
Reinforcement Learning Algorithms for solving
Classification Problems

Marco A. Wiering (IEEE Member)∗, Hado van Hasselt†, Auke-Dirk Pietersma‡ and Lambert Schomaker§

∗Dept. of Artificial Intelligence, University of Groningen,The Netherlands, m.wiering@ai.rug.nl
†Multi-agent and Adaptive Computation, Centrum Wiskunde enInformatica, The Netherlands, H.van.Hasselt@cwi.nl

‡Dept. of Artificial Intelligence, University of Groningen,The Netherlands, aukepiet@ai.rug.nl
§Dept. of Artificial Intelligence, University of Groningen,The Netherlands, l.schomaker@ai.rug.nl

Abstract—We describe a new framework for applying rein-
forcement learning (RL) algorithms to solve classification tasks by
letting an agent act on the inputs and learn value functions. This
paper describes how classification problems can be modeled using
classification Markov decision processes and introduces the Max-
Min ACLA algorithm, an extension of the novel RL algorithm
called actor-critic learning automaton (ACLA). Experiments are
performed using 8 datasets from the UCI repository, where our
RL method is combined with multi-layer perceptrons that serve
as function approximators. The RL method is compared to con-
ventional multi-layer perceptrons and support vector machines
and the results show that our method slightly outperforms the
multi-layer perceptron and performs equally well as the support
vector machine. Finally, many possible extensions are described
to our basic method, so that much future research can be done
to make the proposed method even better.

I. I NTRODUCTION

Reinforcement learning (RL) [1], [2] algorithms enable an
agent to learn an optimal behavior when letting it interact
with some unknown environment and learn from its obtained
rewards. An RL agent uses a policy to control its behavior,
where the policy is a mapping from obtained inputs to actions.
Reinforcement learning is quite different from supervised
learning where an input is mapped to a desired output by
using a dataset of labeled training instances. One of the main
differences is that the RL agent is never told the optimal action,
instead it receives an evaluation signal indicating the goodness
of the selected action.

In this paper a novel approach is described that uses
reinforcement learning algorithms to solve classificationtasks.
We are interested to find out how this can be done, whether
this leads to competitive supervised learning algorithms,and
what possible extensions to the framework would be worth
investigating. Instead of the standard classification process in
which the input is directly propagated through the classifier
to the estimated class label, an agent is used that interacts
with the input by selecting actions and changing the input
representation. In this way, it is possible for the agent to learn
a different or augmented representation of the input that can
go beyond the information coded in the initial input vector.

Since reinforcement learning agents learn to interact with
an environment and have the goal to optimize the cumulative
future discounted reward intake, we need to define the actions
of the agent and the reward function. In our proposed frame-
work, the agent can execute actions that set memory cells

to particular values. These memory cells encode additional
information and can be used by the agent together with the
original input vector to select actions.

Although our framework is much broader, in our currently
proposed method, we use RL for standard classification tasks,
as we will explain now. The agent has some working memory
which is divided into two buckets consisting of memory cells
and it receives the original input vector as input in its first
bucket B1, the perceptual buffer. The second bucket B2, the
‘attend’ buffer, is initially empty, and the third bucket B3,
the ’ignore’ buffer, initially contains a copy of the original
input. Now the agent can manipulate its buckets in two ways:
either it copies the original input in the second bucket B2,
thereby effectively obtaining three copies of the input, orit
can delete the third bucket B3, thereby obtaining two clear
buckets and the original input still in its first bucket. An agent
representing a particular class should copy the inputs, and
agents representing other classes than the class of the received
instance, should clear the last two buckets. This objectiveis
modeled in our framework using the reward function.

The reward function for a classification problem is class
label independent, but it is combined with an agent that either
tries to maximize or minimize rewards, reflecting whether
the input is of its category or not. In a binary classification
task, it is possible for the agent to receive rewards for setting
particular memory cells and punishment for setting other
memory cells. Such a reward function can then be used for
learning a value function that can be used for optimally
selecting actions. In order to classify a new unseen input, we
can allow the agent to interact with it, and examine whether the
reward intake is positive (for a positive class label) or whether
the reward intake is negative in order to classify an input with
a negative class label. However, we propose a method that is
much faster for classifying new unseen inputs, that only uses
the state-value of the initial state vector describing an input
example that needs to be labeled.

