Solving POMDPs with Levin Search and EIRA

In Machine Learning: Proceedings of the 13th international conference, 1996

Marco Wiering
IDSIA
Corso Elvezia 36
CH-6900-Lugano (Switzerland)
marco@idsia.ch

Abstract

Partially observable Markov decision prob-
lems (POMDPs) recently received a lot of at-
tention in the reinforcement learning commu-
nity. No attention, however, has been paid
to Levin’s universal search through program
space (LS), which is theoretically optimal for
a wide variety of search problems including
many POMDPs. Experiments in this pa-
per first show that LS can solve partially ob-
servable mazes (POMs) involving many more
states and obstacles than those solved by var-
ious previous authors (here, LS also can eas-
ily outperform Q-learning). We then note,
however, that LS is not necessarily optimal
for “incremental” learning problems where
experience with previous problems may help
to reduce future search costs. For this rea-
son, we introduce an adaptive extension of
LS (ALS) which uses experience to increase
probabilities of instructions occurring in suc-
cessful programs found by LS. To deal with
cases where ALS does not lead to long term
performance improvement, we use the recent
technique of “environment-independent rein-
forcement acceleration” (EIRA) as a safety
belt (EIRA currently is the only known
method that guarantees a lifelong history of
reward accelerations). Experiments with ad-
ditional POMs demonstrate: (a) ALS can
dramatically reduce the search time con-
sumed by successive calls of LS. (b) Addi-
tional significant speed-ups can be obtained
by combining ALS and EIRA.

Jiirgen Schmidhuber
IDSIA
Corso Elvezia 36
CH-6900-Lugano (Switzerland)
juergen@idsia.ch

1 INTRODUCTION

Levin Search (LS). Unbeknownst to many machine
learning researchers, there exists a search algorithm
with amazing theoretical properties: for a broad class
of search problems, LS (Levin, 1973; Levin, 1984) has
the optimal order of computational complexity. For
instance, suppose there is an algorithm that solves
a certain type of maze task in O(n3) steps, where
n is a positive integer representing the problem size.
Then universal LS will solve the same task in at
most O(n?) steps. See (Li and Vitdnyi, 1993) for an
overview. See (Schmidhuber, 1995b) for recent imple-
mentations/applications.

Search through program space is relevant for
“POMDPs”. LS is a smart way of performing ex-
haustive search by “optimally” allocating time to pro-
grams computing solution candidates (details in sec-
tion 2). Since programs written in a general language
can use memory to disambiguate environmental in-
puts, LS is of potential interest for solving partially ob-
servable Markov decision problems (POMDPs), which
received a lot of attention during recent years, e.g.,
(Jaakkola et al., 1995; Kaelbling et al., 1995; Ring,
1994; McCallum, 1993).

Incremental extensions of LS. LS by itself, how-
ever, is non-incremental: it does not use experience
with previous tasks to speed up performance on new
tasks. Therefore, it cannot immediately be used in
typical, incremental reinforcement learning scenarios,
where, in case of success, the system is given “rein-
forcement” (a real number) and tries to use that expe-
rience to maximize the sum of future reinforcements to
be obtained during the remainder of system life. There
have been proposals of “adaptive” variants of LS that
modify LS’ underlying probability distribution on pro-
gram space (Solomonoff, 1986; Schmidhuber, 1995b).

None of these, however, can guarantee that the lifelong
history of probability modifications will correspond to
a lifelong history of reinforcement accelerations.

EIRA. The problem above has been addressed re-
cently (Schmidhuber, 1996). At certain times in
system life called checkpoints, a mnovel technique
called “environment-independent reinforcement accel-
eration” (EIRA) invalidates certain modifications of
the system’s policy (the policy can be an arbitrary
modifiable algorithm mapping environmental inputs
and internal states to outputs and new internal states)
such that all currently valid modifications are justified
in the following sense: each still valid modification has
been followed by long-term performance speed-up. To
measure speed, at each checkpoint EIRA looks at the
entire time interval that went by since the modifica-
tion occurred. To do this efficiently, EIRA performs
some backtracking (the time required for backtrack-
ing is taken into account for measuring performance
speed-ups). EIRA is general in the sense that it can
be combined with your favorite learning or search algo-
rithm. Essentially, EIRA works as a safety belt where
your favorite learning algorithm fails to improve things
such that long term reinforcement intake speeds up
(see details in section 4).

