
Computing Optimal Stationary Policies for
Multi-Objective Markov Decision Processes

Marco A. Wiering and Edwin D. de Jong
Intelligent Systems Group and Large Distributed Databases Group

Department of Information and Computing Sciences, Utrecht University
Padualaan 14, 3508TB Utrecht, The Netherlands

tel: +31 302539209, fax: +31 302513791, e-mail : {marco,dejong}@cs.uu.nl

Abstract— This paper describes a novel algorithm called CON-
MODP for computing Pareto optimal policies for deterministic
multi-objective sequential decision problems. CON-MODP is
a value iteration based multi-objective dynamic programming
algorithm that only computes stationary policies. We observe that
for guaranteeing convergence to the unique Pareto optimal set of
deterministic stationary policies, the algorithm needs to perform
a policy evaluation step on particular policies that are inconsistent
in a single state that is being expanded. We prove that the
algorithm converges to the Pareto optimal set of value functions
and policies for deterministic infinite horizon discounted multi-
objective Markov decision processes. Experiments show that
CON-MODP is much faster than previous multi-objective value
iteration algorithms.

I. INTRODUCTION

Many real-world problems involve multiple objectives for
evaluating possible (sequences of) decisions. For some sequen-
tial decision problems the multiple objectives can be combined
in an a-priori defined way. However, many other environments
involve multiple outcomes such as assignments of rewards
to agents in a multi-agent setting, multiple emotions for an
agent that determine different desires or goals, or other control
systems in which multiple criteria should be optimized, and
there is not always an easy or unique way to trade off the
different objectives.

Although most research in optimal control [1] and reinforce-
ment learning [6], [8] involves a single scalar reward value to
define the goal for an agent, there has been some research in
using multiple objectives in a reinforcement learning setting
[5], [4], [12], [3], [7]. This work has usually concentrated on
a fixed strategy to order the different policies such as using
preference relations for ordering the different objectives and
value functions [3], an a-priori known weighting function to
transform the multiple criteria into a single one [5], [4], or
optimizing the multiple criteria individually [12].

Research in the early 80’s has already focused on multi-
objective Markov decision processes [11], [2], [9] for which
multi-objective dynamic programming (MODP) has been pro-
posed. It is well known that computing optimal policies for
known finite single objective Markov decision processes can
be done with Dynamic Programming (DP) algorithms [1].
In Markov decision processes (MDPs) there is one scalar
reward signal that is emitted after each action of an agent.
Convergence proofs of DP methods applied to MDPs rely

on showing contraction to a single optimal value function.
In the case of multi-objective MDPs there is not a single
optimal policy, but a set of Pareto optimal policies that are
not dominated by any other policy. We will formally define a
dominance operator in Section 3, but now it suffices to say that
a policy is dominated by another policy if that other policy
achieves more long term reward on at least one objective and
no less long term reward on other objectives. White (1982)
proved convergence for a value iteration algorithm working on
Pareto optimal sets of policies for infinite horizon problems.
However, his algorithm computes non-stationary policies and
is computationally infeasible for computing all Pareto optimal
policies for an infinite horizon problem with a large discount
factor.

In this paper we propose a new algorithm for efficiently
computing all deterministic stationary Pareto optimal policies.
We will use the terms stationary and consistent interchange-
ably in this paper, meaning that in a particular state always
the same action is selected. The novel algorithm CON-MODP
is based on a consistency operator that only allows stationary
policies to remain in the Pareto optimal set and a policy eval-
uation step to deal with policies that are only inconsistent in a
single state that is being expanded. In this paper, we assume
deterministic environments for describing the algorithm and
doing experiments.

Outline. Section II describes dynamic programming and
Section III describes multi-objective dynamic programming.
Then Section IV describes the CON-MODP algorithm for
computing stationary Pareto optimal policy sets and value
functions. In Section V experimental results are shown on a
number of toy problems. Section VI concludes this paper.

II. DYNAMIC PROGRAMMING

Dynamic Programming algorithms are able to compute an
optimal policy for an agent given the specification of a Markov
decision process (MDP). A finite MDP is defined as; (1) The
state-space S = {s1, s2, . . . , sn}, where st ∈ S denotes the
state of the environment at time t; (2) A set of actions available
to the agent in each state A(s), where at ∈ A(st) denotes the
action executed by the agent at time t; (3) A transition function
P (s, a, s′) mapping state-action pairs s, a to a probability
distribution over successor states s′; (4) A reward function
R(s, a, s′) that denotes the expected reward obtained when the

agent makes a transition from state s to state s′ using action
a, where rt denotes the (possibly stochastic) scalar reward
obtained at time t; (5) A discount factor 0 ≤ γ < 1 that
discounts later rewards compared to immediate rewards.

