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Abstract

The goal of metalearning is to generate useful shifts of inductive bias by adapting the
current learning strategy in a “useful” way. Our learner leads a single life during which
actions are continually executed according to the system’s internal state and current policy
(a modifiable, probabilistic algorithm mapping environmental inputs and internal states to
outputs and new internal states). An action is considered a learning algorithm if it can
modify the policy. Effects of learning processes on later learning processes are measured
using reward/time ratios. Occasional backtracking enforces success histories of still valid
policy modifications corresponding to histories of lifelong reward accelerations. The principle
allows for plugging in a wide variety of learning algorithms. In particular, it allows for
embedding the learner’s policy modification strategy within the policy itself (self-reference).
To demonstrate the principle’s feasibility in cases where conventional reinforcement learning
fails, we test it in complex, non-Markovian, changing environments (“POMDPs”). One of
the tasks involves more than 10'2 states, two learners that both cooperate and compete, and
strongly delayed reinforcement signals (initially separated by more than 300,000 time steps).

The biggest difference between time and space is that you can’t reuse time.
MERRICK FURST

1 INTRODUCTION / OVERVIEW

In the spirit of the first author’s earlier work (e.g., 1987, 1993, 1994), we will use the expressions
“metalearning” and “learning to learn” to characterize learners that (1) can evaluate and compare
learning methods, (2) measure the benefits of early learning on subsequent learning, (3) use such
evaluations to reason about learning strategies and to select “useful” ones while discarding others.
An algorithm is not considered to have learned to learn if it improves merely by luck, if it does
not measure the effects of early learning on later learning, or if it has no explicit method designed
to translate such measurements into useful learning strategies.

We focus on estimating the usefulness of each learning process or bias shift (Utgoff, 1986) and
then exploiting it in later learning processes within a realistic, life-time reinforcement learning
context. Applications will include “inductive transfer” across multiple tasks (e.g., Caruana et al.,
1995).

Scenario. A reinforcement learner executes a lifelong action sequence in an unknown environ-
ment. Its single life lasts from birth at time 0 to death at unknown time 7'. Actions are selected
according to its changing policy, a modifiable, probabilistic algorithm mapping environmental



inputs and internal states to outputs and new internal states. Different actions may consume dif-
ferent amounts of execution time — compare, e.g., (Russell and Wefald, 1991; Boddy and Dean,
1994), and references given therein. Occasionally the environment provides real-valued “reinforce-
ment”. The sum of all reinforcements obtained between time 0 and time ¢ > 0 is denoted by R(t)
(where R(0) = 0). Because the learner cannot change the past, its goal at time ¢ is to use previous
experience to maximize R(T') — R(t), the cumulative future reinforcement. Somewhat related, but
more restricted, limited resource scenarios were also studied, e.g., by Berry and Fristedt (1985),
Gittins (1989), Greiner (1996), and references therein.

Realistic environments. Convergence theorems for existing reinforcement learning algo-
rithms require infinite sampling size as well as strong (often Markovian) assumptions about the
environment, e.g., (Kumar and Varaiya, 1986; Sutton, 1988; Barto, 1989; Watkins and Dayan,
1992; Williams, 1992). They are of great theoretical interest but not extremely relevant for re-
alistic environments where computational resources and sampling sizes are limited. “Learning”
(modifying the policy) consumes part of the learner’s limited life. So do policy tests. And a
disappointing test outcome may imply that it is already too late for collecting much additional
reinforcement. One cannot buy cheap shares of a company after the price jumped up (no re-
peatable trials guaranteed)! In general, at a given time in system life, we may assume only one
single training example to estimate the long-term usefulness of any previous policy modification
— namely the performance since then. This requires us to rethink a bit the conventional, multiple
trial-based way we measure performance and generalize.

Basic ideas (see details in section 2). Meta-reinforcement learning (MRL) treats learning
algorithms just like other actions. Their probabilities of being executed at a given time depend on
the learner’s current internal state and policy. Their only distinguishing feature is that they may
also modify the policy. In case of policy changes, information necessary to restore the old policy
is pushed on a stack.

The learner’s life-time performance is occasionally evaluated by backtracking processes. At a
given time, we assume there is only one single training example to evaluate the current long-
term usefulness of any currently valid policy modification M, namely the average reinforcement
per time since M occurred. This includes all reinforcement collected after later modifications for
which M may have set the stage, thus providing a measure of how useful a learning process was
for later learning processes, or how useful a shift of inductive bias was for further bias shifts. Using
the stack, backtracking invalidates certain previous policy modifications such that the remaining
modifications correspond to an (in the worst case empty) history of long-term reinforcement ac-
celerations. Until the next backtracking process, the straight-forward generalization assumption
is: each policy modification (or bias shift) that survived the most recent backtracking process was
useful and will remain useful.

For instance, whenever the environment appears to change in the sense that the reward per time
for the current behavior is observed to decrease, backtracking will selectively undo those previously
learned policy modifications that do not appear useful any more (perhaps because they were too
specifically tailored to previous tasks and are useless for “inductive transfer”). Backtracking will
selectively keep those modifications that still appear useful because until now they were followed
by long-term reinforcement accelerations, despite possible changes of the environment.

Due to unknown reinforcement delays, there is no a priori good way of starting backtracking
processes. That’s why MRL also allows for learning to trigger them. Since learning algorithms are
actions and can be combined (according to the policy) to form more complex learning algorithms,
MRL allows for embedding the learning strategy within the policy itself. There is no pre-wired
difference between “learning”, “metalearning”, “metametalearning” etc. For alternative views of
metalearning, see, e.g., Lenat (1983), Rosenbloom et al. (1993).

Disclaimer. In general, unknown environments, neither MRL nor any other scheme is guar-
anteed to continually increase reinforcement intake per fized time interval, or to find the policy
that will lead to maximal cumulative reinforcement. But at least MRL is guaranteed to selectively
undo those policy modifications that were not empirically observed to be followed by an overall
speed-up of average reinforcement intake (even in non-Markovian settings). This is more than can
be said about interesting, previous reinforcement learning algorithms, e.g., (Kumar and Varaiya,



1986; Barto, 1989; Watkins and Dayan, 1992; Williams, 1992; Schmidhuber, 1991; Jaakkola et al.,
1995; Kaelbling et al., 1995; Ring, 1994).

Outline of remainder. Section 2 will describe the learner’s basic cycle of operations and
clarify technical details of what has been said in paragraph “basic ideas”. Section 3 will explain why
the basic cycle enforces lifelong histories of reinforcement accelerations despite possible interference
from parallel, internal or external processes. To demonstrate MRL’s feasibility and generality,
sections 4 and 5 will present two concrete implementations and experiments with complex, partially
observable environments (POEs). They show that MRL makes sense especially in situations where
previous algorithms fail because the environment does not satisfy preconditions that would make
them sound. Some of our POEs are much bigger and more complex than POEs considered in
previous POE work.

2 Basic MRL CyYCLE

At time O (system birth), we initialize the learner’s variable internal state Z, a vector of variable,
binary or real-valued components. Environmental inputs may be represented by certain com-
ponents of Z. We also initialize the vector-valued policy Pol. Pol’s i-th variable component is
denoted Pol;. There is a set of possible actions to be selected and executed according to current
Pol and Z. For now, there is no need to specify Pol — this will be done in the experimental
sections (typically, Pol; will be a conditional probability distribution on the possible next actions,
given current 7). We introduce an initially empty stack S that allows for stack entries with vary-
ing sizes, and the conventional push and pop operations. Until time T (system death), the system
repeats the following basic MRL cycle over and over again (while time is continually increasing):

1. Execute actions selected according to Pol and Z (this may change environment and 7), until a
certain EVALUATION CRITERION is satisfied, or until an action is selected that will modify Pol.

