
Solving POMDPs with Levin Search and EIRAIn Machine Learning: Proceedings of the 13th international conference, 1996Marco WieringIDSIACorso Elvezia 36CH-6900-Lugano (Switzerland)marco@idsia.ch J�urgen SchmidhuberIDSIACorso Elvezia 36CH-6900-Lugano (Switzerland)juergen@idsia.chAbstractPartially observable Markov decision prob-lems (POMDPs) recently received a lot of at-tention in the reinforcement learning commu-nity. No attention, however, has been paidto Levin's universal search through programspace (LS), which is theoretically optimal fora wide variety of search problems includingmany POMDPs. Experiments in this pa-per �rst show that LS can solve partially ob-servable mazes (POMs) involving many morestates and obstacles than those solved by var-ious previous authors (here, LS also can eas-ily outperform Q-learning). We then note,however, that LS is not necessarily optimalfor \incremental" learning problems whereexperience with previous problems may helpto reduce future search costs. For this rea-son, we introduce an adaptive extension ofLS (ALS) which uses experience to increaseprobabilities of instructions occurring in suc-cessful programs found by LS. To deal withcases where ALS does not lead to long termperformance improvement, we use the recenttechnique of \environment-independent rein-forcement acceleration" (EIRA) as a safetybelt (EIRA currently is the only knownmethod that guarantees a lifelong history ofreward accelerations). Experiments with ad-ditional POMs demonstrate: (a) ALS candramatically reduce the search time con-sumed by successive calls of LS. (b) Addi-tional signi�cant speed-ups can be obtainedby combining ALS and EIRA.

1 INTRODUCTIONLevin Search (LS). Unbeknownst to many machinelearning researchers, there exists a search algorithmwith amazing theoretical properties: for a broad classof search problems, LS (Levin, 1973; Levin, 1984) hasthe optimal order of computational complexity. Forinstance, suppose there is an algorithm that solvesa certain type of maze task in O(n3) steps, wheren is a positive integer representing the problem size.Then universal LS will solve the same task in atmost O(n3) steps. See (Li and Vit�anyi, 1993) for anoverview. See (Schmidhuber, 1995b) for recent imple-mentations/applications.Search through program space is relevant for\POMDPs". LS is a smart way of performing ex-haustive search by \optimally" allocating time to pro-grams computing solution candidates (details in sec-tion 2). Since programs written in a general languagecan use memory to disambiguate environmental in-puts, LS is of potential interest for solving partially ob-servable Markov decision problems (POMDPs), whichreceived a lot of attention during recent years, e.g.,(Jaakkola et al., 1995; Kaelbling et al., 1995; Ring,1994; McCallum, 1993).Incremental extensions of LS. LS by itself, how-ever, is non-incremental: it does not use experiencewith previous tasks to speed up performance on newtasks. Therefore, it cannot immediately be used intypical, incremental reinforcement learning scenarios,where, in case of success, the system is given \rein-forcement" (a real number) and tries to use that expe-rience to maximize the sum of future reinforcements tobe obtained during the remainder of system life. Therehave been proposals of \adaptive" variants of LS thatmodify LS' underlying probability distribution on pro-gram space (Solomono�, 1986; Schmidhuber, 1995b).

