the goal is called asolution. The agent is not required to stop at the goal | there are no explicit haltinstructions.Why is this a POE problem? Because the instructions above are not su�cientto tell the agent exactly where it is: at any given time, the agent can perceiveonly one of three highly ambiguous types of input (by executing the appropriateprimitive): \front is blocked or not", \left �eld is free or not", \right �eld is freeor not" (compare list of primitives at the beginning of this section). Some sort ofmemory is required to disambiguate apparently equal situations encountered on theway to the goal. Q-learning, for instance, is not guaranteed to solve POEs. Ouragent, however, can use memory implicit in the state of the execution of its currentprogram to disambiguate ambiguous situations.Measuring time. The computational cost of a single Levin search call inbetween two Adapt calls is essentially the sum of the costs of all the programs ittests. To measure the cost of a single program, we simply count the total number offorward steps and rotations during program execution (this number is of the orderof total computation time). Note that instructions often cost more than 1 step.To detect in�nite loops, LS also measures the time consumed by Jump instructions(one time step per executed Jump). In a realistic application, however, the timeconsumed by a robot move would by far exceed the time consumed by a Jumpinstruction | we omit this (negligible) cost in the experimental results.Comparison. We compare LS to three variants of Q-learning (Watkins andDayan, 1992) and random search. Random search repeatedly and randomly selectsand executes one of the instructions (1-8) until the goal is hit (like with Levin search,the agent is reset to its start position whenever it hits the wall). Since random search(unlike LS) does not have a time limit for testing, it may not use the jump { this isto prevent it from wandering into in�nite loops. The �rst Q-variant uses the same8 instructions, but has the advantage that it can distinguish all possible states (952possible inputs | but this actually makes the task much easier, because it is noPOE problem any more). The �rst Q-variant was just tested to see how much moredi�cult the problem becomes in the POE setting. The second Q-variant can only



116 J. SCHMIDHUBER, J. ZHAO AND M. WIERINGobserve whether the four surrounding �elds are blocked or not (16 possible inputs),and the third Q-variant receives as input a unique representation of the �ve mostrecent executed instructions (37449 possible inputs | this requires a gigantic Q-table!). Actually, after a few initial experiments with the second Q-variant, wenoticed that it could not use its input for preventing collisions (the agent alwayswalks for a while and then rotates; in front of a wall, every instruction will cause acollision | compare instruction list at the beginning of this section). To improvethe second Q-variant's performance, we appropriately altered the instructions: eachinstruction consists of one of the 3 types of rotations followed by one of the 3 typesof forward walks (thus the total number of instructions is 9 | for the same reasonas with random search, the jump instruction cannot be used). Q-learning's rewardis 1.0 for �nding the goal and -0.01 for each collision. The parameters of the Q-learning variants were �rst coarsely optimized on a number of smaller mazes whichthey were able to solve. We set c = 0:005, which means that in the �rst phase(Phase = 1 in the LS procedure) a program may execute up to 200 steps beforebeing stopped. We set MAXR = 6.Typical result. In the easy, totally observable case, Q-learning took on aver-age 694,933 steps (10 simulations were conducted) to solve the maze in Figure 1.However, as expected, in the di�cult, partially observable cases, neither the twoQ-learning variants nor random search were ever able to solve the maze within1,000,000,000 steps (5 simulations were conducted). In contrast, LS was indeedable to solve the POE: LS required 97,395,311 steps to �nd a program q computinga 127-step shortest path to the goal in Figure 1. LS' low-complexity solution qinvolves two nested loops:1) REPEAT step forward UNTIL left field is free52) Jump (1 , 3)93) REPEAT step forward UNTIL left field is free, rotate left34) Jump (1 , 5)9In words: Repeat the following action sequence 6 times: go forward until yousee the �fth consecutive opening to the left; then rotate left. We have DP (q) =19 19 14 16 19 19 14 16 = 2:65 � 10�7.Similar results were obtained with many other mazes having non-trivial solu-tions with low algorithmic complexity. Such experiments illustrate that smartsearch through program space can be bene�cial in cases where the task appearscomplex but actually has low-complexity solutions. Since LS has a principledway of dealing with non-halting programs and time-limits (unlike, e.g., \GeneticProgramming"(GP)), LS may also be of interest for researchers working in GP(Cramer, 1985, Dickmanns et al., 1987, Koza, 1992, Fogel et al., 1966).ALS: single tasks versus multiple tasks. If we use the adaptive LS extension(ALS) for a single task as the one above (by repeatedly applying LS to the sameproblem and changing the underlying probability distribution in between successivecalls according to section 3.2), then the probability matrix rapidly converges suchthat late LS calls �nd the solution almost immediately. This is not very interest-ing, however | once the solution to a single problem is found (and there are no



