
SIMPLE PRINCIPLES OF METALEARNINGTechnical Report IDSIA-69-96J�urgen Schmidhuber & Jieyu Zhao & Marco WieringIDSIA, Corso Elvezia 36, CH-6900-Lugano, Switzerlandjuergen,marco,jieyu@idsia.ch - http://www.idsia.chJune 27, 1996AbstractThe goal of metalearning is to generate useful shifts of inductive bias by adapting thecurrent learning strategy in a \useful" way. Our learner leads a single life during whichactions are continually executed according to the system's internal state and current policy(a modi�able, probabilistic algorithm mapping environmental inputs and internal states tooutputs and new internal states). An action is considered a learning algorithm if it canmodify the policy. E�ects of learning processes on later learning processes are measuredusing reward/time ratios. Occasional backtracking enforces success histories of still validpolicy modi�cations corresponding to histories of lifelong reward accelerations. The principleallows for plugging in a wide variety of learning algorithms. In particular, it allows forembedding the learner's policy modi�cation strategy within the policy itself (self-reference).To demonstrate the principle's feasibility in cases where conventional reinforcement learningfails, we test it in complex, non-Markovian, changing environments (\POMDPs"). One ofthe tasks involves more than 1013 states, two learners that both cooperate and compete, andstrongly delayed reinforcement signals (initially separated by more than 300,000 time steps).
The biggest di�erence between time and space is that you can't reuse time.Merrick Furst1 Introduction / OverviewIn the spirit of the �rst author's earlier work (e.g., 1987, 1993, 1994), we will use the expressions\metalearning" and \learning to learn" to characterize learners that (1) can evaluate and comparelearning methods, (2) measure the bene�ts of early learning on subsequent learning, (3) use suchevaluations to reason about learning strategies and to select \useful" ones while discarding others.An algorithm is not considered to have learned to learn if it improves merely by luck, if it doesnot measure the e�ects of early learning on later learning, or if it has no explicit method designedto translate such measurements into useful learning strategies.We focus on estimating the usefulness of each learning process or bias shift (Utgo�, 1986) andthen exploiting it in later learning processes within a realistic, life-time reinforcement learningcontext. Applications will include \inductive transfer" across multiple tasks (e.g., Caruana et al.,1995).Scenario. A reinforcement learner executes a lifelong action sequence in an unknown environ-ment. Its single life lasts from birth at time 0 to death at unknown time T . Actions are selectedaccording to its changing policy, a modi�able, probabilistic algorithm mapping environmental1



inputs and internal states to outputs and new internal states. Di�erent actions may consume dif-ferent amounts of execution time | compare, e.g., (Russell and Wefald, 1991; Boddy and Dean,1994), and references given therein. Occasionally the environment provides real-valued \reinforce-ment". The sum of all reinforcements obtained between time 0 and time t > 0 is denoted by R(t)(where R(0) = 0). Because the learner cannot change the past, its goal at time t is to use previousexperience to maximize R(T )�R(t), the cumulative future reinforcement. Somewhat related, butmore restricted, limited resource scenarios were also studied, e.g., by Berry and Fristedt (1985),Gittins (1989), Greiner (1996), and references therein.Realistic environments. Convergence theorems for existing reinforcement learning algo-rithms require in�nite sampling size as well as strong (often Markovian) assumptions about theenvironment, e.g., (Kumar and Varaiya, 1986; Sutton, 1988; Barto, 1989; Watkins and Dayan,1992; Williams, 1992). They are of great theoretical interest but not extremely relevant for re-alistic environments where computational resources and sampling sizes are limited. \Learning"(modifying the policy) consumes part of the learner's limited life. So do policy tests. And adisappointing test outcome may imply that it is already too late for collecting much additionalreinforcement. One cannot buy cheap shares of a company after the price jumped up (no re-peatable trials guaranteed)! In general, at a given time in system life, we may assume only onesingle training example to estimate the long-term usefulness of any previous policy modi�cation| namely the performance since then. This requires us to rethink a bit the conventional, multipletrial-based way we measure performance and generalize.Basic ideas (see details in section 2). Meta-reinforcement learning (MRL) treats learningalgorithms just like other actions. Their probabilities of being executed at a given time depend onthe learner's current internal state and policy. Their only distinguishing feature is that they mayalso modify the policy. In case of policy changes, information necessary to restore the old policyis pushed on a stack.The learner's life-time performance is occasionally evaluated by backtracking processes. At agiven time, we assume there is only one single training example to evaluate the current long-term usefulness of any currently valid policy modi�cation M , namely the average reinforcementper time since M occurred. This includes all reinforcement collected after later modi�cations forwhich M may have set the stage, thus providing a measure of how useful a learning process wasfor later learning processes, or how useful a shift of inductive bias was for further bias shifts. Usingthe stack, backtracking invalidates certain previous policy modi�cations such that the remainingmodi�cations correspond to an (in the worst case empty) history of long-term reinforcement ac-celerations. Until the next backtracking process, the straight-forward generalization assumptionis: each policy modi�cation (or bias shift) that survived the most recent backtracking process wasuseful and will remain useful.For instance, whenever the environment appears to change in the sense that the reward per timefor the current behavior is observed to decrease, backtracking will selectively undo those previouslylearned policy modi�cations that do not appear useful any more (perhaps because they were toospeci�cally tailored to previous tasks and are useless for \inductive transfer"). Backtracking willselectively keep those modi�cations that still appear useful because until now they were followedby long-term reinforcement accelerations, despite possible changes of the environment.Due to unknown reinforcement delays, there is no a priori good way of starting backtrackingprocesses. That's why MRL also allows for learning to trigger them. Since learning algorithms areactions and can be combined (according to the policy) to form more complex learning algorithms,MRL allows for embedding the learning strategy within the policy itself. There is no pre-wireddi�erence between \learning", \metalearning", \metametalearning" etc. For alternative views ofmetalearning, see, e.g., Lenat (1983), Rosenbloom et al. (1993).Disclaimer. In general, unknown environments, neither MRL nor any other scheme is guar-anteed to continually increase reinforcement intake per �xed time interval, or to �nd the policythat will lead to maximal cumulative reinforcement. But at least MRL is guaranteed to selectivelyundo those policy modi�cations that were not empirically observed to be followed by an overallspeed-up of average reinforcement intake (even in non-Markovian settings). This is more than canbe said about interesting, previous reinforcement learning algorithms, e.g., (Kumar and Varaiya,2



1986; Barto, 1989; Watkins and Dayan, 1992; Williams, 1992; Schmidhuber, 1991; Jaakkola et al.,1995; Kaelbling et al., 1995; Ring, 1994).Outline of remainder. Section 2 will describe the learner's basic cycle of operations andclarify technical details of what has been said in paragraph \basic ideas". Section 3 will explain whythe basic cycle enforces lifelong histories of reinforcement accelerations despite possible interferencefrom parallel, internal or external processes. To demonstrate MRL's feasibility and generality,sections 4 and 5 will present two concrete implementations and experiments with complex, partiallyobservable environments (POEs). They show that MRL makes sense especially in situations whereprevious algorithms fail because the environment does not satisfy preconditions that would makethem sound. Some of our POEs are much bigger and more complex than POEs considered inprevious POE work.2 Basic MRL CycleAt time 0 (system birth), we initialize the learner's variable internal state I, a vector of variable,binary or real-valued components. Environmental inputs may be represented by certain com-ponents of I. We also initialize the vector-valued policy Pol. Pol's i-th variable component isdenoted Poli. There is a set of possible actions to be selected and executed according to currentPol and I. For now, there is no need to specify Pol | this will be done in the experimentalsections (typically, Poli will be a conditional probability distribution on the possible next actions,given current I). We introduce an initially empty stack S that allows for stack entries with vary-ing sizes, and the conventional push and pop operations. Until time T (system death), the systemrepeats the following basic MRL cycle over and over again (while time is continually increasing):1. Execute actions selected according to Pol and I (this may change environment and I), until acertain Evaluation Criterion is satis�ed, or until an action is selected that will modify Pol.2. IF the Evaluation Criterion is satis�ed, THEN start the following backtracking procedureto undo certain previous Pol modi�cations if necessary (to ensure that the history of still validmodi�cations corresponds to a history of reinforcement accelerations):2.1. Set variable t equal to current time.IF there is no \tag" (a pair of time and cumulative reinforcement until then) stored somewherein S,THEN push the tag (t, R(t)) onto S, and go to 3 (this ends the current backtracking process).ELSE denote the topmost tag in S by (t0, R(t0)). IF there are no further tags, THEN setvariable t00 = 0 (recall R(t00) = R(0) = 0). ELSE let (t00, R(t00)) denote the last but topmosttag in S.2.2. IF R(t)�R(t0)t� t0 > R(t)�R(t00)t� t00THEN push tag (t, R(t)), and go to 3. This ends the current backtracking process.ELSE pop o� all stack entries above the one for tag (t0, R(t0)) (these entries will be formerpolicy components saved during earlier executions of step 3), and use them to restore Pol asit used to be before time t0. Then also pop o� the tag (t0, R(t0)). Go to 2.1.3. IF the most recent action selected in step 1 will modify Pol, THEN push copies of those Poli tobe modi�ed onto S, and execute the action.4. IF some Termination Criterion is satis�ed, THEN die. ELSE go to step 1.Comment: each step above (including pushing and popping) will consume various amounts ofsystem life-time.
