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Abstract—This paper compares three strategies in using re-
inforcement learning algorithms to let an artificial agent learn
to play the game of Othello. The three strategies that are
compared are: Learning by self-play, learning from playing
against a fixed opponent, and learning from playing against a
fixed opponent while learning from the opponent’s moves as well.
These issues are considered for the algorithms Q-learning, Sarsa
and TD-learning. These three reinforcement learning algorithms
are combined with multi-layer perceptrons and trained and
tested against three fixed opponents. It is found that the best
strategy of learning differs per algorithm. Q-learning and Sarsa
perform best when trained against the fixed opponent they are
also tested against, whereas TD-learning performs best when
trained through self-play. Surprisingly, Q-learning and Sarsa
outperform TD-learning against the stronger fixed opponents,
when all methods use their best strategy. Learning from the
opponent’s moves as well leads to worse results compared to
learning only from the learning agent’s own moves.

I. INTRODUCTION

Many real-life decision problems are sequential in nature.
People are often required to sacrifice an immediate pay-off
for the benefit of a greater reward later on. Reinforcement
learning (RL) is the field of research which concerns itself
with enabling artificial agents to learn to make sequential
decisions that maximize the overall reward [1], [2]. Because
of their sequential nature, games are a popular application of
reinforcement learning algorithms. The backgammon learning
program TD-Gammon [3] showed the potential of reinforce-
ment learning algorithms by achieving an expert level of play
by learning from training games generated by self-play. Other
RL applications to games include chess [4], checkers [5] and
Go [6]. The game of Othello has also proven to be a useful
testbed to examine the dynamics of machine learning methods
such as evolutionary neural networks [7], n-tuple systems [8],
and structured neural networks [9].

When using reinforcement learning to learn to play a game,
an agent plays a large number of training games. In this
research we compare different ways of learning from training
games. Additionally, we look at how the level of play of the
training opponent affects the final performance. These issues
are investigated for three canonical reinforcement learning
algorithms. TD-learning [10] and Q-learning [11] have both
been applied to Othello before [9], [12]. Additionally, we
compare the on-policy variant of Q-learning, Sarsa [13].

In using reinforcement learning to play Othello, we can use
at least three different strategies: First, we can have a learning
agent train against itself. Its evaluation function will become
more and more accurate during training, and there will never
be a large difference in level of play between the training agent
and its opponent. A second strategy would be to train while
playing against a player which is fixed, in the sense that its
playing style does not change during training. The agent would
learn from both its own moves and the moves its opponent
makes. The skill levels of the non-learning players can vary. A
third strategy consists of letting an agent train against a fixed
opponent, but only have it learn from its own moves. This
paper examines the differences between these three strategies.
It attempts to answer the following research questions:

• How does the performance of each algorithm after learn-
ing through self-play compare to the performance after
playing against a fixed opponent, whether paying atten-
tion to its opponent’s moves or just its own?

• When each reinforcement learning algorithm is trained
using its best strategy, which algorithm will perform best?

• How does the skill level of the fixed training opponent
affect the final performance when the learning agent is
tested against another opponent?

Earlier research considered similar issues for backgammon
[14]. There, it was shown that learning from playing against
an expert is the best strategy. However, in that paper only
TD-learning and one strong fixed opponent were used. When
learning from a fixed opponent’s moves as well, an agent
doubles the amount of training data it receives. However, it
tries to learn a policy while half of the input it perceives was
obtained by following a different policy. The problem may
be that the learning agent cannot try out its own preferred
moves to learn from, when the fixed opponent selects them.
This research will show whether this doubling of training data
is able to compensate for the inconsistency of policies. It is
not our goal to develop the best Othello playing computer
program, but we are interested in these research questions that
also occur in other applications of RL.

In our experimental setup, three benchmark players will be
used in both the train runs and the test runs. The results will
therefore also show possible differences between the effect this



Figure 1. Screenshot of the used application showing the starting position of
the game. The black circles indicate one of the possible moves for the current
player (black).

similarity between training and testing will have on the test
performance for each of the three algorithms.