We implemented this idea using a novel Max-Min extension
of the ACLA [3] algorithm that learns preference values for
selecting actions and also a separate state-value function. By
interacting with training instances, an intelligent agentlearns
positive values for patterns belonging to its class, and negative
values for patterns that do not belong to it. Learning is done
by acting on the two buckets and receiving rewards for setting



bucket cells. After the learning process is finished, the value
of the initial state reflects the whole mental process of acting
on the pattern, so that this value can be immediately used
for classifying novel unseen patterns. This makes testing the
classifiers on new patterns just as fast as conventional machine
learning algorithms, although training is slowed down because
of the necessity to learn to apply an optimal action sequence
on the given inputs.

This paper tries to answer the following research questions:

• How can value-function based RL algorithms be used for
solving classification tasks?

• How does this novel approach compare to well known
machine learning algorithms such as neural networks [4],
[5] and support vector machines [6]?

• What are the advantages and disadvantages of the pro-
posed approach?

Outline. We first describe how classification tasks can
be modeled in the Classification Markov Decision Process
(CMDP) framework in Section II. Then the Max-Min ACLA
algorithm is described in Section III, which is a new reinforce-
ment learning algorithm that has some desirable propertiesfor
our framework. After that experimental results on 8 datasets
from the UCI repository [7] are presented in Section IV.
In Section V, a discussion is given where the answers to
the research questions are given and possible extensions of
our method are described. Finally, we conclude this paper in
Section VI.

II. M ARKOV DECISION PROCESSES FORCLASSIFICATION

TASKS

We will first formally model the classification tasks that
we intend to solve. Letxi be an input vector of length
m and yi the target class belonging to this input. We are
provided with a datasetD = {(x1, y1), . . . , (xn, yn)} of
labeled examples. We will solve binary classification tasksand
multi-class classification tasks in the experimental section. So
yi ∈ {1, . . . , N}, whereN is the number of classes. The goal
is to have the maximal accuracy on unseen testing examples,
after the dataset is split into training data and testing data.

Now we will describe the Classification Markov Decision
Process (CMDP) framework that models the classification task
as a sequential decision making problem. Although there are
many possibilities for this, we were inspired by the idea of ap-
plying our method on handwritten text and object recognition
tasks. The idea is to have different agents for all target classes
and to let them walk around in an image. If an agent is walking
around in a training image that is of its own class, it should
not do anything. On the other hand, if an agent is walking
around in a training image of a different class, the agent should
eat the ink pixels and in this way set them to white pixels.
Although we have done some preliminary experiments with
our RL algorithms on the MNIST handwritten digits dataset
and it works quite well, we will not report these results in this
paper, since the experiments take a lot of time and we were not
able to optimize the learning parameters. Instead, we will use

the RL algorithms for smaller datasets from the UCI machine
learning repository [7].

The idea of having the agent walk around on these datasets
and eat ink pixels is not possible anymore, but we will use
a representation that is close in spirit. First of all, an agent
receives as state vector three buckets. Each bucket has the
same size as the input vectorxi. The first bucket B1 is always
a copy ofxi so that the agent is always allowed to see the
actual input. The second bucket B2 is initially set to all 0’sand
these 0’s can be set by the agent to copies of elements of the
input vector. The third bucket B3 is initially set to a copy ofthe
input vector and these inputs can be set to 0’s by actions of the
agent. This means therefore that the length of the augmented
input vector is three times the size of the original input vector.
Furthermore, the agent has actions to set the inputs in the last
two buckets. For the ‘attend’ bucket B2 there is a separate
action for each cell that sets its value to the copy of the input
vector at the same place. For the ‘ignore’ bucket B3 there is
a separate action for each cell in the bucket and that sets its
value 0. Thus the proposed architecture implements a specific
dynamic feature attention and selection scheme.