None of these, however, can guarantee that the lifelonghistory of probability modi�cations will correspond toa lifelong history of reinforcement accelerations.EIRA. The problem above has been addressed re-cently (Schmidhuber, 1996). At certain times insystem life called checkpoints, a novel techniquecalled \environment-independent reinforcement accel-eration" (EIRA) invalidates certain modi�cations ofthe system's policy (the policy can be an arbitrarymodi�able algorithm mapping environmental inputsand internal states to outputs and new internal states)such that all currently valid modi�cations are justi�edin the following sense: each still valid modi�cation hasbeen followed by long-term performance speed-up. Tomeasure speed, at each checkpoint EIRA looks at theentire time interval that went by since the modi�ca-tion occurred. To do this e�ciently, EIRA performssome backtracking (the time required for backtrack-ing is taken into account for measuring performancespeed-ups). EIRA is general in the sense that it canbe combined with your favorite learning or search algo-rithm. Essentially, EIRA works as a safety belt whereyour favorite learning algorithm fails to improve thingssuch that long term reinforcement intake speeds up(see details in section 4).Outline of paper. Section 2 describes LS details.Section 3 presents the heuristic adaptation method(ALS | a simple, adaptive, incremental extension ofLS related to the linear reward-inaction algorithm,e.g., (Kaelbling, 1993)). Section 4 brie
y reviewsEIRA and shows how to combine it with ALS. Sec-tion 5 presents results: in an illustrative applicationinvolving a maze that has many more states and ob-stacles than mazes solved by previous authors workingon POMDPs, we show how LS can solve partially ob-servable maze tasks with huge state spaces and non-trivial but low-complexity solutions (Q-learning failsto solve such tasks). Then we show that ALS can useprevious experience to signi�cantly reduce search time.Finally, we show that ALS augmented by EIRA canclearly outperform ALS by itself. Section 6 presentsconclusions.2 LEVIN SEARCH (LS)Basic concepts. LS requires a set of r primitive,prewired instructions p1; :::; pr that can be composedto form arbitrary sequential programs. Essentially,LS generates and tests solution candidates s (pro-gram outputs represented as strings over a �nite al-phabet) in order of their Levin complexities Kt(s) =

minqf�logPM(q) + log t(q; s)g, where q stands for aprogram that computes s in t(q; s) time steps, andPM (q) is the probability of guessing q according to a�xed Solomono�-Levin distribution (Li and Vit�anyi,1993) on the set of possible programs (in section 3,however, we will make the distribution variable).Optimality. Amazingly, given primitives represent-ing a universal programming language, for a broadclass of problems, including all inversion problems andtime-limited optimization problems, LS can be shownto be optimal with respect to total expected searchtime, leaving aside a constant factor independent ofthe problem size (Levin, 1973; Levin, 1984; Li andVit�anyi, 1993). Still, until recently LS has not receivedmuch attention except in purely theoretical studies |see, e.g., (Watanabe, 1992).Practical implementation. In our practical LS ver-sion, there is an upper bound k on program length (dueto obvious storage limitations). ai denotes the addressof the i-th instruction. Each program is generated in-crementally: �rst we select an instruction for a1, thenfor a2, etc. PM is given by a matrix M , where Mij(i 2 1; :::; k, j 2 1; :::; r) denotes the probability of se-lecting pj as the instruction at address ai, given thatthe �rst i� 1 instructions have already been selected.The probability of a program is the product of theprobabilities of its constituents.LS' inputs are M and the representation of a problemdenoted by N . LS' output is a program that computesa solution to the problem if it found any. In this sec-tion, all Mij = 1r will remain �xed. LS is implementedas a sequence of longer and longer phases:Levin search(problem N , probability matrixM)(1) Set T , the number of the current phase,equal to 1. In what follows, let �(T) denotethe set of not yet executed programs q satis-fying PM (q) � 1T .(2) Repeat(2.1) While �(T) 6= fg and no so-lution found do: Generate a pro-gram q 2 �(T), and run q until it ei-ther halts or until it used up PM (q)Tcsteps. If q computed a solution forN , return q and exit.(2.2) Set T := 2Tuntil solution found or T � TMAX .Return fg.