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3 The MRL Cycle Ensures Life-Time Success StoriesLifelong reinforcement acceleration. At a given time in the learner's life, de�ne the set ofcurrently valid times as those previous times still stored in tags somewhere in S. If this set isnot empty right before tag (t; R(t)) is pushed in step 2.2 of the basic cycle, then let ti (i 2f1; 2; : : : ; V (t)g) denote the i-th valid time, counted from the bottom of S. It is easy to show(Schmidhuber, 1994, 1996) that the current backtracking process will have enforced the following,essential criterion which is central to MRL (t is the t in the most recent step 2.2):R(t)t < R(t)�R(t1)t� t1 < R(t)�R(t2)t� t2 < : : : < R(t)�R(tV (t))t� tV (t) : (1)What does this mean? Each valid time marks the beginning of a long-term reinforcement acceler-ation (measured up until time t). Everything that happened after a valid time, every action andevery backtracking process, is justi�ed in the sense that it was observed to occur during a long-term speed-up. The only still valid policy modi�cations or bias shifts are those that occurred inbetween some valid time (or time 0) and the beginning of the next backtracking process followingthat time. Again, each such block of policy modi�cations will have its justi�cation in the followingsense: each block's \time marker" (the valid time preceding the block's �rst modi�cation) wasfollowed by faster average reinforcement intake than all previous such time markers. The still validpolicy modi�cations are those that survived all backtracking processes until now. In this sense,the history of still valid bias shifts is guaranteed to be a life-time success story (in the worst casean empty one). No Markov-assumption is required.MRL's generalization assumption. At the end of each backtracking process, until thebeginning of the next one, MRL's simple, straight-forward generalization assumption for inductiveinference is: policy modi�cations that survived the most recent backtracking will remain useful.In other words, until there is empirical evidence to the contrary, the assumption is: the still validmodi�cations contributed to the long-term speed-up, and will continue to contribute. In general,unknown environments, which other generalization assumption would make sense? Recall thatsince life is one-way (time is never reset), during each backtracking process the system has togeneralize from a single experience concerning the usefulness of actions/policy modi�cations takenafter any given previous point in time: the average reinforcement per time since then.If we prevent modi�cation probabilities from vanishing entirely then occasionally the systemwill execute policy modi�cations, and keep those consistent with inequality (1). In this sense, itcannot help getting better, if the environment does indeed provide a chance to improve perfor-mance, given the initial set of possible actions representing the system's initial bias. Essentially,the system keeps generating and undoing policy modi�cations until it discovers some that indeed�t its generalization assumption.Greediness? MRL's strategy appears to be a greedy one. It always keeps the policy that wasobserved to outperform all previous policies in terms of long-term reward/time ratios. To dealwith unknown reinforcement delays, however, the degree of greediness is learnable | backtrackingprocesses may be triggered or delayed according to the modi�able policy itself.Speed? Due to the generality of the approach, no reasonable statements can be made aboutimprovement speed, which indeed highly depends on the nature of the environment and the choiceof initial, \primitive" actions (including learning algorithms) to be combined according to thepolicy. This lack of quantitative convergence results is shared by almost all other, less generalreinforcement learning schemes, though.Actions can be almost anything. For instance, an action executed in step 3 may be a neuralnet algorithm. Or it may be a Bayesian analysis of previous events. While this analysis is running,time is running, too. Thus, the complexity of the Bayesian approach is automatically taken intoaccount. Similarly, actions may be calls of a Q-learning variant (see experiment 4 in section 5.3).For instance, plugging Q-learning into MRL makes sense in situations where Q-learning by itselfis questionable because the environment might not entirely satisfy the preconditions that wouldmake Q-learning sound. 4



I as part of Pol's environment. As the basic cycle is repeated again and again, neitherthe internal state nor the environment are assumed to be reset (real world set-up). Essentially,what each backtracking process attempts (and succeeds) to do is to make the history of still validmodi�cations a success story despite harmful (or bene�cial) interference from parallel, externaland internal processes. It is appropriate to view the internal state as part of the policy's changingenvironment.Outline of remainder. Sections 4 and 5 will describe two concrete implementations ofMRL. The �rst implementation's action set consists of a single but \strong", policy-modifyingaction (a call of a Levin search extension). The second implementation uses many di�erent,less \powerful" actions. They resemble assembler-like instructions from which many di�erentlearning strategies can be built (the system's modi�able, \self-referential" learning strategy is ableto modify itself). Both implementations are successfully tested in complex environments wherestandard reinforcement learning algorithms fail. In particular, the second, \self-referential" systemis successfully applied to a non-Markovian task that involves more than 1013 states, two learnersthat both cooperate and compete, and strongly delayed reinforcement signals (initially separatedby more than 300,000 time steps on average). Section 6 will conclude.4 Implementation 1: Plugging Levin Search into MRLOverview. In this section, we use an adaptive extension of Levin search (LS) (Levin, 1973; Levin,1984) as only learning action to be plugged into MRL. We apply it to partially observable Markovdecision problems (POMDPs), which recently received a lot of attention in the reinforcementlearning community, e.g., (Jaakkola et al., 1995; Kaelbling et al., 1995; Ring, 1994; McCallum,1995; Littman, 1994; Cli� and Ross, 1994; Schmidhuber, 1991). We �rst show that LS by itselfcan solve partially observable mazes (POMs) involving many more states and obstacles than thosesolved by various previous authors (we will also see that LS can easily outperform Q-learning).We then extend LS to plug it into MRL, and experimentally show dramatic search time reductionfor sequences of more and more complex POMDPs (\inductive transfer").4.1 Levin Search (LS)Unbeknownst to many machine learning researchers, there exists a search algorithm with amazingtheoretical properties: for a broad class of search problems, Levin search (LS) (Levin, 1973;Levin, 1984) has the optimal order of computational complexity. For instance, suppose thereis an algorithm that solves a certain type of maze task in O(n3) steps, where n is a positiveinteger representing the problem size. Then universal LS will solve the same task in at mostO(n3) steps. See (Li and Vit�anyi, 1993) for an overview. See (Schmidhuber, 1995) for recentimplementations/applications.Basic concepts. LS requires a set of nops primitive, prewired instructions b1; :::; bnops that canbe composed to form arbitrary sequential programs. Essentially, LS generates and tests solutioncandidates s (program outputs represented as strings over a �nite alphabet) in order of their Levincomplexities Kt(s) = minqf�logDP (q) + log t(q; s)g, where q stands for a program that computess in t(q; s) time steps, and DP (q) is the probability of guessing q according to a �xed Solomono�-Levin distribution (Li and Vit�anyi, 1993) on the set of possible programs (in section 4.2, however,we will make the distribution variable).Optimality. Amazingly, given primitives representing a universal programming language, fora broad class of problems, including inversion problems and time-limited optimization problems,LS can be shown to be optimal with respect to total expected search time, leaving aside a constantfactor independent of the problem size (Levin, 1973; Levin, 1984; Li and Vit�anyi, 1993). Still,until recently LS has not received much attention except in purely theoretical studies | see, e.g.,(Watanabe, 1992).Practical implementation. In our practical LS version, there is an upper bound m onprogram length (due to obvious storage limitations). ai denotes the address of the i-th instruction.5