Outline. In section II we shortly explain the game of
Othello. In section III, we discuss the theory behind the
used algorithms. Section IV describes the experiments that
we performed and the results obtained. A conclusion will be
presented in section V.

II. OTHELLO

Othello is a two-player game played on a board of 8 by 8
squares. Figure 1 shows a screenshot of our application with
the starting position of the game. The white and the black
player place at alternate turns one disc at a time. A move is
only valid if the newly placed disc causes one or more of the
opponent’s discs to become enclosed. The enclosed discs are
then flipped, meaning that they change color. If and only if a
player cannot capture any of the opponent’s discs the player
passes. When both players have to pass the game is ended. The
player who has the most discs of his own color is declared
winner, when the number of discs of each color are equal a
draw is declared.

The best known Othello playing program is LOGISTELLO
[15]. In 1997, it defeated the then world champion T. Mu-
rakami with a score of 6-0. The program was trained in several
steps: First, logistic regression was used to map the features of
the disc differential at the end of the game. Then, it used 13
different game stages and sparse linear regression to assign
values to pattern configurations [16]. Its evaluation function
was then trained on several millions of training positions to
fit approximately 1.2 million weights [15].

III. REINFORCEMENT LEARNING

In this section we give an introduction to reinforcement
learning and sequential decision problems. In reinforcement
learning, the learner is a decision making agent that takes
actions in an environment and receives a reward (or penalty)
for its actions in trying to solve a problem [1], [2]. After a set

of trial-and-error runs it should learn the best policy, which is
the sequence of actions that maximize the total reward.

We assume an underlying Markov decision process, which
is formally defined by (1) A finite set of states s ∈ S; (2) A
finite set of actions a ∈ A; (3) A transition function T (s, a, s′),
specifying the probability of ending in state s′ after taking
action a in state s; (4) A reward function R(s, a), providing
the reward the agent will receive for executing action a in
state s, where rt denotes the reward obtained at time t; (5)
A discount factor 0 ≤ γ ≤ 1 which discounts later rewards
compared to immediate rewards.

A. Value Functions

We want our agent to learn an optimal policy for mapping
states to actions. The policy defines the action to be taken in
any state s : a = π(s). The value of a policy π, V π(s), is the
expected cumulative reward that will be received when the
agent follows the policy starting at state s. It is defined as:

V π(s) = E

[ ∞∑
i=0

γiri|s0 = s, π

]
, (1)

where E[.] denotes the expectancy operator. The optimal
policy is the one which has the largest state-value in all states.

Instead of learning values of states V (st) we could also
choose to work with values of state-action pairs Q(st, at).
V (st) denotes how good it is for the agent to be in state st
whereas Q(st, at) denotes how good it is for the agent to
perform action at in state st. The Q-value of such a state-
action pair {s, a} is given by:

Qπ(s, a) = E

[ ∞∑
i=0

γiri|s0 = s, a0 = a, π

]
. (2)

B. Reinforcement Learning Algorithms

When playing against an opponent, the results of the agent’s
actions are not deterministic. After the agent has made its
move, its opponent moves. In such a case, the Q-value of a
certain state-action pair is given by:

Q(st, at) = E [rt] + γ
∑
st+1

T (st, at, st+1)max
a

Q(st+1, a)

(3)
Here, st+1 is the state the agent encounters after its opponent
has made his move. We cannot do a direct assignment in this
case because for the same state and action, we may receive a
different reward or move to different next states. What we can
do is keep a running average. This is known as the Q-learning
algorithm [11]:

Q̂(st, at)← Q̂(st, at)+α(rt + γmax
a

Q̂(st+1, a)− Q̂(st, at))

(4)
where 0 < α ≤ 1 is the learning rate. We can think of (4)
as reducing the difference between the current Q value and
the backed-up estimate. Such algorithms are called temporal
difference algorithms [10]. Once the algorithm is finished, the
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Figure 2. Topologies of function approximators. A TD-network (a) tries to approximate the value of the state presented at the input. A Q-learning network
(b) tries to approximate the values of all the possible actions in the state presented at the input.

agent can use the value of state action pairs to select the action
with the best expected outcome:

π(s) = argmax
a

Q̂(s, a) (5)

If an agent would only follow the strategy it estimates to
be optimal, it might never learn better strategies, because the
action values can remain highest for the same actions in all
different states. To circumvent this, an exploration strategy
should be used. In ε-greedy exploration, there is a probability
of ε that the agent executes a random action, and otherwise it
selects the action with the highest state-action value. ε tends
to be gradually decreased during training.