Outline of paper. Section 2 describes LS details.
Section 3 presents the heuristic adaptation method
(ALS — a simple, adaptive, incremental extension of
LS related to the linear reward-inaction algorithm,
e.g., (Kaelbling, 1993)). Section 4 briefly reviews
EIRA and shows how to combine it with ALS. Sec-
tion 5 presents results: in an illustrative application
involving a maze that has many more states and ob-
stacles than mazes solved by previous authors working
on POMDPs, we show how LS can solve partially ob-
servable maze tasks with huge state spaces and non-
trivial but low-complexity solutions (Q-learning fails
to solve such tasks). Then we show that ALS can use
previous experience to significantly reduce search time.
Finally, we show that ALS augmented by EIRA can
clearly outperform ALS by itself. Section 6 presents
conclusions.

2 LEVIN SEARCH (LS)

Basic concepts. LS requires a set of r primitive,
prewired instructions py, ..., p, that can be composed
to form arbitrary sequential programs. FEssentially,
LS generates and tests solution candidates s (pro-
gram outputs represented as strings over a finite al-
phabet) in order of their Levin complexities Kt(s) =

ming{—logPu(q) + log t(q,s)}, where ¢ stands for a
program that computes s in t(g,s) time steps, and
Par(q) is the probability of guessing ¢ according to a
fized Solomonoff-Levin distribution (Li and Vitdnyi,
1993) on the set of possible programs (in section 3,
however, we will make the distribution variable).

Optimality. Amazingly, given primitives represent-
ing a universal programming language, for a broad
class of problems, including !l inversion problems and
time-limited optimization problems, LS can be shown
to be optimal with respect to total expected search
time, leaving aside a constant factor independent of
the problem size (Levin, 1973; Levin, 1984; Li and
Vitdnyi, 1993). Still, until recently LS has not received
much attention except in purely theoretical studies —
see, e.g., (Watanabe, 1992).

Practical implementation. In our practical LS ver-
sion, there is an upper bound & on program length (due
to obvious storage limitations). a; denotes the address
of the i-th instruction. Each program is generated in-
crementally: first we select an instruction for aq, then
for as, etc. Py is given by a matrix M, where M;;
(i €1l,...,k, j€1,..,r) denotes the probability of se-
lecting p; as the instruction at address a;, given that
the first # — 1 instructions have already been selected.
The probability of a program is the product of the
probabilities of its constituents.

LS’ inputs are M and the representation of a problem
denoted by N. LS’ output is a program that computes
a solution to the problem if it found any. In this sec-
tion, all M;; = % will remain fixed. LS is implemented
as a sequence of longer and longer phases:

Levin search(problem N, probability matrix M)

(1) Set T, the number of the current phase,
equal to 1. In what follows, let ¢(T') denote
the set of not yet executed programs ¢ satis-
fying Pr(q) > #.

(2) Repeat

(2.1) While ¢(T') # {} and no so-
lution found do: Generate a pro-
gram q € ¢(T'), and run ¢ until it ei-
ther halts or until it used up ch)T
steps. If ¢ computed a solution for
N, return g and exit.

(2.2) Set T := 2T

until solution found or T' > Thrax.
Return {}.

Here ¢ and Ty 4 x are prespecified constants. The pro-
cedure above is essentially the same (has the same or-
der of complexity) as the one described in the first
paragraph of this section — see, e.g., (Solomonoff,
1986; Li and Vitdnyi, 1993).

3 ADAPTIVE LS (ALS)

As mentioned above, LS is not necessarily optimal
for “incremental” learning problems where experience
with previous problems may help to reduce future
search costs. To make an incremental search method
out of non-incremental LS, we introduce a simple,
heuristic, adaptive LS extension (ALS) that uses ex-
perience with previous problems to adaptively modify
LS’ underlying probability distribution. ALS essen-
tially works as follows: whenever LS found a program
q that computed a solution for the current problem,
the probabilities of ¢’s instructions q1,qz, ..., qi(q) are
increased (here ¢; € {p1,...,p-} denotes ¢’s i-th in-
struction, and I(q) denotes ¢’s length — if LS did not
find a solution (q is the empty program), then [(q) is
defined to be 0). The probability adjustment is con-
trolled by a learning rate v (0 < v < 1). ALS is related
to the linear reward-inaction algorithm (e.g., (Kael-
bling, 1993)) — the main difference is: ALS uses LS to
search through program space as opposed to single ac-
tion space. Asin section 2, the probability distribution
Pyr is determined by M. Initially, all M;; = % How-
ever, given a sequence of problems (N1, N», ..., Ni.), the
M;; may undergo changes caused by ALS:

ALS (problems (Ny, Na, ..., N,), variable matrix M)

for i :=1to k do:
q := Levin search(N;, M); Adapt(q, M).

where the procedure Adapt works as follows:

Adapt(program ¢, variable matrix M)

for i := 1to l(q), j :=1to r do:
if (Qi = pj) then Mij = Mij -I-"}/(]. - Mz)
else M;; := (1 — v)M;;

Critique of adaptive LS. Although ALS seems a
reasonable first step towards making LS adaptive (and
actually leads to very nice experimental results — see
section 5), there is no theoretical proof that it will gen-
erate only probability modifications that will speed up
the process of finding solutions to new tasks — some-
times ALS may produce harmful instead of benefi-
cial results. To address this issue, in the next section

we augment ALS by a recent backtracking technique
called “Environment-Independent Reinforcement Ac-
celeration” (EIRA). EIRA ensures that the system will
keep only probability modifications representing a life-
long history of performance improvements.

4 EIRA FOR ALS

Basic set-up. At a given time, the variable matrix
M above represents the system’s current policy. Each
call of the procedure Adapt (invoked by ALS) modi-
fies the policy. Let us consider the complete sequence
of such calls spanning the entire system life, which
starts at time 0 and ends at some point in the fu-
ture (time flows in one direction — there are no resets
to 0). By definition, the i-th call occurs at time #?,
is denoted Adapt;, and generates a policy modifica-
tion denoted by M (7). In between two calls, a certain
amount of time is consumed by Levin search (details
about how time is measured will follow in the section
on experiments).

Goal. Whenever ALS as above finds a solution, the
system receives a reward of +1.0. The goal is to receive
as much reward as quickly as possible, by generating
policy changes that minimize the computation time re-
quired by future calls of Levin search. Let us denote
the sum of all reinforcements between time 0 and time
t > 0 by R(¢).

Reinforcement /time ratios. Right before each call
of Adapt, EIRA (see details below) essentially inval-
idates those policy modifications that are not consis-
tent with the so-called reinforcement acceleration cri-
terion (RAC). To define RAC, we first introduce a
measure indicating how useful Adapt; has been until
the current time ¢ — we simply compute the reinforce-
ment /time ratio Q(i,t):

At a particular time ¢, RAC is satisfied if for each
Adapt; that computed a still valid (not yet invali-
dated) policy modification M(i), we have

(a) Q(i,t) > # and
(b) Vk < i such that M(k) is still valid:
Qi,t) > Q(k, 1).

Obviously, RAC only holds if the history of still valid
policy modification represents a history of long-term
reinforcement accelerations — each still valid modifi-

cation has to be followed by more average reinforce-
ment per time than all the previous ones. Note that
the success of some Adapt call depends on the suc-
cess of all later Adapt calls, for which it is “setting
the stage”! This represents an essential difference to
previous performance criteria.

EIRA uses a stack to store information about policy
modifications computed by calls of Adapt. Right be-
fore Adapt; is executed, EIRA restores (if necessary)

previous policies such that RAC holds. EIRA is based
on two processes:

(1) Pushing. At time #!, EIRA pushes the following
information on the stack: ¢!, R(¢!), and the previous
values of those columns of M (representing probability
distributions) changed by Adapt; (this information
may be needed for later restoring the old policy, as it
used to be before M (i) was generated).

(2) Popping. Right before each call of Adapt, while
none of the following conditions (1-3) holds, EIRA
pops probability vectors off the stack and invalidates
the corresponding policy modifications, by restoring
the previous policies.

(1) Q(k,t) > Q(I,t), where M (k) and M(I)
are still valid, and M (l) is the most recent
valid policy modification generated earlier
than M (k).

(2) Q(k,t) > @, where M (k) is the only
valid policy.

(3) the stack is empty.