2. IF the EvALuATION CRITERION is satisfied, THEN start the following backtracking procedure
to undo certain previous Pol modifications if necessary (to ensure that the history of still valid
modifications corresponds to a history of reinforcement accelerations):

2.1. Set variable ¢ equal to current time.
IF thereis no “tag” (a pair of time and cumulative reinforcement until then) stored somewhere
in S,
THEN push the tag (¢, R(t)) onto S, and go to 3 (this ends the current backtracking process).
ELSE denote the topmost tag in S by (¢', R(t')). IF there are no further tags, THEN set
variable ¢ = 0 (recall R(t") = R(0) = 0). ELSE let (¢', R(t")) denote the last but topmost
tag in S.

2.2. IF

R(t) — R(t") _ R(t) — R(t")
t—t t—t"

THEN push tag (¢, R(t)), and go to 3. This ends the current backtracking process.
ELSE pop off all stack entries above the one for tag (¢, R(t')) (these entries will be former
policy components saved during earlier executions of step 3), and use them to restore Pol as
it used to be before time ¢'. Then also pop off the tag (', R(¢')). Go to 2.1.

3. IF the most recent action selected in step 1 will modify Pol, THEN push copies of those Pol; to
be modified onto S, and execute the action.

4. TF some TERMINATION CRITERION is satisfied, THEN die. ELSE go to step 1.

Comment: each step above (including pushing and popping) will consume various amounts of
system life-time.



3 Tuar MRL CycLE ENSURES LIFE-TIME SUCCESS STORIES

Lifelong reinforcement acceleration. At a given time in the learner’s life, define the set of
currently wvalid times as those previous times still stored in tags somewhere in S. If this set is
not empty right before tag (¢, R(t)) is pushed in step 2.2 of the basic cycle, then let ¢; (i €
{1,2,...,V(t)}) denote the i-th valid time, counted from the bottom of S. It is easy to show
(Schmidhuber, 1994, 1996) that the current backtracking process will have enforced the following,
essential criterion which is central to MRL (¢ is the ¢ in the most recent step 2.2):

R(t) < R(t) = R(t1) < R(t) — R(t2) c < R(t) — R(ty )
t t—t, t—to t—tyay

(1)

What does this mean? Each valid time marks the beginning of a long-term reinforcement acceler-
ation (measured up until time ¢). Everything that happened after a valid time, every action and
every backtracking process, is justified in the sense that it was observed to occur during a long-
term speed-up. The only still valid policy modifications or bias shifts are those that occurred in
between some valid time (or time 0) and the beginning of the next backtracking process following
that time. Again, each such block of policy modifications will have its justification in the following
sense: each block’s “time marker” (the valid time preceding the block’s first modification) was
followed by faster average reinforcement intake than all previous such time markers. The still valid
policy modifications are those that survived all backtracking processes until now. In this sense,
the history of still valid bias shifts is guaranteed to be a life-time success story (in the worst case
an empty one). No Markov-assumption is required.

MRL’s generalization assumption. At the end of each backtracking process, until the
beginning of the next one, MRL’s simple, straight-forward generalization assumption for inductive
inference is: policy modifications that survived the most recent backtracking will remain useful.
In other words, until there is empirical evidence to the contrary, the assumption is: the still valid
modifications contributed to the long-term speed-up, and will continue to contribute. In general,
unknown environments, which other generalization assumption would make sense? Recall that
since life is one-way (time is never reset), during each backtracking process the system has to
generalize from a single experience concerning the usefulness of actions/policy modifications taken
after any given previous point in time: the average reinforcement per time since then.

If we prevent modification probabilities from vanishing entirely then occasionally the system
will execute policy modifications, and keep those consistent with inequality (1). In this sense, it
cannot help getting better, if the environment does indeed provide a chance to improve perfor-
mance, given the initial set of possible actions representing the system’s initial bias. Essentially,
the system keeps generating and undoing policy modifications until it discovers some that indeed
fit its generalization assumption.

Greediness? MRL’s strategy appears to be a greedy one. It always keeps the policy that was
observed to outperform all previous policies in terms of long-term reward/time ratios. To deal
with unknown reinforcement delays, however, the degree of greediness is learnable — backtracking
processes may be triggered or delayed according to the modifiable policy itself.

Speed? Due to the generality of the approach, no reasonable statements can be made about
improvement speed, which indeed highly depends on the nature of the environment and the choice
of initial, “primitive” actions (including learning algorithms) to be combined according to the
policy. This lack of quantitative convergence results is shared by almost all other, less general
reinforcement learning schemes, though.

Actions can be almost anything. For instance, an action executed in step 3 may be a neural
net algorithm. Or it may be a Bayesian analysis of previous events. While this analysis is running,
time is running, too. Thus, the complexity of the Bayesian approach is automatically taken into
account. Similarly, actions may be calls of a Q-learning variant (see experiment 4 in section 5.3).
For instance, plugging Q-learning into MRL makes sense in situations where Q-learning by itself
is questionable because the environment might not entirely satisfy the preconditions that would
make Q-learning sound.



7 as part of Pol’s environment. As the basic cycle is repeated again and again, neither
the internal state nor the environment are assumed to be reset (real world set-up). Essentially,
what each backtracking process attempts (and succeeds) to do is to make the history of still valid
modifications a success story despite harmful (or beneficial) interference from parallel, external
and internal processes. It is appropriate to view the internal state as part of the policy’s changing
environment.

Outline of remainder. Sections 4 and 5 will describe two concrete implementations of
MRL. The first implementation’s action set consists of a single but “strong”, policy-modifying
action (a call of a Levin search extension). The second implementation uses many different,
less “powerful” actions. They resemble assembler-like instructions from which many different
learning strategies can be built (the system’s modifiable, “self-referential” learning strategy is able
to modify itself). Both implementations are successfully tested in complex environments where
standard reinforcement learning algorithms fail. In particular, the second, “self-referential” system
is successfully applied to a non-Markovian task that involves more than 103 states, two learners
that both cooperate and compete, and strongly delayed reinforcement signals (initially separated
by more than 300,000 time steps on average). Section 6 will conclude.

4 IMPLEMENTATION 1: PLUGGING LEVIN SEARCH INTO MRL

Overview. In this section, we use an adaptive extension of Levin search (LS) (Levin, 1973; Levin,
1984) as only learning action to be plugged into MRL. We apply it to partially observable Markov
decision problems (POMDPs), which recently received a lot of attention in the reinforcement
learning community, e.g., (Jaakkola et al., 1995; Kaelbling et al., 1995; Ring, 1994; McCallum,
1995; Littman, 1994; Cliff and Ross, 1994; Schmidhuber, 1991). We first show that LS by itself
can solve partially observable mazes (POMs) involving many more states and obstacles than those
solved by various previous authors (we will also see that LS can easily outperform Q-learning).
We then extend LS to plug it into MRL, and experimentally show dramatic search time reduction
for sequences of more and more complex POMDPs (“inductive transfer”).

4.1 LEeVIN SEARCH (LS)

Unbeknownst to many machine learning researchers, there exists a search algorithm with amazing
theoretical properties: for a broad class of search problems, Levin search (LS) (Levin, 1973;
Levin, 1984) has the optimal order of computational complexity. For instance, suppose there
is an algorithm that solves a certain type of maze task in O(n®) steps, where n is a positive
integer representing the problem size. Then universal LS will solve the same task in at most
O(n?) steps. See (Li and Vitdnyi, 1993) for an overview. See (Schmidhuber, 1995) for recent
implementations/applications.

Basic concepts. LS requires a set of n,p, primitive, prewired instructions by, ..., by, that can
be composed to form arbitrary sequential programs. Essentially, LS generates and tests solution
candidates s (program outputs represented as strings over a finite alphabet) in order of their Levin
complexities Kt(s) = min,{—logDp(q) +log t(q,s)}, where ¢ stands for a program that computes
s in t(q, s) time steps, and Dp(q) is the probability of guessing ¢ according to a fized Solomonoff-
Levin distribution (Li and Vitdnyi, 1993) on the set of possible programs (in section 4.2, however,
we will make the distribution variable).