Here c and TMAX are prespeci�ed constants. The pro-cedure above is essentially the same (has the same or-der of complexity) as the one described in the �rstparagraph of this section | see, e.g., (Solomono�,1986; Li and Vit�anyi, 1993).3 ADAPTIVE LS (ALS)As mentioned above, LS is not necessarily optimalfor \incremental" learning problems where experiencewith previous problems may help to reduce futuresearch costs. To make an incremental search methodout of non-incremental LS, we introduce a simple,heuristic, adaptive LS extension (ALS) that uses ex-perience with previous problems to adaptively modifyLS' underlying probability distribution. ALS essen-tially works as follows: whenever LS found a programq that computed a solution for the current problem,the probabilities of q's instructions q1; q2; : : : ; ql(q) areincreased (here qi 2 fp1; : : : ; prg denotes q's i-th in-struction, and l(q) denotes q's length | if LS did not�nd a solution (q is the empty program), then l(q) isde�ned to be 0). The probability adjustment is con-trolled by a learning rate
 (0 <
 < 1). ALS is relatedto the linear reward-inaction algorithm (e.g., (Kael-bling, 1993)) | the main di�erence is: ALS uses LS tosearch through program space as opposed to single ac-tion space. As in section 2, the probability distributionPM is determined by M . Initially, all Mij = 1r . How-ever, given a sequence of problems (N1; N2; :::; Nk), theMij may undergo changes caused by ALS:ALS (problems (N1; N2; :::; Nk), variable matrix M)for i := 1 to k do:q := Levin search(Ni, M); Adapt(q, M).where the procedure Adapt works as follows:Adapt(program q, variable matrix M)for i := 1 to l(q), j := 1 to r do:if (qi = pj) then Mij := Mij +
(1�Mij)else Mij := (1�
)MijCritique of adaptive LS. Although ALS seems areasonable �rst step towards making LS adaptive (andactually leads to very nice experimental results | seesection 5), there is no theoretical proof that it will gen-erate only probability modi�cations that will speed upthe process of �nding solutions to new tasks { some-times ALS may produce harmful instead of bene�-cial results. To address this issue, in the next section

we augment ALS by a recent backtracking techniquecalled \Environment-Independent Reinforcement Ac-celeration" (EIRA). EIRA ensures that the system willkeep only probability modi�cations representing a life-long history of performance improvements.4 EIRA FOR ALSBasic set-up. At a given time, the variable matrixM above represents the system's current policy. Eachcall of the procedure Adapt (invoked by ALS) modi-�es the policy. Let us consider the complete sequenceof such calls spanning the entire system life, whichstarts at time 0 and ends at some point in the fu-ture (time
ows in one direction | there are no resetsto 0). By de�nition, the i-th call occurs at time ti,is denoted Adapti, and generates a policy modi�ca-tion denoted by M(i). In between two calls, a certainamount of time is consumed by Levin search (detailsabout how time is measured will follow in the sectionon experiments).Goal. Whenever ALS as above �nds a solution, thesystem receives a reward of +1:0. The goal is to receiveas much reward as quickly as possible, by generatingpolicy changes that minimize the computation time re-quired by future calls of Levin search. Let us denotethe sum of all reinforcements between time 0 and timet > 0 by R(t).Reinforcement/time ratios. Right before each callof Adapt, EIRA (see details below) essentially inval-idates those policy modi�cations that are not consis-tent with the so-called reinforcement acceleration cri-terion (RAC). To de�ne RAC, we �rst introduce ameasure indicating how useful Adapti has been untilthe current time t | we simply compute the reinforce-ment/time ratio Q(i; t):Q(i; t) = R(t)�R(ti)t� tiAt a particular time t, RAC is satis�ed if for eachAdapti that computed a still valid (not yet invali-dated) policy modi�cation M(i), we have(a) Q(i; t) > R(t)t , and(b) 8k < i such that M(k) is still valid:Q(i; t) > Q(k; t).Obviously, RAC only holds if the history of still validpolicy modi�cation represents a history of long-termreinforcement accelerations | each still valid modi�-

cation has to be followed by more average reinforce-ment per time than all the previous ones. Note thatthe success of some Adapt call depends on the suc-cess of all later Adapt calls, for which it is \settingthe stage"! This represents an essential di�erence toprevious performance criteria.EIRA uses a stack to store information about policymodi�cations computed by calls of Adapt. Right be-fore Adapti is executed, EIRA restores (if necessary)previous policies such that RAC holds. EIRA is basedon two processes:(1) Pushing. At time ti, EIRA pushes the followinginformation on the stack: ti, R(ti), and the previousvalues of those columns of M (representing probabilitydistributions) changed by Adapti (this informationmay be needed for later restoring the old policy, as itused to be before M(i) was generated).(2) Popping. Right before each call of Adapt, whilenone of the following conditions (1-3) holds, EIRApops probability vectors o� the stack and invalidatesthe corresponding policy modi�cations, by restoringthe previous policies.(1) Q(k; t) > Q(l; t), where M(k) and M(l)are still valid, and M(l) is the most recentvalid policy modi�cation generated earlierthan M(k).(2) Q(k; t) > R(t)t , where M(k) is the onlyvalid policy.(3) the stack is empty.Theoretical soundness. Using induction, it can beshown that this backtracking procedure ensures thatRAC holds after each popping process (Schmidhuber,1995a).At any given time, EIRA's straight-forward general-ization assumption is: modi�cations that survived themost recent popping process will remain useful. Ingeneral environments, what else could be assumed?Note that at any given time in system life, we haveonly one single \training example" to evaluate the cur-rent long-term usefulness of any given previousAdaptcall, namely the average reinforcement per time sinceit occurred. During the next popping process, how-ever, EIRA will reevaluate \usefulness so far" of stillvalid modi�cations.To conclude: EIRA again and again implicitly evalu-ates each still valid policy modi�cation as to whether ithas been followed by long-term performance improve-