Each program is generated incrementally: �rst we select an instruction for a1, then for a2, etc.DP is given by a matrix P , where Pij (i 2 1; :::;m, j 2 1; :::; nops) denotes the probability ofselecting bj as the instruction at address ai, given that the �rst i � 1 instructions have alreadybeen selected. The probability of a program is the product of the probabilities of its constituents.LS' arguments are P and the representation of a problem denoted by N . LS' output is aprogram that computes a solution to the problem if it found any. In this section, all Pij = 1nopswill remain �xed. LS is implemented as a sequence of longer and longer phases:Levin search(problem N , probability matrix P )(1) Set Phase, the number of the current phase, equal to 1. In what follows, let�(Phase) denote the set of not yet executed programs q satisfying DP (q) � 1Phase .(2) Repeat(2.1) While �(Phase) 6= fg and no solution found do: Generate a programq 2 �(Phase), and run q until it either halts or until it used up DP (q)�Phasecsteps. If q computed a solution for N , return q and exit.(2.2) Set Phase := 2Phaseuntil solution found or Phase � PhaseMAX .Return empty program fg.Here c and PhaseMAX are prespeci�ed constants. The procedure above is essentially the same(has the same order of complexity) as the one described in the second paragraph of this section| see, e.g., (Solomono�, 1986; Li and Vit�anyi, 1993).4.2 Adaptive Levin Search (ALS)LS is not necessarily optimal for \incremental" learning problems where experience with previousproblems may help to reduce future search costs. To make an incremental search method outof non-incremental LS, we introduce a simple, heuristic, adaptive LS extension (ALS) that usesexperience with previous problems to adaptively modify LS' underlying probability distribution.ALS essentially works as follows: whenever LS found a program q that computed a solutionfor the current problem, the probabilities of q's instructions q1; q2; : : : ; ql(q) are increased (hereqi 2 fb1; : : : ; bnopsg denotes q's i-th instruction, and l(q) denotes q's length | if LS did not �nd asolution (q is the empty program), then l(q) is de�ned to be 0). This will increase the probabilityof the entire program. The probability adjustment is controlled by a learning rate 
 (0 < 
< 1). ALS is related to the linear reward-inaction algorithm, e.g., (Kaelbling, 1993) | the maindi�erence is: ALS uses LS to search through program space as opposed to single action space. As inthe previous section, the probability distribution DP is determined by P . Initially, all Pij = 1nops .However, given a sequence of problems (N1; N2; :::; Nr), the Pij may undergo changes caused byALS:ALS (problems (N1; N2; :::; Nr), variable matrix P )for i := 1 to r do:q := Levin search(Ni, P ); Adapt(q, P ).where the procedure Adapt works as follows:Adapt(program q, variable matrix P )for i := 1 to l(q), j := 1 to nops do:if (qi = bj) then Pij := Pij + 
(1� Pij)else Pij := (1� 
)Pij
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4.3 Plugging ALS into MRLCritique of adaptive LS. Although ALS seems a reasonable �rst step towards making LSadaptive (and actually leads to very nice experimental results | see section 4.5), there is notheoretical proof that it will generate only probability modi�cations that will speed up the processof �nding solutions to new tasks. Like any learning algorithm, ALS may sometimes produceharmful instead of bene�cial bias shifts, depending on the environment. To address this issue, wesimply plug ALS into MRL from section 2. MRL ensures that the system will keep only probabilitymodi�cations representing a lifelong history of performance improvements.ALS as primitive for MRL. At a given time, the learner's current policy is the variablematrix P above. To plug ALS into MRL, we simply replace steps 1 and 3 in section 2's MRLcycle by:1. If the current MRL cycle's problem is Ni, then set q := Levin search (Ni; P ). If a solution wasfound, generate reinforcement of +1:0. Set Evaluation Criterion = TRUE. The next actionwill be a call of Adapt, which will change the policy P .3. Push copies of those Pi (the i-th column of matrix P ) to be modi�ed by Adapt onto S, and callAdapt(q; P ).Each call of Adapt causes a bias shift for future learning. In between two calls of Adapt, acertain amount of time will be consumed by Levin search (details about how time is measuredwill follow in the section on experiments). As always, MRL's goal is to receive as much reward asquickly as possible, by generating policy changes that minimize the computation time required byfuture calls of Levin search and Adapt.Partially Observable Maze Problems. The next subsections will describe experimentsvalidating the usefulness of LS, ALS, and MRL. To begin with, in an illustrative applicationwith a partially observable maze that has many more states and obstacles than those presentedin other POMDP work (see, e.g., (Cli� and Ross, 1994)), we will show how LS by itself cansolve POMDPs with huge state spaces but low-complexity solutions (Q-learning variants fail tosolve these tasks). Then we will present experiments with multiple, more and more di�cult tasks(inductive transfer). We will show that ALS can use previous experience to speed-up the process of�nding new solutions, and that ALS plugged into MRL (MRL+ALS for short) always outperformsALS by itself.4.4 Experiment 1: A Big, Partially Observable Maze (POM)The current section is a prelude to section 4.5 which will address inductive transfer issues. Herewe will only show that LS by itself can be very useful for POMDP problems. See also (Wieringand Schmidhuber, 1996).Task. Figure 1 shows a 39�38-maze with a single start position (S) and a single goal position(G). The maze has many more �elds and obstacles than mazes used by previous authors workingon POMDPs | for instance, McCallum's maze has only 23 free �elds (McCallum, 1995). Thegoal is to �nd a program that makes an agent move from S to G.Instructions. Programs can be composed from 9 primitive instructions. These instructionsrepresent the initial bias provided by the programmer (in what follows, superscripts will indicateinstruction numbers). The �rst 8 instructions have the following syntax : REPEAT step forwardUNTIL condition Cond, THEN rotate towards direction Dir.Instruction 1 : Cond = front is blocked, Dir = left.Instruction 2 : Cond = front is blocked, Dir = right.Instruction 3 : Cond = left �eld is free, Dir = left.Instruction 4 : Cond = left �eld is free, Dir = right.Instruction 5 : Cond = left �eld is free, Dir = none.Instruction 6 : Cond = right �eld is free, Dir = left.Instruction 7 : Cond = right �eld is free, Dir = right.Instruction 8 : Cond = right �eld is free, Dir = none.7
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Figure 1: An apparently complex, partially observable 39� 38-maze with a low-complexity shortestpath from start S to goal G involving 127 steps. Despite the relatively large state space, the agentcan implicitly perceive only one of three highly ambiguous types of input, namely \front is blockedor not", \left �eld is free or not", \right �eld is free or not" (compare list of primitives). Hence,from the agent's perspective, the task is a di�cult POMDP. The S and the arrow indicate theagent's initial position and rotation.Instruction 9 is: Jump(address, nr-times). It has two parameters: nr-times2 1; 2; : : : ;MAXR(with the constant MAXR representing the maximum number of repetitions), and address 21; 2; : : : ; top, where top is the highest address in the current program. Jump uses an additional hid-den variable nr-times-to-go which is initially set to nr-times. The semantics are: If nr-times-to-go > 0, continue execution at address address. If 0 < nr-times-to-go< MAXR, decrementnr-times-to-go. If nr-times-to-go= 0, set nr-times-to-go to nr-times. Note that nr-times= MAXR may cause an in�nite loop. The Jump instruction is essential for exploiting the possibil-ity that solutions may consist of