In optimal control we are interested in computing the
optimal policy for mapping states to actions. We denote the
optimal deterministic policy as π∗(s) → a∗|s. It is well
known that for each MDP, one or more optimal deterministic
policies exist. The optimal policy is defined as the policy
that receives the highest cumulative discounted rewards in its
future from all states. In order to compute the optimal policy,
dynamic programming algorithms [1], [8] use value functions
to compute the expected utility of selecting particular actions
given a state. We denote the value of a state V π(s) as the
expected cumulative discounted future reward when the agent
starts in state s and follows a policy π:

V π(s) = E(

∞∑

i=0

γiri|s0 = s, π)

In most cases dynamic programming algorithms used for
computing a control policy also make use of a Q-function for
evaluating state-action pairs. Here Qπ(s, a) is defined as the
expected cumulative discounted future reward if the agent is
in state s, executes action a, and follows policy π afterwards:

Qπ(s, a) = E(

∞∑

i=0

γiri|s0 = s, a0 = a, π)

If the optimal Q-function Q∗ is known, the agent can select
optimal actions by selecting the action with the largest value in
a state: π∗(s) = arg maxa Q∗(s, a). Furthermore the optimal
value of a state should correspond to the highest action value
in that state according to the optimal Q-function: V ∗(s) =
maxa Q∗(s, a).

It is well known that there exists a recursive equation known
as the Bellman optimality equation [1] that relates a state-
action value of the optimal value function to other optimal
state values that can be reached using a single transition:

Q∗(s, a) =
∑

s′

P (s, a, s′)(R(s, a, s′) + γV ∗(s′))

The Bellman equation has led to very efficient dynamic
programming (DP) techniques for solving known MDPs [1],
[8]. One of the most used DP algorithms is value iteration
which uses the Bellman equation as an update:

Qk+1(s, a) :=
∑

s′

P (s, a, s′)(R(s, a, s′) + γV k(s′))

Where V k(s) = maxa Qk(s, a). In each step the Q-function
looks ahead one step using this recursive update rule. It can be
shown that limk→∞ Qk = Q∗ when starting from an arbitrary
bounded Q0.

III. MULTI-OBJECTIVE DYNAMIC PROGRAMMING

In multi-objective Markov decision processes (MOMDPs),
instead of the usual scalar reward signal r, a reward vector ~r

is used where the length of ~r denoted as l is the number of

dimensions or components of the reward function. For each
transition from a state-action pair to a next state, a reward
function ~R(s, a, s′) = (R1(s, a, s′), . . . Rl(s, a, s′)) is given.

Since the reward vector in MOMDPs has multiple com-
ponents, there naturally arise conflicts between them. For
example, it may be possible that an agent is able to compute
a policy for buying the cheapest possible flight ticket, but that
the duration of this flight is longer than other possible flights.
Therefore, we have to deal with several trade-offs to finally
select a policy (or plan). The solution is to compute all policies
that are not dominated by another policy. This set of policies
is called the Pareto efficient (optimal) set. When given the set
of Pareto optimal policies, we can let a user or agent select
one of them.

To combine the different reward components, we may
also introduce a linear weighting function that determines a
collective reward R(s, a, s′) =

∑l
i=1 wiRi(s, a, s′) using a

weight vector ~w. In the following we assume weight vectors
with positive elements only which are constant over states.
If ~w would be known beforehand and would always remain
the same, the problem would reduce to a normal MDP
after computing the collective reward function. However, we
suppose that ~w is unknown and can be selected by a user
or agent after the MOMDP is solved by the algorithm. Once
~w is known, we require the algorithm to efficiently compute
an optimal policy. This means that if ~w would change during
the interaction of the agent with the environment, the new
~w can be immediately used without the necessity of a lot of
computation.

To solve this problem we can use particular multi-objective
dynamic programming (MODP) algorithms that compute the
Pareto front of optimal policies and corresponding value
functions. These MODP methods are based on value iteration
[11] or policy iteration [9], [2]. The problem when one would
like to use conventional dynamic programming is that there are
multiple Pareto optimal policies, and therefore the algorithm
has to work with sets of policies and value functions. In this
section we will discuss a possible naive approach to solving
this problem, and then we will describe White’s algorithm
(1982) and its main disadvantage. White’s algorithm uses
value iteration and therefore is closer in spirit to our method
than other policy iteration methods.

Problem with solving separate MDPs. One naive idea to
cope with the problem of dealing with multiple objectives is to
make multiple MDPs, each with only one single component
of the reward vector, solve these separate MDPs using DP
and then use the weight vector once it is available to select
actions. Although this solution is simple, it will not work for
all MOMDPs. We will explain this by an example, see Fig. 1.

When we use dynamic programming on the different com-
ponents, then both policies will choose to go to state A when
the agent is in state B. However, state C promises a higher
combined reward for many weighting functions (e.g., when
maxi wi < 0.7 and

∑
i wi = 1). Thus, the policy will never

go to state C from B using this method, and the agent gets
less cumulative reward for many weighting functions.

