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Abstract—We describe a new framework for applying rein- to particular values. These memory cells encode additional
forcement learning (RL) algorithms to solve classification tasks by information and can be used by the agent together with the
letting an agent act on the inputs and learn value functions. This original input vector to select actions.

paper describes how classification problems can be modeled using . .

classification Markov decision processes and introduces the Max- Although our framework is much broader, in qgr C%J”e”t'y
Min ACLA algorithm, an extension of the novel RL algorithm ~ Proposed method, we use RL for standard classification tasks
called actor-critic learning automaton (ACLA). Experiments are  as we will explain now. The agent has some working memory
performed using 8 datasets from the UCI repository, where our which is divided into two buckets consisting of memory cells
RL method is combined with multi-layer perceptrons that serve  gnq i receives the original input vector as input in its first

as function approximators. The RL method is compared to con-
ventional multi-layer perceptrons and support vector machines bucket B1, the perceptual buffer. The second bucket B2, the

and the results show that our method slightly outperforms the ‘attend’ buffer, is initially empty, and the third bucket B3
multi-layer perceptron and performs equally well as the support the ‘ignore’ buffer, initially contains a copy of the origih
vector machine. Finally, many possible extensions are describedinput. Now the agent can manipulate its buckets in two ways:
to our basic method, so that much future research can be done gjiner it copies the original input in the second bucket B2,
to make the proposed method even better. . - . . .
thereby effectively obtaining three copies of the input,itor
|. INTRODUCTION can delete the third bucket B3, thereby obtaining two clear
Reinforcement learning (RL) [1], [2] algorithms enable abuckets and the original input still in its first bucket. Aneag
agent to learn an optimal behavior when letting it intera¢epresenting a particular class should copy the inputs, and
with some unknown environment and learn from its obtaineapents representing other classes than the class of theegce
rewards. An RL agent uses a policy to control its behavidnstance, should clear the last two buckets. This objedsve
where the policy is a mapping from obtained inputs to actiongodeled in our framework using the reward function.
Reinforcement learning is quite different from supervised The reward function for a classification problem is class
learning where an input is mapped to a desired output gbel independent, but it is combined with an agent thaeeith
using a dataset of labeled training instances. One of tha méies to maximize or minimize rewards, reflecting whether
differences is that the RL agent is never told the optimabagt the input is of its category or not. In a binary classification
instead it receives an evaluation signal indicating thedgess task, it is possible for the agent to receive rewards foiirggtt
of the selected action. particular memory cells and punishment for setting other
In this paper a novel approach is described that useemory cells. Such a reward function can then be used for
reinforcement learning algorithms to solve classificatamsks. learning a value function that can be used for optimally
We are interested to find out how this can be done, whetlgglecting actions. In order to classify a new unseen inpat, w
this leads to competitive supervised learning algorithamg] can allow the agent to interact with it, and examine whether t
what possible extensions to the framework would be worteward intake is positive (for a positive class label) or thiee
investigating. Instead of the standard classification ggedn the reward intake is negative in order to classify an inpuhwi
which the input is directly propagated through the classifi@ negative class label. However, we propose a method that is
to the estimated class label, an agent is used that interamtsch faster for classifying new unseen inputs, that onlysuse
with the input by selecting actions and changing the inpthe state-value of the initial state vector describing gouin
representation. In this way, it is possible for the ageneth example that needs to be labeled.

a different or augmented representation of the input that ca We implemented this idea using a novel Max-Min extension
go beyond the information coded in the initial input vector. of the ACLA [3] algorithm that learns preference values for
Since reinforcement learning agents learn to interact wiglelecting actions and also a separate state-value fun@ion

an environment and have the goal to optimize the cumulatirgeracting with training instances, an intelligent agksarns
future discounted reward intake, we need to define the atiqrositive values for patterns belonging to its class, andtieg

of the agent and the reward function. In our proposed framealues for patterns that do not belong to it. Learning is done
work, the agent can execute actions that set memory cddlgacting on the two buckets and receiving rewards for ggttin



