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Abstract— This paper presents a proposal to characterize
Sapient Agentsin terms of cognitive concepts and abilities. In
particular, a sapient agent is considered as a cognitive agent
the learns its cognitive state and capabilities through experience.
This characterization is based on formal concepts such as beliefs,
goals, plans and reasoning rules, and formal techniques such as
relational RL. We identify several aspects of cognitive agents
that can be evolved through learning and indicate how these
aspects can be learned. Other important features such as the
social environment, interaction with other agents or humans and
the ability to deal with emotions, will also be discussed. The paper
ends with directions for further research on sapient agents.

I. I NTRODUCTION

Intelligent agents have already found their way to the public,
and during the last decades many intelligent agents have been
shown to be effective in solving particular tasks. However,
an intelligent agent is often used for a single task only, e.g.,
think about a chess playing program which is only used to play
chess. If an agent has to fulfil multiple tasks, more complicated
issues arise, such as a decision method for choosing the current
goals based on current information about the environment and
refining the decision method based on learning capability.
Making the transition from intelligent agent to agents that
decide autonomously and learn to refine their decision making
capability, requires some new type of agent. This type of agent
will be referred to as asapient agent.

We will look upon sapient agents, from the starting perspec-
tive of cognitive agents extended with (relational reinforce-
ment) learning capabilities. A cognitive agent is assumed to
have some internal state consisting of mental attitudes such
beliefs, goals, and plans, receives inputs through its sensors,
and performs actions. The actions are decided on based on its
mental state in such a way that its effort to attain a goal will
be minimal. For this many reasoning mechanisms could be
useful such as logical deduction, neural networks, fuzzy logic,
Bayesian networks etc. We consider an agent in which all of
these mechanisms may run in parallel. E.g. pattern recognition
may be done using neural networks, whereas communication
is best done using logical languages.

In this paper we will first characterize sapient agents, and
then describe how we can use learning methods for sapient
agents.

In section II we define sapient agents starting from the
notion of a cognitive agent. We discuss a general cognitive
architecture, the deliberation cycle and possible influences
stemming from emotions. In section IV we will describe the
reinforcement learning paradigm, as well as recent extensions
important for sapient agents. Section V will discuss the
learning opportunities in the cognitive architecture defined in
section III-A and proposes some solutions in the framework
of reinforcement learning. Section VI will discuss the broader
context of sapient agents; the interaction with other agents
and communication and social issues, with both humans and
agents. In section VII we will reflect on the characterization
given in this paper and give directions for further research.

II. D EFINING SAPIENT AGENTS

Sapient agents are assumed to have accumulated learning
and knowledge, the ability to discern inner qualities and
relationships, often called the agent’sinsight, and good sense
or judgments. These concepts and properties are, however, not
intuitive and informal without explicit formal semantics. In
this paper, we consider sapient agents as a specific type of
cognitive agents for which many formalizations are proposed.
In particular, we believe that properties such as knowledge,
insight, and judgments of sapient agents are related to, and
should be defined in terms of, mentalistic concepts such
as beliefs, goals, and plans as used for cognitive agents.
Therefore, we propose an interpretation of properties of sapient
agents based on mentalistic concepts of cognitive agents and
identify certain problems such as the integration of learning
and decision making processes that together influence the
behavior of sapient agents.

We assume that insight and judgment properties of sapient
agents determine their course of actions. For cognitive agents
the course of actions can be specified in terms of their mental
attitudes which contain at least beliefs, goals, and norms,
capabilities such as actions and plans, reasoning rules that can
be used to reason about the mental attitudes, communication,
and sensing. Given the above mentioned entities, the decision
making ability of agents can be considered as consisting of
reasoning about mentalistic attitudes, selecting goals, planning
goals, selecting and executing plans, etc[1].