Theoretical soundness. Using induction, it can be
shown that this backtracking procedure ensures that
RAC holds after each popping process (Schmidhuber,
1995a).

At any given time, EIRA’s straight-forward general-
ization assumption is: modifications that survived the
most recent popping process will remain useful. In
general environments, what else could be assumed?
Note that at any given time in system life, we have
only one single “training example” to evaluate the cur-
rent long-term usefulness of any given previous Adapt
call, namely the average reinforcement per time since
it occurred. During the next popping process, how-
ever, EIRA will reevaluate “usefulness so far” of still
valid modifications.

To conclude: EIRA again and again implicitly evalu-
ates each still valid policy modification as to whether it
has been followed by long-term performance improve-

ment (perhaps because the modification set the stage
for later useful modifications). If there is evidence
to the contrary, EIRA invalidates policy modifications
until RAC is fulfilled again. EIRA’s stack-based back-
tracking is efficient in the sense that only the two most
recent still valid modifications have to be considered at
a given time (although a single popping process may
invalidate many modifications).

5 PARTIALLY OBSERVABLE
MAZE PROBLEMS

This section will describe experiments validating the
usefulness of LS, ALS, and EIRA. To begin with, in
an illustrative application with a partially observable
maze that has many more states and obstacles than
those presented by various authors at ML95, we show
how LS by itself can solve POMDPs with huge state
spaces but low-complexity solutions (Q-learning vari-
ants fail to solve these tasks). Then we present ex-
periments where the task requires to find a stochastic
policy for finding multiple goals. We show that ALS
can use previous experience to speed-up the process of
finding solutions, and that EIRA combined with ALS
(for short: ALS+EIRA) can outperform ALS by itself.

5.1 EXPERIMENT 1: A BIG PARTIALLY
OBSERVABLE MAZE (POM)

Task. Figure 1 shows a 39x38-maze with a single start
position (S) and a single goal position (G). The maze
has many more fields and obstacles than mazes used by
previous authors working on POMDPs (for instance,
McCallum’s maze has only 23 free fields (McCallum,
1995)). The goal is to find a program that makes an
agent move from S to G.

Instructions. Programs can be composed from 9
primitive instructions. These instructions represent
the initial bias provided by the programmer (in what
follows, superscripts will indicate instruction num-
bers). The first 8 instructions have the following syn-
tax : REPEAT step forward UNTIL condition Cond,
THEN rotate towards direction Dir.

Instruction 1 : Cond = front is blocked, Dir = left.
Instruction 2 : Cond = front is blocked, Dir = right.
Instruction 3 : Cond = left field is free, Dir = left.
Instruction 4 : Cond = left field is free, Dir = right.
Instruction 5 : Cond = left field is free, Dir = none.
Instruction 6 : C'ond = right field is free, Dir = left.
Instruction 7 : C'ond = right field is free, Dir = right.
Instruction 8 : C'ond = right field is free, Dir = none.
Instruction 9 is: Jump(address, nr-times). It has

Figure 1: An apparently complex, partially observable
39 x 38-maze with a low-complexity shortest path from
start S to goal G involving 127 steps. Despite the rel-
atively large state space, the agent can implicitly per-
ceive only one of three highly ambiguous types of input,
namely “front is blocked or not”, “the left field is free
or not”, “the right field is free or not” (compare list of
primitives). Hence, from the agent’s perspective, the
task is a difficult POMDP. The arrow indicates the
agent’s initial rotation.

two parameters: nr-times € 1,2,...,6, and address
€ 1,2,...,top, where top is the highest address in
the current program. Jump uses an additional hid-
den variable nr-times-to-go which is initially set to
nr-times. The semantics are: If nr-times-to-go
> 0, continue execution at address address. If 0 <
nr-times-to-go < 6, decrement nr-times-to-go.
If nr-times-to-go = 0, set nr-times-to-go to
nr-times. Note that nr-times = 6 may cause an
infinite loop. The Jump instruction is essential for ex-
ploiting the possibility that solutions may consist of
repeatable action sequences and “subprograms” (thus
having low algorithmic complexity). LS’ incrementally
growing time limit automatically deals with those pro-
grams that don’t halt, by preventing them from con-
suming too much time.