Sarsa, the on-policy variant of Q-learning, takes this explo-
ration strategy into account. It differs from Q-learning in that
it does not use the discounted Q-value of the subsequent state
with the highest Q-value to estimate the Q-value of the current
state. Instead, it uses the discounted Q-value of the state-action
pair that occurs when using the exploration strategy:

Q̂(st, at)← Q̂(st, at) + α(rt + γQ̂(st+1, at+1)− Q̂(st, at))
(6)

where at+1 is the action prescribed by the exploration strategy.
The idea of temporal differences can also be used to learn

V (s) values, instead of Q(s, a). TD learning (or TD(0) [10])
uses the following update rule to update a state value:

V (st)← V (st) + α (rt + γV (st+1)− V (st)) (7)

C. Function Approximators

In problems of modest complexity, it might be feasible to
actually store the values of all states or state-action pairs in
lookup tables. However, Othello’s state space size is approxi-
mately 1028 [12]. This is problematic for at least two reasons.
First of all, the space complexity of the problem is much
too large to be stored. Furthermore, after training our agent
it might be asked to evaluate states or state-action pairs which
it has not encountered during training and it would have no
clue how to do so. Using a lookup table would cripple the
agent’s ability to generalize to unseen input patterns.

For these two reasons, we instead train multi-layer percep-
trons to estimate the V (s) and Q(s, a) values. During the
learning process, the neural network learns a mapping from

state descriptions to either V (s) or Q(s, a) values. This is
done by computing a ‘target’ value according to (4) in the case
of Q-learning or (7) in the case of TD-learning. The learning
rate α in these functions is set to 1, since we already have the
learning rate of the neural network to control the effect training
examples have on estimations of V (s) or Q(s, a). This means
that (4) and (6) respectively simplify to

Q̂new(st, at)← rt + γmax
a

Q̂(st+1, a) (8)

and
Q̂new(st, at)← rt + γQ̂(st+1, at+1). (9)

Similarly, (7) simplifies to

V new(st)← rt + γV (st+1). (10)

In the case of TD-learning, for example, we use (st, V new(st))
as training example for the neural network trained with the
backpropagation algorithm. A Q-learning or Sarsa network
consists of one or more input units to represent a state. The
output consists of as many units as there are actions that can
be chosen. A TD-learning network also has one or more input
units to represent a state. It has a single output approximating
the value of the state given as input. Figure 2 illustrates the
structure of both networks.

D. Application to Othello

In implementing all three learning algorithms in our Othello
framework, there is one important factor to account for: The
fact that we have to wait for our opponent’s move before we
can learn either a V (s) or a Q(s, a) value. Therefore, we
learn the value of the previous state or state-action pair at the
beginning of each turn – that is, before a move is performed.
Every turn except the first, our Q-learning agent goes through
the following steps:

1) Observe the current state st
2) For all possible actions a′t in st use NN to compute

Q̂(st, a
′
t)

3) Select an action at using a policy π
4) According to (8) compute the target value of the previ-

ous state-action pair Q̂new(st−1, at−1)



5) Use NN to compute the current estimate of the value of
the previous state-action pair Q̂(st−1, at−1)

6) Adjust the NN by backpropating the error
Q̂new(st−1, at−1)− Q̂(st−1, at−1)

7) st−1 ← st, at−1 ← at
8) Execute action at
Note that only the output unit belonging to the previously

executed action is adapted. For all other output units, the error
is set to 0. The Sarsa implementation is very similar, except
that in step 4 it uses (9) to compute the target value of the
previous state-action pair instead of (8).

