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Abstract—This paper presents a proposal to characterize In section Il we define sapient agents starting from the
Sapient Agentsin terms of cognitive concepts and abilities. In  notion of a cognitive agent. We discuss a general cognitive
particular, a sapient agent is considered as a cognitive agent 5.chitecture, the deliberation cycle and possible influences
the learns its cognitive state and capabilities through experience. . . . . .

This characterization is based on formal concepts such as beliefs,su,ammlng from emguons. In _sectlon IV -we will describe the
goals, plans and reasoning rules, and formal techniques such as'€inforcement learning paradigm, as well as recent extensions
relational RL. We identify several aspects of cognitive agents important for sapient agents. Section V will discuss the
that can be evolved through learning and indicate how these |earning opportunities in the cognitive architecture defined in
aspects can be learned. Other important features such as the section IlI-A and proposes some solutions in the framework

social environment, interaction with other agents or humans and f reinf £ . Section VI will di the broad
the ability to deal with emotions, will also be discussed. The paper of reinforcement learning. section Vi will discuss the broader

ends with directions for further research on sapient agents. context of sgpie_nt agents; the .interaCtiO.n with other agents
and communication and social issues, with both humans and
. INTRODUCTION agents. In section VII we will reflect on the characterization

Intelligent agents have already found their way to the publigiven in this paper and give directions for further research.
and during the last decades many intelligent agents have been
shown to be effective in solving particular tasks. However,
an intelligent agent is often used for a single task only, e.g.,Sapient agents are assumed to have accumulated learning
think about a chess playing program which is only used to plapnd knowledge, the ability to discern inner qualities and
chess. If an agent has to fulfil multiple tasks, more complicateelationships, often called the agentsight and good sense
issues arise, such as a decision method for choosing the curmtidgments These concepts and properties are, however, not
goals based on current information about the environment aintlitive and informal without explicit formal semantics. In
refining the decision method based on learning capabilithis paper, we consider sapient agents as a specific type of
Making the transition from intelligent agent to agents thatognitive agents for which many formalizations are proposed.
decide autonomously and learn to refine their decision makiiyg particular, we believe that properties such as knowledge,
capability, requires some new type of agent. This type of agensight, and judgments of sapient agents are related to, and
will be referred to as @apient agent should be defined in terms of, mentalistic concepts such

We will look upon sapient agents, from the starting perspeas beliefs, goals, and plans as used for cognitive agents.
tive of cognitive agents extended with (relational reinforceFherefore, we propose an interpretation of properties of sapient
ment) learning capabilities. A cognitive agent is assumed agents based on mentalistic concepts of cognitive agents and
have some internal state consisting of mental attitudes sudhntify certain problems such as the integration of learning
beliefs, goals, and plans, receives inputs through its sens@usg decision making processes that together influence the
and performs actions. The actions are decided on based orbigbavior of sapient agents.
mental state in such a way that its effort to attain a goal will We assume that insight and judgment properties of sapient
be minimal. For this many reasoning mechanisms could bgents determine their course of actions. For cognitive agents
useful such as logical deduction, neural networks, fuzzy logittie course of actions can be specified in terms of their mental
Bayesian networks etc. We consider an agent in which all aftitudes which contain at least beliefs, goals, and norms,
these mechanisms may run in parallel. E.g. pattern recogniticegpabilities such as actions and plans, reasoning rules that can
may be done using neural networks, whereas communicatiom used to reason about the mental attitudes, communication,
is best done using logical languages. and sensing. Given the above mentioned entities, the decision
IJ{Ql.etking ability of agents can be considered as consisting of
g?]?soning about mentalistic attitudes, selecting goals, planning
goals, selecting and executing plans, etc[1].

