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Abstract. Data augmentation plays a crucial role in increasing the
number of training images, which often aids to improve classification
performances of deep learning techniques for computer vision problems.
In this paper, we employ the deep learning framework and determine the
effects of several data-augmentation (DA) techniques for plant classifica-
tion problems. For this, we use two convolutional neural network (CNN)
architectures, AlexNet and GoogleNet trained from scratch or using pre-
trained weights. These CNN models are then trained and tested on both
original and data-augmented image datasets for three plant classification
problems: Folio, AgrilPlant, and the Swedish leaf dataset. We evaluate
the utility of six individual DA techniques (rotation, blur, contrast, scal-
ing, illumination, and projective transformation) and several combina-
tions of these techniques, resulting in a total of 12 data-augmentation
methods. The results show that the CNN methods with particular data-
augmented datasets yield the highest accuracies, which also surpass pre-
vious results on the three datasets. Furthermore, the CNN models trained
from scratch profit a lot from data augmentation, whereas the fine-tuned
CNN models do not really profit from data augmentation. Finally, we ob-
served that data-augmentation using combinations of rotation and dif-
ferent illuminations or different contrasts helped most for getting high
performances with the scratch CNN models.

Keywords: Plant Classification, Data Augmentation, Deep Convolu-
tional Neural Networks

1 Introduction

Plant classification using machine learning and computer vision algorithms is
concerned with categorizing plant images into identifiable groups. This may help
people to know for example the name of a tree they encounter based on a picture
from a leaf of the tree. The classification problem can be challenging because
of issues related to a high inter-class similarity, intra-class diversities, possible
variations of complex backgrounds, and color and illumination variations within
the image dataset. Previous studies have employed several supervised learning
algorithms combined with hand-crafted features [6], [9], [17], [28] and global
features [2] for investigating plant identification. An extension of the use of the



hand-crafted features is the combination of geometric-based features with a prob-
abilistic neural network for classifying different classes of the Foliage dataset [7].
The recent advances in deep learning [5] have led to some big successes in several
plant recognition studies [3], [4], [14]. The authors in [14] have investigated the
use of the famous CNN architectures AlexNet [8] and GoogleNet [25] for plant
classification. Moreover, the research in [4] considered the previous architectures
and VGGNet [22] in their plant classification task. Generally, CNN architec-
tures consist of many layers and have millions of parameters in the network [10].
Therefore, they need large datasets during the learning process.

Several works [4], [13], [20] have shown that increasing the number of images
in the training set with data-augmentation (DA) techniques is useful to reduce
overfitting and improve the overall performance of the CNN models. The fun-
damental idea is that the object of interest in an image will not change its class
if the image is somewhat changed using a particular image-processing opera-
tion. Data augmentation can be performed in many ways, e.g. using translation,
rotation, change in illumination, and color casting and processed in two stages:
off-line and online [21]. Off-line augmentation involves an increase in the number
of training images before the training starts, while the online stage increases the
number of image appearances during the training process. The authors in [11]
performed off-line augmentation by rescaling the training images into three dif-
ferent sizes and cropped them into smaller-sized images and combined this with
horizontal flips for creating the augmented images during training. The leaf clas-
sification system in [23] employed three data-augmentation techniques: affine
and perspective transformation, and rotation during the training stage. How-
ever, there has been little research to investigate the effects of many different
single and combined data-augmentation methods such as combining different
pose and illumination variants, in order to determine if this helps the CNNs to
obtain significantly better performances.

Contributions: In this paper, we examine the effects of different data-
augmentation techniques using two off-the-shelf CNN techniques: AlexNet and
GoogleNet, which we train from scratch or using pre-trained weights. For this,
we use three different image datasets of plants and we evaluate the CNNs on
the original datasets, the datasets obtained using a single DA technique, and the
datasets obtained using several combinations of DA techniques. Note that the
DA techniques are only applied on the training data, therefore this results in 12
training set variants for the three plant recognition datasets. The results show
that when the CNN methods are trained from scratch, the use of DA techniques
is very effective to obtain higher performances. Especially combinations of the
rotation and illumination DA techniques or rotation and contrast are most use-
ful for the considered datasets. For the fine-tuned CNN models, the gains of DA
techniques are much smaller, although they helped to get the best results, which
are also better than previous results on the three plant datasets.