In online TD-learning we are learning values of afterstates,
that is: the state directly following the execution of an action,
before the opponent has made its move. During playing, the
agent can then evaluate all accessible afterstates and choose
the one with the highest V (sa). Each turn except the first, our
TD-agent performs the following steps:

1) Observe the current state st
2) For all afterstates s′t reachable from st use NN to

compute V (s′t)
3) Select an action leading to afterstate sat using a policy

π
4) According to (10) compute the target value of the

previous afterstate V new(sat−1)
5) Use NN to compute the current value of the previous

afterstate V (sat−1)
6) Adjust the NN by backpropating the error V new(sat−1)−

V (sat−1)
7) sat−1 ← sat
8) Execute action resulting in afterstate sat

E. Learning from Self-Play and Against an Opponent

We compare three strategies by which an agent can learn
from playing training games: playing against itself; learning
from playing against a fixed opponent using both its own
moves and the opponent’s moves, and learning from playing
against a fixed opponent using only its own moves.

1) Learning from Self-Play: When learning from self-play,
we have both agents share the same neural network which is
used for estimating the Q(s, a) and V (s) values. In this case,
both agents use the algorithm described in subsection III-D,
adjusting the weights of the same neural network.

2) Learning from Both Own and Opponent’s Moves: When
an agent learns from both its own moves and its opponent’s
moves, it still learns from its own moves according to the
algorithms described in subsection III-D. In addition to that,
it also keeps track of its opponent’s moves and previously
visited (after-)states. Once an opponent has chosen an action
at in state st, the Q-learning and Sarsa agent will:

1) Compute the target value of the opponent’s previous
state-action pair Q̂new(st−1, at−1) according to (8) for
Q-learning or (9) for Sarsa

2) Use the NN to compute the current estimate of the
value of the opponent’s previous state action pair
Q̂(st−1, at−1)

3) Adjust the NN by backpropating the difference between
the target and the estimate

Similarly, when the TD-agent learns from its opponent
it will do the following once an opponent has reached an
afterstate sat :

1) According to (10) compute the target value of the
opponents previous afterstate V new(sat−1)

2) Use NN to compute the current value of the opponents
previous afterstate V (sat−1)

3) Adjust the NN by backpropating the difference between
the target and the estimate

3) Learning from Its Own Moves: When an agent plays
against a fixed opponent and only learns from its own moves,
it simply follows the algorithm described in subsection III-D,
without keeping track of the moves its opponent made and the
(after-)states its opponent visited.

IV. EXPERIMENTS AND RESULTS

In training our learning agents, we use feedforward multi-
layer perceptrons with one hidden layer consisting of 50
hidden nodes as function approximators. All parameters, in-
cluding the number of hidden units and the learning rates,
were optimized during a number of preliminary experiments.
A sigmoid function:

f(a) =
1

1 + e−a
(11)

is used on both the hidden and the output layer. The weights of
the neural networks are randomly initialized to values between
-0.5 and 0.5. States are represented by an input vector of 64
nodes, each corresponding to a square on the Othello board.
Values corresponding to squares are 1 when the square is taken
by the learning agent in question, -1 when it is taken by its
opponent and 0 when it is empty. The reward associated with
a terminal state is 1 for a win, 0 for a loss and 0.5 for a
draw. The discount factor γ is set to 1.0. The probability of
exploration ε is initialized to 0.1 and linearly decreases to 0
over the course of all training episodes. The learning rate for
the neural network is set to 0.01 for Q-learning and Sarsa, and
for TD-learning a value of 0.001 is used.

100 -25 10 5 5 10 -25 -100

-25 -25 2 2 2 2 -25 -25

10 2 5 1 1 5 2 10

5 2 1 2 2 1 2 5

5 2 1 2 2 1 2 5

10 2 5 1 1 5 2 10

-25 -25 2 2 2 2 -25 -25

100 -25 10 5 5 10 -25 100

(a)

80 -26 24 -1 -5 28 -18 76

-23 -39 -18 -9 -6 -8 -39 -1

46 -16 4 1 -3 6 -20 52

-13 -5 2 -1 4 3 -12 -2

-5 -6 1 -2 -3 0 -9 -5

48 -13 12 5 0 5 -24 41

-27 -53 -11 -1 -11 -16 -58 -15

87 -25 27 -1 5 36 -3 100

(b)

Figure 3. Positional values used by player HEUR (a) and player BENCH (b,
trained using co-evolution [17]).