Finally the reward function is class independent and is only
based on the number of 0’s in the last two buckets. Denote
0 ≤ z ≤ 2m as the number of zeros in the last two buckets.
Then the reward emitted after each action isrt = 1 − z

m
which is therefore between -1 and 1. Although the reward
function is class independent, the agent with the same classas
a training instance will select actions to maximize its obtained
rewards, whereas an agent of another class will select actions
that minimize its obtained rewards.

x1 x2 x3 x4 x5 x1 x2 x3 x4 x50 0 0 0 0

x1 x2 x3 x4 x5 x1 x2 x3 x4 x50 0 0 0x2

x1 x2 x3 x4 x5 x1 x3 x4 x50 0 0 0

x1 x2 x3 x4 x5 x1 x3 x4 x50 0 0 0 0x2

x2 x3

Reward = 0.0

Reward = 0.2

Reward = 0.2

Fig. 1: In this example, the original input vector consists of
5 inputs. The agent acts on the last two buckets for a fixed
number of steps. If an action has been selected before, it does
not have an effect on the bucket cell the second time.

Figure 1 shows the framework where an agent interacts with
an input vector. Suppose the input vector is an image of a face,
then an optimal face agent will make its three buckets full
with the same face. Another class agent, suppose a car agent,
will empty the last bucket, and therefore will only keep the
first bucket with the face and the other buckets will become
cleared.



Now we will formally define the specific CMDP we use
here:

• S denotes the state-space. It is usually continuous and for
an input vectorxi of lengthm the statesi ∈ S has3m

elements. The elements are divided into three buckets.
Note thatS is determined by the classification dataset.
st denotes the state-vector at timet in a single epoch,
where an agent works on a single example.

• A denotes the action-space. There are in total2m actions
that set the respective bucket cells.at denotes the action
selected at time-stept.

• The initial state s0 for an input vectorxi is s0 =
(xi,~0, xi) where the three buckets are all of sizem. The
input vectorxi from which the initial state is constructed
is taken iteratively from the dataset.

• The transition functionT is deterministic and copies
the previous state and executes the action. If the action
satisfies0 ≤ at < m then the new statest+1 = O(st, at)
where the operatorO executes the effect of the action as
follows: the (m + at)

th bucket cell is set to a copy of
theath

t element of the input vector. If the action satisfies
m ≤ at < 2m then the new statest+1 = O(st, at) where
the operatorO executes the effect of the action as follows:
the (m + at)

th bucket cell is set to 0.
• The reward function depends on the number of zeros and

is given byrt = 1 − z
m wherez is the number of zeros

in the state-vector.
• A discount factorγ is used.
• A maximal number of actions in an epoch is used that

denotes the horizonh.
• A flag is used for training that indicates whether the

agent represents the same class as the class of the train-
ing instance. This determines whether the agent should
maximize or minimize its reward intake.

During the learning process the class agents interact with
the training examples, where examples are presented one at
a time. Each epoch a new training example is given to a
class agent. After that the next class agent receives the same
example. They perform a numberh of actions on it and learn
from the observed transitions and obtained rewards. After a
number of epochs is finished, the agents can be tested on
unseen testing images. During testing, the agents do not act
and therefore do not receive rewards. They have observed the
effects of their actions on similar original state-vectorss0 and
can immediately compute the value of the new instance. The
class agent which has the largest value for this initial state
outputs its represented class.

Since we are working with continuous, high-dimensional
state-spaces, we need to use a function approximator. In
our current research we have used a multi-layer perceptron
(MLP) [4], [5]. Compared to training a normal MLP with
backpropagation [4], testing new instances costs almost the
same amount of time. However, during the learning process,
all class agents have to interact with the input forh steps.
Furthermore, the class agents need to compare the outputs of

all action networks to select actions. Since there are in total 2m

action networks, the training process is a factor2hm slower
than conventional backpropagation training. In the discussion
we will show extensions that can speed up this process.