In our view, the judgment of an agent can be considered at
the lowest level as making choices about how to reason about
its mental attitudes at each moment in time. For example,
an agent’s judgment can be established by reasoning about



its goals or by reasoning about its goals only when they are
not reachable using any possible plan. Some more moderate
alternatives are also possible. E.g. the agent can create a plan
for a goal and execute the plan. If this leads to a stage where
the plan cannot be executed any further, then the agent can
start reasoning about the plan and revise the plan if necessary.
If the goal can still not be reached, then the agent can revise
the goal. So, this leads to a strategy where one plan is tried
completely and if it fails the goal is revised or even abandoned.
In general, an agent with the judgment ability should be able
to control the relation between plans and goals. For example,
an agent should control whether a goal still exists during the
execution of the plan to reach that goal. If the corresponding
goal of a plan is reached (or dropped), the agent can allow or
avoid continuing with the plan.

We consider the insight of agents to be directly related to
the ability of agents to evaluate their mental states and mental
capabilities. We therefore assume that the insight ability is
the ability to learn how to reason about mental attitudes
and thus how to make decisions. The reasoning capability
determines the agent’s decision making behavior and the
learning capability determines the evolution of the reasoning
capability through experiences. The focus of this paper with
respect to the agent’s insight is on the aspects of the agent’s
mental state and mental capabilities that are influenced by the
learning process. These could be the goals, beliefs, desires,
reasoning rules of even basic capabilities (the agent can learn
new actions).

III. C OGNITIVE AGENTS

In this section, we consider various aspects of the mental
states and mental abilities of cognitive agents that may evolve
through learning and from experiences resulting in properties
associated with the sapient agents. In general, cognitive agents
are assumed to have mental states consisting of mental atti-
tudes such as beliefs, goals, plans, and reasoning rules [2],
[3], [4], [5], [6], [7]. For example, a cognitive agent may
believe there is no coffee available, desire to drink coffee,
and desire to have tea if there is no coffee. Moreover, the
behavior of cognitive agents, i.e. the actions it chooses and
performs, are assumed to be determined by deliberating on
the mental attitudes [2], [1], [8]. The deliberation process
is a continuous and iterative process that involves many
choices and decisions through which actions are selected and
performed. For example, a deliberation process may select one
goal, plan the goal and execute the plan. If the goal cannot
be planned, it may either drop the goal or revise it. The
revised goal may be planned. It is also possible that a plan
cannot be executed since some of its constituting actions are
blocked. In such a case, the agent may either decide to drop
the plan or revise it. The existing proposals of cognitive agents
[4], [5], [1], [6], [7] assume that many of these choices and
decisions are fixed. These choices and decisions are based
on predefined criteria and remain unchanged during agent’s
lifetime. In this section, we introduce a general architecture

for cognitive agents and discuss possible choices and decisions
that are involved in the deliberation process.

A. A Cognitive Agent Architecture

In this section, we consider a general architecture for
cognitive agent consisting of the representation of mental
attitudes and the deliberation process. This agent architecture
is illustrated in figure 1. According to this architecture, an
agent observes the environment and communicates with other
agents. The observation of an agent provides the facts that the
agent recognizes from its sensory information. These facts can
be used to update the agent’s mental state. The communication
provides information that an agent receives from other agents.
The received information are messages that are stored in
the message box (Mesg.) of the agent. These messages can
be represented in terms of the identifier of the sender and
receiver, a logical sentence that determines the content of the
message, and a performative which indicates the modality of
the message, i.e. whether the content is meant to inform the
receiver, contains requests for the receiver, etc.

Sense Action

PlansBeliefs ActionsGoals

Planning
Rules Rules

Goal
Rules
Plan

Comm.

Mesg.

Deliberation

Fig. 1. A general architecture for cognitive agents.

The beliefs of an agent represent its general world knowl-
edge as well as its knowledge about the surrounding envi-
ronment. The beliefs are usually represented by sentences of
a logical language, e.g. sentences of a first order predicate
langauge. The goals represent the states that the agent desires
to reach. Like beliefs, goals are represented by sentences of a
logical language as well. Actions represent basic capabilities
that agent can perform. These actions can be cognitive actions
such as belief updates, or external (physical) actions such
as communication or movement actions. The actions are
usually specified by pre- and post-conditions which are belief
formulae. The plans represent structured patterns of actions
that agent can perform together.