repeatable action sequences and \subprograms", thus having lowalgorithmic complexity (Kolmogorov, 1965; Chaitin, 1969; Solomono�, 1964). LS' incrementallygrowing time limit automatically deals with those programs that don't halt, by preventing themfrom consuming too much time.As mentioned in section 4.1, the probability of a program is the product of the probabilitiesof its constituents. To deal with probabilities of the two Jump parameters, we introduce twoadditional variable matrices, �P and P̂ . For a program with l � k instructions, to specify theconditional probability �Pij of a jump to address aj , given that the instruction at address ai isJump (i 2 1; :::; l, j 2 1; :::; l), we �rst normalize the entries �Pi1, �Pi2, ..., �Pil (this ensures thatthe relevant entries sum up to 1). Provided the instruction at address ai is Jump, for i 2 1; :::; k,j 2 1; :::;MAXR, P̂ij speci�es the probability of the nr-times parameter being set to j. Both �Pand P̂ are initialized uniformly and are adapted by ALS just like P itself.Restricted LS-variant. Note that the instructions above are not su�cient to build a universalprogramming language | the experiments in this paper are con�ned to a restricted version of LS.From the instructions above, however, one can build programs for solving any maze in which itis not necessary to completely reverse the direction of movement (rotation by 180 degrees) in acorridor. Note that it is mainly the Jump instruction that allows for composing low-complexity8



solutions from \subprograms" (LS provides a sound way for dealing with in�nite loops).Rules. Before LS generates, runs and tests a new program, the agent is reset to its startposition. Collisions with walls halt the program | this makes the problem hard. A path generatedby a program that makes the agent hit the goal is called a solution (the agent is not required tostop at the goal | there are no explicit halt instructions).Why is this a POMDP? Because the instructions above are not su�cient to tell the agentexactly where it is: at a given time, the agent can perceive only one of three highly ambiguoustypes of input (by executing the appropriate primitive): \front is blocked or not", \left �eld isfree or not", \right �eld is free or not" (compare list of primitives). Some sort of memory isrequired to disambiguate apparently equal situations encountered on the way to the goal. Q-learning, for instance, is not guaranteed to solve POMDPs, e.g, (Watkins and Dayan, 1992). Ouragent, however, can use memory implicit in the state of the execution of its current program todisambiguate ambiguous situations.Measuring time. The computational cost of a single Levin search call in between twoAdapt calls is essentially the sum of the costs of all the programs it tests. To measure the costof a single program, we simply count the total number of forward steps and rotations duringprogram execution (this number is of the order of total computation time). Note that instructionsoften cost more than 1 step! To detect in�nite loops, LS also measures the time consumed byJump instructions (one time step per executed Jump). In a realistic application, however, the timeconsumed by a robot move would by far exceed the time consumed by a Jump instruction | weomit this (negligible) cost in the experimental results.Comparison. We compare LS to three variants of Q-learning (Watkins and Dayan, 1992)and random search. Random search repeatedly and randomly selects and executes one of theinstructions (1-8) until the goal is hit (like with Levin search, the agent is reset to its startposition whenever it hits the wall). Since random search (unlike LS) does not have a time limitfor testing, it may not use the jump { this is to prevent it from wandering into in�nite loops.The �rst Q-variant uses the same 8 instructions, but has the advantage that it can distinguishall possible states (952 possible inputs | but this actually makes the task much easier, becauseit is no POMDP any more). The �rst Q-variant was just tested to see how much more di�cultthe problem becomes in the POMDP setting. The second Q-variant can only observe whether thefour surrounding �elds are blocked or not (16 possible inputs), and the third Q-variant receives asinput a unique representation of the �ve most recent executed instructions (37449 possible inputs| this requires a gigantic Q-table!). Actually, after a few initial experiments with the secondQ-variant, we noticed that it could not use its input for preventing collisions (the agent alwayswalks for a while and then rotates | in front of a wall, every instruction will cause a collision).To improve the second Q-variant's performance, we appropriately altered the instructions: eachinstruction consists of one of the 3 types of rotations followed by one of the 3 types of forwardwalks (thus the total number of instructions is 9 | for the same reason as with random search, thejump instruction cannot be used). The parameters of the Q-learning variants were �rst coarselyoptimized on a number of smaller mazes which they were able to solve. We set c = 0:005, whichmeans that in the �rst phase (Phase = 1 in the LS procedure), a program with probability 1 mayexecute up to 200 steps before being stopped. We set MAXR = 6.Typical result. In the easy, totally observable case, Q-learning took on average 694,933steps (10 simulations were conducted) to solve the maze in Figure 1. However, as expected, inthe di�cult, partially observable cases, neither the two Q-learning variants nor random searchwere ever able to solve the maze within 1,000,000,000 steps (5 simulations were conducted). Incontrast, LS was indeed able to solve the POMDP: LS required 97,395,311 steps to �nd a programq computing a 127-step shortest path to the goal in Figure 1. LS' low-complexity solution qinvolves two nested loops:1) REPEAT step forward UNTIL left field is free52) Jump (1 , 3)93) REPEAT step forward UNTIL left field is free, rotate left34) Jump (1 , 5)9 9



We have DP (q) = 19 19 14 16 19 19 14 16 = 2:65 � 10�7.Similar results were obtained with many other mazes having non-trivial solutions with lowalgorithmic complexity. Such experiments illustrate that smart search through program space canbe bene�cial in cases where the task appears complex but actually has low-complexity solutions.Since LS has a principled way of dealing with non-halting programs and time-limits (unlike, e.g.,\Genetic Programming"(GP)), LS may also be of interest for researchers working in GP and related�elds | among the �rst papers on using GP-like algorithms to evolve assembler-like computerprograms are (Cramer, 1985; Dickmanns et al., 1987). See also (Koza, 1992) for later work.ALS: single tasks versus multiple tasks. If we use the adaptive LS extension (ALS) fora single task as the one above (by repeatedly applying LS to the same problem and changing theunderlying probability distribution in between successive calls according to section 4.2), then theprobability matrix rapidly converges such that late LS calls �nd the solution almost immediately.This is not very interesting, however | once the solution to a single problem is found (and there areno additional problems), there is no point in investing additional e�orts into probability updates(probability shifts). ALS is more interesting in cases where there are multiple tasks, and wherethe solution to one task conveys some but not all information helpful for solving additional tasks(inductive transfer). This is what the next section is about.4.5 Experiment 2: Incremental Learning / Inductive Transfer
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Figure 2: A 23 � 23 labyrinth. The arrow indicates the agent's initial position and direction.Numbers indicate goal positions. The higher the number, the more di�cult the goal. The agent'stask is to �nd all goal positions in a given \goalset". Goalsets change over time.This section will show that ALS can use experience to signi�cantly reduce average search timeconsumed by successive LS calls in cases where there are more and more complex tasks to solve(inductive transfer), and that ALS can be further improved by plugging it into MRL.Task. Figure 2 shows a 23� 23 maze and 7 di�erent goal positions marked 1,2,...,7. With agiven goal, the task is to reach it from the start state. Each goal is further away from start thangoals with lower numbers. We create 4 di�erent \goalsets" G1, G2, G3, G4. Gi contains goals 1,2, ..., 3 + i. One simulation consists of 40 \epochs" E1, E2, ... E40. During epochs E10(i�1)+1 toE10i, all goals in Gi (i = 1; 2; 3; 4) have to be found in order of their distance to the start. During10