III. T HE MAX -M IN ACLA A LGORITHM

We already noted that we use a single reward function that
is independent of the target class. However, during training we
want to learn large output values for the agent that represents
the correct class for an instance and low values for the agent(s)
with a wrong class. Furthermore, during testing we want to
have a fast algorithm that only works with the initial state
vector and does not need to select actions. For these reasons
we use an extension of the Actor-Critic Learning Automaton
(ALCA) [3], although we could also have used QV-learning
[8] or other actor-critic algorithms [2]. The reason is thatthese
algorithms learn a separate state-value function. We cannot
easily use Q-learning [9] or similar algorithms, since they
need to select an action. This has two disadvantages: (1)
when selecting an action for a test example, it is difficult to
do this without knowing the label beforehand, and (2) when
the algorithms needs to select an action for test examples, it
becomes much slower for classifying new data then just using
the state values of the initial state.

We will now present ACLA. ACLA uses an agentACi

for each classi. Furthermore, it uses a state value function
Vi(·) and different preferenceP -functions for selecting each
action a: P a

i (·). For representing these value functions we
use multi-layer perceptrons which are trained with backprop-
agation. After an action is performed, the agent receives the
following information: (st, at, rt, st+1). The agent computes
the temporal difference (TD) errorδt [10] as follows. Ift < h

then:
δt = rt + γVi(st+1) − Vi(st)

Else if t = h:
δt = rt − Vi(st)

A TD-update [10] is made to the value function:

Vi(st) = Vi(st) + αδt

Where α denotes the learning rate of the critic. Then the
target value for the actor of the selected action is computed
as follows:

If δt ≥ 0 G = 1

Else If δt < 0 G = 0

After which the valueG is used as a target for learning the
action networkP at

i (·) on the state-vectorst with backpropa-
gation.

So far we described the ACLA algorithm and we will now
explain the Max-Min ACLA algorithm. The whole idea of
learning high values for the right class and low values for the
wrong class(es) lies in the used exploration policy. Note that
ACLA is an on-policy learning method. Furthermore, its initial
state value depends on the actions that change the initial state



and obtain rewards. Now suppose that the agentACi has to
select actions for classy = i during training, so it needs to
maximize its reward intake in order to learn high state values.
In this case the agent uses the conventional Boltzmann or Soft-
max exploration policy:

P (a) =
eP a

i
(st)/τ

∑
b eP b

i
(st)/τ

Where τ is the temperature. If the agentACi has to learn
values for another classy 6= i then it selects actions with the
Min Boltzmann exploration policy:

P (a) =
e−P a

i
(st)/τ

∑
b e−P b

i
(st)/τ

In this way, it will try to obtain negative rewards for wrong
classes and these negative rewards will then be passed by TD-
learning to the value of the initial state. Another option would
be to set the value ofG as described above to 1 for actions
that have negative TD-errors, and to 0 for positive TD-errors.
This would result in basically the same algorithm.

Finally, for testing purposes we compute all valuesVi(s0)
for all classesi and agentsACi belonging to these classes. The
input vector is classified with the predicted classyp belonging
to the agent with the largest state value:

yp = arg max
i

Vi(s0)

There are several reasons why this set-up is useful. First of
all, it allows us to have fast classification of new instances. All
that is needed is to compute the state-value functions of the
initial stateVi(s0) and assign the instance to the agent having
the largest state-value. This would not be possible if we would
have used a reward function that is class dependent, e.g., one
that emits positive rewards when an agent not representing
the class of the instance sets bucket cells to 0. In that case,
the initial value of this agent could also be very large, and
direct comparison of state-values would become impossible.
Now it is also clear why we cannot use Q-learning: it needs to
select at least one action to get a value. However, for testing
examples it is unknown whether the class agents need to select
a maximizing or minimizing action. A second advantage of
our method is that we can use a single reward function for
all datasets that is symmetric around 0. We experimented with
some different reward functions, but the one we use now seems
to work best.

IV. EXPERIMENTS

In this section the performance of our reinforcement learn-
ing method is compared to a conventional multi-layer percep-
tron (MLP) and a support vector machine (SVM). For this
we use 8 datasets from the UCI repository shown in Table I.
We will report the results with average accuracy and standard
deviations. We use 90% of the data for training data and 10%
for testing data. We have performed 1000 experiments per
method where each time new data-splits are used.