A. Fixed Players

We created three fixed players: one random player RAND
and two positional players, HEUR and BENCH. These players
are both used as fixed opponents and benchmark players.
The random player always takes a random move based on
the available actions. The positional players have a table
attributing values to all squares of the game board. They use
the following evaluation function:

V =

64∑
i=1

ciwi (12)

where ci is 1 is the square i is occupied by the player’s own
disc, -1 when it is occupied by an opponent’s disc and 0
when it is unoccupied, and wi is the positional value of a
square i. The two positional players differ in the weights wi
they attribute to squares. Player HEUR uses weights used in
multiple other Othello researches [18], [17], [9]. Player BENCH
uses an evaluation function created using co-evolution [17] and
has been used as a benchmark player before as well [9]. The
weights used by HEUR and BENCH are shown in figure 3.

The positional players use (12) to evaluate the state directly
following an own possible move, i.e. before the opponent has
made a move in response. They choose the action which results
in the afterstate with the highest value.

Table I
PERFORMANCES OF THE FIXED STRATEGIES WHEN PLAYING AGAINST

EACH OTHER. THE PERFORMANCES OF THE GAMES INVOLVING PLAYER
RAND ARE THE AVERAGES OF 472.000 GAMES (1.000 GAMES FROM EACH

OF THE 472 DIFFERENT STARTING POSITIONS).

HEUR - BENCH BENCH - RAND RAND - HEUR
0.55 - 0.45 0.80 - 0.20 0.17 - 0.83

B. Testing the Algorithms

To gain a good understanding of the performances of both
the learning and the fixed players, we let them play multiple
games, both players playing black and white. All players
except RAND have a deterministic strategy during testing. To
prevent having one player win all training games, we initialize
the board as one of 236 possible starting positions after four
turns1. During both training and testing, we cycle through all
the possible positions, ensuring that all positions are used the
same number of times. Each position is used twice: the agent
plays both as white and black. Table I shows the average
performance per game of the fixed strategies when tested
against each other in this way. We are interested in whether
the relative performances might be reflected in the learning
player’s performance when training against the three fixed
players.

1In other literature, 244 possible board configurations after four turns are
mentioned. We found there to be 244 different sequences of legal moves from
the starting board to the fifth turn, but that they result in 236 unique positions.

Table II
PERFORMANCES OF THE LEARNING ALGORITHMS WHEN TESTED VERSUS
PLAYER BENCH. EACH COLUMN SHOWS THE PERFORMANCE IN THE TEST
SESSION WHERE THE LEARNING PLAYER PLAYED BEST, AVERAGED OVER

A TOTAL OF TEN EXPERIMENTS. THE STANDARD ERROR (σ̂/
√
n) IS

SHOWN AS WELL.

Train vs. Q-learning Sarsa TD-Learning
BENCH 0.871 ± 0.009 0.859 ± 0.006 0.700± 0.007

BENCH-LRN 0.780± 0.008 0.816± 0.006 0.628± 0.009
Itself 0.721± 0.011 0.699± 0.011 0.723 ± 0.017
HEUR 0.582± 0.008 0.574± 0.018 0.522± 0.008

HEUR-LRN 0.563± 0.008 0.427± 0.015 0.355± 0.010
RAND 0.330± 0.010 0.307± 0.009 0.356± 0.011

RAND-LRN 0.418± 0.018 0.300± 0.012 0.332± 0.008

C. Comparison

We use the fixed players both to train the algorithms and
to test them. In the experiments in which players HEUR and
BENCH were used as opponents in the test games a total
of 2,000,000 games were played during training. After each
20,000 games of training, the algorithms played 472 games
versus respectively BENCH or HEUR without exploration. Ta-
bles II and III show the averages of the best performances of
each algorithm when testing against players BENCH and HEUR
after having trained against the various opponents through the
different strategies: Itself, HEUR, HEUR when learning from
its opponent’s moves (HEUR-LRN), BENCH, BENCH when
learning from its opponent’s moves (BENCH-LRN), RAND and
RAND when learning from its opponent’s moves (RAND-LRN).