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 117additional problems), there is no point in investing additional e�orts into proba-bility updates (unless such updates lead to an improved solution | this would berelevant in case we do not stop LS after the �rst solution has been found). ALS ismore interesting in cases where there are multiple tasks, and where the solution toone task conveys some but not all information helpful for solving additional tasks(inductive transfer). This is what the next section is about.3.5. Experiment 2: Incremental Learning / Inductive Transfer
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Figure 2. A 23 � 23 labyrinth. The arrow indicates the agent's initial position and direction.Numbers indicate goal positions. The higher the number, the more di�cult the goal. The agent'stask is to �nd all goal positions in a given \goalset". Goalsets change over time.This section will show that ALS can use experience to signi�cantly reduce averagesearch time consumed by successive LS calls in cases where there are more and morecomplex tasks to solve (inductive transfer), and that ALS can be further improvedby plugging it into SSA.Task. Figure 2 shows a 23 � 23 maze and 7 di�erent goal positions marked1,2,...,7. With a given goal, the task is to reach it from the start state. Each goalis further away from start than goals with lower numbers. We create 4 di�erent\goalsets" G1, G2, G3, G4. Gi contains goals 1, 2, ..., 3 + i. One simulation consistsof 40 \epochs" E1, E2, ... E40. During epochs E10(i�1)+1 to E10i, all goals in Gi



118 J. SCHMIDHUBER, J. ZHAO AND M. WIERING(i = 1; 2; 3; 4) have to be found in order of their distances to the start. Finding a goalyields reward 1.0 divided by solution path length (short paths preferred). Thereis no negative reward for collisions. During each epoch, we update the probabilitymatrices P , �P and P̂ whenever a goal is found (for all epochs dealing with goalsetGn there are n + 3 updates). For each epoch we store the total number of stepsrequired to �nd all goals in the corresponding goalset. We compare two variants ofincremental learning, METHOD 1 and METHOD 2:METHOD 1 | inter-goalset resets. Whenever the goalset changes (atepochs E11, E21, E31), we uniformly initialize probability matrices P , �P andP̂ . Inductive transfer can occur only within goalsets. We compare METHOD1 to simulations in which only the most di�cult task of each epoch has to besolved.METHOD 2 | no inter-goalset resets. We do not reset P , �P and P̂ incase of goalset changes. We have both intra-goalset and inter-goalset inductivetransfer. We compare METHOD 2 to METHOD 1, to measure bene�ts of inter-goalset transfer for solving goalsets with an additional, more di�cult goal.Comparison. We compare LS by itself, ALS by itself, and SSA+ALS, for bothMETHODs 1 and 2.LS results. Using c = 0:005 and MAXR = 15, LS needed 17:3 � 106 time stepsto �nd goal 7 (without any kind of incremental learning or inductive transfer).Learning rate inuence. To �nd optimal learning rates minimizing the totalnumber of steps during simulations of ALS and SSA+ALS, we tried all learningrates  in f0.01, 0.02,..., 0.95g. We found that SSA+ALS is fairly learning rateindependent: it solves all tasks with all learning rates in acceptable time (108 timesteps), whereas for ALS without SSA (and METHOD 2) only small learning ratesare feasible { large learning rate subspaces do not work for many goals. Thus,the �rst type of SSA-generated speed-up lies in the lower expected search time forappropriate learning rates.With METHOD 1, ALS performs best with a �xed learning rate  = 0:32,and SSA+ALS performs best with  = 0:45, with additional uniform noise in[�0:05; 0:05] (noise tends to improve SSA+ALS's performance a little bit, but wors-ens ALS' performance). With METHOD 2, ALS performs best with  = 0:05, andSSA+ALS performs best with  = 0:2 and added noise in [�0:05; 0:05].For METHODs 1 and 2 and all goalsets Gi (i = 1; 2; 3; 4), Table 1 lists thenumbers of steps required by LS, ALS, SSA+ALS to �nd all of Gi's goals duringepoch E(i�1)�10+1, in which the agent encounters the goal positions in the goalsetfor the �rst time.ALS versus LS. ALS performs much better than LS on goalsets G2; G3; G4.ALS does not help to to improve performance on G1's goalset, though (epoch E1),because there are many easily discoverable programs solving the �rst few goals.SSA+ALS versus ALS. SSA+ALS always outperforms ALS by itself. Foroptimal learning rates, the speed-up factor for METHOD 1 ranges from 6 % to67 %. The speed-up factor for METHOD 2 ranges from 13 % to 26 %. Recall,