bucket cells. After the learning process is finished, theizalthe RL algorithms for smaller datasets from the UCI machine
of the initial state reflects the whole mental process ofngcti learning repository [7].
on the pattern, so that this value can be immediately usedThe idea of having the agent walk around on these datasets
for classifying novel unseen patterns. This makes testieg tand eat ink pixels is not possible anymore, but we will use
classifiers on new patterns just as fast as conventionalimecha representation that is close in spirit. First of all, anrage
learning algorithms, although training is slowed down hmsea receives as state vector three buckets. Each bucket has the
of the necessity to learn to apply an optimal action sequensame size as the input vectgt. The first bucket B1 is always
on the given inputs. a copy ofz® so that the agent is always allowed to see the
This paper tries to answer the following research questioractual input. The second bucket B2 is initially set to all &'sl
« How can value-function based RL algorithms be used féese 0's can be set by the agent to copies of elements of the
solving classification tasks? input vector. The third bucket B3 is initially set to a copytbé
« How does this novel approach compare to well knowtPut vector and these inputs can be set to 0's by actionseof th
machine learning algorithms such as neural networks [£gent. This means therefore that the length of the augmented

[5] and support vector machines [6]? input vector is three times the size of the original inputteec
« What are the advantages and disadvantages of the grgfthermore, the agent has actions to set the inputs in e la
posed approach? two buckets. For the ‘attend’ bucket B2 there is a separate

. . . N action for each cell that sets its value to the copy of the tinpu
Outline. We first describe how classification tasks can . , .
) e . vector at the same place. For the ‘ignore’ bucket B3 there is
be modeled in the Classification Markov Decision Process

(CMDP) framework in Section II. Then the Max-Min ACLA a separate action for each cell in the bucket and that sets its
algorithm is described in Sectionllll which is a new reirci®r value 0. Thus the proposed architecture implements a specifi

. ) ; . dynamic feature attention and selection scheme.
ment learning algorithm that has some desirable propdires Finallv th d function is cl ind dent and i |
our framework. After that experimental results on 8 datset inally the reward function Is class independent and 1S only

from the UCI repository [7] are presented in Section | _ased on the number of O’s in the last two buckets. Denote

In Section V, a discussion is given where the answers Q < z < 2m as the number of zeros in the last two buckets.

: . : . Then the reward emitted after each actionris= 1 — £
the research questions are given and possible extensmns%? . m
, g P ich is therefore between -1 and 1. Although the reward

our method are described. Finally, we conclude this paper | .. . .
Section VI Y pap function is class independent, the agent with the same akss

a training instance will select actions to maximize its aidd
rewards, whereas an agent of another class will selectractio
that minimize its obtained rewards.

II. MARKOV DECISIONPROCESSES FORCLASSIFICATION
TASKS

We will first formally m_odel the classification tasks that‘ xl‘ xz‘ Xs‘ x4‘ X5| 0 ‘ 0 ‘ 0 ‘ 0‘ 0| "
we intend to solve. Letz’ be an input vector of length
m and 3’ the target class belonging to this input. We are
provided with a dataseD = {(z',y'),..., (2", y™)} of
labeled examples. We will solve binary classification teekg
multi-class classification tasks in the experimental sectSo
yt €{1,...,N}, whereN is the number of classes. The goal
is to have the maximal accuracy on unseen testing exampléssl\ XZ\ X3\ X4\ X5| 0 \XZ\ 0 \ 0 \ 0| X1
after the dataset is split into training data and testing.dat

Now we will describe the Classification Markov Decision
Process (CMDP) framework that models the classificatiok taq xl‘ xz‘ x3‘ x4‘ x5| 0 ‘xz ‘ x3‘ 0 ‘ 0 | xl‘ 0 ‘ XS‘ 4 XS‘ Reward = 0.
as a sequential decision making problem. Although there are
many possibilities for this, we were inspired by the ideawf a _. ] . - . .
plying our method on handwritten text and object recognitioF'g' 1: “In this example, the original input vector con5|sts_ 0
tasks. The idea is to have different agents for all targeisela 5 inputs. The agent acts on the last two buckets for a_flxed
and to let them walk around in an image. If an agent is Walkinnumber of steps. If an action has been selected before, § doe