Paper Outline. The rest of the paper is organized as follows. Section 2
covers details of the three plant datasets used in this study and the different
data-augmentation techniques. The CNN methods and experimental settings



are described in section 3. The results are shown and discussed in section 4.
Finally, we draw a conclusion and recommend future work in section 5.

2 Datasets and Data-Augmentation Techniques

In this section, we describe the three plant datasets and the data-augmentation
techniques which are used in the experiments. In Figure 1, we show some exam-
ples of images within the datasets.

2.1 Datasets

The Folio Dataset: Folio [16], a relatively small dataset, consists of 637 leaf
images from 32 species. Each class contains approximately 20 images (three
images are missing from the initial work of [16]). All images were taken under
daylight on a plain background. The first classification system for this dataset
used shape features and a color histogram with a k-nearest neighbor classifier [16]
and reported an accuracy of 87.3%. The most recent study in [19] employed CNN
techniques applied on the original images. The best CNN architecture obtained
a high accuracy of 97.7%. We used the same train/validation/test splits as in [19]
with a ratio of 70:10:20.

The AgrilPlant Dataset: The AgrilPlant dataset was presented in [19] and
it consists of 3,000 plant images from 10 classes: apple, banana, grape, jackfruit,
orange, papaya, persimmon, pineapple, sunflower, and tulip. Each class consists
of 300 images. The AgrilPlant dataset faces some challenges due to the following
reasons: 1) a dissimilarity of plants within the same class, for example, there
are varieties of shape and color of tulips, or there are several colors of apples,
2) a similarity among some classes, for example, apple, orange, and persimmon
images consist of similar shapes and colors, and 3) the complex backgrounds in
most of the images. We adopted the same dataset splits as previously used in [19]
with a ratio of 70:10:20 for train, validation, and testing sets, respectively.

The Swedish Dataset: The Swedish dataset [24] contains 1,125 plant leaf im-
ages on a plain background of 15 different Swedish tree species, with 75 images
per class. The earlier research in [24] combined simple features such as moments,
area and curvature and reported an accuracy of 82%. To the best of our knowl-
edge, the study in [26] yielded the highest accuracy of 99.5%. This was achieved
by combining shape, color, and Haralick features.

The authors in [1] proposed CNN methods with horizontal flip augmentation
on this dataset and this obtained an accuracy of 99.1%. The challenge of classi-
fication on the Swedish dataset [15], [27], [29] is its high inter-species similarity
among several classes. Our study used the same dataset splits as in [24] with
randomly selecting 25 images per class for training and the rest for testing. Addi-
tionally, the training images were further dissected in the ratio 1:4 for validation
and training sets, respectively.



Fig. 1. Some example pictures from the three datasets in which we show one image
per class for some classes in the datasets. From the top row to the bottom row we can
see example images from the Folio, AgrilPlant, and Swedish datasets.

2.2 Data Augmentation

In this subsection, we describe the six different data-augmentation techniques
examined with the goal to increase the number of images within the training
set for each of the datasets discussed in the previous subsection. The data-
augmentation techniques we studied in this paper are:

Rotation: Our preliminary experiments were done on the AgrilPlant dataset.
Using different rotational angles that exist between 8◦ and 90◦, we observed that
using a tilt of an image with angle 30◦ obtained good performances. This is the
reason for the choice of using random image rotations with a rotation angle in
[-30◦, 30◦], with empty space padded with white pixels.

Blur: The goal of the blur augmentation is to de-emphasize differences in
adjacent pixel values. In this paper, the 2D Gaussian smoothing kernel is used.
The kernel size is set to 2×(d2σe)+1, where d.e is a ceiling function, and σ is the
standard deviation of the Gaussian distribution which is randomly set between
2 and 8.

Scaling: The training images are rescaled to larger ones with a random factor
between 2 and 8 times. Hence, when feeding the images into the CNNs, we crop
the images from the up-scaled images and this corresponds to a small subpart
of the image which may contain important features of the plants.

Contrast: We first convert images from an RGB color map to an HSV color
map, then multiply the S and V components of the images by a random factor
between 0.8 and 2. Finally, the images are converted back to the RGB color
representation.