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 119Table 1. For METHODs 1 and 2, we list the number of steps (inthousands) required by LS, ALS, SSA+ALS to �nd all goals in aspeci�c goalset during the goalset's �rst epoch (for optimal learn-ing rates). The probability matrices are adapted each time a goal isfound. The topmost LS row refers only to the most di�cult goalsin each goalset (those with maximal numbers). ALS outperformsLS on all goalsets but the �rst, and SSA+ALS achieves additionalspeed-ups. SSA+ALS works well for all learning rates, ALS by it-self does not. Also, all our incremental learning procedures clearlyoutperform LS by itself.Algorithm METHOD SET 1 SET 2 SET 3 SET 4LS last goal 4.3 1,014 9,505 17,295LS 8.7 1,024 10,530 27,820ALS 1 12.9 382 553 650SSA + ALS 1 12.2 237 331 405ALS 2 13.0 487 192 289SSA + ALS 2 11.5 345 85 230however, that there are many learning rates where ALS by itself completely fails,while SSA+ALS does not. SSA+ALS is more robust.Example of bias shifts undone. For optimal learning rates, the biggest speed-up occurs for G3. Here SSA decreases search costs dramatically: after goal 5 isfound, the policy \over�ts" in the sense that it is too much biased towards problem5's optimal (lowest complexity) solution: (1) Repeat step forward until blocked,rotate left. (2) Jump (1,11). (3) Repeat step forward until blocked, rotate right. (4)Repeat step forward until blocked, rotate right. Problem 6's optimal solution canbe obtained from this by replacing the �nal instruction by (4) Jump (3,3). Thisrepresents a signi�cant change though (3 probability distributions) and requirestime. Problem 5, however, can also be solved by replacing its lowest complexitysolution's �nal instruction by (4) Jump (3,1). This increases complexity but makeslearning problem 6 easier, because less change is required. After problem 5 has beensolved using the lowest complexity solution, SSA eventually suspects \over�tting"because too much computation time goes by without su�cient new rewards. Beforediscovering goal 6, SSA undoes apparently harmful probability shifts until SSC issatis�ed again. This makes Jump instructions more likely and speeds up the searchfor a solution to problem 6.METHOD 1 versus METHOD 2. METHOD 2 works much better thanMETHOD 1 on G3 and G4, but not as well on G2 (for G1 both methods are equal| di�erences in performance can be explained by di�erent learning rates whichwere optimized for the total task). Why? Optimizing a policy for goals 1|4 willnot necessarily help to speed up discovery of goal 5, but instead cause a harmful biasshift by overtraining the probability matrices. METHOD 1, however, can extractenough useful knowledge from the �rst 4 goals to decrease search costs for goal 5.More SSA bene�ts. Table 2 lists the number of steps consumed during the�nal epoch E10i of each goalset Gi (the results of LS by itself are identical to those



120 J. SCHMIDHUBER, J. ZHAO AND M. WIERINGTable 2. For all goalsets we list numbers of steps consumed by ALSand SSA+ALS to �nd all goals of goalset Gi during the �nal epochE10i.Algorithm METHOD SET 1 SET 2 SET 3 SET 4ALS 2 675 9,442 10,220 9,321SSA + ALS 2 442 1,431 3,321 4,728ALS 1 379 1,125 2,050 3,356SSA + ALS 1 379 1,125 2,050 2,673Table 3. The total number of steps (in thousands) consumed by LS, ALS,SSA+ALS (1) during one entire simulation, (2) during all the �rst epochs ofall goalsets, (3) during all the �nal epochs of all goalsets.Algorithm METHOD TOTAL TOTAL FIRST TOTAL LASTLS 39,385ALS 2 1,820 980 29.7ALS 1 1,670 1,600 6.91SSA + ALS 1 1,050 984 6.23SSA + ALS 2 873 671 9.92in table 1). Using SSA typically improves the �nal result, and never worsens it.Speed-up factors range from 0 to 560 %.For all goalsets Table 3 lists the total number of steps consumed during all epochsof one simulation, the total number of all steps for those epochs (E1, E11, E21, E31)in which new goalsets are introduced, and the total number of steps required forthe �nal epochs (E10, E20, E30, E40). SSA always improves the results. For thetotal number of steps | which is an almost linear function of the time consumedduring the simulation | the SSA-generated speed-up is 60% for METHOD 1 and108 % for METHOD 2 (the \fully incremental" method). Although METHOD 2speeds up performance during each goalset's �rst epoch (ignoring the costs thatoccurred before introduction of this goalset), �nal results are better without inter-goalset learning. This is not so surprising: by using policies optimized for previousgoalsets, we generate bias shifts for speeding up discovery of new, acceptable solu-tions, without necessarily making optimal solutions of future tasks more likely (dueto \evolutionary ballast" from previous solutions).LS by itself needs 27:8�106 steps for �nding all goals in G4. Recall that 17:3�106 ofthem are spent for �nding only goal 7. Using inductive transfer, however, we obtainlarge speed-up factors. METHOD 1 with SSA+ALS improves performance by afactor in excess of 40 (see results of SSA+ALS on the �rst epoch of G4). Figure 3(A)plots performance against epoch numbers. Each time the goalset changes, initialsearch costs are large (reected by sharp peaks). Soon, however, both methodsincorporate experience into the policy. We see that SSA keeps initial search costssigni�cantly lower.The safety net e�ect. Figure 3(B) plots epoch numbers against average prob-ability of programs computing solutions. With METHOD 1, SSA+ALS tends tokeep the probabilities lower than ALS by itself: high program probabilities are not