Experimental setup.Since the performances of the classi-
fiers depend heavily on the used learning parameters, we used

Dataset #Instances #Features #Classes
Hepatitis 155 19 2
Breast Cancer W. 699 9 2
Ionosphere 351 34 2
Ecoli 336 7 8
Glass 214 9 7
Pima Indians 768 8 2
Votes 435 16 2
Iris 150 4 3

TABLE I: The 8 datasets from the UCI repository that are
used.

many experiments to fine-tune these. For all datasets we used
N classifiers trained with the one-versus-all method, where
N is the number of classes, except for the SVM case with 2
classes, where only 1 classifier is trained. We used a neural
network with sigmoid activations in the hidden units and a
linear output unit. For the conventional neural network we also
used another error function than the normal squared error one.
Although we minimize the squared error, the backpropagation
algorithm is not used on an instance where the output of the
network times the target output is larger than one. So ifyi

denotes the output of a neural network on instancexi and the
correct output is denoted withyc ∈ {−1, 1}, then no update
to the weights is made ifyiyc > 1. This makes sure we do not
constrain the output to an absolute value of one if the outputis
already correctly predicted and this improved the results of the
standard MLP. For the SVM we used RBF kernels and the best
values forγ and C were found with grid-search with values
C ∈ {2−5, 2−3, . . . , 215} and γ ∈ {2−15, 2−13, . . . , 23}. All
inputs were normalized between -1 and 1. To find the learning
parameters we computed the average testing accuracy on all
available data. After finding the best parameters, we used them
to get the average accuracies using 1000 new experiments.
This was used with all methods.

Dataset #Hidden units lr. α #Examples
Hepatitis 5 0.009 20000
Breast Cancer W. 8 0.011 80000
Ionosphere 11 0.007 50000
Ecoli 6 0.003 100000
Glass 6 0.007 50000
Pima Indians 5 0.002 100000
Votes 5 0.006 2500
Iris 4 0.008 70000

TABLE II: The best found parameters for the neural network
trained with backpropagation.

The best learning parameters of the MLP are shown in
Table II. Note that we also optimized the number of presented
training examples, which works like an early stopping rule.
The best found learning parameters for the reinforcement
learning method that also uses MLPs are shown in Table III.
To decrease the number of learning parameters, we fixed the
learning-rate of the actor to be equal to the learning-rate of the
critic. Furthermore, the MLP for the state value function and
all action preference value functions had the same number of
hidden units.

Experimental results. The results on the 8 datasets are
shown in Table IV. Although the differences in accuracies of



Dataset #hu α h γ τ #Exams
Hepatitis 4 0.004 6 0.9 0.04 35000
Breast Cancer W. 8 0.005 6 0.9 0.04 50000
Ionosphere 11 0.03 7 0.9 0.06 100000
Ecoli 7 0.005 8 0.9 0.06 100000
Glass 8 0.005 8 0.97 0.04 50000
Pima Indians 5 0.002 7 0.9 0.06 100000
Votes 6 0.005 5 0.9 0.06 55000
Iris 4 0.03 6 0.93 0.05 65000

TABLE III: The best found parameters for the proposed RL
method that combines Max-Min ACLA with neural networks.

the three methods are not large, the reinforcement learning
method is able to achieve a higher average accuracy than the
normal MLP. Furthermore it wins on 2 datasets against the
MLP and loses only on one dataset. Against the SVM, the RL
method wins 2 times and loses on 2 datasets.

Dataset MLP SVM RL + MLP
Hepatitis 84.3± 8.6 81.9± 9.6− 84.3± 9.2
Breast Cancer W. 97.0± 1.9 96.9± 2.0 96.9± 2.0
Ionosphere 91.1± 4.7− 94.0± 2.5+ 92.8± 4.9
Ecoli 87.6± 5.6+ 87.0± 5.6 87.0± 5.7
Glass 64.5± 11.2− 70.1± 10.2+ 66.5± 11.0
Pima Indians 77.4± 4.6 77.1± 4.5 77.4± 4.6
Votes 96.6± 2.1 96.5± 2.8 96.6± 2.7
Iris 97.8± 3.8 96.5± 4.8− 97.7± 4.3

Average 87.0 87.5 87.4
Wins/Losses 1-2 2-2

TABLE IV: The accuracies on the 8 datasets of a normal
MLP, a support vector machine (SVM), and our reinforcement
learning method. +/- means significant (p = 0.05) win/loss
compared to the RL method.