Optimality. Amazingly, given primitives representing a universal programming language, for
a broad class of problems, including inversion problems and time-limited optimization problems,
LS can be shown to be optimal with respect to total expected search time, leaving aside a constant
factor independent of the problem size (Levin, 1973; Levin, 1984; Li and Vitanyi, 1993). Still,
until recently LS has not received much attention except in purely theoretical studies — see, e.g.,
(Watanabe, 1992).

Practical implementation. In our practical LS version, there is an upper bound m on
program length (due to obvious storage limitations). a; denotes the address of the i-th instruction.



Each program is generated incrementally: first we select an instruction for aq, then for as, etc.
Dp is given by a matrix P, where P;; (i € 1,...,m, j € 1,...,n,ps) denotes the probability of
selecting b; as the instruction at address a;, given that the first ¢ — 1 instructions have already
been selected. The probability of a program is the product of the probabilities of its constituents.
LS’ arguments are P and the representation of a problem denoted by N. LS’ output is a
program that computes a solution to the problem if it found any. In this section, all P;; = 1

Nops

will remain fixed. LS is implemented as a sequence of longer and longer phases:
Levin search(problem N, probability matrix P)

(1) Set Phase, the number of the current phase, equal to 1. In what follows, let
¢(Phase) denote the set of not yet executed programs ¢ satisfying Dp(q) >

(2) Repeat

1
Phase*

(2.1) While ¢(Phase) # {} and no solution found do: Generate a program
Dp(q)*Phase

q € ¢(Phase), and run ¢ until it either halts or until it used up
steps. If ¢ computed a solution for IV, return ¢ and exit.

(2.2) Set Phase := 2Phase

until solution found or Phase > Phaseprax.
Return empty program {}.

Here ¢ and Phasepax are prespecified constants. The procedure above is essentially the same
(has the same order of complexity) as the one described in the second paragraph of this section
— see, e.g., (Solomonoff, 1986; Li and Vitanyi, 1993).

4.2 ADAPTIVE LEVIN SEARCH (ALS)

LS is not necessarily optimal for “incremental” learning problems where experience with previous
problems may help to reduce future search costs. To make an incremental search method out
of non-incremental LS, we introduce a simple, heuristic, adaptive LS extension (ALS) that uses
experience with previous problems to adaptively modify LS’ underlying probability distribution.
ALS essentially works as follows: whenever LS found a program ¢ that computed a solution
for the current problem, the probabilities of ¢’s instructions ¢i,¢qz,...,qyq) are increased (here
¢; € {b1,.-.,bn,,,} denotes ¢’s i-th instruction, and /(¢) denotes ¢’s length — if LS did not find a
solution (g is the empty program), then [(g) is defined to be 0). This will increase the probability
of the entire program. The probability adjustment is controlled by a learning rate v (0 < v
< 1). ALS is related to the linear reward-inaction algorithm, e.g., (Kaelbling, 1993) — the main
difference is: ALS uses LS to search through program space as opposed to single action space. Asin
the previous section, the probability distribution Dp is determined by P. Initially, all P;; = 1

Nops

However, given a sequence of problems (Ni, Na, ..., N;.), the P;; may undergo changes caused by
ALS:
ALS (problems (Ny, Na, ..., N,.), variable matrix P)

for i := 1 to r do:
q := Levin search(N;, P); Adapt(q, P).
where the procedure Adapt works as follows:
Adapt(program ¢, variable matrix P)

for i :==1to l(q), j := 1 to n,ps do:
if (Qi = bj) then Pij = Pij -I-’)/(]. - Pl])
else P;; := (1 —v)P;;



4.3 PrucciNng ALS inTo MRL

Critique of adaptive LS. Although ALS seems a reasonable first step towards making LS
adaptive (and actually leads to very nice experimental results — see section 4.5), there is no
theoretical proof that it will generate only probability modifications that will speed up the process
of finding solutions to new tasks. Like any learning algorithm, ALS may sometimes produce
harmful instead of beneficial bias shifts, depending on the environment. To address this issue, we
simply plug ALS into MRL from section 2. MRL ensures that the system will keep only probability
modifications representing a lifelong history of performance improvements.

ALS as primitive for MRL. At a given time, the learner’s current policy is the variable
matrix P above. To plug ALS into MRL, we simply replace steps 1 and 3 in section 2’s MRL
cycle by:

1. If the current MRL cycle’s problem is N;, then set ¢ := Levin search (N;, P). If a solution was
found, generate reinforcement of +1.0. Set EVALUATION CRITERION = TRUE. The next action
will be a call of Adapt, which will change the policy P.

3. Push copies of those P; (the i:-th column of matrix P) to be modified by Adapt onto S, and call
Adapt(q, P).

Each call of Adapt causes a bias shift for future learning. In between two calls of Adapt, a
certain amount of time will be consumed by Levin search (details about how time is measured
will follow in the section on experiments). As always, MRL’s goal is to receive as much reward as
quickly as possible, by generating policy changes that minimize the computation time required by
future calls of Levin search and Adapt.

Partially Observable Maze Problems. The next subsections will describe experiments
validating the usefulness of LS, ALS, and MRL. To begin with, in an illustrative application
with a partially observable maze that has many more states and obstacles than those presented
in other POMDP work (see, e.g., (Cliff and Ross, 1994)), we will show how LS by itself can
solve POMDPs with huge state spaces but low-complexity solutions (Q-learning variants fail to
solve these tasks). Then we will present experiments with multiple, more and more difficult tasks
(inductive transfer). We will show that ALS can use previous experience to speed-up the process of
finding new solutions, and that ALS plugged into MRL (MRL+ALS for short) always outperforms
ALS by itself.

4.4 EXPERIMENT 1: A BIG, PARTIALLY OBSERVABLE MAZE (POM)

The current section is a prelude to section 4.5 which will address inductive transfer issues. Here
we will only show that LS by itself can be very useful for POMDP problems. See also (Wiering
and Schmidhuber, 1996).

Task. Figure 1 shows a 39 x 38-maze with a single start position (S) and a single goal position
(G). The maze has many more fields and obstacles than mazes used by previous authors working
on POMDPs — for instance, McCallum’s maze has only 23 free fields (McCallum, 1995). The
goal is to find a program that makes an agent move from S to G.

Instructions. Programs can be composed from 9 primitive instructions. These instructions
represent the initial bias provided by the programmer (in what follows, superscripts will indicate
instruction numbers). The first 8 instructions have the following syntax : REPEAT step forward
UNTIL condition Cond, THEN rotate towards direction Dir.

Instruction 1 : C'ond = front is blocked, Dir = left.
Instruction 2 : Cond = front is blocked, Dir = right.
Instruction 3 : Cond = left field is free, Dir = left.
Instruction 4 : Cond = left field is free, Dir = right.
Instruction 5 : Cond = left field is free, Dir = none.
Instruction 6 : C'ond = right field is free, Dir = left.
Instruction 7 : Cond = right field is free, Dir = right.
Instruction 8 : C'ond = right field is free, Dir = none.



Figure 1: An apparently complex, partially observable 39 x 38-maze with a low-complexity shortest
path from start S to goal G involving 127 steps. Despite the relatively large state space, the agent
can implicitly perceive only one of three highly ambiguous types of input, namely “front is blocked
or not”, “left field is free or not”, “right field is free or not” (compare list of primitives). Hence,
from the agent’s perspective, the task is a difficult POMDP. The S and the arrow indicate the
agent’s initial position and rotation.

Instruction 9 is: Jump (address, nr-times). It has two parameters: nr-times € 1,2,..., MAXR
(with the constant MAXR representing the maximum number of repetitions), and address €
1,2,...,top, where top is the highest address in the current program. Jump uses an additional hid-
den variable nr-times-to-go which is initially set to nr-times. The semantics are: If nr-times-
to-go > 0, continue execution at address address. If 0 < nr-times-to-go < M AXR, decrement
nr-times-to-go. If nr-times-to-go = 0, set nr-times-to-go to nr-times. Note that nr-times
= M AX R may cause an infinite loop. The Jump instruction is essential for exploiting the possibil-
ity that solutions may consist of repeatable action sequences and “subprograms”, thus having low
algorithmic complexity (Kolmogorov, 1965; Chaitin, 1969; Solomonoff, 1964). LS’ incrementally
growing time limit automatically deals with those programs that don’t halt, by preventing them
from consuming too much time.