B. Acting, Planning and Deliberating

A planning rule expresses that a goal can be achieved by
performing a plan under a certain belief condition. A planning
rule has the formφ ← β | π, which indicates that goalφ can
be achieved by planπ if belief condition β holds. A goal
rule determines how to modify a goal under a certain belief
condition. A goal rule has the formφ ← β | ψ which indicates
that goalφ can be revised as goalψ if belief conditionβ holds.
Likewise, a plan rule determines how to modify a plan under
a certain belief condition. A plan rule has the formπ ← β | π′



which indicates that planπ can be revised as planπ′ if belief
conditionβ holds.

Cognitive agents deliberate on these concepts to decide
which actions to perform at each moment of time [9]. The
deliberation process involves many activities such as applying
a reasoning rule for the above mentioned purposes, selecting a
goal to achieve, selecting a plan to execute, generating a plan
to achieve a goal, etc. In particular, a cognitive agent decides
at each moment of time which activity to perform. It should be
noted that different applications require different deliberation
processes and that there is not one single universal deliberation
process. An example of a deliberation process is the following
iterative procedure:

repeat

Find and apply goal rules that are applicable
Find and apply plan rules that are applicable
Find a goal and a planning rule which is applicable to it
Apply the selected planning rule to the selected goal
Find and execute a plan

end repeat

In order to specify, design, and implement a cognitive agent
one needs to initialize its cognitive state and specify, design,
and implement various decisions and choices involved in the
deliberation process beforehand. For example, the agent de-
signer should develop beforehand various selection functions
to select goals, plans, and various types of rules at various
stages of the deliberation process. Also, the agent designer
should indicate beforehand how goals and plan are generated
and dropped. For many types of agents, especially sapient
ones, it is not possible, or even desirable, to specify all these
concepts at design-time. Therefore, sapient agents should be
capable of learning.

C. Emotions

Emotions will also be important for truly sapient agents.
Emotional attitudes towards agents, objects, events etc. can
become important in the process of acting, planning and
deliberation. Emotions motivate and bias behavior, but they
do not completely determine it. They play areflective role
in decision making and learning [10], may monitor planning
and may beprospect-based[11]. By focusing onemotion-
inducingevents, the agent can decide more effectively. Basic
emotions such as fear can trigger behavior needed to act fast,
or to quickly change plans. Emotions such as happiness can
influence choices for certain goals or plans. In some sense,
emotions complementratio so that the agent becomes wiser,
more sapient.

It is acknowledged that, at least in humans, emotions are not
a separate process from cognition, but both are inextricably
intertwined. It can even be stated that without emotions,
decision-making and acting is hardly possible and that reason
itself uses emotions to guide its decision making processes
[12]. Even though some may argue that it is not important
for machines (agents) to actuallyhaveemotions, it surely is
important to be able toreason aboutemotions. Especially in

situations in which natural language understanding and co-
operative problem solving are important. When interaction
with humans is involved, a capability to deal with emotions,
whether to express or to understand, becomes highly desirable
or even needed. [10].

IV. L EARNING

There is general agreement nowadays that intelligent agents
should beadaptive, i.e. capable of learning. For learning to
work, agents should be able to make the proper generalizations
to reuse learned knowledge to apply it to new situations
similar to encountered ones. For sapient agents learning as
a capability should be extended to learning how to organize
the deliberation cycle. Sapient agents can learn how to solve
multiple tasks in parallel, how to deal with multiple goals and
also how to set the right priorities. They can use their own
experiences but also the social context for doing this.

There are roughly three learning paradigms.Unsupervised
andsupervisedlearning are used mainly for isolatedclustering
andclassificationtasks, respectively. However, for agents, the
reinforcement learningparadigm is dominant, given the fact
that it deals withbehavior learning. In the following sections
we will describe its main features and discuss extensions
useful for learning within (cognitive) sapient agents.

A. Reinforcement Learning

In reinforcement learning (RL) [13], an agent learns how
to behave by interacting with its environment (including other
agents) using a trial and error process. The agent has to learn a
policy to decide on actions based on its mental state in such a
way that its cumulative intake of rewards will be maximized.
In general, RL methods learn estimates of utility values for
certain belief states and certain actions. These values can be
used to determine optimal actions for the agent’s current state.
We can see an agent with RL capabilities as an agent that tries
to find out which goal to select and how to achieve the selected
goal with minimal efforts. RL has already been successfully
applied to learn to play the game of backgammon at human
world class level [14].