ment (perhaps because the modi�cation set the stagefor later useful modi�cations). If there is evidenceto the contrary, EIRA invalidates policy modi�cationsuntil RAC is ful�lled again. EIRA's stack-based back-tracking is e�cient in the sense that only the two mostrecent still valid modi�cations have to be considered ata given time (although a single popping process mayinvalidate many modi�cations).5 PARTIALLY OBSERVABLEMAZE PROBLEMSThis section will describe experiments validating theusefulness of LS, ALS, and EIRA. To begin with, inan illustrative application with a partially observablemaze that has many more states and obstacles thanthose presented by various authors at ML95, we showhow LS by itself can solve POMDPs with huge statespaces but low-complexity solutions (Q-learning vari-ants fail to solve these tasks). Then we present ex-periments where the task requires to �nd a stochasticpolicy for �nding multiple goals. We show that ALScan use previous experience to speed-up the process of�nding solutions, and that EIRA combined with ALS(for short: ALS+EIRA) can outperform ALS by itself.5.1 EXPERIMENT 1: A BIG PARTIALLYOBSERVABLE MAZE (POM)Task. Figure 1 shows a 39�38-maze with a single startposition (S) and a single goal position (G). The mazehas many more �elds and obstacles than mazes used byprevious authors working on POMDPs (for instance,McCallum's maze has only 23 free �elds (McCallum,1995)). The goal is to �nd a program that makes anagent move from S to G.Instructions. Programs can be composed from 9primitive instructions. These instructions representthe initial bias provided by the programmer (in whatfollows, superscripts will indicate instruction num-bers). The �rst 8 instructions have the following syn-tax : REPEAT step forward UNTIL condition Cond,THEN rotate towards direction Dir.Instruction 1 : Cond = front is blocked, Dir = left.Instruction 2 : Cond = front is blocked, Dir = right.Instruction 3 : Cond = left �eld is free, Dir = left.Instruction 4 : Cond = left �eld is free, Dir = right.Instruction 5 : Cond = left �eld is free, Dir = none.Instruction 6 : Cond = right �eld is free, Dir = left.Instruction 7 : Cond = right �eld is free, Dir = right.Instruction 8 : Cond = right �eld is free, Dir = none.Instruction 9 is: Jump(address, nr-times). It has

S

G

Figure 1: An apparently complex, partially observable39� 38-maze with a low-complexity shortest path fromstart S to goal G involving 127 steps. Despite the rel-atively large state space, the agent can implicitly per-ceive only one of three highly ambiguous types of input,namely \front is blocked or not", \the left �eld is freeor not", \the right �eld is free or not" (compare list ofprimitives). Hence, from the agent's perspective, thetask is a di�cult POMDP. The arrow indicates theagent's initial rotation.two parameters: nr-times 2 1; 2; : : : ; 6, and address2 1; 2; : : : ; top, where top is the highest address inthe current program. Jump uses an additional hid-den variable nr-times-to-go which is initially set tonr-times. The semantics are: If nr-times-to-go> 0, continue execution at address address. If 0 <nr-times-to-go < 6, decrement nr-times-to-go.If nr-times-to-go = 0, set nr-times-to-go tonr-times. Note that nr-times = 6 may cause anin�nite loop. The Jump instruction is essential for ex-ploiting the possibility that solutions may consist ofrepeatable action sequences and \subprograms" (thushaving low algorithmic complexity). LS' incrementallygrowing time limit automatically deals with those pro-grams that don't halt, by preventing them from con-suming too much time.As mentioned in section 2, the probability of a programis the product of the probabilities of its constituents.To deal with probabilities of the two Jump parameters,