0.7,0.7

0,1

1,0 CBA

Fig. 1. This example shows why computing separate policies for different
reward components does not work. In the terminal states the numbers show
emitted rewards for the 2 reward vector components.

White’s multi-objective DP algorithm. The solution of
most multi-objective DP methods is to keep track of the non-
dominated (or Pareto efficient) set of value functions. The
value function now has different cumulative reward com-
ponents or values and this is denoted by a value function
V i(s) = (V i

1 (s), V i
2 (s), . . . , V i

l (s)), where V i
x denotes the

discounted cumulative reward intake of reward component x

of policy i. Furthermore, we use a set V O for the set of value
functions (and policies) that are not dominated:

V O(s) = {V i(s)|V i(s) isn’t dominated by a policy in s}

Below we will formally define the non-dominated operator.
We will also use V D for denoting the set of value functions
computed at some given moment that may include dominated
ones. The same is done for the Q-function, thus we keep track
of a set QO that denotes the set of non-dominated Q-functions.
Here the Q-functions should not be dominated by another Q-
vector for the same state-action pair. Thus:

QO(s, a) = {Qi(s, a)|Qi(s, a) isn’t dominated in s, a}

We will now formally define a dominance function � that
works on two value vectors for a state s as follows:

V i(s) � V j(s) ⇔ ∃x; V i
x(s) > V j

x (s) ∧ ¬∃y; V i
y (s) < V j

y (s)

So a value vector of policy i dominates a value vector of policy
j if i has a higher value on some component x and does not
have a lower value on any other component.

In our implementation we discovered that it could happen
that two different actions had the same result (transition to
the next state and same reward). This sometimes led to an
explosion of the number of policies with the same reward
intakes on all components. To take care of this, we used the
following dominance function �′ in our experiments:

V i(s) �′ V j(s) ⇔ ¬∃y; V i
y (s) < V j

y (s) ∧ i < j

Where the policies are ordered (using the indices i and j). So
here a policy is dominated by another one if it does not receive
more long term reward on some component and its index is
larger. This second definition significantly increased the speed
of the algorithm without loosing optimality (the long term
reward intake of some of these policies is exactly the same,
so we can keep only one of them).

Now we define a non-dominated operator ND that tells
whether a policy i is not dominated in the state s by any
value function vector of the set of value functions V D(s):

ND(V i(s), V D(s)) ⇔ ¬∃V j(s) ∈ V D(s) ; V j(s) � V i(s)

Analogous definitions hold for Q-vector functions. Now it be-
comes possible to enhance dynamic programming to compute
non-dominated value function sets. For simplicity we restrict
ourselves to deterministic MDPs. We define the Pareto optimal
operator PO as:

PO(QD(s, a)) = {Qi(s, a)|Qi(s, a) ∈ QD(s, a) ∧

ND(Qi(s, a), QD(s, a))}

We also define the operator PO to work on all state-action
pairs. Furthermore, we construct the dynamic programming
operator as follows where ⊕ denotes an addition operator
working on sets (and vectors) and s′ is the next state:

DP (QD(s, a)) = (~R(s, a, s′) ⊕ γV O(s′)|P (s, a, s′) = 1.0)

Here V O(s) is computed as:

V O(s) = PO(∪aQD(s, a))

Note that the usual max operator in dynamic programming
is replaced by the Pareto optimal operator working on the
union of Q-value vectors. Since the PO operator will not
always keep a single value vector, the policy set will usually
grow after multiple iterations until it finally converges. We
summarize this algorithm to compute the optimal set of Q-
value vectors QO∗ as:

QO∗ = (PO(DP (Q0)))
∗

Where (X)∗ denotes that operator X is repeated an infinite
number of times, but which in reality is repeated a finite
number of times for a discount factor smaller than one (this
can be seen by the fact that actions selected far away in
the future will be discounted so much that their contribution
becomes smaller than the fixed machine precision). We also
define (X(Y))0 = Y .

White (1982) already proved that iterating the algorithm
using the PO operator that eliminates all dominated policies
converges and leads to the unique set of Pareto optimal
policies. Here, we will give another novel proof that shows
that the set of final Pareto optimal policies computed by the
algorithm is the same as when the set of Pareto optimal
policies is computed after computing the value functions for
all possible policies:

PO(DP ′(Q0))
∗ = (PO(DP (Q0)))

∗ (1)

We need to define another dynamic programming operator
DP ′ that does not make use of the PO operator at all:

DP ′(QD(s, a)) = (~R(s, a, s′) ⊕ γV D(s′)|P (s, a, s′) = 1.0)

Where V D(s) is computed as:

V D(s) = ∪aQD(s, a)

Note the difference between the two algorithms shown in
Equation (1): the one at the left side only uses the Pareto
optimal operator one time after all infinite horizon Q-value
vectors have been computed, and White’s algorithm (on the
right) uses the Pareto optimal operator after every step (thereby

significantly reducing computational cost since during compu-
tation less policies are expanded).