Algorithm METHOD SET 1 SET 2 SET 3 SET 4LS last goal 4.3 1,014 9,505 17,295LS 8.7 1,024 10,530 27,820ALS 1 12.9 382 553 650ALS + MRL 1 12.2 237 331 405ALS 2 13.0 487 192 289ALS + MRL 2 11.5 345 85 230Table 1: For METHODs 1 and 2, we list the number of steps (in thousands) required by LS, ALS,MRL+ALS to �nd all goals in a speci�c goalset during the goalset's �rst epoch (for optimal learningrates). The probability matrices are adapted each time a goal is found. The �rst LS row refersonly to the most di�cult goals in each goalset (those with maximal numbers). ALS outperformsLS on all goalsets but the �rst, and MRL+ALS achieves additional speed-ups. MRL+ALS workswell for all learning rates, ALS by itself does not. Also, all our incremental learning proceduresdramatically outperform LS by itself.each epoch, we update the probability matrices P , �P and P̂ whenever a goal is found. For eachepoch we store the total number of steps required to �nd all goals in the corresponding goalset.We compare two variants of incremental learning, METHOD 1 and METHOD 2:METHOD 1 | inter-goalset resets. Whenever the goalset changes (at epochs E11, E21,E31), we uniformly initialize probability matrices P , �P and P̂ . Inductive transfer can occur onlywithin goalsets. We compare METHOD 1 to simulations in which only the most di�cult task ofeach epoch has to be solved.METHOD 2 | no inter-goalset resets. We don't reset P , �P and P̂ in case of goalsetchanges. We have both intra-goalset and inter-goalset inductive transfer. We compare METHOD 2to METHOD 1, to measure bene�ts of inter-goalset transfer for solving goalsets with an additional,more di�cult goal.Comparison. We compare LS by itself, ALS by itself, and MRL+ALS, for both METHODs1 and 2.LS results. Using c = 0:005 and MAXR = 15, LS needed 17:3 � 106 time steps to �nd goal7 (without any kind of incremental learning or inductive transfer).Learning rate in
uence. To �nd optimal learning rates minimizing the total number ofsteps during simulations of ALS and MRL+ALS, we tried all learning rates 
 in f0.01, 0.02,...,0.95g. We found that MRL+ALS is fairly learning rate independent: it solves all tasks with alllearning rates in acceptable time (108 time steps), whereas for ALS without MRL (and METHOD2) only small learning rates are feasible { large learning rate subspaces do not work for manygoals. Thus, the �rst type of MRL-generated speed-up lies in the lower expected search time forappropriate learning rates.With METHOD 1, ALS performs best with a �xed learning rate 
 = 0:32, and MRL+ALSperforms best with 
 = 0:45, with additional uniform noise in [�0:05; 0:05] (noise tends to improveMRL+ALS's performance a little bit, but worsens ALS' performance). With METHOD 2, ALSperforms best with 
 = 0:05, and MRL+ALS performs best with 
 = 0:24 and added noise in[�0:05; 0:05].For METHODs 1 and 2 and all goalsets Gi (i = 1; 2; 3; 4), Table 1 lists the numbers of stepsrequired by LS, ALS, MRL+ALS to �nd all of Gi's goals during epoch E(i�1)�10+1, in which theagent encounters the goal positions in the goalset for the �rst time.ALS versus LS. ALS performs much better than LS on goalsets G2; G3; G4. ALS does nothelp to to improve performance on G1's goalset, though (epoch E1), because there are many easilydiscoverable programs solving the �rst few goals.MRL+ALS versus ALS. MRL+ALS always outperforms ALS by itself. For optimal learningrates, the speed-up factor for METHOD 1 ranges from 6 % to 67 %. The speed-up factor forMETHOD 2 ranges from 13 % to 26 %. Recall, however, that there are many learning rates whereALS by itself completely fails, while MRL+ALS does not. This makes MRL+ALS much more11



Algorithm METHOD SET 1 SET 2 SET 3 SET 4ALS 2 675 9,442 10,220 9,321ALS + MRL 2 442 1,431 3,321 4,728ALS 1 379 1,125 2,050 3,356ALS + MRL 1 379 1,125 2,050 2,673Table 2: For all goalsets, we list numbers of steps consumed by ALS and MRL+ALS to �nd allgoals of goalset Gi during the �nal epoch E10i.Algorithm METHOD TOTAL TOTAL FIRST TOTAL LASTLS 39,385ALS 2 1,820 980 29.7ALS 1 1,670 1,600 6.91ALS + MRL 1 1,050 984 6.23ALS + MRL 2 873 671 9.92Table 3: The total number of steps (in thousands) consumed by LS, ALS, MRL+ALS (1) duringone entire simulation, (2) during all the �rst epochs of all goalsets, (3) during all the �nal epochsof all goalsets.robust.For optimal learning rates, the biggest speed-up occurs for G3. Here MRL decreases searchcosts dramatically, because after having found goal 5, it undoes apparently harmful bias shiftsbefore searching for goal 6.METHOD 1 versus METHOD 2. METHOD 2 works much better than METHOD 1 on G3and G4, but not as well on G2 (for G1 both methods are equal | di�erences in performance can beexplained by di�erent learning rates which were optimized for the total task). Why? Optimizinga policy for goals 1|4 will not necessarily help to speed up discovery of goal 5, but instead causea harmful bias shift by overtraining the probability matrices. METHOD 1, however, can extractenough useful knowledge from the �rst 4 goals to decrease search costs for goal 5.More MRL bene�ts. Table 2 lists the number of steps consumed during the �nal epochE10i of each goalset Gi (the results of LS by itself are identical to those in table 1). Using MRLtypically improves the �nal result, and never worsens it. Speed-up factors range from 0 to 560 %.For all goalsets, Table 3 lists the total number of steps consumed during all epochs of onesimulation, the total number of all steps for those epochs (E1, E11, E21, E31) in which new goalsetsare introduced, and the total number of steps required for the �nal epochs (E10, E20, E30, E40).MRL always improves the results. For the total number of steps | which is an almost linearfunction of the time consumed during the simulation | the MRL-generated speed-up is 60% forMETHOD 1 and 108 % for METHOD 2 (the \fully incremental" method). Although METHOD2 speeds up performance during each goalset's �rst epoch (ignoring the costs that occurred beforeintroduction of this goalset), �nal results are better without inter-goalset learning. This is not sosurprising: by using policies optimized for previous goalsets, we generate bias shifts for speedingup discovery of new, acceptable solutions, without necessarily making optimal solutions of futuretasks more likely (due to \evolutionary ballast" from previous solutions).LS by itself needs 27:8 � 106 steps for �nding all goals in G4. Recall that 17:3 � 106 of themare spent for �nding only goal 7. Using incremental learning, however, we obtain large speed-upfactors. METHOD 1 with MRL+ALS improves performance by a factor in excess of 40 (see resultsof MRL+ALS on the �rst epoch of G4). Figure 3(A) plots performance against epoch numbers.Each time the goalset changes, initial search costs are large (re
ected by sharp peaks). Soon,however, both methods incorporate experience into the policy. We see that MRL keeps initialsearch costs signi�cantly lower. 12
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Figure 3: (A) Average number of steps per epoch required to �nd all of the current goalset's goals,plotted against epoch numbers. Peaks re
ect goalset changes. (B) Average probability of programscomputing solutions (before solutions are actually found).The safety belt e�ect. Figure 3(B) plots epoch numbers against average probability ofprograms computing solutions. With METHOD 1, MRL+ALS tends to keep the probabilitieslower than ALS by itself: high program probabilities are not always bene�cial. With METHOD2, MRL undoes many policy modi�cations when goalsets change, thus keeping the policy 