As mentioned in section 2, the probability of a program
is the product of the probabilities of its constituents.
To deal with probabilities of the two Jump parameters,

we introduce two additional variable matrices, A and
M. For a program with [< k instructions, to specify
the conditional probability M;; of a jump to address
a;j, given that the instruction at address a; is Jump
(t€1,..,1,7 €1,..,1), we first normalize the entries
M1, Mss, ..., My (this ensures that the relevant entries
sum up to 1). Provided the instruction at address a;
is Jump, for i € 1,...,k, j € 1,...,6, Mij specifies the
probability of the nr-times parameter being set to
j. Both M and M are initialized uniformly and are
adapted by ALS just like M itself.

Restricted LS-variant. Note that the instructions
above are not sufficient to build a universal program-
ming language — the experiments in this paper are
confined to a restricted version of LS. From the instruc-
tions above, however, one can build programs for solv-
ing any maze in which it is not necessary to completely
reverse the direction of movement (rotation by 180 de-
grees) in a corridor. Note that it is mainly the Jump
instruction that allows for composing low-complexity
solutions from “subprograms” (LS provides a sound
way for dealing with infinite loops).

Rules. Before LS generates, runs and tests a new pro-
gram, the agent is reset to its start position. Collisions
with walls halt the program. A path generated by a
program that makes the agent hit the goal is called a
solution (the agent is not required to stop at the goal
— there are no explicit halt instructions).

Why is this a POMDP? Because the instructions
above are not sufficient to tell the agent exactly where
it is: at a given time, the agent can perceive only one
of three highly ambiguous types of input (by executing
the appropriate primitive): “front is blocked or not”,
“the left field is free or not”, “the right field is free or
not” (compare list of primitives). Some sort of mem-
ory is required to disambiguate apparently equal situ-
ations encountered on the way to the goal. Q-learning,
for instance, is not guaranteed to solve POMDPs (e.g,
(Watkins and Dayan, 1992)). Our agent, however, can
use memory implicit in the state of the execution of
its current program to disambiguate ambiguous situa-
tions.

Measuring time. The computational cost of a sin-
gle Levin search call in between two Adapt calls is
essentially the sum of the costs of all the programs it
tests. To measure the cost of a single program, we sim-
ply count the total number of forward steps and rota-
tions during program execution (this number is of the
order of total computation time). Note that instruc-
tions often cost more than 1 step! To detect infinite

loops, LS also measures the time consumed by Jump
instructions (one time step per executed Jump). In a
realistic application, however, the time consumed by
a robot move would by far exceed the time consumed
by a Jump instruction — we omitted this (negligible)
cost in the experimental results.

Comparison. We compared LS to three variants of
Q-learning (Watkins and Dayan, 1992) and random
search. Random search repeatedly and randomly se-
lects and executes one of the instructions (1-8) until
the goal is hit (like with Levin search, the agent is
reset to its start position whenever it hits the wall).
Since random search (unlike LS) does not have a time
limit for testing, it may not use the jump — this is to
prevent it from wandering into infinite loops. The first
Q-variant uses the same 8 instructions, but has the ad-
vantage that it can distinguish all possible states (952
possible inputs — but this actually makes the task
much easier, because it is no POMDP any more). The
first Q-variant was just tested to see how much more
difficult the problem becomes in the POMDP setting.
The second Q-variant can only observe whether the
four surrounding fields are blocked or not (16 possi-
ble inputs), and the third Q-variant receives a unique
representation of the five most recent executed instruc-
tions as input (37449 possible inputs — this requires
a gigantic Q-table!). Actually, after a few initial ex-
periments with the second Q-variant, we noticed that
it could not use its input for preventing collisions (the
agent always walks for a while and then rotates — in
front of a wall, every instruction will cause a collision).
To improve the second Q-variant’s performance, we
appropriately altered the instructions: each instruc-
tion consists of one of the 3 types of rotations followed
by one of the 3 types of forward walks (thus the total
number of instructions is 9 — for the same reason as
with random search, the jump instruction cannot be
used). The parameters of the Q-learning variants were
first coarsely optimized on a number of smaller mazes
which they were able to solve. We set ¢ = 0.005, which
means that in the first phase (T = 1 in the LS proce-
dure), a program with probability 1 may execute up
to 200 steps before being stopped.