First we must assure that there are a finite number of
solutions that can be computed using both algorithms. This is
clear from the fact that the discount factor is smaller than 1.
Therefore, even for the algorithm (DP ′(Q0))

∗ (that computes
most policies) we only need to consider n-step horizons, since
the actions computed for a n+1-step horizon has its last action
discounted using γn+1. If this value becomes smaller than the
finite machine precision ε then it will not contribute anything
to the value of the policy. Therefore, it suffices to prove the
following theorem:

Theorem 1.
PO(DP ′(Q0))

n = (PO(DP (Q0)))
n

Where n = d log ε
log γ

e. For our proof we make use of the
following Lemma:

Lemma 1. Non-optimal temporally local sub-policies do not
need to be kept in order to compute an optimal global policy.

This lemma requires some more explanation. With a global
policy we mean a policy that computes actions for an infinite
horizon (here approximated by n). With a temporally local
sub-policy we mean a policy that only computes actions for a
finite (e.g. m-step) horizon. We do not need to keep the results
of all m-step policies to compute the optimal global policy, this
is exactly what makes dynamic programming efficient. The
reason is that when the agent arrives in a state and selects
an m-step policy, it will always choose the best one. If we
look at Fig. 2 we can see that the optimal global policy goes
from state A to B and from state B to state A. It is true
that for a 1-step horizon going from A to B is dominated by
the action that takes the agent to state A from state A. After
two dynamic programming iterations for computing the 2-step
horizon policies, however, we will expand state A again and
the algorithm will find out that it is better to go to state B

from state A. Thus, local sub-policies that are dominated do
not need to be kept.

A B

1

0

3

1

Fig. 2. Example used to explain the workings of dynamic programming.
In Section 4 this example is used to show why naively computing consistent
non-dominated policies does not work.

Proof 1. We will show that an element of Ln
1 =

PO(DP ′(Q0))
n is a member of Ln

2 = (PO(DP (Q0)))
n and

vice versa. First we prove Ln
1 ⊆ Ln

2 . Suppose that there is
a member x ∈ Ln

1 and suppose that there is no equivalent
member x′ ∈ Ln

2 . This can be the case due to: (1) There
is a y ∈ (DP ′(Q0))

n−1 from which x was constructed
that does not have a corresponding member y′ ∈ Ln−1

2 =
(PO(DP (Q0)))

n−1 or (2) x′ is dominated by some solution

in Ln
2 and x is not dominated in Ln

1 . We first consider (2).
Since the dominance comes from the solutions before the PO

operator is used, we can easily see that dominance in Ln
1

comes from a solution that is inside (DP ′(Q0))
n. Since this

contains all n-step policies, it is much bigger and therefore
there is always as much or more dominance in L1, and thus
(2) cannot be the case. Now let’s consider (1): we note that it
can be the case that there is a solution y ∈ (DP (Q0))

n−1 that
does not have an equivalent member y′ ∈ Ln−1

2 . However,
if y′ is not a member of PO(DP ′(Q0))

n−1 it does not
need to be kept according to lemma (1) to compute solutions
for Ln

1 . Therefore we only have to consider solutions y′ ∈
PO(DP ′(Q0))

n−1. We note that such solution y′ must exist
since otherwise we can observe that if PO(DP ′(Q0))

n 6⊆ Ln
2

then also PO(DP ′(Q0))
n−1 6⊆ Ln−1

2 . But this leads to a
contradiction since L0

1 = L0
2 = Q0.

Now we prove Ln
2 ⊆ Ln

1 . Suppose that there is a member
x ∈ Ln

2 and suppose that there is no equivalent member x′ ∈
Ln

1 . This can be the case due to: (1) There is a y ∈ Ln−1
2 from

which x was constructed that does not have a corresponding
member y′ ∈ (DP (Q0))

n−1, or (2) x′ is dominated by some
solution in Ln

1 and x is not dominated in Ln
2 . We first consider

(1) and note that (DP (Q0))
n−1 contains all n-1 step policies,

therefore y′ will always be a member of it if y exists. Now
we consider (2). We first note that the dominance function is
transitive and therefore we only have to examine dominance
by non-dominated solutions. Since we already proved before
that Ln

1 ⊆ Ln
2 , we can see that there is no less dominance in

Ln
2 and therefore if x′ would be dominated then so would x.

This concludes our proof.
Although the algorithm will finally converge to all optimal

policies, the problem of this algorithm is that policies are al-
lowed to be non-stationary. Since the number of non-stationary
policies increases exponentially with the lookahead horizon,
the Pareto optimal policy set will increase very fast and thus
this algorithm can only be used on very simple problems
with low values for the discount factor. For example, if we
use this algorithm on the problem shown in Fig. 3, we will
get all sequences A, A, A, . . ., A, A, B, . . . , etc. as outcome
in the computed policies and value functions since none of
them is dominated by another one (the resulting number of
Pareto optimal solutions depends on the discount factor that
determines the lookahead horizon).