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 121

0

100000

200000

300000

400000

500000

600000

700000

800000

1 11 21 31

N
um

be
r 

of
 s

te
ps

 t
o 

fi
nd

 a
ll

 X
 g

oa
ls

Nr epochs

SSA + ALS METHOD 1
ALS METHOD 1

SSA + ALS METHOD 2
ALS METHOD 2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 11 21 31

A
ve

ra
ge

 P
ro

gr
am

 P
ro

ba
bi

li
ty

Nr epochs

SSA + ALS METHOD 1
ALS METHOD 1

SSA + ALS METHOD 2
ALS METHOD 2

Figure 3. (A) Average number of steps per epoch required to �nd all of the current goalset's goals,plotted against epoch numbers. Peaks reect goalset changes. (B) Average probability of programscomputing solutions (before solutions are actually found).always bene�cial. With METHOD 2, SSA undoes many policy modi�cations whengoalsets change, thus keeping the policy exible and reducing initial search costs.E�ectively, SSA is controlling the prior on the search space such that overallaverage search time is reduced, given a particular task sequence. For METHOD 1,after E40 the number of still valid modi�cations of policy components (probabilitydistributions) is 377 for ALS, but only 61 for SSA+ALS (therefore, 61 is SSA+ALS'stotal �nal stack size). For METHOD 2, the corresponding numbers are 996 and 63.We see that SSA keeps only about 16% respectively 6% of all modi�cations. Theremaining modi�cations are deemed unworthy because they have not been observedto trigger lifelong reward speed-ups. Clearly, SSA prevents ALS from overdoing itspolicy modi�cations (\safety net e�ect"). This is SSA's simple, basic purpose: undocertain learning algorithms' policy changes and bias shifts once they start lookingharmful in terms of long-term reward/time ratios.It should be clear that the SSA+ALS implementation is just one of many possibleSSA applications | we may plug many alternative learning algorithms into thebasic cycle.