exibleand reducing initial search costs.E�ectively, MRL is controlling the prior on the search space such that overall average searchtime is reduced, given a particular task sequence. For METHOD 1, after E40 the number ofstill valid modi�cations of policy components (probability distributions) is 377 for ALS, but only61 for MRL+ALS (therefore, 61 is MRL+ALS's total �nal stack size). For METHOD 2, thecorresponding numbers are 996 and 63. We see that MRL keeps only about 16% respectively 6%of all modi�cations! The remaining modi�cations are deemed unworthy, because they were notobserved to be followed by life-time reinforcement speed-ups. Clearly, MRL prevents ALS fromoverdoing its policy modi�cations (\safety belt e�ect"). This is MRL's simple, basic purpose:undo certain learning algorithms' policy changes and bias shifts once they start looking harmfulin terms of long-term reinforcement/time ratios.It should be clear that the MRL+ALS implementation is just one of many possible MRLapplications | we may plug many alternative learning algorithms into MRL.5 Implementation 2: Incremental Self-Improvement (IS)The previous section used a single, complex, powerful, primitive learning action (adaptive LevinSearch). The current section exploits the fact that it is also possible to use many, much simpleractions that can be combined to form more complex learning strategies, or metalearning strategies(Schmidhuber, 1994, 1996; Zhao and Schmidhuber, 1996).Overview. We will use a simple, assembler-like programming language which allows forwriting many kinds of (learning) algorithms. E�ectively, we embed the way the system modi�esits policy and triggers backtracking within the \self-referential" policy itself. MRL is used to keeponly those \self-modi�cations" followed by reinforcement speed-ups, in particular those leading to\better" future self-modi�cations, recursively. We call this \incremental self-improvement" (IS).13



Outline of section. Subsection 5.1 will describe how the policy is represented as a set ofvariable probability distributions on a set of assembler-like instructions, how the policy builds thebasis for generating and executing a lifelong instruction sequence, how the system can modifyitself executing special \self-referential instructions", and how MRL keeps only the \good" policymodi�cations. Subsection 5.2 will describe experiments. In the �rst experiment, MRL is applied toa sequence of more and more di�cult function approximation tasks. The second task is our mostchallenging one: MRL solves a complex, huge state space POMDP which involves two interacting,changing, learning agents.5.1 Policy and Program ExecutionStorage / Instructions. The learner makes use of an assembler-like programming languagesimilar to but not quite as general as the one in (Schmidhuber, 1995). It has n addressablework cells with addresses ranging from 0 to n � 1. The variable, real-valued contents of thework cell with address k are denoted ck. Processes in the external environment occasionallywrite inputs into certain work cells. There also are m addressable program cells with addressesranging from 0 to m� 1. The variable, integer-valued contents of the program cell with addressi are denoted di. An internal variable Instruction Pointer (IP) with range f0; : : : ;m� 1g alwayspoints to one of the program cells (initially to the �rst one). There also is a �xed set I of nopsinteger values f0; : : : ; nops � 1g, which sometimes represent instructions, and sometimes representarguments, depending on the position of IP. IP and work cells together represent the system'sinternal state I (see section 2). For each value j in I , there is an assembler-like instruction bjwith nj integer-valued parameters. See (Schmidhuber, 1996) for a related, illustrative �gure. Inthe following (incomplete) list of instructions to be used in experiment 3, the symbols w1; w2; w3stand for parameters that may take on integer values between 0 and n�1 (later we will encounteradditional instructions):b0: Add(w1; w2; w3) : cw3  cw1 + cw2 (add the contents of work cell w1 and work cell w2, writethe result into work cell w3 ).b1: Sub(w1; w2; w3) : cw3  cw1 � cw2 .b2: Mul(w1; w2; w3) : cw3  cw1 � cw2 .b3: Mov(w1; w2) : cw2  cw1 .b4: JumpHome: IP 0 (jump back to 1st program cell).Later (in the experimental subsections) we will encounter additional primitives allowing thelearner (1) to move around in an environment, and (2) to perceive certain objects within a limitedrange.Instruction probabilities / Current policy. For each program cell i there is a variableprobability distribution Pi on I . For every possible j 2 I , (0 � j � nops � 1), Pij speci�es for celli the conditional probability that, when pointed to by IP, its contents will be set to j. The set ofall current Pij -values de�nes a probability matrix P with columns Pi (0 � i � m� 1). P is calledthe learner's current policy. In the beginning of the learner's life, all Pij are equal (maximumentropy initialization). If IP = i, the contents of i, namely di, will be interpreted as instructionbdi (such as Add or Mul), and the contents of cells that immediately follow i will be interpreted asbdi 's arguments, to be selected according to the corresponding P -values. For example, the integersequence 1 6 8 7 will be interpreted as Sub(6, 8, 7) | subtract the contents of cell 6 from thecontents of cell 8 and put the result into cell 7.\Self-reference". To obtain a learner that can explicitly modify its own policy (by runningits own learning strategies), we introduce a special \self-referential" instruction IncProb not yetmentioned above: 14



b5: IncProb(w1; w2; w3) : Increase Pij by 
 percent, where i = w1 � nops + w2 and j = w3(this construction allows for addressing a broad range of program cells), and renormalizePi (but prevent P-values from falling below a minimal value �, to avoid near-determinism).Parametersw1; w2; w3 may take on integer values between 0 and nops�1. In the experiments,we will use 
 = 15; � = 0:001.In conjunction with other primitives, IncProb may be used in instruction sequences that computedirected policy modi�cations. Calls of IncProb represent the only way of modifying the policy.Self-delimiting self-modi�cation sequences (SMSs). SMSs are subsequences of the life-long action sequence. The �rst IncProb after the learner's \birth" or after each MRL backtrackingprocess (see section 2) begins an SMS. The SMS ends by executing another yet unmentioned \self-referential" primitive:b6: EndSelfMod(w1). Temporarily disable IncProb, by preventing future IncProb instructionsfrom causing any probability modi�cations, until w1 (1 � w1 � nops�1) additional non-zeroreinforcement signals have been received | this will satisfy the Evaluation Criterion inthe basic MRL cycle (section 2).Some of the (initially highly random) action subsequences executed during system life willindeed be SMSs. Depending on the nature of the other instructions, SMSs can compute almostarbitrary sequences of modi�cations of Pij values. This may result in almost arbitrary modi�-cations of context-dependent probabilities of future action subsequences, including future SMSs.Policy changes can be generated only by SMSs. SMSs build the basis for \metalearning": SMSsare generated according to the policy, and may change the policy. Hence, the policy can essentiallychange itself, and also the way it changes itself, etc.SMSs can in
uence the timing of backtracking processes, because they can in
uence the timesat which the Evaluation Criterion will be met. Thus SMSs can temporarily protect the learnerfrom performance evaluations and policy restaurations.Plugging SMSs into MRL. We replace step 1 in the basic MRL cycle (see section 2) by thefollowing procedure:1. REPEAT the following UNTIL the Evaluation Criterion is satis�ed or the Booleanvariable Modification-Criterion (initially FALSE) is TRUE:1.1. Randomly generate an integer j 2 I according to matrix column PIP (the distributionof the program cell pointed to by IP , initially 0 at system birth). Set program cellcontents dIP := j. Translate j into the corresponding current instruction bj . Look upthe number nj of cells required to store bj 's parameters. If IP> m�nj � 2, reset IP to0, go to step 1. Otherwise generate instruction arguments for the nj cells immediatelyfollowing IP according to their probability distributions PIP+1, ..., PIP+nj , and set IPto IP + nj + 1.1.2. IF bj is a learning instruction and not currently disabled by a previous EndSelfMod in-struction, THEN set Modification-Criterion = TRUE, exit the current REPEATloop, and go to step 2 of the basic MRL cycle.1.3. Execute bj . IF bj is EndSelfMod and the topmost entry in the stack S is not a \tag",THEN set the integer variable nNZR equal to the �rst parameter of bj plus one (thiswill in