Illumination: The training images are adjusted by adding random values
between 10 and 80 to the R, G and B channels.

Projective: The projective transformation changes the projective viewpoint
of the observer. After transformation, straight lines still remain straight [23] but



it does not preserve parallelism, length, and angle. The projective transformation
requires a 3× 3 transformation matrix1.

(xj , yj , 1) = (xi, yi, 1)×

cos(θ) sin(θ) t1
sin(θ) cos(θ) t2

0 0 1

 (1)

where (xi, yi, 1) represents the coordinate before the projective transforma-
tion, (xj , yj , 1) denotes the coordinate after the transformation, θ is the rota-
tion angle of the image, and [t1 t2]T is the projection vector which is set to
[0.001 0.001]T . The angle θ is randomly chosen from the interval [1, 30].

The effects of all DA techniques on some example images of the AgrilPlant
dataset are shown in Figure 2. In addition to the use of these single DA meth-
ods, we also consider several combinations of the earlier discussed methods to
obtain more training images. Because testing all combinations is almost infea-
sible, we tested only combinations in which the rotation operator is part of
the combined DA technique. This results in six possible combinations of DA
methods which include: rotation+blur, rotation+contrast, rotation+scaling, ro-
tation+illumination, rotation+projective, and rotation+contrast+illumination.
Each single data-augmentation method adds eight adapted copies of the original
images while the combination of two DA methods results in 16 different copies of
the images. Lastly, the combination of three DA methods yields 24 times more
training images. The total number of images present in each of the original and
the DA image datasets are summarized in Table 1.

Original Rotation Blur Contrast Scaling Illumination Projective

Fig. 2. Effects of data augmentation on some example images of the AgrilPlant dataset.

1 https://www.graphicsmill.com/docs/gm5/Transformations.htm



Table 1. Summary of the number of training images in the (data-augmented) datasets.

Data set Folio AgrilPlant Swedish

Original 445 2100 300
Individual DA 4,005 18,900 2,700
Combination of two DAs 7,565 35,700 5,100
Combination of three DAs 11,125 52,500 7,500

3 Deep Learning Architectures

3.1 CNN Methods

In our study, we employ two CNN architectures: AlexNet and GoogleNet for
evaluating both original and several variants of data-augmented image datasets
for the three plant recognition tasks.

AlexNet: The CNN architecture AlexNet [8] outperformed other computer
vision methods during the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012. The network consists of five convolutional layers, three max
pooling layers, two dropout layers, and three fully connected layers ending with
a SoftMax classification layer. It uses the Rectified Linear Unit (ReLU) for the
non-linear activation functions. In our study, we employed a customised version
of AlexNet as proposed in [19], in which we reduced the number of hidden units in
the last fully connected layers to 1024 neurons. We also consider two instances
of the AlexNet architecture: using randomly initialized weights (scratch) and
using pre-trained weights (fine-tuned). In the fine-tuned network, the pre-trained
weights from ImageNet were used, after which we trained the whole architecture
based on the errors for classifying the training images from the plant datasets.

GoogleNet: GoogleNet [25] is a deeper network, but has a much lower
number of parameters (4 million parameters) compared to AlexNet (60 million
parameters). This is a consequence of the inception module that vastly decreases
the amount of trainable parameters in the network. More specifically, GoogleNet
uses nine inception modules, four convolutional layers, four max-pooling layers,
three average pooling layers, five fully connected layers and three SoftMax layers
for the main and auxiliary classifiers in the network. Inspired by the network-
in-network approach [12], the inception module uses a parallel combination of
1× 1, 3× 3, and 5× 5 convolutions along with a pooling layer. A more detailed
explanation and all relevant parameters of the GoogleNet architecture can be
found in the original paper [25]. Similarly as with AlexNet, we evaluated both
scratch and fine-tuned versions of the GoogleNet architecture.

3.2 Experimental Setup

We evaluate the deep CNN architectures with the different data-augmentation
schemes for the three plant classification tasks. In the experiments, we employed
5-fold cross validation to evaluate the performances of the different methods.
The resolution of the images is set to 256× 256 pixels.