In our view, the judgment of an agent can be considered at
the lowest level as making choices about how to reason about
its mental attitudes at each moment in time. For example,
an agent’s judgment can be established by reasoning about

1. DEFINING SAPIENT AGENTS

In this paper we will first characterize sapient agents, a
then describe how we can use learning methods for sapi
agents.



its goals or by reasoning about its goals only when they di@ cognitive agents and discuss possible choices and decisions
not reachable using any possible plan. Some more modertdiat are involved in the deliberation process.
alternatives are also possible. E.g. the agent can create a plan " ;
for a goal and executF()e the plan. ?f this Ie%ds to a stage Wh%‘r'eA Cognitive Agent Architecture
the plan cannot be executed any further, then the agent cai? this section, we consider a general architecture for
start reasoning about the plan and revise the plan if necessgfghitive agent consisting of the representation of mental
If the goal can still not be reached, then the agent can revgliitudes and the deliberation process. This agent architecture
the goal. So, this leads to a strategy where one plan is triggillustrated in figure 1. According to this architecture, an
completely and if it fails the goal is revised or even abandonedgent observes the environment and communicates with other
In general, an agent with the judgment ability should be abfgents. The observation of an agent provides the facts that the
to control the relation between plans and goals. For exampi§ent recognizes from its sensory information. These facts can
an agent should control whether a goal still exists during t#€ used to update the agent's mental state. The communication
execution of the plan to reach that goal. If the correspondi ovides information that an agent receives from other agents.
goal of a plan is reached (or dropped), the agent can allow 0r€ received information are messages that are stored in
avoid continuing with the plan. the message bo?< (Mesg.) of the.agepp These messages can
We consider the insight of agents to be directly related R represented in terms of the identifier of the sender and
the ability of agents to evaluate their mental states and merf@gf€iver. a logical sentence that determines the content of the
capabilities. We therefore assume that the insight ability f@essage, and a performative which indicates the modality of
the ability to learn how to reason about mental attitudd8€ Message, i.e. whether the content is meant to inform the
and thus how to make decisions. The reasoning capabilf§F€Ver, contains requests for the receiver, etc.
determines the agent's decision making behavior and the

learning capability determines the evolution of the reasoning Plaming|[Plan ||Goal

capability through experiences. The focus of this paper with Rules || Rules||Rules || MeSg:

respect to the agent’s insight is on the aspects of the agent’s \ //

mental state and mental capabilities that are influenced by the g ¢ Action
learning process. These could be the goals, beliefs, desires, — — Deliberation

reasoning rules of even basic capabilities (the agent can learn
new actions).

‘ Beliefs ‘ ‘ Goals ‘ ‘ Plans ‘ ‘Actions‘

IIl. COGNITIVE AGENTS

. . . . Fig. 1. A general architecture for cognitive agents.
In this section, we consider various aspects of the mental

states and mental abilities of cognitive agents that may evolveThe peliefs of an agent represent its general world knowl-
through learning and from experiences resulting in propertiggge as well as its knowledge about the surrounding envi-
associated with the sapient agents. In general, cognitive agg@isment. The beliefs are usually represented by sentences of
are assumed to have mental states consisting of mental %tilogical language, e.g. sentences of a first order predicate
tudes such as beliefs, goals, plans, and reasoning rules [Zhgauge. The goals represent the states that the agent desires
[3], [4], [S]. [6], [7]. For example, a cognitive agent mayig reach. Like beliefs, goals are represented by sentences of a
believe there is no coffee available, desire to drink coffeggical language as well. Actions represent basic capabilities
and desire to have tea if there is no coffee. Moreover, theat agent can perform. These actions can be cognitive actions
behavior of cognitive agents, i.e. the actions it chooses aggch as belief updates, or external (physical) actions such
performs, are assumed to be determined by deliberating 0 communication or movement actions. The actions are
the mental attitudes [2], [1], [8]. The deliberation procesgsyally specified by pre- and post-conditions which are belief

is a continuous and iterative process that involves mamymulae. The plans represent structured patterns of actions
choices and decisions through which actions are selected gqgk agent can perform together.

performed. For example, a deliberation process may selectone _ _ )

goal, plan the goal and execute the plan. If the goal canrft Acting, Planning and Deliberating

be planned, it may either drop the goal or revise it. The A planning rule expresses that a goal can be achieved by
revised goal may be planned. It is also possible that a plparforming a plan under a certain belief condition. A planning
cannot be executed since some of its constituting actions aue has the formp «— 3 | 7, which indicates that goab can
blocked. In such a case, the agent may either decide to dimp achieved by plamr if belief condition 5 holds. A goal
the plan or revise it. The existing proposals of cognitive agemdse determines how to modify a goal under a certain belief
[4], [5], [1], [6], [7] assume that many of these choices andondition. A goal rule has the forg — 3 | ¢ which indicates
decisions are fixed. These choices and decisions are batbed goaly can be revised as goalif belief conditions holds.