: S : . . t have an effect on the bucket cell the second time.
around in a training image that is of its own class, it shoul
not do anything. On the other hand, if an agent is walking
around in a training image of a different class, the agenulsho Figure 1 shows the framework where an agent interacts with
eat the ink pixels and in this way set them to white pixelsn input vector. Suppose the input vector is an image of g face
Although we have done some preliminary experiments withen an optimal face agent will make its three buckets full
our RL algorithms on the MNIST handwritten digits datasetith the same face. Another class agent, suppose a car agent,
and it works quite well, we will not report these results ifsth will empty the last bucket, and therefore will only keep the
paper, since the experiments take a lot of time and we were fiodt bucket with the face and the other buckets will become
able to optimize the learning parameters. Instead, we wél ucleared.

xz‘ x3‘ XA{ xs‘

‘ xl‘xz‘ XS‘ x4‘ x5| 0 ‘ XZ‘ 0 ‘ 0‘ O| xl‘ XZ‘ xs‘ xz{ XS‘ Reward = 0.

O‘ ><3‘ XA‘ X5‘ Reward = 0.




Now we will formally define the specific CMDP we useall action networks to select actions. Since there are ai 2ot
here: action networks, the training process is a facbrn slower

« S denotes the state-space. It is usually continuous and }Bpn ﬁlonxentlonfll bgckpr&pet\gatmn tra|(rj1|ng. tlr?' the disiars
an input vectorz® of lengthm the states’ € S has3m we Will show extensions that can speed up this process.

elements. The elements are divided into three buckets. 1. THE MAX-MIN ACLA A LGORITHM
Note thatS is determined by the classification dataset.
s¢ denotes the state-vector at timén a single epoch,
where an agent works on a single example.

« A denotes the action-space. There are in talactions
that set the respective bucket celis.denotes the action
selected at time-step

« The initial statesy, for an input vectorz® is s, =
(z',0,z") where the three buckets are all of size The
input vectorz? from which the initial state is constructed
is taken iteratively from the dataset.

We already noted that we use a single reward function that
is independent of the target class. However, during trgime
want to learn large output values for the agent that reptesen
the correct class for an instance and low values for the é&gent
with a wrong class. Furthermore, during testing we want to
have a fast algorithm that only works with the initial state

we use an extension of the Actor-Critic Learning Automaton
(ALCA) [3], although we could also have used QV-learning

o The transition functionT' is deterministic and copies [8] ar other actor-critic algorithms [2]. The reason is tiimse

the previous state and executes the action. If the actigléf’sci)lr 'thl:';z Igiglare:miiepg]atsr sg?;ﬁ;alglegﬁt?rggn'sx]vfe cttert]r;no
satisfies) < a; < m then the new state, ., = O(s¢, at) Y 9 9 ' y

where the operatop executes the effect of the action asneed to select an action. This has two disadvantages: (1)

) h . when selecting an action for a test example, it is difficult to
follows: the (m + a;)" bucket cell is set to a copy of . oyt knowing the label beforehand, and (2) when
the al” element of the input vector. If the action satisfie%I 9 ' (2)

m < a; < 2m then the new state,,; — O(s, a;) where e algorithms needs to select an action for test examgles, i

the operatot) executes the effect of the action as foIIowsk.)ecomes much slower for classifying new data then just using

the (m + a,)* bucket cell is set to 0. th(\ENSetate_”V?]lcl)JeS ?;;Zitm:gll_:taféLA ses an agemC;

« The reward function depends on the number of zeros apdr V;’: | W FI): rthermor it u tate v Ig f nlti N
is given byr; = 1 — = wherez is the number of zeros or €ach ciass. Furinermore, 1t uses a state value functio
in the stafe-vector. Vi(:) and different preferencé’—'functlons for selectlng each

. A discount factory is used. action a: P?(-). For representing these value functions we

