
Reinforcement Learning of a Pneumatic Robot Arm Controller

Sander Maas S.M.P.Maas@student.tue.nl

Eindhoven University of Technology, the Netherlands

Marco Wiering Marco@cs.uu.nl

Intelligent systems group, Utrecht University, the Netherlands

Boudewijn Verhaar Boudewijn.Verhaar@philips.com

Philips Applied Technologies, the Netherlands

Abstract
We applied Reinforcement Learning (RL) on
a real robot arm actuated by two pneumatic
artificial muscles that expose a highly non-
linear behaviour. To facilitate learning, we
developed an empirical model based on real
robot observations. Using the learned simu-
lation model, reinforcement learning was able
to quickly learn good robot controllers.

1. Introduction

Advances in Artificial Intelligence have drawn the at-
tention of Philips Applied Technologies. In the con-
text of the Home Robotics Project, the merits of RL
methods on difficult control problems are evaluated.
To gain stronger evidence of their performance, the
methods are benchmarked on a real robot arm. This
arm is actuated by two pneumatic artificial muscles
that expose a highly non-linear behaviour.

The problem is stated as follows. A robot arm with one
degree of freedom has been constructed. The arm is
actuated by two pneumatic artificial muscles, so-called
McKibben actuators. Together they determine the po-
sition of the arm. We say the system is overactuated.
See Figure 1 for a graphical overview.

Muscles. One of the muscles’ desirable properties is
their analogy with biological muscles, in terms of con-
traction rate and force. However, the muscles are hard
to control, due to their highly non-linear behaviour.

Control problem. The muscles are controlled by
adapting the air pressure inside the muscles. Inflation
causes the muscle to contract, resulting in a higher
pull force. Binary valves allow the controller to change
the air pressure. These valves allow three possible ac-
tions per muscle: putting air in, letting air out or keep

muscle

muscle

hinge
valve

valve

Figure 1. Schematic overview of the robot arm.

the amount of air unchanged. Since two muscles are
controlled simultaneously, this results in nine possible
combined actions at every timestep.

The state of the robot arm is monitored by three sen-
sors: one pressure sensor per muscle and one poten-
tiometer that measures the arm’s angle.

The goal of the controller is to bring the arm as fast as
possible in the desired position, ending with a velocity
near zero.

2. Controller

We use Q-learning (Watkins, 1989) with neural net-
works as function approximators to solve the control
problem. Every 30 ms we read the sensors and let the
RL agent choose one of the nine possible actions. An
executed action is rewarded if it leads to a goal state,
otherwise it is punished. An episode is cut off if the
agent does not reach a goal state within 200 actions.



Problems. Applying the RL agent directly to the
robot arm proved to be troublesome. We identified
three main problems: (1) It takes too much time, (2)
The state is not known, and (3) Shaping is necessary.

The state is not known. The most recent sensor
values alone do not contain enough information for the
agent to base its action decisions on. This is due to the
complexity of the system. For example, the air pipes
impose a delay on the air flow, leading to pressure
drops and pressure build ups. We need to know how
many sensor values to include in the state.

Shaping is necessary. The eventual goal is to have
a fast controller that is able to reach any goal angle,
starting from any arbitrary state. Using a trial-and-
error approach in a big continuous state space dimin-
ishes the probability of reaching a desired goal angle
to almost zero. We want a way to relief the problem.
For example, start with states close to a goal angle
and gradually increase the difficulty. However, such
an approach is impossible on a real robot arm since
we have no controller yet.

3. Learning from a simulation model

A solution to the above problems is to construct a
simulation model and learn by interacting with this
model. Designing a model would be an option, how-
ever, the behaviour of the McKibben actuators is very
difficult to model (Chou & Hannaford, 1996). More-
over, the use of system knowledge is contrary to our
research aim. Therefore we focus on learning a simu-
lation model from empirical data (?).

General idea. First, we store all experiences with
the robot arm in a database. That is, all sequences
of observed sensor values and executed actions. Next,
we decide how many sensor values are included in the
state. Once this is defined, we fit a function on the
database. The input set of this function fit consists of
all (state, action) pairs and the target set consists of
the corresponding sensor values that were observed at
the next timestep.

Quality and noise. The fit on the database can be
performed by any function approximator. We use a
feedforward neural network. By comparing the func-
tion fit with the database, we can assess the quality
of the fit. The quality analysis shows whether or not
the (state, action) pairs contain enough information
to enable a good prediction for the next sensor values.
Our analysis shows that the recent sensor values alone
are not sufficient to enable a good prediction. This
is an important result. If a powerful function fitter
performs poorly, it is very strong evidence that this

state will not enable any RL agent to reliably base its
actions on. Extending the state with previous sensor
values proved to be the solution.

The insertion of noise to the simulation’s predictions
might improve the transfer to the real system signifi-
cantly (Gomez, 2003). In our work we use our analysis
to base the amount of noise on.

Shaping. A simulation allows to instantly select the
agent’s state. This makes shaping possible. Initially
we choose easy states. Depending on the agent’s per-
formance, we gradually confront the agent with more
challenging states.

4. Results

The construction of the empirical simulation solved
our three main problems. We achieved faster learning
rates, a good state representation and it allows for
shaping. Our experiments show successful transfer to
the real robot arm. The use of the simulation makes
the whole learning cyclus extremely fast. It takes two
hours to fill the database and fifteen minutes to fit
a simulation and train the agent. In our experiments,
about 20,000 episodes are necessary to train the agent.
The controller typically achieves a goal state within
one second on the robot arm.

Of course, there are drawbacks as well. One serious
drawback is gathering a representable part of the state
space. This is not possible on general problems. Fur-
thermore, this also implies that the method may not
be very scalable to higher dimensional state spaces.
Future work will adress scalability issues to multiple
joints.

References

Atkeson, C., & Schaal, S. (1997). Robot learn-
ing from demonstration. Proceedings of the Four-
teenth International Conference on Machine Learn-
ing (ICML’97) (pp. 12–20).

Chou, C.-P., & Hannaford, B. (1996). Measurement
and modelling of mckibben pneumatic artificial mus-
cles. IEEE Transactions on Robotics and Automa-
tion, 12, 90–102.

Gomez, F. J. (2003). Robust non-linear control through
neuroevolution. Doctoral dissertation.

Watkins, C. J. C. H. (1989). Learning from delayed re-
wards. Doctoral dissertation, King’s College, Cam-
bridge, England.