The AlexNet and GoogleNet hyper-parameters are set as follows: number
of iterations: 20,000 for fine-tuned and 50,000 for the scratch version, step size:
10,000 and 25,000 for fine-tuned and scratch, respectively, train batch size: 20,
validation batch size: 10, base learning: 0.001, momentum: 0.9, weight decay:
0.0005, and test interval: 10,000. Each dataset contains a different number of
images, therefore we set different batch sizes for the different datasets as 7, 30
and 8 for Folio, AgrilPlant, and Swedish, respectively.

To summarize, we performed a total of 52 experiments on each dataset, which
vary in the following settings: two choices of deep learning architecture (AlexNet
and GoogleNet), two choices of training mechanism (fine-tuned or scratch), us-
ing the set of original images, and 12 datasets constructed with different data-
augmentation techniques (as described in section 2.2).

4 Results

In this section, we report the test accuracies using the deep learning methods
on the original and augmented datasets for the different plant recognition tasks.
We report the top-1 accuracy and average the results over the five folds.

4.1 Folio Dataset Evaluation

Table 2 shows the plant classification accuracies with different DA techniques on
the Folio dataset using AlexNet and GoogleNet with both scratch and fine-tuned
models. The scratch AlexNet always profits from the different DA techniques on
this dataset, whereas scratch GoogleNet also profits from most DA techniques,
but in a lesser degree. Scratch AlexNet profits most from the combined effects
of rotation and illumination, or combined effects of rotation, contrast, and illu-
mination which led to a performance improvement of around 8.8% compared to
using the original images. The best single DA technique for scratch AlexNet is
the illumination operator, and blur is the DA technique that helps the least in
getting higher performances. For scratch GoogleNet the best DA technique uses
the scaling operation and this leads to 1.5% accuracy improvement compared
to training on the original images. For the fine-tuned architectures, GoogleNet
with the illumination DA technique obtains the highest accuracy. Because the
fine-tuned models already perform very well with the original dataset, the im-
provements are much smaller in this case than when using the scratch CNN
architectures.

When we compare our approaches to previous CNN experiments in [19],
which did not consider flipping of the images, these new results show a signifi-
cant improvement in the recognition performance. This shows that the effect of
flipping is also very important for this dataset and that the offline DA techniques
can help to obtain even higher performances.



Table 2. Recognition results (accuracy and standard deviation) using different DA
schemes for the Folio dataset.

Augmentation methods AlexNet GoogleNet
Scratch Fine-tuned Scratch Fine-tuned

Original (no flip) [19] 84.83 +− 2.85 97.67 +− 1.60 89.75 +− 1.74 97.63 +− 1.84

Original (flip) 87.50 +− 2.62 98.85 +− 0.44 93.46 +− 1.83 98.85 +− 0.77

(a) Rotation 92.69 +− 2.22 98.27 +− 0.38 93.08 +− 0.63 99.04 +− 0.38
(b) Blur 88.65 +− 1.31 98.65 +− 0.74 93.59 +− 1.94 98.85 +− 0.99
(c) Contrast 92.69 +− 0.44 99.04 +− 0.38 93.65 +− 0.74 98.65 +− 0.74
(d) Scaling 89.81 +− 0.74 99.04 +− 0.97 95.00 +− 0.44 98.65 +− 0.74
(e) Illumination 93.46 +− 2.84 98.46 +− 0.63 94.23 +− 0.99 99.42 +− 0.38
(f) Projective 93.08 +− 0.63 98.65 +− 0.74 93.65 +− 0.97 98.27 +− 1.31

(a) + (b) 92.50 +− 1.15 98.27 +− 0.38 93.27 +− 0.97 98.65 +− 1.15
(a) + (c) 95.00 +− 0.99 99.04 +− 0.94 94.81 +− 1.15 98.46 +− 0.89
(a) + (d) 92.69 +− 1.33 98.46 +− 0.63 93.65 +− 0.74 98.85 +− 1.33
(a) + (e) 96.35 +− 0.74 98.65 +− 1.31 94.42 +− 0.74 98.85 +− 1.33
(a) + (f) 92.69 +− 0.77 97.50 +− 0.97 93.65 +− 1.31 98.65 +− 0.74
(a) + (c) + (e) 96.35 +− 0.97 98.46 +− 0.63 94.23 +− 1.60 98.65 +− 0.74