A B

1,0 0,1

0,1

1,0

Fig. 3. An example that shows why computing all Pareto optimal non-
stationary policies is computationally infeasible in general.

IV. CON-MODP

In infinite horizon discounted Markov decision processes,
there is always a single optimal value function and one or more
stationary deterministic policies belonging to it. Therefore, if
finally a specific set of weights is selected by a user or agent
after the algorithm has computed all Pareto optimal policies,
we know that there is a stationary and deterministic policy that
is optimal. Our novel algorithm CON-MODP focuses on only
computing stationary deterministic Pareto optimal policies. For
dealing with non-stationary policies, the algorithm uses a con-
sistency operator that eliminates most non-stationary policies
and reevaluates non-stationary (or inconsistent) policies that
are only inconsistent in 1 single state that is being expanded.

Instead of only keeping track of a Q-vector Qi(s, a) the
algorithm also keeps track of the policy πi so that we can
detect whether a policy is consistent (stationary) or not. These
policies are stored with state-action pairs. A policy becomes
inconsistent if Qi(s, a) is computed and if the policy πj of the
value vector of the next state V j(s′) does not select action a

in state s. This can happen easily since in the beginning for
a limited horizon it may look promising to select action b in
state s by a local optimal sub-policy and later the algorithm
tries to make a lookahead evaluation step by selecting action
a in state s and connect this action with the previous policy.
One possible solution is to expand the algorithm by changing
the definition of non-dominated: a policy is non-dominated if
it is consistent and non-dominated in the previous sense. If we
would do this, however, the algorithm would not be able to
compute all Pareto optimal policies.

This problem is explained using Fig. 2. For simplicity
the example only uses a single scalar reward for which the
problem also occurs, and the discount factor is set to 1.
Table I shows the computational steps performed by the naive
algorithm on the problem shown in Fig. 2. The table shows
the planning horizon t and the Q-values for the different
transitions (e.g. from state B to state A). N.C. stands for
not-consistent and therefore these policies are eliminated. For
example in time-step 2 Q(B, B) first goes from state B to state
B and then tries to connect it to the value function V (B) of
state B computed for a 1-step horizon that chooses to go to
state A. This leads to an inconsistency. After some time all
policies become inconsistent and are eliminated.

TABLE I
Results for the naive algorithm that does not reevaluate inconsistent

policies, but only keeps consistent policies. For the problem shown in Fig. 2,
this leads to a collapse of the solution space.

t 1 2 3
Q(A,A) 1 2 N.C.
Q(A,B) 0 3 N.C.
Q(B,B) 1 N.C. N.C.
Q(B,A) 3 4 6
V(A) 1 (A → A) 3 (A → B, B → A) N.C.
V(B) 3 (B → A) 4 (B → A, A → A) 6 (B → A, A → B)

Policies become inconsistent due to the last chosen action
of the Q-value vector that is expanded. If we eliminate them

all by our (wrong) definition of non-dominated, the algorithm
is not able to compute the optimal policies for all problems.
Note that conventional value iteration also computes value
functions of inconsistent policies as long as the algorithm
is not finished. However, since these value functions are not
eliminated, there is no problem since after many lookahead
steps this inconsistency will disappear. The results of initially
chosen inconsistent actions will be discounted so much that
they will not have any influence on the final value functions.

The solution is to compute consistent non-dominated poli-
cies with reevaluating inconsistent policies. CON-MODP de-
tects when a policy is made inconsistent due to the last
lookahead update step, and then changes it to a consistent
policy by forcing the action in the current state that is evaluated
all the times this state will be visited. In this way, the
policy is consistent again. Note that this method is the only
realistic method for making the policy consistent, since forcing
different actions will not always make the transition to the
same next state, and if they did, they would also be evaluated
by the DP operator. Since there is no direct way of knowing
the value vector of the changed policy (it was based on the
assumption that another future action in the same state would
be chosen), CON-MODP uses policy evaluation to reevaluate
the policy. The whole algorithm uses the operator CON next
to PO and DP . We define CON that works on the Q-value
vector of a state-action pair (s, a) with policy π as:
CON(Qπ(s, a)) = π with Q

π(s, a), if π(s) = a

= π
′ with Eval(π′), if π(s) 6= a is the only

inconsistency, and ND(Qπ(s, a), QO(s, a))

where π
′(s) = a and π

′(s′) = π(s′) ∀s
′ 6= s

= ∅, otherwise

Here Eval(π′) means that policy π′ is evaluated using
policy evaluation for the same number of steps as the original
policy π is computed. Evaluation is only done if the original
inconsistent policy was not already dominated. CON makes
policies generated after a lookahead step consistent again.
It does this by forcing the latest evaluated state’s action
throughout the policy. If one would not do this, the resulting
policy would be non-stationary and therefore this inconsistent
policy would continue to play a role in the future of the system.