122 J. SCHMIDHUBER, J. ZHAO AND M. WIERING4. Implementation 2: Incremental Self-Improvement (IS)The previous section used a single, complex, powerful, primitive learning action(adaptive Levin Search). The current section exploits the fact that it is also possibleto use many, much simpler actions that can be combined to form more complexlearning strategies, or metalearning strategies (Schmidhuber, 1994, 1997b; Zhaoand Schmidhuber, 1996).Overview. We will use a simple, assembler-like programming language which al-lows for writing many kinds of (learning) algorithms. E�ectively, we embed the waythe system modi�es its policy and triggers backtracking within the self-modifyingpolicy itself. SSA is used to keep only those self-modi�cations followed by rewardspeed-ups, in particular those leading to \better" future self-modi�cations, recur-sively. We call this \incremental self-improvement" (IS).Outline of section. Subsection 4.1 will describe how the policy is representedas a set of variable probability distributions on a set of assembler-like instructions,how the policy builds the basis for generating and executing a lifelong instructionsequence, how the system can modify itself executing special self-modi�cation in-structions, and how SSA keeps only the \good" policy modi�cations. Subsection4.2 will describe an experimental inductive transfer case study where we apply ISto a sequence of more and more di�cult function approximation tasks. Subsection4.3 will mention additional IS experiments involving complex POEs and interactinglearning agents that inuence each other's task di�culties.4.1. Policy and Program ExecutionStorage / Instructions. The learner makes use of an assembler-like programminglanguage similar to but not quite as general as the one in (Schmidhuber, 1995). Ithas n addressable work cells with addresses ranging from 0 to n� 1. The variable,real-valued contents of the work cell with address k are denoted ck. Processes inthe external environment occasionally write inputs into certain work cells. Therealso are m addressable program cells with addresses ranging from 0 to m� 1. Thevariable, integer-valued contents of the program cell with address i are denoteddi. An internal variable Instruction Pointer (IP) with range f0; : : : ;m� 1g alwayspoints to one of the program cells (initially to the �rst one). There also is a �xed setI of nops integer values f0; : : : ; nops � 1g, which sometimes represent instructions,and sometimes represent arguments, depending on the position of IP. IP and workcells together represent the system's internal state I (see section 2). For each valuej in I , there is an assembler-like instruction bj with nj integer-valued parameters.In the following incomplete list of instructions (b0; : : : ; b3) to be used in experiment3, the symbols w1; w2; w3 stand for parameters that may take on integer valuesbetween 0 and n� 1 (later we will encounter additional instructions):b0: Add(w1; w2; w3) : cw3  cw1 + cw2 (add the contents of work cell w1 and workcell w2, write the result into work cell w3 ).



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 123b1: Sub(w1; w2; w3) : cw3  cw1 � cw2 .b2: Mul(w1; w2; w3) : cw3  cw1 � cw2 .b3: Mov(w1; w2) : cw2  cw1 .b4: JumpHome: IP 0 (jump back to 1st program cell).Instruction probabilities / Current policy. For each program cell i thereis a variable probability distribution Pi on I . For every possible j 2 I , (0 � j �nops � 1), Pij speci�es for cell i the conditional probability that, when pointedto by IP, its contents will be set to j. The set of all current Pij-values de�nes aprobability matrix P with columns Pi (0 � i � m � 1). P is called the learner'scurrent policy. In the beginning of the learner's life, all Pij are equal (maximumentropy initialization). If IP = i, the contents of i, namely di, will be interpretedas instruction bdi (such as Add or Mul), and the contents of cells that immediatelyfollow i will be interpreted as bdi 's arguments, to be selected according to thecorresponding P -values. See Figure 4.
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Figure 4. Snapshot of parts of policy and storage. IP currently points to program cell 28. Theinteger sequence 1 4 2 6 (generated according to the policy's current probability distributions) willbe interpreted as Sub(4, 2, 6) | subtract the contents of work cell 4 from the contents of workcell 4 and put the result into work cell 6.Self-modi�cations. To obtain a learner that can explicitly modify its own policy(by running its own learning strategies), we introduce a special self-modi�cationinstruction IncProb not yet mentioned above:



124 J. SCHMIDHUBER, J. ZHAO AND M. WIERINGb5: IncProb(w1; w2; w3) : Increase Pij by  percent, where i = w1 � nops + w2 andj = w3 (this construction allows for addressing a broad range of program cells),and renormalize Pi (but prevent P-values from falling below a minimal value �,to avoid near-determinism). Parameters w1; w2; w3 may take on integer valuesbetween 0 and nops � 1. In the experiments, we will use  = 15; � = 0:001.In conjunction with other primitives, IncProb may be used in instruction se-quences that compute directed policy modi�cations. Calls of IncProb representthe only way of modifying the policy.Self-delimiting self-modi�cation sequences (SMSs). SMSs are subsequencesof the lifelong action sequence. The �rst IncProb after the learner's \birth" or aftereach SSA call (see section 2) begins an SMS. The SMS ends by executing anotheryet unmentioned primitive:b6: EndSelfMod(w1). Temporarily disable IncProb, by preventing future IncProbinstructions from causing any probability modi�cations, until w1 (1 � w1 �nops � 1) additional non-zero reward signals have been received | this willsatisfy the Evaluation Criterion in the basic cycle (section 2).Some of the (initially highly random) action subsequences executed during systemlife will indeed be SMSs. Depending on the nature of the other instructions, SMSscan compute almost arbitrary sequences of modi�cations of Pij values. This mayresult in almost arbitrary modi�cations of context-dependent probabilities of futureaction subsequences, including future SMSs. Policy changes can be generated onlyby SMSs. SMSs build the basis for \metalearning": SMSs are generated accordingto the policy, and may change the policy. Hence, the policy can essentially changeitself, and also the way it changes itself, etc.SMSs can inuence the timing of backtracking processes, because they can inu-ence the times at which the Evaluation Criterion will be met. Thus SMSs cantemporarily protect the learner from performance evaluations and policy restaura-tions.Plugging SMSs into SSA. We replace step 1 in the basic cycle (see section 2)by the following procedure:1. REPEAT the following UNTIL the Evaluation Criterion is satis�ed orthe Boolean variable Modification-Criterion (initially FALSE) is TRUE:1.1. Randomly generate an integer j 2 I according to matrix column PIP(the distribution of the program cell pointed to by IP , initially 0 at systembirth). Set program cell contents dIP := j. Translate j into the correspond-ing current instruction bj . Look up the number nj of cells required to storebj 's parameters. If IP> m� nj � 2, reset IP to 0, go to step 1. Otherwisegenerate instruction arguments for the nj cells immediately following IPaccording to their probability distributions PIP+1, ..., PIP+nj , and set IPto IP + nj + 1.