we introduce two additional variable matrices, �M andM̂ . For a program with l � k instructions, to specifythe conditional probability �Mij of a jump to addressaj , given that the instruction at address ai is Jump(i 2 1; :::; l, j 2 1; :::; l), we �rst normalize the entries�Mi1, �Mi2, ..., �Mil (this ensures that the relevant entriessum up to 1). Provided the instruction at address aiis Jump, for i 2 1; :::; k, j 2 1; :::; 6, M̂ij speci�es theprobability of the nr-times parameter being set toj. Both �M and M̂ are initialized uniformly and areadapted by ALS just like M itself.Restricted LS-variant. Note that the instructionsabove are not su�cient to build a universal program-ming language | the experiments in this paper arecon�ned to a restricted version of LS. From the instruc-tions above, however, one can build programs for solv-ing any maze in which it is not necessary to completelyreverse the direction of movement (rotation by 180 de-grees) in a corridor. Note that it is mainly the Jumpinstruction that allows for composing low-complexitysolutions from \subprograms" (LS provides a soundway for dealing with in�nite loops).Rules. Before LS generates, runs and tests a new pro-gram, the agent is reset to its start position. Collisionswith walls halt the program. A path generated by aprogram that makes the agent hit the goal is called asolution (the agent is not required to stop at the goal| there are no explicit halt instructions).Why is this a POMDP? Because the instructionsabove are not su�cient to tell the agent exactly whereit is: at a given time, the agent can perceive only oneof three highly ambiguous types of input (by executingthe appropriate primitive): \front is blocked or not",\the left �eld is free or not", \the right �eld is free ornot" (compare list of primitives). Some sort of mem-ory is required to disambiguate apparently equal situ-ations encountered on the way to the goal. Q-learning,for instance, is not guaranteed to solve POMDPs (e.g,(Watkins and Dayan, 1992)). Our agent, however, canuse memory implicit in the state of the execution ofits current program to disambiguate ambiguous situa-tions.Measuring time. The computational cost of a sin-gle Levin search call in between two Adapt calls isessentially the sum of the costs of all the programs ittests. To measure the cost of a single program, we sim-ply count the total number of forward steps and rota-tions during program execution (this number is of theorder of total computation time). Note that instruc-tions often cost more than 1 step! To detect in�nite

loops, LS also measures the time consumed by Jumpinstructions (one time step per executed Jump). In arealistic application, however, the time consumed bya robot move would by far exceed the time consumedby a Jump instruction | we omitted this (negligible)cost in the experimental results.Comparison. We compared LS to three variants ofQ-learning (Watkins and Dayan, 1992) and randomsearch. Random search repeatedly and randomly se-lects and executes one of the instructions (1-8) untilthe goal is hit (like with Levin search, the agent isreset to its start position whenever it hits the wall).Since random search (unlike LS) does not have a timelimit for testing, it may not use the jump { this is toprevent it from wandering into in�nite loops. The �rstQ-variant uses the same 8 instructions, but has the ad-vantage that it can distinguish all possible states (952possible inputs | but this actually makes the taskmuch easier, because it is no POMDP any more). The�rst Q-variant was just tested to see how much moredi�cult the problem becomes in the POMDP setting.The second Q-variant can only observe whether thefour surrounding �elds are blocked or not (16 possi-ble inputs), and the third Q-variant receives a uniquerepresentation of the �ve most recent executed instruc-tions as input (37449 possible inputs | this requiresa gigantic Q-table!). Actually, after a few initial ex-periments with the second Q-variant, we noticed thatit could not use its input for preventing collisions (theagent always walks for a while and then rotates | infront of a wall, every instruction will cause a collision).To improve the second Q-variant's performance, weappropriately altered the instructions: each instruc-tion consists of one of the 3 types of rotations followedby one of the 3 types of forward walks (thus the totalnumber of instructions is 9 | for the same reason aswith random search, the jump instruction cannot beused). The parameters of the Q-learning variants were�rst coarsely optimized on a number of smaller mazeswhich they were able to solve. We set c = 0:005, whichmeans that in the �rst phase (T = 1 in the LS proce-dure), a program with probability 1 may execute upto 200 steps before being stopped.Typical result. In the easy, totally observable case,Q-learning took on average 694,933 steps (10 simula-tions were conducted) to solve the maze from Figure1. However, as expected, in the di�cult, partially ob-servable cases, neither the two Q-learning variants norrandom search were ever able to solve the maze within1,000,000,000 steps (5 simulations were conducted). Incontrast, LS was indeed able to solve the POMDP: LS