on predefined criteria and remain unchanged during ageritikewise, a plan rule determines how to modify a plan under
lifetime. In this section, we introduce a general architectugecertain belief condition. A plan rule has the form— 5 | #’



which indicates that plam can be revised as plari if belief situations in which natural language understanding and co-

condition 3 holds. operative problem solving are important. When interaction
Cognitive agents deliberate on these concepts to decigith humans is involved, a capability to deal with emotions,

which actions to perform at each moment of time [9]. Thevhether to express or to understand, becomes highly desirable

deliberation process involves many activities such as applying even needed. [10].

a reasoning rule for the above mentioned purposes, selecting a

goal to achieve, selecting a plan to execute, generating a plan IV. LEARNING

to achieve a goal, etc. In particular, a cognitive agent decidesrperq is general agreement nowadays that intelligent agents

at each moment of time which activity to perform. It should b@hould beadaptive i.e. capable of learning. For learning to

noted that different applications require different deliberatiqnork’ agents should be able to make the proper generalizations

processes and that there is not one single universal deliberafion. ;se learned knowledge to apply it to new situations

process. An example of a deliberation process is the followilggm”ar to encountered ones. For sapient agents learning as

iterative procedure: a capability should be extended to learning how to organize

repeat the deliberation cycle. Sapient agents can learn how to solve
Find and apply goal rules that are applicable multiple tasks in parallel, how to deal with multiple goals and
Find and apply plan rules that are applicable also how to set the right priorities. They can use their own
Find a goal and a planning rule which is applicable to it experiences but also the social context for doing this.
Apply the selected planning rule to the selected goal There are roughly three learning paradigrasisupervised
Find and execute a plan andsupervisedearning are used mainly for isolatetlistering

end repeat and classificationtasks, respectively. However, for agents, the

In order to specify, design, and implement a cognitive agerrﬁjnfgrcement .Iearning?aradigm is dominant, g.iven thg fact
one needs to initialize its cognitive state and specify, desigi}tu/',at |t_deals w_lthbghaV|or_Iearn|ng. In the foII_owmg sectlon§
and implement various decisions and choices involved in t & will descrlpe |ts_ main feaFL."eS anc_zl discuss extensions
deliberation process beforehand. For example, the agent H@(_eful for learning within (cognitive) sapient agents.

signer should develop beforehand various selection functio'&ls
to select goals, plans, and various types of rules at various
stages of the deliberation process. Also, the agent designeln reinforcement learning (RL) [13], an agent learns how
should indicate beforehand how goals and plan are generd@d#ehave by interacting with its environment (including other
and dropped. For many types of agents, especially sapi@g€ents) using a trial and error process. The agent has to learn a
ones, it is not possible, or even desirable, to specify all thegelicy to decide on actions based on its mental state in such a
concepts at design-time. Therefore, sapient agents shouldWgy that its cumulative intake of rewards will be maximized.

Reinforcement Learning

capable of learning. In general, RL methods learn estimates of utility values for
certain belief states and certain actions. These values can be
C. Emotions used to determine optimal actions for the agent’s current state.

Emotions will also be important for truly sapient agenté(ve. can see an agent with RL capabilities as an agent that tries
Emotional attitudes towards agents, objects, events etc. ¢@find outwhich goal to select and how to achieve the selected
become important in the process of acting, planning a,g@al_wnh minimal efforts. RL has already been successfully
deliberation. Emotions motivate and bias behavior, but thé&pPlied to learn to play the game of backgammon at human
do not completely determine it. They playreflectiverole World class level [14].
in decision making and learning [10], may monitor plannin
and may beprospect-based11]. By focusing onemotion-
inducingevents, the agent can decide more effectively. BasicAlthough RL is a general method for behavior learning,
emotions such as fear can trigger behavior needed to act fatindard RL is not powerful enough for the rich knowledge
or to quickly change plans. Emotions such as happiness aructures and capabilities of sapient agents. Recently a num-
influence choices for certain goals or plans. In some senbey of extensions to the RL framework have been developed
emotions complementtio so that the agent becomes wiserthat deal with various kinds of higher-ordebstractions
more sapient. Abstractionsover actions(or time, i.e.temporal abstraction)