We also let CON work immediately on sets of Q-functions
and policies. We now define the CON-MODP algorithm as:

QO∗ = (PO(CON(DP (Q0))))
∗

This algorithm is able to compute all stationary Pareto optimal
policies and corresponding value functions for deterministic
finite MOMDPs. To show this, we prove that:

(PO(CON(DP (Q0))))
∗ = PO(CON(DP (Q0))

∗)

The proof is very similar to proof 1 by noting that instead
of only the PO operator we now use the PO and CON

operators. Both will eliminate policies. The lemma which we
use now is that we do not need to keep temporally local sub-
policies that are dominated or that are non-stationary. The
additional non-stationary requirement in the lemma can be
easily shown to be valid, since if we keep such non-stationary
policies they need to be eliminated at some time in order

to compute the stationary non-dominated policies. We will
not repeat proof 1 here, the extension we need is to use the
CON operator before the PO operator and everything else
remains equal. Thus, our algorithm computes optimal value
functions and policies, but we cannot yet say anything about
the convergence speed which will also depend on the discount
factor and the number of reward components.

The solution strategy of CON-MODP is demonstrated in
Table II on the example shown in Fig. 2. Reevaluation is done
by computing the value function for the same lookahead as
the number of steps the dynamic programming algorithm has
iterated. This is to ensure that the policies are comparable
for finite horizons. To decrease the number of reevaluations,
we only reevaluate an inconsistent policy if the computed
value function based on an inconsistent policy was not already
dominated by the value function of a consistent policy (in
Table II reevaluations eval* are not really performed). For
example in time-step 2, we expand Q(B, B) so that first a
transition to B is made, then it is discovered that connecting
this action to the policy of state B is inconsistent. Therefore
the CON operator forces to select the action go to B two
times. This last policy is reevaluated and has a value 2.

TABLE II
CON-MODP reevaluates policies that are made inconsistent due to a

lookahead evaluation step. This is done for the policies that only have a
single inconsistency in the last expanded state-action pair.

t 1 2 3
Q(A,A) 1 2 3 eval
Q(A,B) 0 3 3 eval
Q(B,B) 1 2 eval 3 eval*
Q(B,A) 3 4 6
V(A) 1 (A → A) 3 (A → B,B → A) 3 (B → A, A → B)

3 (A → A)
V(B) 3 (B → A) 4 (B → A, A → A) 6 (B → A, A → B)

The main drawback is that policy evaluation is quite costly,
although it is still quite fast for deterministic MDPs. To
improve the efficiency, different datastructures such as policy-
trees or hash-tables can be used to keep previous results of
evaluated policies.

Selecting optimal actions using the Pareto set. Once the
algorithm has computed the Pareto set and the weight vector
~w is known, it is easy to select optimal actions. For this the
algorithm walks through the set of Pareto optimal Q-values for
each state s and all actions a and then computes the maximal
combined Q-value using the known weight ~w. Then the best
action in each state is stored in the current optimal policy for
the weight vector.

Extension to stochastic MDPs. In case there are stochastic
transitions, the problem becomes much harder. The reason
is that given some state-action pair, there are transitions to
multiple next states and then the algorithm has to merge
elements of the non-dominated sets of these next states, which
is expensive if there are many possible next states with many
non-dominated value functions. Another difficulty is that it
becomes harder to detect inconsistent policies. It is possible
that the value vectors of next states need to be combined that

have inconsistent policies. The algorithm should make these
policies consistent in order to evaluate the result, however there
can be many inconsistencies and many ways to make them
consistent. If one simply discards the resulting inconsistent
policies, it may be impossible to compute all Pareto optimal
solutions. It is also possible to make the connection with
partially observable Markov decision processes [10]. However,
in partially observable MDPs there are other kind of pruning
possibilities, e.g. if some policy is dominated by a combination
of two other policies, then the dominated policy can be pruned.
In MOMDPs in general we are looking for the compelte set
of non-dominated policies. Although in this article we assume
linear weighting vectors, in general the weighting rule does not
need to be a linear function. That means that even if the Pareto
front is convex, we cannot prune the policies lying in between
the extremes. Therefore, further pruning of our non-dominated
set of policies is impossible in the current framework.

V. EXPERIMENTS

To verify the CON-MODP algorithm, we made randomly
connected deterministic MOMDPs, and experimented with
the number of states, actions, and reward components. We
performed thousands of simulations to compare the final ob-
tained Pareto front to solving an MOMDP when the weighting
function is known, and as expected, the CON-MODP algo-
rithm always computed the optimal policy. Furthermore, the
algorithm always converged to a stable Pareto optimal set. So
as results, we observe the resulting size and combined values
of the Pareto front of the value functions V O which indicates
how many policies have to be stored after convergence, and
we examine the time needed for the algorithm to converge
(actually we stop iterating if the previous sum of Pareto
optimal value functions of all states does not change more
than 10−5).