4.2 AgrilPlant Dataset Evaluation

For the AgrilPlant dataset we also used the two CNN architectures trained from
scratch or fine-tuned and evaluate them on both original and data-augmented
datasets. The results are shown in Table 3. We observe that the fine-tuned
GoogleNet with the combined effect of rotation and contrast yields the high-
est classification accuracy of 98.6%. The fine-tuned AlexNet profits most from
the illumination DA technique. The performance improvements using DA on
this dataset are much smaller than for the previous dataset. The reason is that
there are 210 training images per class in this dataset, whereas there are only
14 training images per class in the Folio dataset. Still, for scratch AlexNet the
combined DA techniques rotation+contrast and rotation+contrast+illumination
result in a performance improvement of 2% compared to training from the origi-
nal dataset. We also note that all CNN architectures with the blur DA technique
obtain lower performances than using the original images. The reason is most
probably that blurred images reduce the amount of salient features in the images
from this dataset, which are still present in the test images.

4.3 Swedish Dataset Evaluation

The plant classification accuracies with different DA schemes on the Swedish
dataset are reported in Table 4. The results show that the scratch CNN archi-
tectures profit from almost all DA methods. The biggest performance improve-
ment is for scratch AlexNet where the use of the combined rotation+projective
DA technique leads to a performance improvement of 3.1%. For this dataset,
the fine-tuned CNN models do not profit from the DA techniques, and often
the results using a DA technique are even a bit lower than using the original



Table 3. Recognition results using different DA schemes for the AgrilPlant dataset.

Augmentation methods AlexNet GoogleNet
Scratch Fine-tuned Scratch Fine-tuned

Original [19] 89.53 +− 0.61 96.37 +− 0.83 93.33 +− 1.24 98.33 +− 0.51

(a) Rotation 90.10 +− 1.08 96.90 +− 0.69 92.53 +− 1.49 98.17 +− 0.68
(b) Blur 82.97 +− 2.26 94.43 +− 1.33 87.80 +− 1.27 97.73 +− 0.95
(c) Contrast 89.53 +− 1.26 96.27 +− 1.15 94.10 +− 0.95 98.17 +− 0.63
(d) Scaling 90.20 +− 0.95 96.93 +− 0.93 94.00 +− 1.20 98.13 +− 0.62
(e) Illumination 90.13 +− 1.06 97.27 +− 0.38 95.03 +− 1.11 98.21 +− 0.89
(f) Projective 90.87 +− 1.14 96.20 +− 0.92 93.21 +− 1.04 98.21 +− 0.76

(a) + (b) 87.70 +− 1.25 96.23 +− 0.71 90.40 +− 1.87 98.27 +− 0.62
(a) + (c) 91.57 +− 0.96 97.10 +− 0.43 95.17 +− 1.38 98.60 +− 0.38
(a) + (d) 90.40 +− 1.12 96.50 +− 0.31 92.93 +− 1.89 98.10 +− 0.82
(a) + (e) 91.07 +− 0.49 97.03 +− 0.49 94.07 +− 1.46 98.43 +− 0.60
(a) + (f) 90.50 +− 0.63 96.77 +− 0.95 92.77 +− 1.38 98.13 +− 0.92
(a) + (c) + (e) 91.53 +− 0.78 96.77 +− 0.71 94.73 +− 0.69 98.53 +− 0.59

dataset. The fine-tuned AlexNet obtained the best performance with the com-
bined rotation+contrast+illumination DA technique and obtained an accuracy
of 99.76%, while the fine-tuned GoogleNet worked best with the combined ro-
tation+scaling DA method with an accuracy of 99.92%. Both these fine-tuned
versions outperformed the previous study in [26] which combined shape, color,
and Haralick texture features and reported an accuracy of 99.5%.

Table 4. Average accuracies and standard deviation using different DA techniques on
the Swedish dataset.