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 1251.2. IF bj is a learning instruction and not currently disabled by a previousEndSelfMod instruction, THEN set Modification-Criterion = TRUE,exit the current REPEAT loop, and go to step 2 of the basic cycle.1.3. Execute bj . IF bj is EndSelfMod and the topmost entry in the stack Sis not a \tag", THEN set the integer variable nNZR equal to the �rstparameter of bj plus one (this will inuence the time at which EvaluationCriterion will be reached).1.4. IF there is a new environmental input, THEN let it modify I.1.5. IF nNZR > 0 and non-zero reward occurred during the current cycle,THEN decrement nNZR. IF nNZR is zero, THEN set Evaluation Cri-terion = TRUE.We also change step 3 in the SSA cycle as follows:3. IF Modification-Criterion = TRUE, THEN push copies of those Poli tobe modi�ed by bj (from step 1.2) onto S, and execute bj .4.2. Experiment 3: Function Approximation / Inductive TransferThis experimental case study will demonstrate that IS can successfully learn in achanging environment where the tasks to be solved become more and more di�cultover time (inductive transfer).Task sequence. Our system is exposed to a sequence of more and more complexfunction approximation problems. The functions to be learned are f1(x; y) = x+y;f2(x; y; z) = x + y � z; f3(x; y; z) = (x + y � z)2; f4(x; y; z) = (x + y � z)4;f5(x; y; z) = (x + y � z)8.Trials. The system's single life is decomposable into n successive trials A1, A2,..., An (but the learner has no a priori concept of a trial). The i-th trial lastsfrom discrete time step ti + 1 until discrete time step ti+1, where t1 = 0 (systembirth) and tn+1 = T (system death). In a given trial Ai we �rst select a functiongi 2 ff1; : : : ; f5g. As the trial number increases, so does the probability of selectinga more complex function. In early trials the focus is on f1. In late trials the focusis on f5. In between there is a gradual shift in task di�culty: using a functionpointer ptr (initially 1) and an integer counter c (initially 100), in trial Ai we selectgi := fptr with probability c100 , and gi := fptr+1 with probability 1 � c100 . If thereward acceleration during the most recent two trials exceeds a certain threshold(0.05), then c is decreased by 1. If c becomes 0 then fptr is increased by 1, and c isreset to 100. This is repeated until fptr := f5. From then on, f5 is always selected.Once gi is selected, randomly generated real values x, y and z are put into workcells 0, 1, 2, respectively. The contents of an arbitrarily chosen work cell (we alwaysuse cell 6) are interpreted as the system's response. If c6 ful�lls the conditionjgi(x; y; z)� c6j < 0:0001, then the trial ends and the current reward becomes 1:0;otherwise the current reward is 0.0.



126 J. SCHMIDHUBER, J. ZHAO AND M. WIERINGInstructions. Instruction sequences can be composed from the following primi-tive instructions (compare section 4.1):Add(w1; w2; w3), Sub(w1; w2; w3), Mul(w1; w2; w3), Mov(w1; w2), IncProb(w1; w2; w3),EndSelfMod(w1), JumpHome(). Each instruction occupies 4 successive programcells (some of them unused if the instruction has less than 3 parameters). We usem = 50; n = 7.Evaluation Condition. SSA is called after each 5th consecutive non-zero rewardsignal after the end of each SMS, i.e., we set nNZR = 5.Huge search space. Given the primitives above, random search would requireabout 1017 trials on average to �nd a solution for f5 | the search space is huge.The gradual shift in task complexity, however, helps IS to learn f5 much faster, aswill be seen below.Results. After about 9:4� 108 instruction cycles (ca. 108 trials), the system isable to compute f5 almost perfectly, given arbitrary real-valued inputs. The cor-responding speed-up factor over (infeasible) random or exhaustive search is about109 | compare paragraph \Huge search space" above. The solution (see Figure5) involves 21 strongly modi�ed probability distributions of the policy (after learn-ing, the correct instructions had extreme probability values). At the end, the mostprobable code is given by the following integer sequence:1 2 1 6 1 0 6 6 2 6 6 6 2 6 6 6 2 6 6 6 4 � � �...The corresponding \program" and the (very high) probabilities of its instructionsand parameters are shown in Table 4.
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Most probable code sequence:

0 = Add

1 = Sub

2 = Mul

3 = Mov

5 = IncProb

6 = EndSelfMod
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Figure 5. The �nal state of the probability matrix for the function learning problem. Grey scalesindicate the magnitude of probabilities of instructions and parameters. The matrix was computedby self-modi�cation sequences generated according to the matrix itself (initially, all probabilitydistributions were maximum entropy distributions).Evolution of self-modi�cation frequencies. During its life the system gen-erates a lot of self-modi�cations to compute the strongly modi�ed policy. Thisincludes changes of the probabilities of self-modi�cations. It is quite interesting(and also quite di�cult) to �nd out to which extent the system uses self-modifyinginstructions to learn how to use self-modifying instructions. Figure 6 gives a vague



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 127Table 4. The �nal, most probable \program" and the corresponding probabilities.Probabilities Instruction Parameters Semantics1. (0.994, 0.975, 0.991, 0.994) Sub ( 2, 1, 6) (z � y) =) c62. (0.994, 0.981, 0.994, 0.994) Sub ( 0, 6, 6) (x� (z � y)) =) c63. (0.994, 0.994, 0.994, 0.994) Mul ( 6, 6, 6) (x+ y � z)2 =) c64. (0.994, 0.994, 0.994, 0.994) Mul ( 6, 6, 6) (x+ y � z)4 =) c65. (0.869, 0.976, 0.994, 0.994) Mul ( 6, 6, 6) (x+ y � z)8 =) c66. (0.848, |, |, | ) JumpHome ({, {, {,) 0 =) IPidea of what is going on by showing a typical plot of the frequency of IncProbinstructions during system life (sampled at intervals of 106 basic cycles). Soon af-ter its birth, the system found it useful to dramatically increase the frequency ofIncProb; near its death (when there was nothing more to learn) it signi�cantly re-duced this frequency. This is reminiscent of Schwefel's work (1974) on self-adjustingmutation rates. One major novelty is the adaptive, highly non-uniform distributionof self-modi�cations on \promising" individual policy components.
0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350 400 450 500

IncP
rob

 FR
EQ

UEN
CY

TIMEFigure 6. Numbers of executed self-modifying instructions plotted against time, sampled at in-tervals of 106 instruction cycles. The graph reects that the system soon uses self-modifyinginstructions to increase the frequency of self-modifying instructions. Near system death the sys-tem learns that there is not much to learn any more, and decreases this frequency.Stack evolution. The temporary ups and downs of the stack reect that asthe tasks change, the system selectively keeps still useful old modi�cations (corre-sponding to information conveyed by previous tasks that is still valuable for solvingthe current task), but deletes modi�cations that are too much tailored to previoustasks. In the end, there are only about 200 stack entries corresponding to only200 valid probability modi�cations { this is a small number compared to the about5 � 105 self-modi�cations executed during system life.