B. Abstraction in Reinforcement Learning

Although RL is a general method for behavior learning,
standard RL is not powerful enough for the rich knowledge
structures and capabilities of sapient agents. Recently a num-
ber of extensions to the RL framework have been developed
that deal with various kinds of higher-orderabstractions.
Abstractionsover actions(or time, i.e. temporalabstraction)
can be used to abstract over different ways an abstract action
can be instantiated. For example, an actionmoveTo(room1)
can abstract over a number of motor-actions actually needed
for a robot to move toroom1. Whole action sequences can
be abstracted into aplan or a macro-action. Methods that use
abstraction over time or action sequences are termedhierar-
chical RL methods [15], [16], [17]. Hierarchies of actions and
behaviors can be defined or even be learned.



Another recent direction in RL involves abstraction by
using more powerful representation languages. Quite naturally,
cognitive concepts like beliefs about the world and goals are
expressed in terms ofobjectsand relations. Traditionally, RL
has been using feature-based and propositional representa-
tions for representing cognitive concepts and actions, although
for logic-based agents, richer representational formalisms are
needed. Recently progress has been made in closing the
gap between logic-based agent formalisms and methods for
learning behavior such as RL.

On the one hand, formalisms such as the Situation Calculus
[18] have been extended with means to calculate values for
actions and mental states [19]. These values enable the agent
to choose rationally between goals and actions. On the other
hand, progress has been made in upgrading RL methods
towards richer representational formalisms.Relational Rein-
forcement Learning([20], [21], [22] methods learn values for
relational expressions over mental concepts and actions. By
means of logical induction, useful concepts that are important
for optimal behavior of the agent, can be learned from experi-
ence. These concepts are expressed in terms of knowledge the
agent has, and based on actual experience gained in performing
different actions.

By integrating value-based behavior learning methods such
as RL, the notion of a logic-based cognitive agent, and concept
induction methods, behavior learning of an agent can be
directly connected to cognitive notions, represented in terms
of objectsand relations [23].

V. L EARNING IN COGNITIVE AGENTS

In section III-B we mentioned the fact that in cognitive
agent architectures, many aspects are specified beforehand.
However, for a sapient agent we believe that various choices
and decisions involved in the deliberation process should be
learned through experience instead of being fixed and defined
beforehand.

A. Adapting the Deliberation Cycle

There are many opportunities for learning in cognitive
agents. In particular, the agent should learn at run time
various concepts (car(x)), facts (car(p)), and rules (e.g.
bird(x) → fly(x)) that constitute its beliefs. Moreover, given
goal formulaeφ andψ, plan expressionsπ andπ′, and belief
formula β, the following can be the subject of learning with
regards to the agent’s goals and plans:

• Which goal to select in order to plan, and which plan
to select in order to execute? Two types of selection
functions can be learned. The goal selection functions
should be learned based on the agent’s beliefs and the
plan selection functions should be learned based on the
agent’s beliefs and goals.

• Which goal or plan to generate in certain situations? This
can be achieved by learning goal or plan rules of the form
> ← β | φ and> ← β | π, respectively.

• Which goal or plan to drop in certain situation? This can
be achieved by learning goal or plan rules of the form

φ ← β | > and π ← β | ε, (whereε is the empty plan)
respectively.

• Which goal or plan to modify in certain situation? This
can be achieved by learning goal or plan rules of the form
φ ← β | ψ andπ ← β | π′, respectively.

• How to plan a goal in a certain situation? This can be
achieved by learning planning rules of the formφ ← β |
π.

Finally, for each type of rules a selection function should
be learned that selects a rule to apply at each moment of time.
These selection functions should be learned based on agent’s
mental state and differ for each type of rules. In particular, the
selection function for planning rules should be learned based
on agent’s beliefs, goals, and plans, the selection function for
plan rules should be learned based on agent’s beliefs and
goals, and the selection function for goal rules should be
learned based on agent’s beliefs. In the following section we
discuss how these aspects can be learned by various learning
techniques.

B. Learning Goals, Plans and Concepts

In order to cope with the demands of a sapient agent
described in the previous section, we can use hierarchical RL
(using relational representations). We consider goal-selection
and plan-selection first.