As mentioned in section 4.1, the probability of a program is the product of the probabilities
of its constituents. To deal with probabilities of the two Jump parameters, we introduce two
additional variable matrices, P and P. For a program with | < k instructions, to specify the
conditional probability P;; of a jump to address a;, given that the instruction at address a; is
Jump (i € 1,...,1, j € 1,...,1), we first normalize the entries P;, P, ..., Py (this ensures that
the relevant entries sum up to 1). Provided the instruction at address a; is Jump, for i € 1,..., k,
jel, ... MAXR, Iﬁij specifies the probability of the nr-times parameter being set to j. Both P
and P are initialized uniformly and are adapted by ALS just like P itself.

Restricted LS-variant. Note that the instructions above are not sufficient to build a universal
programming language — the experiments in this paper are confined to a restricted version of LS.
From the instructions above, however, one can build programs for solving any maze in which it
is not necessary to completely reverse the direction of movement (rotation by 180 degrees) in a
corridor. Note that it is mainly the Jump instruction that allows for composing low-complexity



solutions from “subprograms” (LS provides a sound way for dealing with infinite loops).

Rules. Before LS generates, runs and tests a new program, the agent is reset to its start
position. Collisions with walls halt the program — this makes the problem hard. A path generated
by a program that makes the agent hit the goal is called a solution (the agent is not required to
stop at the goal — there are no explicit halt instructions).

Why is this a POMDP? Because the instructions above are not sufficient to tell the agent
exactly where it is: at a given time, the agent can perceive only one of three highly ambiguous
types of input (by executing the appropriate primitive): “front is blocked or not”, “left field is
free or not”, “right field is free or not” (compare list of primitives). Some sort of memory is
required to disambiguate apparently equal situations encountered on the way to the goal. Q-
learning, for instance, is not guaranteed to solve POMDPs, e.g, (Watkins and Dayan, 1992). Our
agent, however, can use memory implicit in the state of the execution of its current program to
disambiguate ambiguous situations.

Measuring time. The computational cost of a single Levin search call in between two
Adapt calls is essentially the sum of the costs of all the programs it tests. To measure the cost
of a single program, we simply count the total number of forward steps and rotations during
program execution (this number is of the order of total computation time). Note that instructions
often cost more than 1 step! To detect infinite loops, LS also measures the time consumed by
Jump instructions (one time step per executed Jump). In a realistic application, however, the time
consumed by a robot move would by far exceed the time consumed by a Jump instruction — we
omit this (negligible) cost in the experimental results.

Comparison. We compare LS to three variants of Q-learning (Watkins and Dayan, 1992)
and random search. Random search repeatedly and randomly selects and executes one of the
instructions (1-8) until the goal is hit (like with Levin search, the agent is reset to its start
position whenever it hits the wall). Since random search (unlike LS) does not have a time limit
for testing, it may not use the jump — this is to prevent it from wandering into infinite loops.
The first Q-variant uses the same 8 instructions, but has the advantage that it can distinguish
all possible states (952 possible inputs — but this actually makes the task much easier, because
it is no POMDP any more). The first Q-variant was just tested to see how much more difficult
the problem becomes in the POMDP setting. The second Q-variant can only observe whether the
four surrounding fields are blocked or not (16 possible inputs), and the third Q-variant receives as
input a unique representation of the five most recent executed instructions (37449 possible inputs
— this requires a gigantic Q-table!). Actually, after a few initial experiments with the second
Q-variant, we noticed that it could not use its input for preventing collisions (the agent always
walks for a while and then rotates — in front of a wall, every instruction will cause a collision).
To improve the second Q-variant’s performance, we appropriately altered the instructions: each
instruction consists of one of the 3 types of rotations followed by one of the 3 types of forward
walks (thus the total number of instructions is 9 — for the same reason as with random search, the
jump instruction cannot be used). The parameters of the Q-learning variants were first coarsely
optimized on a number of smaller mazes which they were able to solve. We set ¢ = 0.005, which
means that in the first phase (Phase = 1 in the LS procedure), a program with probability 1 may
execute up to 200 steps before being stopped. We set MAXR = 6.

Typical result. In the easy, totally observable case, Q-learning took on average 694,933
steps (10 simulations were conducted) to solve the maze in Figure 1. However, as expected, in
the difficult, partially observable cases, neither the two Q-learning variants nor random search
were ever able to solve the maze within 1,000,000,000 steps (5 simulations were conducted). In
contrast, LS was indeed able to solve the POMDP: LS required 97,395,311 steps to find a program
g computing a 127-step shortest path to the goal in Figure 1. LS’ low-complexity solution ¢
involves two nested loops:

1) REPEAT step forward UNTIL left field is free®

2) Jump (1 , 3)°

3) REPEAT step forward UNTIL left field is free, rotate left®
4) Jump (1 , 5)°



We have Dp(q) = +2411411 — 96541077,

Similar results were obtained with many other mazes having non-trivial solutions with low
algorithmic complexity. Such experiments illustrate that smart search through program space can
be beneficial in cases where the task appears complex but actually has low-complexity solutions.
Since LS has a principled way of dealing with non-halting programs and time-limits (unlike, e.g.,
“Genetic Programming” (GP)), LS may also be of interest for researchers working in GP and related
fields — among the first papers on using GP-like algorithms to evolve assembler-like computer
programs are (Cramer, 1985; Dickmanns et al., 1987). See also (Koza, 1992) for later work.

ALS: single tasks versus multiple tasks. If we use the adaptive LS extension (ALS) for
a single task as the one above (by repeatedly applying LS to the same problem and changing the
underlying probability distribution in between successive calls according to section 4.2), then the
probability matrix rapidly converges such that late LS calls find the solution almost immediately.
This is not very interesting, however — once the solution to a single problem is found (and there are
no additional problems), there is no point in investing additional efforts into probability updates
(probability shifts). ALS is more interesting in cases where there are multiple tasks, and where
the solution to one task conveys some but not all information helpful for solving additional tasks
(inductive transfer). This is what the next section is about.

4.5 EXPERIMENT 2: INCREMENTAL LEARNING / INDUCTIVE TRANSFER
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Figure 2: A 23 x 23 labyrinth. The arrow indicates the agent’s initial position and direction.
Numbers indicate goal positions. The higher the number, the more difficult the goal. The agent’s
task is to find all goal positions in a given “goalset”. Goalsets change over time.

This section will show that ALS can use experience to significantly reduce average search time
consumed by successive LS calls in cases where there are more and more complex tasks to solve
(inductive transfer), and that ALS can be further improved by plugging it into MRL.

Task. Figure 2 shows a 23 x 23 maze and 7 different goal positions marked 1,2,...,7. With a
given goal, the task is to reach it from the start state. Each goal is further away from start than
goals with lower numbers. We create 4 different “goalsets” G, Gs, G3, G4. G; contains goals 1,
2, ..., 3 + i. One simulation consists of 40 “epochs” Ey, Es, ... Eyg. During epochs Eig(;_1)4+1 to
Eyi, all goals in G; (i = 1,2,3,4) have to be found in order of their distance to the start. During
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Algorithm | METHOD [ SET 1 [ SET 2 | SET 3 | SET 4 |

LS last goal 43 1,014 9505 ] 17,295
LS 87 | 1,024 | 10,530 | 27,820
ATS 1 12.9 382 553 650
ALS + MRL 1 12.2 237 331 405
ALS 2 13.0 487 192 289
ALS + MRL 2 115 345 85 230

Table 1: For METHODs 1 and 2, we list the number of steps (in thousands) required by LS, ALS,
MRL+ALS to find all goals in a specific goalset during the goalset’s first epoch (for optimal learning
rates). The probability matrices are adapted each time a goal is found. The first LS row refers
only to the most difficult goals in each goalset (those with maximal numbers). ALS outperforms
LS on all goalsets but the first, and MRL+ALS achieves additional speed-ups. MRL+ALS works
well for all learning rates, ALS by itself does not. Also, all our incremental learning procedures
dramatically outperform LS by itself.

each epoch, we update the probability matrices P, P and P whenever a goal is found. For each
epoch we store the total number of steps required to find all goals in the corresponding goalset.
We compare two variants of incremental learning, METHOD 1 and METHOD 2:

METHOD 1 — inter-goalset resets. Whenever the goalset changes (at epochs E1, Eoy,
FE31), we uniformly initialize probability matrices P, P and P. Inductive transfer can occur only
within goalsets. We compare METHOD 1 to simulations in which only the most difficult task of
each epoch has to be solved.