It is acknowledged that, at least in humans, emotions are main be used to abstract over different ways an abstract action
a separate process from cognition, but both are inextricaldgn be instantiated. For example, an actiooveT o(room1)
intertwined. It can even be stated that without emotionsan abstract over a number of motor-actions actually needed
decision-making and acting is hardly possible and that reasmn a robot to move taroom1. Whole action sequences can
itself uses emotions to guide its decision making procesdas abstracted into plan or a macro-action Methods that use
[12]. Even though some may argue that it is not importa@abstraction over time or action sequences are terhier-
for machines (agents) to actualhave emotions, it surely is chical RL methods [15], [16], [17]. Hierarchies of actions and
important to be able toeason abouemotions. Especially in behaviors can be defined or even be learned.

%. Abstraction in Reinforcement Learning



Another recent direction in RL involves abstraction by ¢« 8| T andw < (| ¢, (wheree is the empty plan)
using more powerful representation languages. Quite naturally, respectively.
cognitive concepts like beliefs about the world and goals aree Which goal or plan to modify in certain situation? This
expressed in terms abjectsandrelations Traditionally, RL can be achieved by learning goal or plan rules of the form
has been using feature-based and propositional representa- ¢ « (| ¢ andw < (| 7/, respectively.
tions for representing cognitive concepts and actions, although How to plan a goal in a certain situation? This can be
for logic-based agents, richer representational formalisms are achieved by learning planning rules of the fogm— [ |
needed. Recently progress has been made in closing the .

gap between logic-based agent formalisms and methods foFinally, for each type of rules a selection function should
learning behavior such as RL. be learned that selects a rule to apply at each moment of time.
On the one hand, formalisms such as the Situation Calculpigese selection functions should be learned based on agent's
[18] have been extended with means to calculate values faental state and differ for each type of rules. In particular, the
actions and mental states [19]. These values enable the ageféction function for planning rules should be learned based
to choose rationally between goals and actions. On the othgy agent’s beliefs, goals, and plans, the selection function for
hand, progress has been made in upgrading RL methegign rules should be learned based on agent's beliefs and
towards richer representational formalisnielational Rein- goa]s, and the selection function for goa| rules should be
forcement Learning[20], [21], [22] methods learn values forjearned based on agent’s beliefs. In the following section we

relational expressions over mental concepts and actions. @¥cuss how these aspects can be learned by various learning
means of logical induction, useful concepts that are importag@ihniques.

for optimal behavior of the agent, can be learned from experi- .
ence. These concepts are expressed in terms of knowledgeBhd-€arning Goals, Plans and Concepts
agent has, and based on actual experience gained in performinip order to cope with the demands of a sapient agent
different actions. described in the previous section, we can use hierarchical RL
By integrating value-based behavior learning methods suglsing relational representations). We consider goal-selection
as RL, the notion of a logic-based cognitive agent, and conceptd plan-selection first.
induction methods, behavior learning of an agent can beFor goal-selection, the agent has to map its beliefs to a
directly connected to cognitive notions, represented in termarticular goal which it will adopt. Each time-step the agent
of objectsandrelations[23]. can change its mind about the goal, but in order to allow
the agent to continue with one particular goal, we can use a
mapping from beliefs and the previous goal to a newly selected
In section IlI-B we mentioned the fact that in cognitivegoal. Reinforcement learning algorithms learn value functions
agent architectures, many aspects are specified beforehdodthis by trial and error using e.g. Q-learning [24]. The goal is
However, for a sapient agent we believe that various choicgslearn to select goals leading to the maximal average reward
and decisions involved in the deliberation process should peake per time-step. By trying out goals, and using plans or
learned through experience instead of being fixed and defirgstions to achieve these goals, the agent gets estimates about
beforehand. the quality-value (Q-value) of selecting each of its goals given
some mental states. Since the agent can at any time change its
goal, it can drop previous goals and continue with new ones.
There are many opportunities for learning in cognitivg can also learn that committing to some goal is good until
agents. In particular, the agent should learn at run ti@me mental state tells the agent to adopt another goal. Thus,
various concepts cgr(z)), facts gar(p)), and rules (e.g. using the hierarchical RL framework, selecting and revising
bird(z) — fly(z)) that constitute its beliefs. Moreover, givengoals may be learned just as learning action sequences.
goal formulaep and¢, plan expressions and~’, and belief  For learning to select plans, the agent has to map a goal
formula 3, the following can be the subject of learning withand beliefs to a plan. There can be multiple plans, some
regards to the agent's goals and plans: plans may even consist of single actions. Although some plans
« Which goal to select in order to plan, and which platake longer than single actions, this is not any problem if
to select in order to execute? Two types of selectidmerarchical RL is being used. The agent can even choose to
functions can be learned. The goal selection functiofmsvoke a planner which will then plan at a specific time-step.
should be learned based on the agent’s beliefs and thehis planner returns useful plans given some mental state,
plan selection functions should be learned based on tihewill be invoked more often in that context. Plans can be
agent’s beliefs and goals. dropped or revised at any time, since the agent selects a plan
« Which goal or plan to generate in certain situations? Tha action at each time step. Thus, again using the hierarchical
can be achieved by learning goal or plan rules of the forRL framework, selecting and revising plans can be learned
T—pg|¢andT « G|, respectively. just as learning action sequences.
« Which goal or plan to drop in certain situation? This can Finally, the agent has to learn to map sensory information
be achieved by learning goal or plan rules of the formbtained by for example cameras to concepts. This can be