For goal-selection, the agent has to map its beliefs to a
particular goal which it will adopt. Each time-step the agent
can change its mind about the goal, but in order to allow
the agent to continue with one particular goal, we can use a
mapping from beliefs and the previous goal to a newly selected
goal. Reinforcement learning algorithms learn value functions
for this by trial and error using e.g. Q-learning [24]. The goal is
to learn to select goals leading to the maximal average reward
intake per time-step. By trying out goals, and using plans or
actions to achieve these goals, the agent gets estimates about
the quality-value (Q-value) of selecting each of its goals given
some mental states. Since the agent can at any time change its
goal, it can drop previous goals and continue with new ones.
It can also learn that committing to some goal is good until
some mental state tells the agent to adopt another goal. Thus,
using the hierarchical RL framework, selecting and revising
goals may be learned just as learning action sequences.

For learning to select plans, the agent has to map a goal
and beliefs to a plan. There can be multiple plans, some
plans may even consist of single actions. Although some plans
take longer than single actions, this is not any problem if
hierarchical RL is being used. The agent can even choose to
invoke a planner which will then plan at a specific time-step.
If this planner returns useful plans given some mental state,
it will be invoked more often in that context. Plans can be
dropped or revised at any time, since the agent selects a plan
or action at each time step. Thus, again using the hierarchical
RL framework, selecting and revising plans can be learned
just as learning action sequences.

Finally, the agent has to learn to map sensory information
obtained by for example cameras to concepts. This can be



done by using pattern recognition methods such as neural
networks or support vector machines. Each time the agent
receives sensory information and does not understand what
it sees, it should get feedback about the concept it is looking
at. This can only be done in a social setting in which humans
communicate with the agent, and the agent is also able to
communicate with other agents. We will examine this issue
further in section VI.

C. Emotions in Learning

Emotions may influence behavior as was explained in sec-
tion III-C. Emotions may also influence learning. For example,
a negative emotion that produces a bad feeling may trigger
reassessment of what causes the bad feeling, followed by
learning how to avoid it in the future. A sapient agent can also
predict that by not doing an action, it will feel even worse,
and by feeling this, it can interrupt its current behavior to do
that action. Emotions can also help focus on a goal, or trigger
to reassess a situation (e.g. byinsight, reflection) and look for
a way to improve it, thus adapting the behavior.

VI. T HE SOCIAL ENVIRONMENT

Agents, especially sapient ones, will usually besituatedin
complex, multi-agent, social environments in which they have
to interact with other agents and humans. Such complex envi-
ronments create difficulties, but also opportunities, especially
in learning. We will discuss some of these in this section.

Reinforcement Learning has already been applied success-
fully for solving particular multi-agent problems such as
network routing [25], elevator control [26], and traffic light
control [27]. For all these problems, the agent still has to solve
a particular task such as controlling a specific traffic light and
therefore these agents are not sapient at all. We can use multi-
agent systems to make it easier for agents to learn to become
sapient agents, however.

If the agent has to learn to achieve a goal and it can choose
which task to learn, there are several complicated issues. In
some sense, the agent has to devote its time to learn something
useful. But what if the agent is unable to learn to solve a
particular task? When should it stop trying to learn the task?
And also, how much reward can it expect when it would be
able to learn to perform the task? A solution is to let the
agent learn from other agents. For example, the agent can
estimate its learning time by looking at other agents, or by
communicating with them. The agent can also ask the reward
functions of other agents, it can estimate the learning time
by asking or looking at the other agent, and the agent can
even ask the decision skill to solve a particular task to another
agent. Thus, some issues seem complicated, but may become
easier when the agent is not alone in the world. Although the
whole system would become much more complex, particular
subproblems are easier to solve. Some problems would even be
impossible if the agent cannot learn by imitating other agents.
For example, suppose one agent, a robot, approaches a deep
canyon and just near the edge, it slips and falls into the canyon.
Because of the fall, the agent is destroyed and it discontinues

to exist. The only way of learning that one should not come
too close to the edge of the canyon is to look at the results of
other agents approaching it. Since it is easy to see that coming
too close to the edge of the canyon was bad for the other agent,
a sapient agent can learn that this is a wrong action in this
context.