Table III
PERFORMANCES OF THE LEARNING ALGORITHMS WHEN TESTED VERSUS
PLAYER HEUR. EACH COLUMN SHOWS THE PERFORMANCE IN THE TEST

SESSION WHERE THE LEARNING PLAYER PLAYED BEST, AVERAGED OVER
A TOTAL OF TEN EXPERIMENTS. THE STANDARD ERROR (σ̂/

√
n) IS

SHOWN AS WELL.

Train vs. Q-learning Sarsa TD-Learning
HEUR 0.810 ± 0.009 0.809 ± 0.005 0.775 ± 0.005

HEUR-LRN 0.651± 0.006 0.728± 0.013 0.666± 0.007
Itself 0.641± 0.016 0.631± 0.015 0.767± 0.005

BENCH-LRN 0.476± 0.012 0.361± 0.011 0.725± 0.009
BENCH 0.397± 0.016 0.440± 0.012 0.708± 0.009

RAND-LRN 0.356± 0.014 0.498± 0.009 0.610± 0.010
RAND 0.426± 0.007 0.428± 0.016 0.644± 0.015

Table IV
PERFORMANCES OF THE LEARNING ALGORITHMS WHEN TESTED VERSUS
PLAYER RAND. EACH COLUMN SHOWS THE PERFORMANCE IN THE TEST

SESSION WHERE THE LEARNING PLAYER PLAYED BEST, AVERAGED OVER
A TOTAL OF TEN EXPERIMENTS. THE STANDARD ERROR (σ̂/

√
n) IS

SHOWN AS WELL.

Train vs. Q-learning Sarsa TD-Learning
Itself 0.949 ± 0.003 0.946 ± 0.002 0.975 ± 0.002
RAND 0.893± 0.006 0.906± 0.005 0.928± 0.003

BENCH-LRN 0.893± 0.004 0.896± 0.003 0.924± 0.007
RAND-LRN 0.892± 0.007 0.885± 0.004 0.917± 0.003
HEUR-LRN 0.914± 0.004 0.837± 0.007 0.814± 0.008

HEUR 0.850± 0.007 0.827± 0.007 0.912± 0.004
BENCH 0.792± 0.017 0.783± 0.018 0.879± 0.007

For each test session, the results were averaged over a total
of ten experiments. The tables show the averaged results in the
session in which the algorithms, on average, performed best.
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Figure 4. Average performance of the algorithms over ten experiments. With 2,000,000 of training games against the various opponents and testing Q-learning,
Sarsa and TD-learning versus player BENCH (a, b and c respectively).

Figures 4 and 5 show how the performance develops during
training when tested versus players BENCH and HEUR. The
performances in the figures are a bit lower than in the tables,
because in the tables the best performance during an epoch is
used to compute the final results.

In the experiments in which the algorithms are tested versus
player RAND, a total of 500,000 training games were played.
Table IV shows the best performance when training against
each of the various opponents through the different strategies.
Figure 6 shows how the performance develops during training
when testing versus player RAND.

D. Discussion

These results allow for the following observations:
• Mixed policies There is not a clear benefit to paying

attention to the opponent’s moves when learning against a
fixed player. Tables II, III and IV seem to indicate that the
doubling of perceived training moves does not improve
performance as much as getting input from different
policies decreases it.

• Generalization Q-learning and Sarsa perform best when
having trained with the same player against which they
are tested. When training against that player, the perfor-
mance is best when the learning player does not pay
attention to its opponent’s moves. For both Q-learning
and Sarsa, training against itself comes in at a third
place in the experiments where the algorithms are tested
versus HEUR and BENCH. For TD-learning, however, the
performance when training against itself is similar or even
better than the performance after training against the same
player used in testing. This seems to indicate that the TD-
learner achieves a higher level of generalization. This is
due to the fact that the TD-learner learns values of states

while the other two algorithms learn values of actions in
states.