Experimental set-up. We use |S| states and |A| actions
possible in each state. For each state-action pair we generate a
random successor state from S. After this, we check whether
the structure of the MDP is ergodic by running a random
policy and checking whether it visits all states more than 1
time. On each transition we generate a random reward vector
where each reward component is 0 with probability 0.75 and
otherwise it has a random value between 0 and 1.

Experimental results. We first show experiments on a sim-
ple randomly generated problem in which we compare White’s
method that computes non-stationary Pareto optimal policies
to our method that computes stationary Pareto optimal policies.
We also use an algorithm that follows White’s algorithm for
18 steps and then switches to using CON-MODP. The exper-
iments were done for a simple randomly generated problem
consisting of 5 states, 2 reward components, 3 actions, and a
discount factor of 0.25. Fig. 4 shows the results of displaying
the sum of state-values for all Pareto optimal policies, states,
and reward components. We can see that all methods converge,
but that our method keeps the number of stored Pareto optimal
policies much lower and therefore the sum of state-values as
well. The mixed algorithm (consistent 18 steps) also converges

1

10

100

1000

10000

0 5 10 15 20 25

Su
m

 o
f s

ta
te

 v
al

ue
s o

f P
ar

et
o

se
t

Nr iterations

Method of White
Consistent after 18

Our method

Fig. 4. The sum of state-values of all Pareto optimal policies for the different
algorithms for a problem with 5 states, 3 actions, 2 reward components, and
γ = 0.25. Note that White’s method leads to a higher sum since much more
policies are kept.

to the same policies as our algorithm, but not in a single
step after 18 iterations with White’s algorithm. This can be
explained by the fact that we use the �′ dominance operator
that may have eliminated some consistent policies since some
inconsistent policies had exactly the same value. Therefore
it requires some iterations to get these policies back. On the
other hand this also means that CON-MODP can start with
many different initial Q-value vectors and policies.

The CON-MODP algorithm converged to 21 Pareto optimal
policies (note that some policies are stored multiple times,
since states duplicate some stored policies). White’s method,
however converged to 62258 non-stationary Pareto optimal
solutions. Due to this difference, the CON-MODP algorithm
only needed 0.01 seconds to converge and White’s method
590 seconds.

We also performed experiments to examine the computa-
tional complexity of the CON-MODP algorithm if we change
the number of states, actions, and reward vector components.
For this we first run experiments for environments with 3
reward vector components and 4 actions, and γ = 0.95, where
we made the number of states a variable. Clearly White’s
method cannot be executed on these problems due to too much
computational cost. The experiments were repeated 20 times
for randomly generated environments with the specific number
of states. We compare construction time of all Pareto optimal
solutions of our method to using the naive algorithm that
does not reevaluate inconsistent policies, but always eliminates
them. Furthermore, we compare the average total time needed
to select actions with our method after the construction of
Pareto optimal solutions is done to running DP for 10,000
different weight vectors in each environment.

Fig. 5 shows that our method is faster in evaluation and
action selection time than computing optimal policies from
scratch each time a new weight vector is given. Our method
needs a lot of construction time, however. All methods seem

 0.1

 1

 10

 100

 1000

 5 10 15 20 25

Ti
m

e
in

 se
co

nd
s

Nr States

Our method construction
No reevaluation construction

Time from scratch
Our method evaluation

Fig. 5. The time needed for the different algorithms given different numbers
of states with 4 actions, 3 reward components, and γ = 0.95.

to need computation time exponential in the amount of states.
This can be explained by noting that there are |A||S| possible
policies. The algorithm that does not reevaluate policies makes
errors (was not able to compute the optimal policy) for the
environments with 5, 10, 15, 20, and 25 states in 13, 15, 12,
10, and 9 percent of the tests in the 20 simulations with the
10,000 different weight vectors.

We now show experimental results while varying the num-
ber of reward components. For these experiments we used
10 states, 4 actions, and a discount factor γ = 0.95. The
experiments were repeated 20 times. The results are shown
in Fig. 6.

 0.1

 1

 10

 100

 1000

 1 2 3 4 5

Ti
m

e
in

 se
co

nd
s

Nr Reward Components

Our method construction
No reevaluation construction

Time from scratch
Our method evaluation

Fig. 6. The time needed for the different algorithms given different numbers
of reward components with 10 states, 4 actions, and γ = 0.95.

We observe that CON-MODP is again faster in evaluation
and action selection time than computing optimal policies from
scratch each time a new weight vector is given. However,
when varying the number of reward components, the com-
putational time for computing policies from scratch is not

influenced by the number of reward components, since we
only make use of the collective reward function. Therefore,
if we would use a very large number of reward function
components, computing policies from scratch may be finally
faster in action selection time. We note that CON-MODP’s
computational time increases exponentially when adding more
reward vector components. This is due to the growing number
of policies that are not dominated when there are more reward
components. The algorithm that does not reevaluate policies
makes errors (was not able to compute the optimal policy) for
the environments with 1, 2, 3, 4, and 5 reward components in
56, 34, 15, 11, and 5 percent of the tests in the 20 simulations
with the 10,000 different weight vectors.