Augmentation methods AlexNet GoogleNet
Scratch Fine-tuned Scratch Fine-tuned

Original 94.69 +− 1.18 99.65 +− 0.07 96.08 +− 1.10 99.81 +− 0.15

(a) Rotation 96.21 +− 0.80 99.52 +− 0.29 97.04 +− 0.66 99.87 +− 0.13
(b) Blur 94.75 +− 0.97 99.36 +− 0.22 96.27 +− 1.40 99.57 +− 0.58
(c) Contrast 95.09 +− 0.67 99.55 +− 0.37 96.69 +− 0.91 99.79 +− 0.18
(d) Scaling 94.88 +− 0.78 99.60 +− 0.19 96.53 +− 1.25 99.84 +− 0.15
(e) Illumination 95.23 +− 0.53 99.49 +− 0.42 96.05 +− 0.91 99.76 +− 0.17
(f) Projective 96.88 +− 0.24 99.41 +− 0.07 96.64 +− 0.65 99.73 +− 0.13

(a) + (b) 96.40 +− 1.20 99.49 +− 0.17 97.12 +− 0.33 99.81 +− 0.15
(a) + (c) 97.07 +− 0.52 99.41 +− 0.15 98.24 +− 0.52 99.84 +− 0.11
(a) + (d) 96.40 +− 0.72 99.65 +− 0.22 97.68 +− 0.37 99.92 +− 0.07
(a) + (e) 97.25 +− 0.41 99.65 +− 0.28 98.16 +− 0.57 99.81 +− 0.22
(a) + (f) 97.81 +− 0.77 99.41 +− 0.07 97.55 +− 0.92 99.81 +− 0.07
(a) + (c) + (e) 97.60 +− 0.57 99.76 +− 0.20 97.68 +− 0.77 99.73 +− 0.16



4.4 Discussion

We have performed experiments on 3 datasets with 52 different techniques. If
we look at the combined results, we can derive the following conclusions:

– The scratch version of AlexNet profits most from data augmentation. The
reason is probably that it consists of most parameters to train and therefore
larger datasets are very helpful.

– The fine-tuned CNN models hardly profit from data augmentation for the
considered datasets. One reason is that the performances of the fine-tuned
CNN methods are already very good, so there is not much room for im-
provement. Still, scaling helps the fine-tuned AlexNet with 0.3% average ac-
curacy improvement and the illumination DA technique helps the fine-tuned
GoogleNet a bit with an average accuracy improvement of 0.2%.

– For scratch AlexNet particular combined DA techniques lead to the biggest
performance improvements. The average improvement for the three datasets
using the combined DA technique rotation+contrast+illumination is 4.6%.
This is followed by the combination of rotation and illumination with an
average gain of 4.3%.

– For scratch AlexNet, the best single DA technique uses the projective trans-
formation, which helps to improve the average accuracies with 3.0%.

– The scratch GoogleNet also profits most from combined DA techniques,
where the combination of rotation and contrast helps to get 1.8% higher
average accuracy.

– For scratch GoogleNet, the best single DA technique uses the scaling oper-
ator, which helps to improve the average accuracies with 0.9%.

5 Conclusion

We have investigated the usefulness of 6 different data-augmentation techniques
and combinations of them using two well-known CNN architectures on three
plant datasets. The results show that data-augmentation methods are impor-
tant to obtain higher accuracies for CNN models trained from scratch. This
shows that more training data helps a lot, which is also because some of the
datasets do not contain many original training images. For the scratch AlexNet
and GoogleNet architectures, especially the combined effects of rotation and il-
lumination or rotation and contrast are very helpful. The blur operation does
not help to obtain higher accuracies and sometimes even results in worse perfor-
mances, despite the increase in the amount of training images. The fine-tuned
AlexNet architecture profits a bit from the scaling DA technique, whereas the
fine-tuned GoogleNet profits a bit from the illumination DA technique, but most
other DA techniques are not helpful to obtain higher accuracies with the pre-
trained CNN architectures. One reason why the fine-tuned CNN models do not
really profit from data augmentation, is that they obtain very high performances
on the considered datasets when trained on the original datasets. Therefore, there
is very little room for improvement. The scratch CNN architectures in general



need much more training examples, and therefore profit a lot from the combined
DA techniques which increase the number of different training images the most.

In future work, we want to examine the effects of data augmentation on more
complex datasets for which the fine-tuned CNN architectures do not perform
very well using only the original images. We also want to examine the data
augmentation techniques describes in [18], where new images containing multiple
version of an original image are constructed. Finally, instead of presetting the
boundaries of the effects of the DA techniques, we want to focus on learning the
right amounts in which images are changed with particular DA techniques using
a novel adversarial learning framework.
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