Typical result. In the easy, totally observable case,
Q-learning took on average 694,933 steps (10 simula-
tions were conducted) to solve the maze from Figure
1. However, as expected, in the difficult, partially ob-
servable cases, neither the two Q-learning variants nor
random search were ever able to solve the maze within
1,000,000,000 steps (5 simulations were conducted). In
contrast, LS was indeed able to solve the POMDP: LS

required 97,395,311 steps to find a program ¢ comput-
ing a 127-step shortest path to the goal in Figure 1.
LS’ low-complexity solution involves two nested loops:

1) REPEAT step forward UNTIL left
field is free®

2) Jump (1 , 3)°

3) REPEAT step forward UNTIL left
field is free, rotate left®

4) Jump (1 , 5)°

Similar results were obtained with many other mazes
having non-trivial solutions with low algorithmic com-
plexity. Such experiments illustrate that smart search
through program space can be beneficial in cases
where the task appears complex but actually has low-
complexity solutions. Since LS has a principled way
of dealing with non-halting programs and time-limits
(unlike, e.g., “Genetic Programming”(GP)), LS may
also be of interest for researchers working in GP and re-
lated fields (the first paper on using GP-like algorithms
to evolve assembler-like computer programs was, to
the best of our knowledge, (Dickmanns et al., 1987)).

ALS: single tasks versus multiple tasks. If we
use the adaptive LS extension (ALS) for a single task
as the one above (by repeatedly applying LS to the
same problem and changing the underlying probabil-
ity distribution in between successive calls according
to section 3), then the probability matrix rapidly con-
verges such that late LS calls find the solution almost
immediately. This is not very interesting, however —
once the solution to a single problem is found (and
there are no additional problems), there is no point in
investing additional efforts into probability updates.
ALS is more interesting in cases where there are mul-
tiple tasks, and where the solution to one task conveys
some but not all information helpful for solving addi-
tional tasks. This is what the next section is about.

5.2 EXPERIMENT 2: LEARNING TO
FIND MULTIPLE GOALS

Task. The second experiment shows that ALS can
use experience to significantly reduce average search
time consumed by successive LS calls in cases where
there are multiple tasks to solve, and that ALS can be
further improved by combining it with EIRA. To be
able to run a sufficient number of simulations to ob-
tain statistically significant results, we replace the big
magze from Figure 1 by the smaller maze from Figure 2,
which indicates 10 different goal positions. At a given

V]
|
|
|
|
||
9|
|
[
|
|
|
|
|
|

Figure 2: An example of 10 goal positions to be found
in a 19 x 22 maze. The arrow indicates the agent’s
initial position and direction.

time, only one of the goal positions contains “food”.
But the agent does not know which! Whenever the
agent finds food, it takes it home to eat it. Next time,
food appears in another location. Therefore, there is
no deterministic program that always can generate a
shortest path. The best the agent can do is to learn a
stochastic policy minimizing expected search time.

One experiment consists of 10 simulations. For each
simulation, 10 goal positions are randomly generated.
Each simulation consists of 100 “epochs”, where each
epoch consists of 10 “runs”, where during the i-th run
the i-th goal position has to be found (starting from
the start state). M, M and M are adjusted whenever
a solution is found.

Comparison. We compared (1) Random Search,
(2) ALS and (3) the ALS+EIRA combination, where
EIRA restores old policies if necessary, always right be-
fore ALS’ matrices are adapted. For the LS calls trig-
gered during ALS’ runtime, we set ¢ to 0.02. ALS per-
formed best with a learning rate v = 0.05. ALS+EIRA
performed best with a learning rate of 0.08.

Results. All methods always found all 10 goal posi-
tions before running into the time-limit (10® steps for
each goal). The learning curves are given in figure 3.
In the beginning, the LS calls triggered by ALS take a
long time, but after a few epochs the search cost im-
proves by a factor of about 100 (for scaling reasons,
Figure 3 does not even show the initial search costs).
Table 1 shows the average number of steps required
to find all 10 goal positions in the 100** epoch of the
10 simulations. The results show (1) that ALS finds

Table 1: The number of steps required by ALS,
ALS+EIRA and random search (RS) to find all 10
goal positions (always starting from the start position).
The table shows the average number of steps (in thou-
sands) consumed during the 100*" epoch. SD is the
standard deviation, and MAX (MIN) stands for worst
(best) performance in ten simulations with ten differ-
ent goal positions (see Figure 3 to see that ALS dra-
matically reduces search costs for successive LS calls).

| Method || Average | SD | MAX | MIN |
ALS + EIRA 75| 3.7 | 125 3.3
ALS 19.2 | 173 | 65.5 4.6
RS 168 | 284 | 1005 | 10.2

the 10 goal positions on average much faster than ran-
dom search. The table also shows (2) that the use of
EIRA significantly further improves the results (the
additional speed-up factor exceeds 2.0).