METHOD 2 — no inter-goalset resets. We don’t reset P, P and P in case of goalset
changes. We have both intra-goalset and inter-goalset inductive transfer. We compare METHOD 2
to METHOD 1, to measure benefits of inter-goalset transfer for solving goalsets with an additional,
more difficult goal.

Comparison. We compare LS by itself, ALS by itself, and MRL+ALS, for both METHODs
1 and 2.

LS results. Using ¢ = 0.005 and M AXR = 15, LS needed 17.3 x 10° time steps to find goal
7 (without any kind of incremental learning or inductive transfer).

Learning rate influence. To find optimal learning rates minimizing the total number of
steps during simulations of ALS and MRL+ALS, we tried all learning rates v in {0.01, 0.02,...,
0.95}. We found that MRL+ALS is fairly learning rate independent: it solves all tasks with all
learning rates in acceptable time (10% time steps), whereas for ALS without MRL (and METHOD
2) only small learning rates are feasible — large learning rate subspaces do not work for many
goals. Thus, the first type of MRL-generated speed-up lies in the lower expected search time for
appropriate learning rates.

With METHOD 1, ALS performs best with a fixed learning rate v = 0.32, and MRL+ALS
performs best with v = 0.45, with additional uniform noise in [—0.05, 0.05] (noise tends to improve
MRL+ALS’s performance a little bit, but worsens ALS’ performance). With METHOD 2, ALS
performs best with v = 0.05, and MRL+ALS performs best with v = 0.24 and added noise in
[-0.05,0.05].

For METHODs 1 and 2 and all goalsets G; (i = 1,2,3,4), Table 1 lists the numbers of steps
required by LS, ALS, MRL+ALS to find all of G’s goals during epoch E(;_1)410+1, in which the
agent encounters the goal positions in the goalset for the first time.

ALS versus LS. ALS performs much better than LS on goalsets G5, G3,G4. ALS does not
help to to improve performance on G ’s goalset, though (epoch E;), because there are many easily
discoverable programs solving the first few goals.

MRL+ALS versus ALS. MRL+ALS always outperforms ALS by itself. For optimal learning
rates, the speed-up factor for METHOD 1 ranges from 6 % to 67 %. The speed-up factor for
METHOD 2 ranges from 13 % to 26 %. Recall, however, that there are many learning rates where
ALS by itself completely fails, while MRL+ALS does not. This makes MRL+ALS much more
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[Algorithm | METHOD [ SET 1 [ SET 2 | SET 3 | SET 4 |

ALS 2 675 | 9,442 | 10,220 | 9,321
ALS + MRL 2 42 | 1,431 3,321 | 4,728
ALS 1 379 | 1,125 | 2,050 | 3,356
ALS + MRL 1 379 | 1,125 | 2,050 | 2,673

Table 2: For all goalsets, we list numbers of steps consumed by ALS and MRL+ALS to find all
goals of goalset G; during the final epoch FE ;.

[Algorithm | METHOD || TOTAL | TOTAL FIRST | TOTAL LAST |

LS 39,385

ALS 2 1,820 980 29.7
ALS 1 1,670 1,600 6.91
ALS + MRL 1 1,050 984 6.23
ALS + MRL 2 873 671 9.92

Table 3: The total number of steps (in thousands) consumed by LS, ALS, MRL+ALS (1) during
one entire simulation, (2) during all the first epochs of all goalsets, (8) during all the final epochs
of all goalsets.

robust.

For optimal learning rates, the biggest speed-up occurs for GG3. Here MRL decreases search
costs dramatically, because after having found goal 5, it undoes apparently harmful bias shifts
before searching for goal 6.

METHOD 1 versus METHOD 2. METHOD 2 works much better than METHOD 1 on G3
and G4, but not as well on G5 (for G both methods are equal — differences in performance can be
explained by different learning rates which were optimized for the total task). Why? Optimizing
a policy for goals 1—4 will not necessarily help to speed up discovery of goal 5, but instead cause
a harmful bias shift by overtraining the probability matrices. METHOD 1, however, can extract
enough useful knowledge from the first 4 goals to decrease search costs for goal 5.

More MRL benefits. Table 2 lists the number of steps consumed during the final epoch
E; of each goalset G; (the results of LS by itself are identical to those in table 1). Using MRL
typically improves the final result, and never worsens it. Speed-up factors range from 0 to 560 %.

For all goalsets, Table 3 lists the total number of steps consumed during all epochs of one
simulation, the total number of all steps for those epochs (E;, E11, Ea1, E31) in which new goalsets
are introduced, and the total number of steps required for the final epochs (E1q, Eag, E30, F1o)-
MRL always improves the results. For the total number of steps — which is an almost linear
function of the time consumed during the simulation — the MRL-generated speed-up is 60% for
METHOD 1 and 108 % for METHOD 2 (the “fully incremental” method). Although METHOD
2 speeds up performance during each goalset’s first epoch (ignoring the costs that occurred before
introduction of this goalset), final results are better without inter-goalset learning. This is not so
surprising: by using policies optimized for previous goalsets, we generate bias shifts for speeding
up discovery of new, acceptable solutions, without necessarily making optimal solutions of future
tasks more likely (due to “evolutionary ballast” from previous solutions).

LS by itself needs 27.8 x 105 steps for finding all goals in G4. Recall that 17.3 * 10° of them
are spent for finding only goal 7. Using incremental learning, however, we obtain large speed-up
factors. METHOD 1 with MRL+ALS improves performance by a factor in excess of 40 (see results
of MRL+ALS on the first epoch of G4). Figure 3(A) plots performance against epoch numbers.
Each time the goalset changes, initial search costs are large (reflected by sharp peaks). Soon,
however, both methods incorporate experience into the policy. We see that MRL keeps initial
search costs significantly lower.
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Figure 3: (A) Average number of steps per epoch required to find all of the current goalset’s goals,
plotted against epoch numbers. Peaks reflect goalset changes. (B) Average probability of programs
computing solutions (before solutions are actually found).

The safety belt effect. Figure 3(B) plots epoch numbers against average probability of
programs computing solutions. With METHOD 1, MRL+ALS tends to keep the probabilities
lower than ALS by itself: high program probabilities are not always beneficial. With METHOD
2, MRL undoes many policy modifications when goalsets change, thus keeping the policy flexible
and reducing initial search costs.

Effectively, MRL is controlling the prior on the search space such that overall average search
time is reduced, given a particular task sequence. For METHOD 1, after F,y the number of
still valid modifications of policy components (probability distributions) is 377 for ALS, but only
61 for MRL+ALS (therefore, 61 is MRL+ALS’s total final stack size). For METHOD 2, the
corresponding numbers are 996 and 63. We see that MRL keeps only about 16% respectively 6%
of all modifications! The remaining modifications are deemed unworthy, because they were not
observed to be followed by life-time reinforcement speed-ups. Clearly, MRL prevents ALS from
overdoing its policy modifications (“safety belt effect”). This is MRL’s simple, basic purpose:
undo certain learning algorithms’ policy changes and bias shifts once they start looking harmful
in terms of long-term reinforcement/time ratios.

It should be clear that the MRL+ALS implementation is just one of many possible MRL
applications — we may plug many alternative learning algorithms into MRL.