uence the time at which Evaluation Criterion will be reached).1.4. IF there is a new environmental input, THEN let it modify I.1.5. IF nNZR > 0 and non-zero reinforcement occurred during the current cycle, THENdecrement nNZR. IF nNZR is zero, THEN set Evaluation Criterion = TRUE.We also change step 3 in the basic MRL cycle as follows:3. IF Modification-Criterion = TRUE, THEN push copies of those Poli to be modi�edby bj (from step 1.2) onto S, and execute bj .15



5.2 Experiment 3: Function Approximation / Inductive TransferOur �rst experiment does not yet involve multiple, interacting learners that are part of eachother's changing environment. It just demonstrates that IS can successfully learn in a changingenvironment where the tasks to be solved become more and more di�cult over time (inductivetransfer). The experiment serves as an introduction to the next experiment (section 5.3), wheretask changes won't be easy to identify due to multiple, co-evolving learners with partly con
ictinggoals.Task sequence. Our system is exposed to a sequence of more and more complex functionapproximation problems. The functions to be learned are f1(x; y) = x+ y; f2(x; y; z) = x+ y� z;f3(x; y; z) = (x + y � z)2; f4(x; y; z) = (x + y � z)4; f5(x; y; z) = (x + y � z)8.Trials. The system's single life can be separated into n successive trials A1, A2, ..., An (butthe learner has no a priori concept of a trial). The i-th trial lasts from discrete time step ti + 1until discrete time step ti+1, where t1 = 0 (system birth) and tn+1 = T (system death). In agiven trial Ai we �rst select a function gi 2 ff1; : : : ; f5g. As the trial number increases, so doesthe probability of selecting a more complex function. In early trials the focus is on f1. In latetrials the focus is on f5. In between there is a gradual shift in task di�culty: using a functionpointer ptr (initially 1) and an integer counter c (initially 100), in trial Ai we select gi := fptrwith probability c100 , and gi := fptr+1 with probability 1� c100 . If the reinforcement accelerationduring the most recent two trials exceeds a certain threshold (0.05), then c is decreased by 1. Ifc becomes 0 then fptr is increased by 1, and c is reset to 100. This is repeated until fptr := f5.From then on, f5 is always selected.Once gi is selected, randomly generated real values x, y and z are put into work cells 0, 1, 2,respectively. The contents of an arbitrarily chosen work cell (we always use cell 6) are interpretedas the system's response. If c6 ful�lls the condition jgi(x; y; z)� c6j < 0:0001, then the trial endsand the current reward becomes 1:0; otherwise the current reward is 0.0.Instructions. Instruction sequences can be composed from the following primitive instruc-tions (compare section 5.1): Add(w1; w2; w3), Sub(w1; w2; w3), Mul(w1; w2; w3), Mov(w1; w2),IncProb(w1; w2; w3), EndSelfMod(w1), JumpHome(). Each instruction occupies 4 successive pro-gram cells (some of them unused if the instruction has less than 3 parameters). We use m =50; n = 7.Evaluation Condition. Backtracking starts after each 5th consecutive non-zero reinforce-ment signal after the end of each SMS, i.e., we set nNZR = 5.Huge search space. Given the primitives above, random search would require about 1017trials on average to �nd a solution for f5 | the search space is huge. The gradual shift in taskcomplexity, however, helps IS to learn f5 much faster, as will be seen below.Results. After about 9:4�108 instruction cycles (ca. 108 trials), the system is able to computef5 almost perfectly, given arbitrary real-valued inputs. The corresponding speed-up factor over(infeasible) random or exhaustive search is about 109 | compare paragraph \Huge search space"above. The solution (see Figure 4) involves 21 strongly modi�ed probability distributions of thepolicy (after learning, the correct instructions had extreme probability values). At the end, themost probable code is given by the following integer sequence:1 2 1 6 1 0 6 6 2 6 6 6 2 6 6 6 2 6 6 6 4 � � �...The corresponding \program" and the (very high) probabilities of its instructions and param-eters are shown in Table 4.Evolution of self-modi�cation frequencies. During its life the system generates a lot ofself-modi�cations to compute the strongly modi�ed policy. This includes changes of the proba-bilities of self-modi�cations. It is quite interesting (and also quite di�cult) to �nd out to whichextent the system uses self-modifying instructions to learn how to use self-modifying instructions.Figure 5 gives a vague idea of what's going on by showing a typical plot of the frequency of IncProbinstructions during system life (sampled at intervals of 106 MRL cycles). Soon after its birth, thesystem found it useful to dramatically increase the frequency of IncProb; near its death (whenthere was nothing more to learn) it signi�cantly reduced this frequency.16
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Figure 4: The �nal state of the probability matrix for the function learning problem. Grey scalesindicate the magnitude of probabilities of instructions and parameters. The matrix was computedby self-modi�cation sequences generated according to the matrix itself (initially, all probabilitydistributions were maximum entropy distributions).Probabilities Instruction Parameters Semantics1. (0.994, 0.975, 0.991, 0.994) Sub ( 2, 1, 6) (z � y) =) c62. (0.994, 0.981, 0.994, 0.994) Sub ( 0, 6, 6) (x� (z � y)) =) c63. (0.994, 0.994, 0.994, 0.994) Mul ( 6, 6, 6) (x + y � z)2 =) c64. (0.994, 0.994, 0.994, 0.994) Mul ( 6, 6, 6) (x + y � z)4 =) c65. (0.869, 0.976, 0.994, 0.994) Mul ( 6, 6, 6) (x + y � z)8 =) c66. (0.848, |, |, | ) JumpHome ({, {, {,) 0 =) IPTable 4: The �nal, most probable \program" and the corresponding probabilities.Stack evolution. The temporary ups and downs of the stack re
ect that as the tasks change,the system selectively keeps still useful old modi�cations (corresponding to information conveyedby previous tasks that is still valuable for solving the current task), but deletes modi�cationsthat are too speci�c for previous tasks. In the end, there were only about 200 stack entriescorresponding to only 200 valid probability modi�cations { this is a small number compared tothe about 5 � 105 self-modi�cations executed during system life.5.3 Experiment 4: A Hard POMDPIn the previous experiment, the learner's environment changed because of externally induced taskchanges. In the following experiment, it will change in a less predictable way because of another,changing learner. There won't be an obvious way of identifying task changes.Environment. Figure 5.3 shows a partially observable environment (POE) with 600 � 800�elds (or pixels). The POE has many more �elds and obstacles than POEs used by previousauthors working on POMDPs. For instance, McCallum's maze has only 23 free �elds (McCallum,1995), and Littman et al.'s biggest problem (Littman, 1994) involves less than 1000 states. Thereare two IS-based agents A and B. Each has circular shape and a diameter of 30 pixel widths. At agiven time, each is rotated in one of eight di�erent directions. Total state space size exceeds 1013by far, not even taking into account internal states (IP positions) of the agents.There are also two keys, key A (only useful for agent A) and key B (only for agent B), and twolocked doors, door A and door B, the only entries to room A and room B, respectively. Door A (B)can be opened only with key A (B). At the beginning of each \trial", both agents are randomlyrotated and placed near the northwest corner, all doors are closed, key A is placed in the southeastcorner, and key B is placed in room A (see Figure 5.3).17