The safety belt effect. Figure 4 plots number
of epochs against the average probability of pro-
grams computing solutions. The figure shows that
ALS+EIRA tends to keep the probabilities lower than
ALS by itself: high program probabilities are not al-
ways beneficial.

Effectively, EIRA is controlling the prior on the search
space such that overall average search time is reduced.
The total stack size (the number of instruction prob-
ability vectors on the stack) after the 100" trial was
108 on average. Since the total amount of policy mod-
ifications is (number of goal positions) * (number of
epochs) * (average solution length) = 3800, EIRA kept
only about 3% of all modifications! The remaining
97% were deemed unworthy, because they were not
observed to be followed by long-term reinforcement
speed-ups. Clearly, EIRA prevents ALS from over-
doing its policy modifications (“safety belt effect”).

6 CONCLUSION

This paper makes three major points: (1) Levin search
by itself can be useful for solving POMDPs. This
has been demonstrated with a non-trivial, partially
observable maze containing significantly more states
and obstacles than those used to demonstrate the use-
fulness of previous POMDP algorithms, e.g., (Mc-
Callum, 1993; Ring, 1994; Littman, 1994; CIliff and
Ross, 1994): for instance, McCallum’s cheese maze
has only 11 free fields, and Ring’s largest maze is a
9x9-maze. This also illustrates that search in program

250000 r. ——

EIRA + ALS ——
ALS -
RANDOM SEARCH -

200000 | ‘ i . A

150000

NR STEPS

100000

50000

0 ! . | . .
O 10 20 30 40 50 60 70 80 90 100
NR EPOCHS

Figure 3: Average number of steps required to find all
10 goal positions (each time starting anew from the
start position), plotted against the number of epochs.
The comparison involves random search, ALS, and
ALS augmented by FIRA.

space can have significant advantages over methods
searching through simple action space, provided the
algorithmic complexity of the solutions is low. (2)
A straightforward, incremental, adaptive extension of
non-incremental LS (ALS — introduced in this pa-
per) can dramatically reduce the time consumed by
successive calls of LS in cases where there are multi-
ple tasks to solve. (3) ALS can further significantly
benefit from “environment-independent reinforcement
acceleration” (EIRA). EIRA helps to get rid of ALS-
generated policy modifications for which there is no ev-
idence that they contribute to long-term performance
improvement. This actually provides the first example
of how EIRA can improve heuristic learning methods
in lifelong learning situations. Due to EIRA’s general-
ity (it is not limited to run in conjunction with ALS,
but can be combined with all kinds of policy modify-
ing learning algorithms), these results add to making
EIRA appear a promising, general paradigm.

Future Work. ALS should be extended such that it
not only adapts the probability distribution underlying
LS, but also the initial time limit required by LS’ first
phase (the current ALS version keeps the latter con-
stant, which represents a potential loss of efficiency).

0.25 T T T

EIRA + ALS ——
ALS -

02 | —
015 | / R

0.1

AVERAGE PROGRAM PROBABILITY

0.05 H

0
O 10 20 30 40 50 60 70 80 90 100
NR EPOCHS

Figure 4: The average probability of programs com-
puting solutions. Without EIRA, the average proba-
bility of certain solution-computing programs is much
higher. This does not improve search time, however
(compare figure 3).

Again, EIRA should be combined with this ALS ex-
tension.

EIRA should also be combined with other (e.g., ge-
netic) learning algorithms, especially in situations
where the applicability of a given algorithm A is ques-
tionable because the environment does not satisfy the
preconditions that would make A sound. EIRA can at
least guarantee that those of A’s policy modifications
that appear to have negative long-term effects on fur-
ther learning processes are countermanded. Indeed, in
separate POMDP experiments we were already able
to show that EIRA can improve standard Q-learning’s
performance (recall that POMDP applications of Q-
learning are not theoretically sound, although many
authors do apply Q-variants to POMDPs). Another
interesting application area may be the field of bucket-
brigade based classifier systems: (Cliff and Ross, 1994)
show that such systems tend to be unstable and forget
good solutions. Here EIRA could unfold its safety belt
effect.