required 97,395,311 steps to �nd a program q comput-ing a 127-step shortest path to the goal in Figure 1.LS' low-complexity solution involves two nested loops:1) REPEAT step forward UNTIL leftfield is free52) Jump (1 , 3)93) REPEAT step forward UNTIL leftfield is free, rotate left34) Jump (1 , 5)9PM (q) = 19 19 14 16 19 19 14 16 = 2:65 � 10�7.Similar results were obtained with many other mazeshaving non-trivial solutions with low algorithmic com-plexity. Such experiments illustrate that smart searchthrough program space can be bene�cial in caseswhere the task appears complex but actually has low-complexity solutions. Since LS has a principled wayof dealing with non-halting programs and time-limits(unlike, e.g., \Genetic Programming"(GP)), LS mayalso be of interest for researchers working in GP and re-lated �elds (the �rst paper on using GP-like algorithmsto evolve assembler-like computer programs was, tothe best of our knowledge, (Dickmanns et al., 1987)).ALS: single tasks versus multiple tasks. If weuse the adaptive LS extension (ALS) for a single taskas the one above (by repeatedly applying LS to thesame problem and changing the underlying probabil-ity distribution in between successive calls accordingto section 3), then the probability matrix rapidly con-verges such that late LS calls �nd the solution almostimmediately. This is not very interesting, however |once the solution to a single problem is found (andthere are no additional problems), there is no point ininvesting additional e�orts into probability updates.ALS is more interesting in cases where there are mul-tiple tasks, and where the solution to one task conveyssome but not all information helpful for solving addi-tional tasks. This is what the next section is about.5.2 EXPERIMENT 2: LEARNING TOFIND MULTIPLE GOALSTask. The second experiment shows that ALS canuse experience to signi�cantly reduce average searchtime consumed by successive LS calls in cases wherethere are multiple tasks to solve, and that ALS can befurther improved by combining it with EIRA. To beable to run a su�cient number of simulations to ob-tain statistically signi�cant results, we replace the bigmaze from Figure 1 by the smaller maze from Figure 2,which indicates 10 di�erent goal positions. At a given

 1 2

6

3

7

8

5

4

9

10Figure 2: An example of 10 goal positions to be foundin a 19 � 22 maze. The arrow indicates the agent'sinitial position and direction.time, only one of the goal positions contains \food".But the agent does not know which! Whenever theagent �nds food, it takes it home to eat it. Next time,food appears in another location. Therefore, there isno deterministic program that always can generate ashortest path. The best the agent can do is to learn astochastic policy minimizing expected search time.One experiment consists of 10 simulations. For eachsimulation, 10 goal positions are randomly generated.Each simulation consists of 100 \epochs", where eachepoch consists of 10 \runs", where during the i-th runthe i-th goal position has to be found (starting fromthe start state). M , �M and M̂ are adjusted whenevera solution is found.Comparison. We compared (1) Random Search,(2) ALS and (3) the ALS+EIRA combination, whereEIRA restores old policies if necessary, always right be-fore ALS' matrices are adapted. For the LS calls trig-gered during ALS' runtime, we set c to 0.02. ALS per-formed best with a learning rate
 = 0.05. ALS+EIRAperformed best with a learning rate of 0.08.Results. All methods always found all 10 goal posi-tions before running into the time-limit (108 steps foreach goal). The learning curves are given in �gure 3.In the beginning, the LS calls triggered by ALS take along time, but after a few epochs the search cost im-proves by a factor of about 100 (for scaling reasons,Figure 3 does not even show the initial search costs).Table 1 shows the average number of steps requiredto �nd all 10 goal positions in the 100th epoch of the10 simulations. The results show (1) that ALS �nds