« A maximal number of actions in an epoch is used th%ﬁszt.n;rl:Itngfraﬂe;i?gzogs V;’t}'g::nzr(;a ttrhaénzdevxltt?e?:?kfsmth
denotes the horizon. gauon. lon is p : g iV

« A flag is used for training that indicates whether th ollowing information: (;, at, ¢, s:+1). The agent computes

agent represents the same class as the class of the tr. Iﬁ_t.emporal difference (TD) errd [10] as follows. Ift < h

ing instance. This determines whether the agent sho 5 — v v
maximize or minimize its reward intake. t =7 +Vilserr) = Vilse)

During the learning process the class agents interact whtse ift = h:
the training examples, where examples are presented one at d¢ = ¢ — Vil(se)
a time. Each epoch a new training example is given to,@TD-update [10] is made to the value function:
class agent. After that the next class agent receives the sam
example. They perform a numbérof actions on it and learn Vi(se) = Vi(se) + ady

from the observed transitions and obtained rewards. After a . »
number of epochs is finished, the agents can be testedWHereO‘ denotes the learning rate of the critic. Then the

unseen testing images. During testing, the agents do not tatget value for the actor of the selected action is computed

and therefore do not receive rewards. They have observed @%e/llOWs:

effects of their actions on similar original state-vectegsand If 6,>0 G=1
can immediately compute the value of the new instance. The
4 L Elself 6, <0 G=0

class agent which has the largest value for this initialestat
outputs its represented class. After which the valueG is used as a target for learning the

Since we are working with continuous, high-dimensionalction networkP;* (-) on the state-vectos, with backpropa-
state-spaces, we need to use a function approximator. gation.
our current research we have used a multi-layer perceptrorSo far we described the ACLA algorithm and we will now
(MLP) [4], [5]. Compared to training a normal MLP with explain the Max-Min ACLA algorithm. The whole idea of
backpropagation [4], testing new instances costs almast tkarning high values for the right class and low values far th
same amount of time. However, during the learning procesgrong class(es) lies in the used exploration policy. Not th
all class agents have to interact with the input foisteps. ACLA is an on-policy learning method. Furthermore, itsilit
Furthermore, the class agents need to compare the outputstafe value depends on the actions that change the indi@l st

vector and does not need to select actions. For these reasons



and obtain rewards. Now suppose that the agéfif has to ot Hinstances #ealires| #Classes
select actions for clasg = ¢ during training, so it needs to Breast Cancer W. 699 9 2
maximize its reward intake in order to learn high state v&lue lonosphere o = 2
In this case the agent uses the conventional Boltzmann or Sof Glass 214 9 7
max exploration policy: \F;(')Teas Indians 47122 12 3
P (s0)/7 Iris 150 4 3

Pla) = S ePr(se)/7 TABLE I: The 8 datasets from the UCI repository that are

Where 7 is the temperature. If the agertC; has to learn used.

values for another clagg# ¢ then it selects actions with the

Min Boltzmann exploration policy: many experiments to fine-tune these. For all datasets we used
e—Pi(se)/T N classifiers trained with the one-versus-all method, where

= W N is the number of classes, except for the SVM case with 2

. o b ) classes, where only 1 classifier is trained. We used a neural

In this way, it will try to obtain negative rewards for wrongnenyork with sigmoid activations in the hidden units and a