Acknowledgements

Thanks for valuable discussions to Rafal Satustowicz,
Sepp Hochreiter, and Jieyu Zhao (supported by SNF

grant 21-43’417.95 “incremental self-improvement”).

References

Cliff, D. and Ross, S. (1994). Adding temporary mem-
ory to ZCS. Adaptive Behavior, 3:101-150.

Dickmanns, D., Schmidhuber, J., and Winklhofer, A.
(1987). Der genetische Algorithmus: Eine Im-
plementierung in Prolog. Fortgeschrittenenprak-
tikum, Institut fiir Informatik, Lehrstuhl Prof.
Radig, Technische Universitdt Miinchen.

Jaakkola, T., Singh, S. P., and Jordan, M. I. (1995).
Reinforcement learning algorithm for partially ob-
servable markov decision problems. In Tesauro,
G., Touretzky, D. S., and Leen, T. K., editors,
Advances in Neural Information Processing Sys-
tems 7, to appear. MIT Press, Cambridge MA.

Kaelbling, L. (1993). Learning in Embedded Systems.
MIT Press.

Kaelbling, L., Littman, M., and Cassandra, A.
(1995). Planning and acting in partially observ-
able stochastic domains. Technical report, Brown
University, Providence RI.

Levin, L. A. (1973). Universal sequential search prob-
lems. Problems of Information Transmission,
9(3):265-266.

Levin, L. A. (1984). Randomness conservation inequal-
ities: Information and independence in mathe-
matical theories. Information and Control, 61:15—
37.

Li, M. and Vitdnyi, P. M. B. (1993). An Introduction
to Kolmogorov Complexity and its Applications.
Springer.

Littman, M. (1994). Memoryless policies: Theoreti-
cal limitations and practical results. In D. CIiff,
P. Husbands, J. A. M. and Wilson, S. W., editors,
Proc. of the International Conference on Simu-
lation of Adaptive Behavior: From Animals to
Animats 3, pages 297-305. MIT Press/Bradford
Books.

McCallum, R. A. (1993). Overcoming incomplete per-
ception with utile distinction memory. In Machine
Learning: Proceedings of the Tenth International
Conference. Morgan Kaufmann, Amherst, MA.

McCallum, R. A. (1995). Instance-based utile dis-
tinctions for reinforcement learning with hidden
state. In Prieditis, A. and Russell, S., editors,
Machine Learning: Proceedings of the Twelfth In-
ternational Conference, pages 387-395. Morgan
Kaufmann Publishers, San Francisco, CA.

Ring, M. B. (1994). Continual Learning in Reinforce-
ment Environments. PhD thesis, University of
Texas at Austin, Austin, Texas 78712.

Schmidhuber, J. (1995a). Environment-independent
reinforcement acceleration. Technical Report
Note IDSTA-59-95, IDSTA. Invited talk at
Hongkong University of Science and Technology.

Schmidhuber, J. (1996). A general method for incre-
mental self-improvement and multi-agent learning
in unrestricted environments. In Yao, X., editor,
Evolutionary Computation: Theory and Applica-
tions. Scientific Publ. Co., Singapore.

Schmidhuber, J. H. (1995b). Discovering solutions
with low Kolmogorov complexity and high gen-
eralization capability. In Prieditis, A. and Rus-
sell, S., editors, Machine Learning: Proceedings of
the Twelfth International Conference, pages 488—
496. Morgan Kaufmann Publishers, San Fran-
cisco, CA.

Solomonoff, R. (1986). An application of algorithmic
probability to problems in artificial intelligence.
In Kanal, L. N. and Lemmer, J. F., editors, Un-
certainty in Artificial Intelligence, pages 473—491.
Elsevier Science Publishers.

Watanabe, O. (1992). Kolmogorov complexity and
computational complexity. EATCS Monographs
on Theoretical Computer Science, Springer.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.
Machine Learning, 8:279-292.