Note that our reinforcement learning algorithm uses much
more parameters in total when we also consider the action net-
works. However, since only the state value functions are used
for classification, the number of parameters in the classifier
is comparable to the other methods. Although RL methods
in general do not overfit for control problems, we noticed
that overfitting could happen to our reinforcement learning
algorithm when we trained the agents too often on the same
examples. To cope with that, we used a maximal number of
training epochs.

V. D ISCUSSION ANDEXTENSIONS

In this section we will first answer the research questions
and then a number of possible extensions to the proposed
method is described.

• Question: How can value-function based RL algorithms
be used for solving classification tasks?
Answer: We have explained a novel framework that
can be applied to turn a classification problem into a
classification Markov decision process. Furthermore, we
have described how the Max-Min ACLA algorithm can
be used to solve the MDP modeling the classification
problem.

• Question: How does this novel approach compare to
well known machine learning algorithms such as neural
networks and support vector machines?

Answer: The RL method slightly outperforms neural
networks while a similar representation is used. The
performance is about equal to support vector machines.
More experiments need to be performed to compare the
different methods to examine on what type of problems
the RL approach performs best.

• Question: What are the advantages and disadvantages of
the proposed approach?
Answer: A big advantage is that there are many possible
extensions of our approach, basically we opened a whole
new line of possible research. Disadvantages of our
method are that it needs more learning parameters to
tune, and that training time of our current method is much
longer than the time to train conventional classifiers.

We will now describe a number of extensions to our method.
First of all, we can use different function approximators than
MLPs. For example, we intend to study the performance
of our method when support vector machine regression is
used for approximating the value functions. Furthermore, other
reinforcement learning algorithms such as the AIXI agent
[11], [12], the success-story algorithm [13], [14], or the Gödel
Machine [15] can be used in our framework that have better
theoretical properties or need less design constraints. Itmay
also be worthwhile to look at ensembles of reinforcement
learning algorithms [16], where ACLA is for example com-
bined with QV-learning and Actor-Critic methods.

Speed up of our method.One important improvement that
we will make is to increase the speed of action selection.
Since for an input vector with lengthm we have2m action
networks, the algorithm is quite slow for training. This can
be considerably improved by different methods: (1) We can
use a tree representation where the actions are at the leaves
and binary action decision nodes in the tree are trained to
select a node or action from the left or right branch. This will
make the number of action networks that need to be evaluated
log2 m + 1, which is a considerable speed up. Care needs to
be taken, however, that this improvement is not at the cost of
the accuracy. (2) We can use the CACLA algorithm [17] to
output a single action. The CACLA algorithm is a continuous
action reinforcement learning algorithm that extends ACLA.
When rounding the continuous action to the nearest allowed
integer [3], action selection only requires evaluating 1 action
network.

Continuous mental representations.Another extension is
the use of more complicated buckets. In principle any kind of
memory can be used, e.g., a 2D grid where elements interact
can be used or actions representing complex operators on the
input can also be used. Genetic programming [18], [19] can
also be used for making complex mental representations. We
will first concentrate on using the CACLA algorithm to set
continuous values in the buckets and explore different reward
functions to deal not only with zeros, but with arbitrary values.

Feature extraction from images with RL. A final possible
extension is to use RL agents to extract features from images
for image categorization problems such as arising in handwrit-
ing, face, and object recognition. Feature extraction for such



problems is very important in order to obtain invariant repre-
sentations of the input images. Most current approaches deal
with this by having particular box-filters or lines in particular
directions. These methods can be combined with maximum
or averaging operators to compute e.g. translation invariant
features. Although they can be used quite successfully for
different image recognition problems, they are quite static.
Instead, reinforcement learning agents can be put at particular
positions in a grid and can learn to compute particular values
describing features around that point in the image. Such agents
could learn to navigate to find particular curvatures of orien-
tation gradients, or could focus on finding particular colorful
object-parts. Applying RL for feature extraction might play an
important role for adding attention to particular elementsin an
image, and would be very interesting to study as well. Such
agents could be part of the current proposed framework, but
could also only be applied for feature extraction after which
conventional machine learning algorithms can be used to train
classifiers mapping the extracted features to class labels.