classes and these negative rewards will then be passed by Rsar output unit. For the conventional neural network vee a
learning to the value of the initial state. Another optionulb ;seq another error function than the normal squared ermr on
be to set the value ofr as described above to 1 for actionsthough we minimize the squared error, the backpropagatio
that have negative TD-errors, and to O for positive TD-&r0raigorithm is not used on an instance where the output of the
This would result in basically the same algorithm. network times the target output is larger than one. Sg; if
Finally, for testing purposes we compute all valuéso) denotes the output of a neural network on instaricand the
for all classes and agentsiC; belonging to these classes. Thg g rect output is denoted with. € {—1,1}, then no update
input vector is plassified with the predicted clagsbelonging 4 the weights is made if,y. > 1. This makes sure we do not
to the agent with the largest state value: constrain the output to an absolute value of one if the oligput
yp = argmax V;(s) already correctly predicted and this improved the resulth®
¢ standard MLP. For the SVM we used RBF kernels and the best
There are several reasons why this set-up is useful. Firstvaflues fory and C were found with grid-search with values
all, it allows us to have fast classification of new instangds ¢ ¢ {27° 273 ... 21} andy € {271°,2713 ... 23}, All
that is needed is to compute the state-value functions of tinputs were normalized between -1 and 1. To find the learning
initial stateV;(so) and assign the instance to the agent havirgarameters we computed the average testing accuracy on all
the largest state-value. This would not be possible if weld/ouavailable data. After finding the best parameters, we usam th
have used a reward function that is class dependent, eg., @n get the average accuracies using 1000 new experiments.
that emits positive rewards when an agent not representinigis was used with all methods.
the class of the instance sets bucket cells to 0. In that case,

P(a)

P . Dataset #Hidden units | Ir. o | #Examples
the initial vaIu'e of this agent could also be very !arge, gnd Hepaiits 5 10.000 0000
direct comparison of state-values would become impossible Breast Cancer W. 8 [ 0011 80000

o _ [ lonosphere 11 | 0.007 50000
Now it is also clear Wh)_/ we cannot use Q-learning: it needs_to Ecol = 5003 50000
select at least one action to get a value. However, for gstin Glass 6 | 0.007 50000
examples it is unknown whether the class agents need td selec \F;gt“ez Indians g 8-882 10§§gg
a maximizing or minimizing action. A second advantage of s 2 1 0.008 70000

our method is that we can use a single reward function fqr, ]
all datasets that is symmetric around 0. We experimentdd wj _BLE ”'_ The best found_parameters for the neural network
ned with backpropagation.

some different reward functions, but the one we use now seeﬁ?s!

to work best. . )
The best learning parameters of the MLP are shown in

IV. EXPERIMENTS Table Il. Note that we also optimized the number of presented

In this section the performance of our reinforcement leartraining examples, which works like an early stopping rule.
ing method is compared to a conventional multi-layer percephe best found learning parameters for the reinforcement
tron (MLP) and a support vector machine (SVM). For thitearning method that also uses MLPs are shown in Table IlI.
we use 8 datasets from the UCI repository shown in TableTio decrease the number of learning parameters, we fixed the
We will report the results with average accuracy and stahddearning-rate of the actor to be equal to the learning-ratae
deviations. We use 90% of the data for training data and 108Gtic. Furthermore, the MLP for the state value functiordan
for testing data. We have performed 1000 experiments pat action preference value functions had the same number of
method where each time new data-splits are used. hidden units.

Experimental setup. Since the performances of the classi- Experimental results. The results on the 8 datasets are
fiers depend heavily on the used learning parameters, we uskdwn in Table IV. Although the differences in accuracies of



32?;21}5 #hff 0_08‘4 % oZa 0.074 #igﬁ,?.“g Answer: The RL method slightly outperforms neural
Breast Cancer W|| 8 | 0005 | 6 | 0.9 [ 004 [ 50000 networks while a similar representation is used. The
ionosphere LR RN A A R performance is about equal to support vector machines.
Glass 8 | 0.005 | 8 | 0.97 | 0.04 | 50000 More experiments need to be performed to compare the
Dima Indians > 1 oo L 91000 1O different methods to examine on what type of problems
iris 2| 003 6] 093] 0.05] 65000 the RL approach performs best.

Question: What are the advantages and disadvantages of
the proposed approach?

Answer: A big advantage is that there are many possible

extensions of our approach, basically we opened a whole
new line of possible research. Disadvantages of our
method are that it needs more learning parameters to
tune, and that training time of our current method is much

longer than the time to train conventional classifiers.