In multi-agent settings we have to distinguish between com-
petitive, co-operative, and semi-competitive settings. Although
we would like all agents to be cooperative, this is not realistic
since each agent tries to maximize its own average reward
intake per time-step. However, even in (semi-)competitive
settings it makes sense to let agents communicate (e.g. if
two agents try to walk through the same corridor and bump
against each other, they can signal to which side they will go).
By communicating knowledge, agents can share experiences,
concepts and procedural knowledge of how to solve tasks.
Using communication, possibly with humans, is also a good
way to get a lot of examples for learning to classify sensory
information into concepts. These are examples oflearning
by communicating. Classical experiments show that in many
cases, communication between agents can have a positive
influence on learning behavior, provided that communicated
information is useful and not superfluous [28]. On the other
hand, agents can alsolearn how to communicate[29]. This
involves learningwhat, when, with whomand how to com-
municate. Social laws, protocols and sharedontologiesare
important factors in communication.

Agents can learn to judge just like other agents, and agents
can reward each other using ethical or social laws which have
already existed for a long time and therefore may be evolved
or preprogrammed. Thus, in multi-agent systems judgment
and insight can also be learned, obtained, and refined using
communication. For communication between agents some
issues such as trust (insight in relationships) plays an important
role and has to be learned based on the experiences of the
agent. If another agent provides wrong estimates about the
learning time or reward for solving a particular task, or it
gives a wrong decision skill for solving the task, the agent
can learn that this agent cannot be trusted. The agent can also
ask other trusted agents, whether they trust another agent. In
this way social relationships among agents can evolve.

The problem of using reward functions is that it is difficult
to say how much reward one should get for task A relative
to task B. The decision of the agent will be to do the task
leading to maximal average reward per time-step. However,
if these relative reward values are incorrect, the agent could
always do one single task at which it is good. Therefore the
reward function should also be dynamic, where a reward is
given only under particular circumstances. The reward could
be made dependent on the agent’s emotions such as boredom,
pride, pity, disappointment, satisfaction, anger, etc. In this
way, an agent who is angry with another agent may learn
not to communicate interesting information. Also if the agent
is bored with its current task, it will get less reward for doing
it, and therefore may switch to another goal.



VII. C ONCLUSIONS

In this paper we have given a characterization ofsapient
agents. By starting from the notion of acognitiveagent, for
which many formalizations exist, we place cognitive notions
such asbeliefs, desires, goals, and plans at the core of the
deliberation cycle of a sapient agent. Furthermore, with this
as a starting point, we have a firm basis for a model of true
sapienceas well as that we can take advantage from existing
knowledge and formalizations concerning the modelling of
cognitive notions, logic-based systems and agent programming
languages such as 3APL.

Furthermore, we have emphasized the need for managing
control over different tasks that can be performed in parallel,
by choosing constantly between actions, goals and plans in
the deliberation cycle. Various tasks can also be run in parallel
on different cognitive levels. On the perceptual level, pattern
recognition can transform visual images to (logical) concepts,
while planning and acting can be performed on a higher
cognitive level.

We have also stressed the importance ofemotionsas a
possible factor in both behaving and learning. In a single agent,
emotions may influence decision-making and planning. In a
multi-agent, social context, emotions may play an important
role in the interaction, especially when humans are involved.

A very important feature of sapient agents that we discussed
is learning. We discussed reasons, opportunities and solutions
for learning. For sapient agents, learning transcends the idea
of single-task learning by focusing on the whole deliberation
cycle, emotional attitudes and the social context. Of much
importance will be the integration of RL methods and logic-
based, cognitive agents. Relational languages and hierarchical
learning methods in RL may function as a bridge between
cognition and learning.

One line of further research should focus first on formal
definitions of the various parts discussed in this paper. Formal
notions present in formalizations of cognitive agents and agent
programming languages should be extended with learning
mechanisms and emotional attitudes.

A second line of research should aim atexperimentingwith
and developingconcrete applications of increasingly sapient
agents. By integrating learning mechanisms such as relational
RL into agent programming languages such as 3APL, ideas
can be put to a test in order to develop truly sapient agents.
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