• Symmetry The TD-learner achieves a low performance
against BENCH when having trained against HEUR-LRN,
RAND and RAND-LRN. However, the results of the TD-
learner when tested against HEUR lack a similar result.
We speculate that this can be attributed to the lack of
symmetry in BENCH’s positional values.

Using our results, we can now return to the research
questions posed in the introduction:
• Question How does the performance of each algorithm

after learning through self-play compare to the perfor-
mance after playing against a fixed opponent, whether
paying attention to its opponent’s moves or just its own?
Answer Q-learning and Sarsa learn best when they train
against the same opponent against which they are tested.
TD-learning seems to learn best when training against
itself. None of the algorithms benefit from paying atten-
tion to its opponent’s moves when training against a fixed
strategy. We believe this is because the RL agent is not
free to choose its own moves when the opponent selects
a move, leading to a biased policy.

• Question When each reinforcement learning algorithm
is trained using its best strategy, which algorithm will
perform best?
Answer When Q-learning and Sarsa train against BENCH
and HEUR without learning from their opponent’s moves
while tested against the same players, they clearly out-
perform TD after it has trained against itself. This is a
surprising result, since we expected TD-learning to per-
form better. However, if we compare the performance for
each of the three algorithms after training against itself,
TD significantly outperforms Q-learning and Sarsa when
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Figure 5. Average performance of the algorithms over ten experiments. With 2,000,000 of training games against the various opponents and testing Q-learning,
Sarsa and TD-learning versus player HEUR (a, b and c respectively).
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Figure 6. Average performance of the algorithms over ten experiments. With 500,000 games of training against the various opponents and testing Q-learning,
Sarsa and TD-learning versus player RAND (a, b and c respectively).

tested against HEUR and RAND. When tested against
BENCH after training against itself, the difference between
TD-learning and Q-learning is insignificant. The obtained
performances of Q-learning and Sarsa are very similar.

• Question How does the skill level of the fixed training
opponent affect the final performance when the learning
agent is tested against another fixed opponent?
Answer From table I we see that player HEUR performs
better against RAND than BENCH. This is also reflected
in the performances of the algorithms versus RAND after
having trained with HEUR and BENCH respectively. From

table I we see as well that HEUR has a better performance
than BENCH when the two players play against each other.
This difference in performance also seems to be partly
reflected in our results: When Q-learning and Sarsa train
against player HEUR they obtain a higher performance
when tested against BENCH than vice versa. However, we
don’t find a similar result for TD-learning. That might
be attributed to the fact that BENCH’s weights values
are not symmetric and therefore BENCH might pose a
greater challenge to TD-learning than to Q-learning and
Sarsa. We believe that BENCH can be better exploited



using different action networks, as used by Q-learning
and Sarsa, since particular action sequences follow other
action sequences in a more predictable way when play-
ing against BENCH. Because TD-learning only uses one
state network, it cannot easily exploit particular action
sequences.

V. CONCLUSION

In this paper we have compared three strategies in using
reinforcement learning algorithms to learn to play Othello:
learning by self-play, learning by playing against a fixed
opponent and learning by playing against a fixed opponent
while learning from the opponent’s moves as well. We found
that it differs per algorithm what the best strategy is to train:
Q-learning and Sarsa obtain the highest performance when
training against the same opponent as which they are tested
against (while not learning from the opponent’s moves) while
TD-learning learns best from self-play. Differences in the level
of the training opponent seem to be reflected in the eventual
performance of the training algorithms.

Future work might take a closer look at the influence of
the training opponent’s play style on the learned play style
of the reinforcement learning agent. In our research, the
differences in eventual performance were only analyzed in
terms of a score. It would be interesting to experiment with
fixed opponents with more diverse strategies and analyze the
way these strategies influence the eventual play style of the
learning agent in a more qualitative fashion.
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