TABLE IIl: The best found parameters for the proposed RL °
method that combines Max-Min ACLA with neural networks.

the three methods are not large, the reinforcement learning
method is able to achieve a higher average accuracy than the
normal MLP. Furthermore it wins on 2 datasets against the
MLP and loses only on one dataset. Against the SVM, the RL

method wins 2 times and loses on 2 datasets. _We will now describe a _number of ex_tensmns to_ our method.
First of all, we can use different function approximatorarth
Dataset MLP SVM | RL +MLP MLPs. For example, we intend to study the performance
Hepatitis 84.3+ 8.6 819+ 9.6~ 843+ 9.2 H H :
Broast Cancer Wi 970119 5659T 20 T 969L 20 of our method .whe_n support vector_ machine regression is
lonosphere 911+ 47 | 940+ 257 | 928+ 49 used for approximating the value functions. Furthermotiggio
Ecoli 87.6+ 5.6 87-0i2f 87.04+ 5.7 reinforcement learning algorithms such as the AIXI agent
Glass 645+ 11.2 70.1+ 10. 66.5+ 11.0 . -
Bima Thdians AT 45 1T A5 7741 46 [11], [_12], the success-story_ algorithm [13], [14], or théda|
Votes 966+ 2.1 965+ 2.8 | 966F 2.7 Machine [15] can be used in our framework that have better
Iris 978+ 38 | 965+48 | 97.7+43 theoretical properties or need less design constraintait
[ Average T 87.0 | 87.5 | 87.4 ]

| also be worthwhile to look at ensembles of reinforcement

learning algorithms [16], where ACLA is for example com-
TABLE IV: The accuracies on the 8 datasets of a normgfned with QV-learning and Actor-Critic methods.

MLP, a support vector machine (SVM), and our reinforcement gpeed up of our method One important improvement that
learning method. +/- means significant & 0.05) win/loss e will make is to increase the speed of action selection.
compared to the RL method. Since for an input vector with length, we have2m action
networks, the algorithm is quite slow for training. This can
Note that our reinforcement learning algorithm uses mudfe considerably improved by different methods: (1) We can
more parameters in total when we also consider the actien nate a tree representation where the actions are at the leaves
works. However, since only the state value functions arel usend binary action decision nodes in the tree are trained to
for classification, the number of parameters in the classifigelect a node or action from the left or right branch. Thid wil
is comparable to the other methods. Although RL methodsake the number of action networks that need to be evaluated
in general do not overfit for control problems, we noticetbg, m + 1, which is a considerable speed up. Care needs to
that overfitting could happen to our reinforcement learninge taken, however, that this improvement is not at the cost of
algorithm when we trained the agents too often on the sartie accuracy. (2) We can use the CACLA algorithm [17] to
examples. To cope with that, we used a maximal number @fitput a single action. The CACLA algorithm is a continuous
training epochs. action reinforcement learning algorithm that extends ACLA
When rounding the continuous action to the nearest allowed

integer [3], action selection only requires evaluating ficec
In this section we will first answer the research questiopgtwork.

and then a number of possible extensions to the propose@ontinuous mental representations Another extension is

| Wins/Losses I 12 | 2-2 |

V. DISCUSSION ANDEXTENSIONS

method is described. the use of more complicated buckets. In principle any kind of
« Question: How can value-function based RL algorithmsnemory can be used, e.g., a 2D grid where elements interact
be used for solving classification tasks? can be used or actions representing complex operators on the

Answer: We have explained a novel framework thainput can also be used. Genetic programming [18], [19] can
can be applied to turn a classification problem into also be used for making complex mental representations. We
classification Markov decision process. Furthermore, weill first concentrate on using the CACLA algorithm to set
have described how the Max-Min ACLA algorithm carcontinuous values in the buckets and explore different rgwa
be used to solve the MDP modeling the classificatioiunctions to deal not only with zeros, but with arbitrarywes.
problem. Feature extraction from images with RL. A final possible

« Question: How does this novel approach compare textension is to use RL agents to extract features from images
well known machine learning algorithms such as neurfdr image categorization problems such as arising in haitdwr
networks and support vector machines? ing, face, and object recognition. Feature extraction farhs
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