5 IMPLEMENTATION 2: INCREMENTAL SELF-IMPROVEMENT (IS)

The previous section used a single, complex, powerful, primitive learning action (adaptive Levin
Search). The current section exploits the fact that it is also possible to use many, much simpler
actions that can be combined to form more complex learning strategies, or metalearning strategies
(Schmidhuber, 1994, 1996; Zhao and Schmidhuber, 1996).

Overview. We will use a simple, assembler-like programming language which allows for
writing many kinds of (learning) algorithms. Effectively, we embed the way the system modifies
its policy and triggers backtracking within the “self-referential” policy itself. MRL is used to keep
only those “self-modifications” followed by reinforcement speed-ups, in particular those leading to
“better” future self-modifications, recursively. We call this “incremental self-improvement” (IS).
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Outline of section. Subsection 5.1 will describe how the policy is represented as a set of
variable probability distributions on a set of assembler-like instructions, how the policy builds the
basis for generating and executing a lifelong instruction sequence, how the system can modify
itself executing special “self-referential instructions”, and how MRL keeps only the “good” policy
modifications. Subsection 5.2 will describe experiments. In the first experiment, MRL is applied to
a sequence of more and more difficult function approximation tasks. The second task is our most
challenging one: MRL solves a complex, huge state space POMDP which involves two interacting,
changing, learning agents.

5.1 Poricy AND PROGRAM EXECUTION

Storage / Instructions. The learner makes use of an assembler-like programming language
similar to but not quite as general as the one in (Schmidhuber, 1995). It has n addressable
work cells with addresses ranging from 0 to n — 1. The variable, real-valued contents of the
work cell with address k are denoted ci. Processes in the external environment occasionally
write inputs into certain work cells. There also are m addressable program cells with addresses
ranging from 0 to m — 1. The variable, integer-valued contents of the program cell with address
i are denoted d;. An internal variable Instruction Pointer (IP) with range {0,...,m — 1} always
points to one of the program cells (initially to the first one). There also is a fixed set I of ngps
integer values {0, ...,n,ps — 1}, which sometimes represent instructions, and sometimes represent
arguments, depending on the position of IP. IP and work cells together represent the system’s
internal state Z (see section 2). For each value j in I, there is an assembler-like instruction b;
with n; integer-valued parameters. See (Schmidhuber, 1996) for a related, illustrative figure. In
the following (incomplete) list of instructions to be used in experiment 3, the symbols wy, ws, w3
stand for parameters that may take on integer values between 0 and n — 1 (later we will encounter
additional instructions):

bo: Add(wy, w2, ws3) : Cuy « Cuy + Cu, (add the contents of work cell w; and work cell wo, write
the result into work cell ws ).

by: Sub(wy,wa, w3) i Cuy — Cwyy — Cuy-

ba: Mul(wy,wa,w3) : Cyy — Copy * Cops -

bs: Mov(wi,ws) : Cpy «— Cop; -

by: JumpHome: IP— 0 (jump back to 1st program cell).

Later (in the experimental subsections) we will encounter additional primitives allowing the
learner (1) to move around in an environment, and (2) to perceive certain objects within a limited
range.

Instruction probabilities / Current policy. For each program cell ¢ there is a variable
probability distribution P; on I. For every possible j € I, (0 < j < ngps — 1), P;; specifies for cell
1 the conditional probability that, when pointed to by IP, its contents will be set to j. The set of
all current P;j;-values defines a probability matrix P with columns P; (0 <i <m —1). P is called
the learner’s current policy. In the beginning of the learner’s life, all P;; are equal (maximum
entropy initialization). If IP = i, the contents of ¢, namely d;, will be interpreted as instruction
by, (such as Add or Mul), and the contents of cells that immediately follow 7 will be interpreted as
ba;’s arguments, to be selected according to the corresponding P-values. For example, the integer
sequence 1 6 8 7 will be interpreted as Sub(6, 8, 7) — subtract the contents of cell 6 from the
contents of cell 8 and put the result into cell 7.

“Self-reference”. To obtain a learner that can explicitly modify its own policy (by running
its own learning strategies), we introduce a special “self-referential” instruction IncProb not yet
mentioned above:
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bs: IncProb(wy,ws,ws) : Increase Pj; by v percent, where i = wy * nops + wa and j = ws
(this construction allows for addressing a broad range of program cells), and renormalize
P; (but prevent P-values from falling below a minimal value €, to avoid near-determinism).
Parameters wy, w2, w3 may take on integer values between 0 and n,p,s—1. In the experiments,
we will use v = 15,e¢ = 0.001.

In conjunction with other primitives, IncProb may be used in instruction sequences that compute
directed policy modifications. Calls of IncProb represent the only way of modifying the policy.

Self-delimiting self-modification sequences (SMSs). SMSs are subsequences of the life-
long action sequence. The first IncProb after the learner’s “birth” or after each MRL backtracking
process (see section 2) begins an SMS. The SMS ends by executing another yet unmentioned “self-
referential” primitive:

bs: EndSelfMod(w; ). Temporarily disable IncProb, by preventing future IncProb instructions
from causing any probability modifications, until w; (1 < w; < neps —1) additional non-zero
reinforcement signals have been received — this will satisfy the EVALUATION CRITERION in
the basic MRL cycle (section 2).

Some of the (initially highly random) action subsequences executed during system life will
indeed be SMSs. Depending on the nature of the other instructions, SMSs can compute almost
arbitrary sequences of modifications of P;; values. This may result in almost arbitrary modifi-
cations of context-dependent probabilities of future action subsequences, including future SMSs.
Policy changes can be generated only by SMSs. SMSs build the basis for “metalearning”: SMSs
are generated according to the policy, and may change the policy. Hence, the policy can essentially
change itself, and also the way it changes itself, etc.

SMSs can influence the timing of backtracking processes, because they can influence the times
at which the EVALUATION CRITERION will be met. Thus SMSs can temporarily protect the learner
from performance evaluations and policy restaurations.

Plugging SMSs into MRL. We replace step 1 in the basic MRL cycle (see section 2) by the
following procedure:

1. REPEAT the following UNTIL the EVALUATION CRITERION is satisfied or the Boolean
variable MODIFICATION-CRITERION (initially FALSE) is TRUE:

1.1. Randomly generate an integer j € I according to matrix column Pyp (the distribution
of the program cell pointed to by IP, initially 0 at system birth). Set program cell
contents drp := j. Translate j into the corresponding current instruction b;. Look up
the number n; of cells required to store b;’s parameters. If IP> m —n; — 2, reset IP to
0, go to step 1. Otherwise generate instruction arguments for the n; cells immediately
following I P according to their probability distributions Prpi1, ..., Prpip;, and set IP
toIP +n; + 1.

1.2. IF b; is a learning instruction and not currently disabled by a previous EndSelfMod in-
struction, THEN set MODIFICATION-CRITERION = T'RU E, exit the current REPEAT
loop, and go to step 2 of the basic MRL cycle.

1.3. Execute b;. IF b; is EndSelfMod and the topmost entry in the stack S is not a “tag”,
THEN set the integer variable nyzg equal to the first parameter of b; plus one (this
will influence the time at which EVALUATION CRITERION will be reached).

1.4. IF there is a new environmental input, THEN let it modify Z.
1.5. IF nyzgr > 0 and non-zero reinforcement occurred during the current cycle, THEN
decrement nyzg. IF nyzg is zero, THEN set EVALUATION CRITERION = TRUE.

We also change step 3 in the basic MRL cycle as follows:

3. IF MODIFICATION-CRITERION = TRUE, THEN push copies of those Pol; to be modified
by b; (from step 1.2) onto S, and execute b;.
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5.2 EXPERIMENT 3: FUNCTION APPROXIMATION / INDUCTIVE TRANSFER

Our first experiment does not yet involve multiple, interacting learners that are part of each
other’s changing environment. It just demonstrates that IS can successfully learn in a changing
environment where the tasks to be solved become more and more difficult over time (inductive
transfer). The experiment serves as an introduction to the next experiment (section 5.3), where
task changes won’t be easy to identify due to multiple, co-evolving learners with partly conflicting
goals.