V. LEARNING IN COGNITIVE AGENTS

A. Adapting the Deliberation Cycle



done by using pattern recognition methods such as neu@lexist. The only way of learning that one should not come
networks or support vector machines. Each time the agdab close to the edge of the canyon is to look at the results of
receives sensory information and does not understand whbdier agents approaching it. Since it is easy to see that coming
it sees, it should get feedback about the concept it is lookibtgp close to the edge of the canyon was bad for the other agent,
at. This can only be done in a social setting in which humamassapient agent can learn that this is a wrong action in this
communicate with the agent, and the agent is also able dontext.

commu_nicate _with other agents. We will examine this issueln multi-agent settings we have to distinguish between com-
further in section V. petitive, co-operative, and semi-competitive settings. Although
we would like all agents to be cooperative, this is not realistic

Emoti i behavi lained i since each agent tries to maximize its own average reward
motions may Influence behavior as was explained In S§fitare per time-step. However, even in (semi-)competitive

tion III—Q. Emotio_ns may also influence Iearning. For exam,pl‘%ettings it makes sense to let agents communicate (e.g. if
a negative emotion that produces a bad feeling may trigggf, agents try to walk through the same corridor and bump
reassessment of what causes the bad feeling, followed Ryoingt each other, they can signal to which side they will go).
'ea”!'”g how to avoid 'J_[ in the futL_Jre. A sa_p|ent agent can al%ﬂ/ communicating knowledge, agents can share experiences,
predict that by not doing an action, it will feel even worse, o ents and procedural knowledge of how to solve tasks.
and by _feellng th!s, it can interrupt its current behavior tq desing communication, possibly with humans, is also a good
that action. Emotions can also help focus on a goal, or trigggby 1o get a lot of examples for learning to classify sensory
to reassess a situation (e.g. ingight reflection) and look for intomation into concepts. These are examplesleafrning
a way to improve it, thus adapting the behavior. by communicatingClassical experiments show that in many
VI. THE SOCIAL ENVIRONMENT cases, communicgtion betvvgen agents can have a positive
_ _ _ . _ influence on learning behavior, provided that communicated
Agents, especially sapient ones, will usually Sigiatedin 5 mation is useful and not superfluous [28]. On the other
complex, multi-agent, social environments in which they haye, 4 agents can aldearn how to communicatf29]. This

to interact with other agents and humans. Such complex eN¥iolves learningwhat when with whomand how to com-

ronments create difficulties, but also opportunities, especially,nicate. Social laws protocols and shattologies are
in learning. We will discuss some of these in this section. ’