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ects that the system soon uses self-modifying instructionsto increase the frequency of self-modifying instructions. Near system death the system learns thatthere is not much to learn any more, and decreases this frequency.Task. The goal of each agent is to reach the goal in room B. This requires cooperation: (1)agent A must �rst �nd and take key A (by touching it); (2) then agent A must go to door Aand open it (by touching it) for agent B; (3) then agent B must enter through door A, �nd andtake key B; (4) then agent B must go to door B to open it (to free the way to the goal); (5) thenat least one of the agents must reach the goal position. Only then a new trial starts (there isno maximal trial length, and the agents have no a priori concept of a trial). Reinforcement isgenerated only if one of the agents touches the goal. This agent's reinforcement is 5.0; the otheragent's reinforcement is 3.0 (for its cooperation). Note that asymmetric reinforcement introducescompetition.Instruction set. Agents A and B are identical in design. Each is equipped with limited \ac-tive" sight: by executing certain instructions, it can sense obstacles, its own key, the correspondingdoor, or the goal, within up to 10 \steps" in front of it. The step size is 5 pixel widths. Limitedobstacle perception makes the problem a di�cult POMDP. The agent can also move forward, turnaround, turn relative to its key or its door or the goal. Directions are represented as integers inf0; : : : ; 7g: 0 for north, 1 for northeast, 2 for east,... etc.. Each agent has got m = 52 programcells, and nops = 13 instructions (including JumpHome/IncProb/EndSelfMod instructions fromsection 5.1):b3: Move(w1) | If 0 � w1 � 9, then move w1 � 3 steps forward (if w1 � 3) or �w1 stepsbackward (if w1 < 3) in the current direction.b4: Turn(w1) | if 0 � w1 � 7 then change current direction Dc to (Dc + w1 + 4)mod8.b5: TurnRelativeToKey(w1) | If 0 � w1 � 7 then �rst turn to the direction that best matchesthe line connecting the centers of agent and its key, then Turn(w1).b6: TurnRelativeToDoor(w1) | (analogous to b5).b7: TurnRelativeToGoal(w1) | (analogous to b5).b8: LookForKey(w1) | If 0 � w1 � 9, then if the agent's key is not within w1 + 1 steps in frontof the agent then increase IP by 4 (this is a limited kind of conditional jump). If IP > m�1then set IP = 0.b9: LookForDoor(w1) | (analogous to b8).b10: LookForObstacle(w1) | (analogous to b8).18



b11: LookForGoal(w1) | (analogous to b8).b12: CondJumpBack(w1) | If w1 = 0 and the agent does not hold its key, or if w1 = 1 andthe corresponding door is closed, or if w1 = 2 and the agent does not touch the goal, thenreset agent's IP to the instruction next to last executed CondJumpBack (if there is no suchinstruction, reset IP = 0).Results without learning. If we switch o� the system's self-modifying capabilities (IncProbhas no e�ect), then the average reinforcement intake speed is about 1:2 � 10�5 per instructioncycle and agent. This corresponds to about 3:3� 105 time steps per trial (random behavior).Results with Q-Learning. Q-learning assumes that the environment is Markovian. Oth-erwise it is not guaranteed to work. Still, some authors occasionally apply Q-learning variantsto non-Markovian tasks, sometimes even successfully. To test whether our problem is indeed toodi�cult for Q-learning, we tried to solve it using various TD(�) Q-variants. We �rst tried prim-itive actions and perceptions similar to IS's. There are 33 possible Q-actions. The �rst 32 are\turn to one of the 8 di�erent directions relative to the agent's key/door/current direction/goal,and move 3 steps forward". The 33rd action is \turn 45 degrees to the right". These actions aremore powerful than those used by IS (most combine two actions that are similar to IS's). Thereare 2 � 5 = 10 possible, di�erent inputs uniquely telling the agent whether it has/hasn't got itskey, and whether the closest object (obstacle or key or door or goal) part of which is either 10or 20 or 30 or 40 or 50 pixels in front of the agent is obstacle/key/door/goal/non-existent. All ofthis corresponds to 10 rows and 33 columns in the Q-tables. Q-learning's parameters are � = 0:9,
 = 1:0, and learning rate 0:001 (these worked well for smaller problems Q-learning was able tosolve).This Q-learning variant completely failed to achieve signi�cant performance improvement onour complex task, however. So we tried to make the problem easier (less non-Markovian) byextending the agent's sensing capabilities. Now, each possible input tells the agent uniquelywhether it has/hasn't got the key, and whether the closest object (obstacle or key or door or goal)part of which is either 10 or 20 or 30 or 40 or 50 pixels away in front of/45 degrees to the right of/45degrees to the left of the agent is obstacle/key/door/goal/non-existent, and if existing, whether itis 10/20/30/40/50 pixels away. All this can be e�ciently coded by 21�21�21�2 = 18522 di�erentinputs corresponding to 18522 di�erent rows in the Q-tables (with a total of 611226 entries). Thisworked a bit better than the simpler Q-variant. Still, we were not able to make Q-learning achievevery signi�cant performance improvement. The experimental results are shown in Figure 5.3.Results with IS. The system dies after 109 basic cycles (ca. 130; 000 trials corresponding toonly 130; 000 reinforcement signals). By then, average reinforcement intake per agent is 7:5�10�4per basic cycle (mean of 4 simulations). This is about 62 times faster than the initial speed (theone of random behavior), and is roughly 14 to 13 of the optimal speed (due to the POMDP settingand the random agent initializations at trial start, however, it is very hard to calculate optimalaverage speed). Results are shown in Figures 5.3 and 5.3.Q-learning as an instruction for IS. The fact that Q-learning is not designed for POMDPsdoes not mean that Q-learning cannot be plugged into IS as a useful instruction. To examine thisissue, we add Q-learning to the instruction list to be used by IS:b13: Q-learning(w1) | with probability w1200�nops , keep executing actions according to the Q-table untilthere is non-zero reinforcement, and update the Q-table according to standard Q-learning rules(Watkins and Dayan, 1992). Otherwise, execute only one single action according to the currentQ-table.Interestingly, this combination leads to even slightly better results near system death (see Figure5.3). Essentially, the system learns when to trust the Q-table.Stack size. Final stack size per agent was never higher than 250, corresponding to onlyabout 250 still valid policy modi�cations. Space limitations prevent us from describing manyinteresting details such as the �nal, complex shape of the agent's probability matrices, and howthe agents use memories (embodied by their IPs) to disambiguate ambiguous inputs, and howthey use self-modi�cations to adapt the frequency of self-modi�cations.19



6 ConclusionDuring each backtracking process, MRL implicitly evaluates each still valid policy modi�cationas to whether it belongs to a block of modi�cations whose beginning has been followed by long-term performance improvement. If there is empirical evidence to the contrary, then backtrackinginvalidates policy modi�cations until the history of valid modi�cations is again a success story (inthe worst case an empty one | this will be re
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Figure 6: Snapshot of traces of interacting, learning agents A and B in a partially observableenvironment with huge state space. Initially, both agents are randomly rotated and placed near thenorthwest corner. Agent A �rst moves towards the southeast corner to grab its key, then movesnorth (dotted trace) to open door A (grey). Simultaneously, agent B moves east to door A and waitsfor agent A to open it. Then B moves in, grabs key B, turns, and heads towards door B to openit, while agent A also heads southwest in direction of the goal (dotted trace). This time, however,agent B is the one who touches the goal �rst, because A fails to quickly circumvent the obstacle inthe center. All this complex, partly stochastic behavior is learned solely by \self-referential" policymodi�cations (generated according to the \self-referential" policy itself via IncProb calls), althoughstrongly delayed reinforcement is provided only if one of the agents touches the goal.
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Figure 7: Performance of incremental self-improvement (IS) compared to the one of the best Q-learning variant (reinforcement intake sampled at intervals of 106 instruction cycles, mean of4 simulations). Q-learning hardly improves, while IS makes rather quick, substantial progress.Interestingly, adding Q-learning to IS's instruction set again tends to improve late-life performancea bit (trace of crosses) | essentially, the system learns when to trust/ignore the Q-table.23