Task sequence. Our system is exposed to a sequence of more and more complex function
approximation problems. The functions to be learned are fi(z,y) =z +y; fo(z,y,2) =x+y — 2;
falz,y,2) = (x +y = 2)% falz,y,2) = (x +y — 2)*; fs(z,y,2) = (x +y - 2)°.

Trials. The system’s single life can be separated into n successive trials Ay, As, ..., A, (but
the learner has no a priori concept of a trial). The i-th trial lasts from discrete time step ¢; + 1
until discrete time step t;1+1, where t; = 0 (system birth) and ¢,+; = T (system death). In a
given trial A; we first select a function g; € {f1,..., fs}. As the trial number increases, so does
the probability of selecting a more complex function. In early trials the focus is on fi. In late
trials the focus is on f5. In between there is a gradual shift in task difficulty: using a function
pointer ptr (initially 1) and an integer counter c¢ (initially 100), in trial A; we select g; := fpir
with probability 155, and g; := fpir4+1 with probability 1 — 155. If the reinforcement acceleration
during the most recent two trials exceeds a certain threshold (0.05), then ¢ is decreased by 1. If
¢ becomes 0 then fp, is increased by 1, and c is reset to 100. This is repeated until fui := fs.
From then on, f5 is always selected.

Once g; is selected, randomly generated real values z, y and z are put into work cells 0, 1, 2,
respectively. The contents of an arbitrarily chosen work cell (we always use cell 6) are interpreted
as the system’s response. If ¢ fulfills the condition |g;(z,y, z) — ¢g| < 0.0001, then the trial ends
and the current reward becomes 1.0; otherwise the current reward is 0.0.

Instructions. Instruction sequences can be composed from the following primitive instruc-
tions (compare section 5.1): Add(wi,ws,ws), Sub(wi,ws,ws), Mul(wi,ws,ws), Mov(w,ws),
IncProb(wy,ws,ws ), EndSelfMod(w ), JumpHome(). Each instruction occupies 4 successive pro-
gram cells (some of them unused if the instruction has less than 3 parameters). We use m =
50,n =T.

Evaluation Condition. Backtracking starts after each 5th consecutive non-zero reinforce-
ment signal after the end of each SMS, i.e., we set nyzr = 5.

Huge search space. Given the primitives above, random search would require about 10'7
trials on average to find a solution for f; — the search space is huge. The gradual shift in task
complexity, however, helps IS to learn f; much faster, as will be seen below.

Results. After about 9.4 x 10® instruction cycles (ca. 10® trials), the system is able to compute
f5 almost perfectly, given arbitrary real-valued inputs. The corresponding speed-up factor over
(infeasible) random or exhaustive search is about 10° — compare paragraph “Huge search space”
above. The solution (see Figure 4) involves 21 strongly modified probability distributions of the
policy (after learning, the correct instructions had extreme probability values). At the end, the
most probable code is given by the following integer sequence:

121610662666266626664 % x...

The corresponding “program” and the (very high) probabilities of its instructions and param-

eters are shown in Table 4.

Evolution of self-modification frequencies. During its life the system generates a lot of
self-modifications to compute the strongly modified policy. This includes changes of the proba-
bilities of self-modifications. It is quite interesting (and also quite difficult) to find out to which
extent the system uses self-modifying instructions to learn how to use self-modifying instructions.
Figure 5 gives a vague idea of what’s going on by showing a typical plot of the frequency of IncProb
instructions during system life (sampled at intervals of 10 MRL cycles). Soon after its birth, the
system found it useful to dramatically increase the frequency of IncProb; near its death (when
there was nothing more to learn) it significantly reduced this frequency.
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Cel addressess 0 1 2 3 4 5 6 7 8
Most probable code sequence:
1 2

HTI 0] 0 500600000006 0000000
2=Mul O‘O ,,,,,
3=Mov QOO ,,,,,

4 = JumpHome
5= IncProb

Cs=temor )
6 = EndSelfMod QQO

Figure 4: The final state of the probability matriz for the function learning problem. Grey scales
indicate the magnitude of probabilities of instructions and parameters. The matriz was computed
by self-modification sequences generated according to the matriz itself (initially, all probability
distributions were mazimum entropy distributions).

Probabilities Instruction | Parameters | Semantics
1. | (0.994, 0.975, 0.991, 0.994) Sub (2,1,6) (z —y) = cs
2. | (0.994, 0.981, 0.994, 0.994) Sub (0,6,6) | (z—(2—y) = ¢
3. | (0.994, 0.994, 0.994, 0.994) Mul (6,6,6) (x+y—2)? = cs
4. | (0.994, 0.994, 0.994, 0.994) Mul (6,6,6) (x+y—2) = cg
5. | (0.869, 0.976, 0.994, 0.994) Mul (6, 6, 6) (x+y—2)° = cs
6. | (0.848, —, — —) JumpHome (= - ) 0= IP

Table 4: The final, most probable “program” and the corresponding probabilities.

Stack evolution. The temporary ups and downs of the stack reflect that as the tasks change,
the system selectively keeps still useful old modifications (corresponding to information conveyed
by previous tasks that is still valuable for solving the current task), but deletes modifications
that are too specific for previous tasks. In the end, there were only about 200 stack entries
corresponding to only 200 walid probability modifications — this is a small number compared to
the about 5 * 10° self-modifications executed during system life.

5.3 EXPERIMENT 4: A HArRD POMDP

In the previous experiment, the learner’s environment changed because of externally induced task
changes. In the following experiment, it will change in a less predictable way because of another,
changing learner. There won’t be an obvious way of identifying task changes.

Environment. Figure 5.3 shows a partially observable environment (POE) with 600 x 800
fields (or pixels). The POE has many more fields and obstacles than POEs used by previous
authors working on POMDPs. For instance, McCallum’s maze has only 23 free fields (McCallum,
1995), and Littman et al.’s biggest problem (Littman, 1994) involves less than 1000 states. There
are two IS-based agents A and B. Each has circular shape and a diameter of 30 pixel widths. At a
given time, each is rotated in one of eight different directions. Total state space size exceeds 10*?
by far, not even taking into account internal states (IP positions) of the agents.

There are also two keys, key A (only useful for agent A) and key B (only for agent B), and two
locked doors, door A and door B, the only entries to room A and room B, respectively. Door A (B)
can be opened only with key A (B). At the beginning of each “trial”, both agents are randomly
rotated and placed near the northwest corner, all doors are closed, key A is placed in the southeast
corner, and key B is placed in room A (see Figure 5.3).
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Figure 5: Numbers of executed self-modifying instructions plotted against time, sampled at intervals
of 108 instruction cycles. The graph reflects that the system soon uses self-modifying instructions
to increase the frequency of self-modifying instructions. Near system death the system learns that
there is not much to learn any more, and decreases this frequency.

Task. The goal of each agent is to reach the goal in room B. This requires cooperation: (1)
agent A must first find and take key A (by touching it); (2) then agent A must go to door A
and open it (by touching it) for agent B; (3) then agent B must enter through door A, find and
take key B; (4) then agent B must go to door B to open it (to free the way to the goal); (5) then
at least one of the agents must reach the goal position. Only then a new trial starts (there is
no maximal trial length, and the agents have no a priori concept of a trial). Reinforcement is
generated only if one of the agents touches the goal. This agent’s reinforcement is 5.0; the other
agent’s reinforcement is 3.0 (for its cooperation). Note that asymmetric reinforcement introduces
competition.