We finally show experimental results while varying the
number of actions. For these experiments we used 10 states,
3 reward components, and a discount factor γ = 0.95. The
experiments were again repeated 20 times. The results are
shown in Fig. 7.

 0.1

 1

 10

 100

 1000

 2 4 6 8 10

Ti
m

e
in

 se
co

nd
s

Nr Actions

Our method construction
No reevaluation construction

Time from scratch
Our method evaluation

Fig. 7. The time needed for the different algorithms given different numbers
of actions with 10 states, 3 reward components, and γ = 0.95.

The results show that CON-MODP is again faster in evalua-
tion and action selection time than computing optimal policies
from scratch. The computational time scales polynomially
with the number of actions which was expected (there are
|A||S| policies). The algorithm that does not reevaluate policies
makes errors for the environments with 2, 4, 6, 8, and 10
actions in 14, 15, 5, 8, and 6 percent of the tests in the 20
simulations with the 10,000 different weight vectors.

VI. CONCLUSIONS

We studied multi-objective Markov decision processes
where a multi dimensional reward vector replaces the usual
scalar reward signal. This multi-objective Markov decision
process (MOMDP) can be mapped to an MDP when the
weighting function of the different reward components would
be known beforehand. However, in this paper we assume that
the weighting function can be arbitrary and can be provided by
the agent or user after the system solved the problem. To deal

with this problem, we keep track of Pareto optimal stationary
(consistent) policies. Our algorithm relies on computing and
storing only non-dominated policies that are consistent and for
this aim sometimes reevaluates policies.

Although our method works well for deterministic
MOMDPs, more work has to be done to solve stochastic
MOMDPs. For this, the connection with partially observable
Markov decision processes can be made [10]. We are also
interested in using reinforcement learning algorithms to com-
pute Pareto optimal policy sets instead of relying on the use of
DP and known MOMDPs. A good possibility would be to use
model-based reinforcement learning in which first a model of
the environment is learned and then an MODP algorithm can
be used. We also want to focus on asynchronous dynamic
programming algorithms where different states have differ-
ent amounts of evaluated lookahead steps. Now it becomes
harder to compare policies, since they should be evaluated
over the same horizon. Finally, for huge or continuous state-
action spaces, where we have to sacrifice optimality anyway,
we would like to use reinforcement learning and function
approximators for learning a subset of the Pareto optimal value
functions. For this we want to use confidence intervals of the
value functions in the dominance function.

REFERENCES

[1] R. Bellman. Dynamic Programming. Princeton University Press, 1957.
[2] N. Furukawa. Vector valued Markovian decision processes within

countable state space. In R. Hartley, L.C. Thomas, and D.J. White,
editors, Recent Developments in Markov Decision Processes, pages 205–
223. Academic Press, New York, 1980.

[3] Z. Gabor, Z. Kalmar, and C. Szepesvari. Multi-criteria reinforcement
learning. In Proceedings of the 15th International Conference on Ma-
chine Learning (ICML’98), pages 197–205. Morgan Kaufmann, 1998.

[4] S.C. Gadanho. Learning behavior-selection by emotions and cognition
in a multi-goal robot task. Journal of Machine Learning Research,
4:385–412, 2003.

[5] M. Humphrys. Action selection methods using reinforcement learning.
In Pattie Maes, Maja Mataric, Jean-Arcady Meyer, Jordan Pollack, and
Stewart W. Wilson, editors, From Animals to Animats 4: Proceedings of
the Fourth International Conference on Simulation of Adaptive Behavior,
Cambridge, MA, pages 135–144. MIT Press, Bradford Books, 1996.

[6] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–
285, 1996.

[7] S. Mannor and N. Shimkin. A geometric approach to multi-criterion
reinforcement learning. Journal of Machine Learning Research, 5:325–
360, 2004.

[8] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction.
The MIT press, Cambridge MA, A Bradford Book, 1998.

[9] L.C. Thomas. Constrained Markov decision processes as multi-objective
problems. In S. French, L.C. Thomas, R. Hartley, and D.J. White, ed-
itors, Multi-Objective Decision Making, pages 77–94. Academic Press,
1983.

[10] C.C. White and W.K. Kwang. Solution procedures for vector criterion
Markov decision processes. Large Scale Systems, 1:129–140, 1980.

[11] D.J. White. Multi-objective infinite-horizon discounted Markov decision
processes. Journal of Mathematical Analysis and Applications, 89:639–
647, 1982.

[12] W. Zhou and R. Coggins. Multiple sources of reward hierarchical
reinforcement learning. In Proceedings of the International Conference
on Computational Intelligence for Modelling, pages 934–945, 2004.