Table 1: The number of steps required by ALS,ALS+EIRA and random search (RS) to �nd all 10goal positions (always starting from the start position).The table shows the average number of steps (in thou-sands) consumed during the 100th epoch. SD is thestandard deviation, and MAX (MIN) stands for worst(best) performance in ten simulations with ten di�er-ent goal positions (see Figure 3 to see that ALS dra-matically reduces search costs for successive LS calls).Method Average SD MAX MINALS + EIRA 7.5 3.7 12.5 3.3ALS 19.2 17.3 65.5 4.6RS 168 284 1005 10.2the 10 goal positions on average much faster than ran-dom search. The table also shows (2) that the use ofEIRA signi�cantly further improves the results (theadditional speed-up factor exceeds 2.0).The safety belt e�ect. Figure 4 plots numberof epochs against the average probability of pro-grams computing solutions. The �gure shows thatALS+EIRA tends to keep the probabilities lower thanALS by itself: high program probabilities are not al-ways bene�cial.E�ectively, EIRA is controlling the prior on the searchspace such that overall average search time is reduced.The total stack size (the number of instruction prob-ability vectors on the stack) after the 100th trial was108 on average. Since the total amount of policy mod-i�cations is (number of goal positions) * (number ofepochs) * (average solution length) = 3800, EIRA keptonly about 3% of all modi�cations! The remaining97% were deemed unworthy, because they were notobserved to be followed by long-term reinforcementspeed-ups. Clearly, EIRA prevents ALS from over-doing its policy modi�cations (\safety belt e�ect").6 CONCLUSIONThis paper makes three major points: (1) Levin searchby itself can be useful for solving POMDPs. Thishas been demonstrated with a non-trivial, partiallyobservable maze containing signi�cantly more statesand obstacles than those used to demonstrate the use-fulness of previous POMDP algorithms, e.g., (Mc-Callum, 1993; Ring, 1994; Littman, 1994; Cli� andRoss, 1994): for instance, McCallum's cheese mazehas only 11 free �elds, and Ring's largest maze is a9�9-maze. This also illustrates that search in program

0

50000

100000

150000

200000

250000

0 10 20 30 40 50 60 70 80 90 100

N
R

ST
EP

S

NR EPOCHS

EIRA + ALS
ALS

RANDOM SEARCH

Figure 3: Average number of steps required to �nd all10 goal positions (each time starting anew from thestart position), plotted against the number of epochs.The comparison involves random search, ALS, andALS augmented by EIRA.space can have signi�cant advantages over methodssearching through simple action space, provided thealgorithmic complexity of the solutions is low. (2)A straightforward, incremental, adaptive extension ofnon-incremental LS (ALS | introduced in this pa-per) can dramatically reduce the time consumed bysuccessive calls of LS in cases where there are multi-ple tasks to solve. (3) ALS can further signi�cantlybene�t from \environment-independent reinforcementacceleration" (EIRA). EIRA helps to get rid of ALS-generated policy modi�cations for which there is no ev-idence that they contribute to long-term performanceimprovement. This actually provides the �rst exampleof how EIRA can improve heuristic learning methodsin lifelong learning situations. Due to EIRA's general-ity (it is not limited to run in conjunction with ALS,but can be combined with all kinds of policy modify-ing learning algorithms), these results add to makingEIRA appear a promising, general paradigm.Future Work. ALS should be extended such that itnot only adapts the probability distribution underlyingLS, but also the initial time limit required by LS' �rstphase (the current ALS version keeps the latter con-stant, which represents a potential loss of e�ciency).

0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50 60 70 80 90 100

A
V

ER
A

G
E

PR
O

G
RA

M
 P

RO
BA

BI
LI

TY

NR EPOCHS

EIRA + ALS
ALS

Figure 4: The average probability of programs com-puting solutions. Without EIRA, the average proba-bility of certain solution-computing programs is muchhigher. This does not improve search time, however(compare �gure 3).Again, EIRA should be combined with this ALS ex-tension.EIRA should also be combined with other (e.g., ge-netic) learning algorithms, especially in situationswhere the applicability of a given algorithm A is ques-tionable because the environment does not satisfy thepreconditions that would make A sound. EIRA can atleast guarantee that those of A's policy modi�cationsthat appear to have negative long-term e�ects on fur-ther learning processes are countermanded. Indeed, inseparate POMDP experiments we were already ableto show that EIRA can improve standard Q-learning'sperformance (recall that POMDP applications of Q-learning are not theoretically sound, although manyauthors do apply Q-variants to POMDPs). Anotherinteresting application area may be the �eld of bucket-brigade based classi�er systems: (Cli� and Ross, 1994)show that such systems tend to be unstable and forgetgood solutions. Here EIRA could unfold its safety belte�ect.AcknowledgementsThanks for valuable discussions to Rafa l Sa lustowicz,Sepp Hochreiter, and Jieyu Zhao (supported by SNF