Instruction set. Agents A and B are identical in design. Fach is equipped with limited “ac-
tive” sight: by executing certain instructions, it can sense obstacles, its own key, the corresponding
door, or the goal, within up to 10 “steps” in front of it. The step size is 5 pixel widths. Limited
obstacle perception makes the problem a difficult POMDP. The agent can also move forward, turn
around, turn relative to its key or its door or the goal. Directions are represented as integers in
{0,...,7}: 0 for north, 1 for northeast, 2 for east,... etc.. Each agent has got m = 52 program
cells, and n,ps = 13 instructions (including JumpHome/IncProb/EndSelfMod instructions from
section 5.1):

bs: Move(wi) — If 0 < wy; < 9, then move wy — 3 steps forward (if wy > 3) or —w; steps
backward (if wy < 3) in the current direction.

by: Turn(w;) — if 0 < w; < 7 then change current direction D, to (D. + w; + 4)mod8.

bs: TurnRelativeToKey(w,) — If 0 < wy < 7 then first turn to the direction that best matches
the line connecting the centers of agent and its key, then Turn(w; ).

bs: TurnRelativeToDoor(wy) — (analogous to bs).
b7: TurnRelativeToGoal(w; ) — (analogous to bs).

bs: LookForKey(w,) — If 0 < w; <9, then if the agent’s key is not within w; + 1 steps in front
of the agent then increase IP by 4 (this is a limited kind of conditional jump). If IP > m —1
then set TP = 0.

bo: LookForDoor(wi) — (analogous to bg).

bio: LookForObstacle(w, ) — (analogous to bg).
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bi1: LookForGoal(w; ) — (analogous to bs).

bia: CondJumpBack(w,) — If wy = 0 and the agent does not hold its key, or if w; = 1 and
the corresponding door is closed, or if wy = 2 and the agent does not touch the goal, then
reset agent’s TP to the instruction next to last executed CondJumpBack (if there is no such
instruction, reset IP = 0).

Results without learning. If we switch off the system’s self-modifying capabilities (IncProb
has no effect), then the average reinforcement intake speed is about 1.2 x 10~° per instruction
cycle and agent. This corresponds to about 3.3 x 10° time steps per trial (random behavior).

Results with Q-Learning. Q-learning assumes that the environment is Markovian. Oth-
erwise it is not guaranteed to work. Still, some authors occasionally apply Q-learning variants
to non-Markovian tasks, sometimes even successfully. To test whether our problem is indeed too
difficult for Q-learning, we tried to solve it using various T'D()\) Q-variants. We first tried prim-
itive actions and perceptions similar to IS’s. There are 33 possible Q-actions. The first 32 are
“turn to one of the 8 different directions relative to the agent’s key/door/current direction/goal,
and move 3 steps forward”. The 33rd action is “turn 45 degrees to the right”. These actions are
more powerful than those used by IS (most combine two actions that are similar to IS’s). There
are 2 x 5 = 10 possible, different inputs uniquely telling the agent whether it has/hasn’t got its
key, and whether the closest object (obstacle or key or door or goal) part of which is either 10
or 20 or 30 or 40 or 50 pixels in front of the agent is obstacle/key/door/goal/non-existent. All of
this corresponds to 10 rows and 33 columns in the Q-tables. Q-learning’s parameters are A = 0.9,
~v = 1.0, and learning rate 0.001 (these worked well for smaller problems Q-learning was able to
solve).

This Q-learning variant completely failed to achieve significant performance improvement on
our complex task, however. So we tried to make the problem easier (less non-Markovian) by
extending the agent’s sensing capabilities. Now, each possible input tells the agent uniquely
whether it has/hasn’t got the key, and whether the closest object (obstacle or key or door or goal)
part of which is either 10 or 20 or 30 or 40 or 50 pixels away in front of/45 degrees to the right of/45
degrees to the left of the agent is obstacle/key/door/goal /non-existent, and if existing, whether it
is 10/20/30/40/50 pixels away. All this can be efficiently coded by 21 %21 %212 = 18522 different
inputs corresponding to 18522 different rows in the Q-tables (with a total of 611226 entries). This
worked a bit better than the simpler Q-variant. Still, we were not able to make Q-learning achieve
very significant performance improvement. The experimental results are shown in Figure 5.3.

Results with IS. The system dies after 10° basic cycles (ca. 130,000 trials corresponding to
only 130, 000 reinforcement signals). By then, average reinforcement intake per agent is 7.5 x 1074
per basic cycle (mean of 4 simulations). This is about 62 times faster than the initial speed (the
one of random behavior), and is roughly i to % of the optimal speed (due to the POMDP setting
and the random agent initializations at trial start, however, it is very hard to calculate optimal
average speed). Results are shown in Figures 5.3 and 5.3.

Q-learning as an instruction for IS. The fact that Q-learning is not designed for POMDPs
does not mean that Q-learning cannot be plugged into IS as a useful instruction. To examine this
issue, we add Q-learning to the instruction list to be used by IS:

biz: Q-learning(w:) — with probability 200:’7;0“, keep executing actions according to the Q-table until
there is non-zero reinforcement, and update the Q-table according to standard Q-learning rules

atkins and Dayan, . erwise, execute only one single action according to the curren
Watki dD 1992). Otherwi % 1 ingle acti ding to th t
Q-table.

Interestingly, this combination leads to even slightly better results near system death (see Figure
5.3). Essentially, the system learns when to trust the Q-table.

Stack size. Final stack size per agent was never higher than 250, corresponding to only
about 250 still valid policy modifications. Space limitations prevent us from describing many
interesting details such as the final, complex shape of the agent’s probability matrices, and how
the agents use memories (embodied by their IPs) to disambiguate ambiguous inputs, and how
they use self-modifications to adapt the frequency of self-modifications.
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6 CONCLUSION

During each backtracking process, MRL implicitly evaluates each still valid policy modification
as to whether it belongs to a block of modifications whose beginning has been followed by long-
term performance improvement. If there is empirical evidence to the contrary, then backtracking
invalidates policy modifications until the history of valid modifications is again a success story (in
the worst case an empty one — this will be reflected by an empty stack). The success of a policy
modification or bias shift partly depends on the sucess of later bias shifts for which it set the stage
(“metalearning”). MRL works no matter what the environment and the internal state are like.
MRL is efficient in the sense that only the two most recent (“topmost”) still valid modification
blocks need to be considered at a given time in a backtracking process. A single backtracking
process, however, may invalidate many modification blocks. MRL is general — you can plug in
your favorite learning algorithm L as an action. This makes sense especially in situations where
the applicability of L is questionable because the environment does not satisfy the preconditions
that would make L sound. MRL can at least guarantee that those of L’s policy modifications that
appear to contribute to negative long-term effects are countermanded. This is more than can be
said about previous reinforcement learning schemes.

We don’t gain much by applying MRL to, say, simple “Markovian” mazes for which there
already are efficient reinforcement learning methods based on dynamic programming. MRL is of
interest, however, in more realistic situations where standard reinforcement learning methods fail
(such as the 2-door/2-key problem from section 5.3).

We feel that we have barely scratched MRL’s potential. Future work will focus on plugging a
whole variety of well-known learning algorithms into MRL, and let it pick and combine the best,
problem-specific ones.
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Figure 6: Snapshot of traces of interacting, learning agents A and B in a partially observable
environment with huge state space. Initially, both agents are randomly rotated and placed near the
northwest corner. Agent A first moves towards the southeast corner to grab its key, then moves
north (dotted trace) to open door A (grey). Simultaneously, agent B moves east to door A and waits
for agent A to open it. Then B mowves in, grabs key B, turns, and heads towards door B to open
it, while agent A also heads southwest in direction of the goal (dotted trace). This time, however,
agent B is the one who touches the goal first, because A fails to quickly circumwvent the obstacle in
the center. All this complex, partly stochastic behavior is learned solely by “self-referential” policy
modifications (generated according to the “self-referential” policy itself via IncProb calls), although
strongly delayed reinforcement is provided only if one of the agents touches the goal.
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Figure 7: Performance of incremental self-improvement (IS) compared to the one of the best Q-
learning variant (reinforcement intake sampled at intervals of 105 instruction cycles, mean of
4 simulations). Q-learning hardly improves, while IS makes rather quick, substantial progress.
Interestingly, adding Q-learning to IS’s instruction set again tends to improve late-life performance
a bit (trace of crosses) — essentially, the system learns when to trust/ignore the Q-table.
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