VI. CONCLUSION

A novel framework is described in this paper that allows
RL algorithms to train classifiers. Instead of minimizing a
particular loss function to adjust the parameters of some clas-
sifier, a value-function based RL agent learns value functions
from its interaction with the input. There are many possible
extensions of the basic approach described in this paper.
Next to evaluating these extensions, we want to have a better
theoretical understanding of the utility of using RL algorithms
to solve classification problems. The current method does
not directly use the created mental representations of the
input and we will examine whether this would not give
better performances, especially when more complex mental
representations can be formed. It will also be interesting to
combine the RL method with SVM regression that may lead
to an improved generalization power. We also want to speed
up the proposed algorithm to enable applying it to text, face,
and object recognition datasets. For these applications, we also
want to focus on RL methods that learn to extract informative
features from the images. This can be done by letting the
agents search for information in an image and output values
that describe the contents of visited regions in the images.

REFERENCES

[1] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,”Journal of Artificial Intelligence Research, vol. 4,
pp. 237–285, 1996.

[2] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction.
The MIT press, Cambridge MA, A Bradford Book, 1998.

[3] H. van Hasselt and M. Wiering, “Using continuous action spaces to solve
discrete problems,” inProceedings of the International Joint Conference
on Neural Networks (IJCNN 2009), 2009, pp. 1149–1156.

[4] P. J. Werbos, “Advanced forecasting methods for global crisis warning
and models of intelligence,” inGeneral Systems, vol. XXII, 1977, pp.
25–38.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learninginternal
representations by error propagation,” inParallel Distributed Processing.
MIT Press, 1986, vol. 1, pp. 318–362.

[6] V. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag,
1995.

[7] C. Blake, D. Newman, and C. Merz, “UCI repository
of machine learning databases,” 1998. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[8] M. Wiering and H. van Hasselt, “Two novel on-policy reinforcement
learning algorithms based on TD(λ)-methods,” inProceedings of the
IEEE International Symposium on Adaptive Dynamic Programming and
Reinforcement Learning, 2007, pp. 280–287.

[9] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Cambridge, England, 1989.

[10] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,”Machine Learning, vol. 3, pp. 9–44, 1988.

[11] M. Hutter, Universal Artificial Intelligence: Sequential Decisions based
on Algorithmic Probability. Berlin: Springer, 2004.

[12] J. Poland and M. Hutter, “Universal learning of repeated matrix games,”
in Proceedings of the 15th Annual Machine Learning Conferenceof
Belgium and The Netherlands (Benelearn’06), Ghent, 2006, pp. 7–14.

[13] J. Schmidhuber, J. Zhao, and N. Schraudolph, “Reinforcement learning
with self-modifying policies,” in Learning to learn, S. Thrun and
L. Pratt, Eds. Kluwer, 1997, pp. 293–309.

[14] J. Schmidhuber, J. Zhao, and M. Wiering, “Shifting inductive bias with
success-story algorithm, adaptive levin search, and incremental self-
improvement,”Machine Learning, vol. 28, pp. 105–130, 1997.

[15] J. Schmidhuber, “Ultimate cognitioǹa la G̈odel,” Cognitive Computa-
tion, vol. 1, pp. 177–193, 2009.

[16] M. Wiering and H. van Hasselt, “Ensemble algorithms in reinforcement
learning,” IEEE Transactions, SMC Part B, special issue on Adaptive
Dynamic Programming and Reinforcement Learning in Feedback Con-
trol, 2008.

[17] H. van Hasselt and M. Wiering, “Reinforcement learning in continuous
action spaces,” inProceedings of the IEEE International Symposium on
Adaptive Dynamic Programming and Reinforcement Learning (ADPRL
2007), 2007, pp. 272–279.

[18] J. H. Schmidhuber, “Evolutionary principles in self-referential learning,
or on learning how to learn: the meta-meta-... hook. Institut für Infor-
matik, Technische Universität München,” 1987.

[19] J. R. Koza,Genetic Programming II – Automatic Discovery of Reusable
Programs. MIT Press, 1994.