grant 21-43'417.95 \incremental self-improvement").ReferencesCli�, D. and Ross, S. (1994). Adding temporary mem-ory to ZCS. Adaptive Behavior, 3:101{150.Dickmanns, D., Schmidhuber, J., and Winklhofer, A.(1987). Der genetische Algorithmus: Eine Im-plementierung in Prolog. Fortgeschrittenenprak-tikum, Institut f�ur Informatik, Lehrstuhl Prof.Radig, Technische Universit�at M�unchen.Jaakkola, T., Singh, S. P., and Jordan, M. I. (1995).Reinforcement learning algorithm for partially ob-servable markov decision problems. In Tesauro,G., Touretzky, D. S., and Leen, T. K., editors,Advances in Neural Information Processing Sys-tems 7, to appear. MIT Press, Cambridge MA.Kaelbling, L. (1993). Learning in Embedded Systems.MIT Press.Kaelbling, L., Littman, M., and Cassandra, A.(1995). Planning and acting in partially observ-able stochastic domains. Technical report, BrownUniversity, Providence RI.Levin, L. A. (1973). Universal sequential search prob-lems. Problems of Information Transmission,9(3):265{266.Levin, L. A. (1984). Randomness conservation inequal-ities: Information and independence in mathe-matical theories. Information and Control, 61:15{37.Li, M. and Vit�anyi, P. M. B. (1993). An Introductionto Kolmogorov Complexity and its Applications.Springer.Littman, M. (1994). Memoryless policies: Theoreti-cal limitations and practical results. In D. Cli�,P. Husbands, J. A. M. and Wilson, S. W., editors,Proc. of the International Conference on Simu-lation of Adaptive Behavior: From Animals toAnimats 3, pages 297{305. MIT Press/BradfordBooks.McCallum, R. A. (1993). Overcoming incomplete per-ception with utile distinction memory. In MachineLearning: Proceedings of the Tenth InternationalConference. Morgan Kaufmann, Amherst, MA.

McCallum, R. A. (1995). Instance-based utile dis-tinctions for reinforcement learning with hiddenstate. In Prieditis, A. and Russell, S., editors,Machine Learning: Proceedings of the Twelfth In-ternational Conference, pages 387{395. MorganKaufmann Publishers, San Francisco, CA.Ring, M. B. (1994). Continual Learning in Reinforce-ment Environments. PhD thesis, University ofTexas at Austin, Austin, Texas 78712.Schmidhuber, J. (1995a). Environment-independentreinforcement acceleration. Technical ReportNote IDSIA-59-95, IDSIA. Invited talk atHongkong University of Science and Technology.Schmidhuber, J. (1996). A general method for incre-mental self-improvement and multi-agent learningin unrestricted environments. In Yao, X., editor,Evolutionary Computation: Theory and Applica-tions. Scienti�c Publ. Co., Singapore.Schmidhuber, J. H. (1995b). Discovering solutionswith low Kolmogorov complexity and high gen-eralization capability. In Prieditis, A. and Rus-sell, S., editors, Machine Learning: Proceedings ofthe Twelfth International Conference, pages 488{496. Morgan Kaufmann Publishers, San Fran-cisco, CA.Solomono�, R. (1986). An application of algorithmicprobability to problems in arti�cial intelligence.In Kanal, L. N. and Lemmer, J. F., editors, Un-certainty in Arti�cial Intelligence, pages 473{491.Elsevier Science Publishers.Watanabe, O. (1992). Kolmogorov complexity andcomputational complexity. EATCS Monographson Theoretical Computer Science, Springer.Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.Machine Learning, 8:279{292.