. . ; important factors in communication.
Reinforcement Learning has already been applied success-

fully for solving particular multi-agent problems such as AJ€nts can learn to judge just like other agents, and agents
network routing [25], elevator control [26], and traffic light®@n reward each other using ethical or social laws which have

control [27]. For all these problems, the agent still has to sol@d€ady existed for a long time and therefore may be evolved
a particular task such as controlling a specific traffic light arfyf Preprogrammed. Thus, in multi-agent systems judgment
therefore these agents are not sapient at all. We can use m@fid insight can also be learned, obtained, and refined using
agent systems to make it easier for agents to learn to becdfR§munication. For communication between agents some
sapient agents, however. issues such as trust (insight in relationships) plays an important
If the agent has to learn to achieve a goal and it can chod§& @nd has to be learned based on the experiences of the
which task to learn, there are several complicated issues.3@ENt- If another agent provides wrong estimates about the
some sense, the agent has to devote its time to learn somet!fR§Ning time or reward for solving a particular task, or it
useful. But what if the agent is unable to learn to solve §V€S @ wrong decision skill for solving the task, the agent
particular task? When should it stop trying to learn the tas€8n learn that this agent cannot be trusted. The agent can also
And also, how much reward can it expect when it would pask other trusted agents, whether they trust another agent. In

able to learn to perform the task? A solution is to let thiliS way social relationships among agents can evolve.

agent learn from other agents. For example, the agent caThe problem of using reward functions is that it is difficult
estimate its learning time by looking at other agents, or by say how much reward one should get for task A relative
communicating with them. The agent can also ask the rewdaadtask B. The decision of the agent will be to do the task
functions of other agents, it can estimate the learning tinkeading to maximal average reward per time-step. However,
by asking or looking at the other agent, and the agent cHrthese relative reward values are incorrect, the agent could
even ask the decision skill to solve a particular task to anottedways do one single task at which it is good. Therefore the
agent. Thus, some issues seem complicated, but may becoeweard function should also be dynamic, where a reward is
easier when the agent is not alone in the world. Although tlggdven only under particular circumstances. The reward could
whole system would become much more complex, particulbe made dependent on the agent’s emotions such as boredom,
subproblems are easier to solve. Some problems would everphide, pity, disappointment, satisfaction, anger, etc. In this
impossible if the agent cannot learn by imitating other agentsay, an agent who is angry with another agent may learn
For example, suppose one agent, a robot, approaches a des#go communicate interesting information. Also if the agent
canyon and just near the edge, it slips and falls into the cany@bored with its current task, it will get less reward for doing
Because of the fall, the agent is destroyed and it discontinigsand therefore may switch to another goal.

C. Emotions in Learning



VIl. CONCLUSIONS

In this paper we have given a characterizationsapient
agents By starting from the notion of @ognitive agent, for

(5]

(6]

which many formalizations exist, we place cognitive notions

such asbeliefs desires goals and plans at the core of the

(7]

deliberation cycle of a sapient agent. Furthermore, with this
as a starting point, we have a firm basis for a model of tru
sapienceas well as that we can take advantage from existing8 ]
knowledge and formalizations concerning the modelling of
cognitive notions, logic-based systems and agent programmitg

languages such as 3APL.

Furthermore, we have emphasized the need for managihg
control over different tasks that can be performed in parallétl]
by choosing constantly between actions, goals and plansip
the deliberation cycle. Various tasks can also be run in parallel
on different cognitive levels. On the perceptual level, pattef!
recognition can transform visual images to (logical) concepisy
while planning and acting can be performed on a higher

cognitive level.

We have also stressed the importanceeafiotionsas a (15
possible factor in both behaving and learning. In a single agent,

emotions may influence decision-making and planning. In
multi-agent, social context, emotions may play an importal

i

role in the interaction, especially when humans are involved.
A very important feature of sapient agents that we discusséd
is learning We discussed reasons, opportunities and solutions

for learning. For sapient agents, learning transcends the id&a

of single-task learning by focusing on the whole deliberation
cycle, emotional attitudes and the social context. Of mugiy,
importance will be the integration of RL methods and logic-

based, cognitive agents. Relational languages and hierarchical

learning methods in RL may function as a bridge betwegsy,

cognition and learning.

One line of further research should focus first on formni%]l]
a

definitions of the various parts discussed in this paper. For

notions present in formalizations of cognitive agents and agent
programming languages should be extended with Iearniﬁﬁ]

mechanisms and emotional attitudes.
A second line of research should aimexiperimentingvith
and developingconcrete applications of increasingly sapie

[

23]

s

agents. By integrating learning mechanisms such as relatio

RL into agent programming languages such as 3APL, ideas]
can be put to a test in order to develop truly sapient agents.
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