128 J. SCHMIDHUBER, J. ZHAO AND M. WIERING4.3. Other Experiments with IS: OverviewIn the previous experiments the learner's environment changed because of externallyinduced task changes. We also did experimental case studies where the tasks changein a less obvious way because of other changing learners.A complex POE. Schmidhuber et al. (1996) describe two agents A and B livingin a partially observable 600� 500 pixel environment with obstacles. They learn tosolve a complex task that could not be solved by various TD(�) Q-learning variants(Lin, 1993). The task requires (1) agent A to �nd and take a key \key A"; (2) agentA go to a door \door A" and open it for agent B; (3) agent B to enter through\door A", �nd and take another key \key B"; (4) agent B to go to another door\door B" to open it (to free the way to the goal); (5) one of the agents to reach thegoal. Both agents share the same design. Each is equipped with limited \active"sight: by executing certain instructions, it can sense obstacles, its own key, thecorresponding door, or the goal, within up to 50 pixels in front of it. The agentcan also move forward, turn around, turn relative to its key or its door or the goal.It can use memory (embodied by its IP) to disambiguate inputs (unlike Jaakkolaet al.'s method (1995), ours is not limited to �nding suboptimal stochastic policiesfor POEs with an optimal solution). Reward is provided only if one of the agentstouches the goal. This agent's reward is 5.0; the other's is 3.0 (for its cooperation| note that asymmetric reward introduces competition).In the beginning, the goal is found only every 300,000 basic cycles. Through self-modi�cations and SSA, however, within 130,000 trials (109 basic cycles) the averagetrial length decreases by a factor of 60 (mean of 4 simulations). Both agents learn tocooperate to accelerate reward intake. See (Schmidhuber et al., 1996) for details.Zero sum games. Even certain zero sum reward tasks allow for achievingsuccess stories. This has been shown in an experiment with three IS-based agents(Zhao and Schmidhuber, 1996): each agent is both predator and prey; it receivesreward 1 for catching its prey and reward -1 for being caught. Since all agents learneach agent's task gets more and more di�cult over time. How can it then create anon-trivial history of policy modi�cations, each corresponding to a lifelong rewardacceleration? The answer is: each agent collects a lot of negative reward during itslife, and actually comes up with a history of policy modi�cations causing less andless negative cumulative long-term rewards. The stacks of all agents tend to growcontinually as they discover better and better pursuit-evasion strategies.5. ConclusionSSA collects more information than previous RL schemes about long-term e�ects ofpolicy changes and shifts of inductive bias. In contrast to traditional RL approaches,time is not reset at trial boundaries. Instead we measure the total reward receivedand the total time consumed by learning and policy tests during all trials followingsome bias shift: bias shifts are evaluated by measuring their long-term e�ects onlater learning. Bias shifts are undone once there is empirical evidence that they



SHIFTING BIAS WITH SUCCESS-STORY ALGORITHM 129have not set the stage for long-term performance improvement. No bias shift issafe forever, but in many regular environments the survival probabilities of usefulbias shifts will approach unity if they can justify themselves by contributing tolong-term reward accelerations.Limitations. (1) Like any approach to inductive transfer ours su�ers from thefundamental limitations mentioned in the �rst paragraph of this paper. (2) Es-pecially in the beginning of the training phase ALS may su�er from a possiblylarge constant buried in the O() notation used to describe LS' optimal order ofcomplexity. (3) We do not gain much by applying our methods to, say, simple\Markovian" mazes for which there already are e�cient RL methods based on dy-namic programming (our methods are of interest, however, in certain more realisticsituations where standard RL methods fail). (4) SSA does not make much sensein \unfriendly" environments in which reward constantly decreases no matter whatthe learner does. In such environments SSC will be satis�able only in a trivial way.True success stories will be possible only in \friendly", regular environments thatdo allow for long-term reward speed-ups (this does include certain zero sum rewardgames though).Outlook. Despite these limitations we feel that we have barely scratched SSA'spotential for solving realistic RL problems involving inductive transfer. In futurework we intend to plug a whole variety of well-known algorithms into SSA, and letit pick and combine the best, problem-speci�c ones.6. AcknowledgmentsThanks for valuable discussions to Sepp Hochreiter, Marco Dorigo, Luca Gam-bardella, Rafa l Sa lustowicz. This work was supported by SNF grant 21-43'417.95\incremental self-improvement".Notes1. Most previous work on limited resource scenarios focuses on bandit problems, e.g., Berryand Fristedt (1985), Gittins (1989), and references therein: you have got a limited amount ofmoney; how do you use it to �gure out the expected return of certain simple gambling automataand exploit this knowledge to maximize your reward? See also (Russell and Wefald, 1991,Boddy and Dean, 1994, Greiner, 1996) for limited resource studies in planning contexts. Un-fortunately the corresponding theorems are not applicable to our more general lifelong learningscenario.2. This may be termed \metalearning" or \learning to learn". In the spirit of the �rst author'searlier work (e.g., 1987, 1993, 1994) we will use the expressions \metalearning" and \learning tolearn" to characterize learners that (1) can evaluate and compare learning methods, (2) measurethe bene�ts of early learning on subsequent learning, (3) use such evaluations to reason aboutlearning strategies and to select \useful" ones while discarding others. An algorithm is notconsidered to have learned to learn if it improves merely by luck, if it does not measure thee�ects of early learning on later learning, or if it has no explicit method designed to translatesuch measurements into useful learning strategies.
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