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Abstract

Memetic algorithms combine genetic algorithms
with local search; each time a new individual
is generated by the genetic algorithm, a sim-
ple local search procedure brings it (closer) to
a local maximum. Although memetic algo-
rithms have been shown to work well for par-
ticular combinatorial optimization problems,
they may sometimes suffer from early conver-
gence to a local maximum. This paper de-
scribes (steady-state) memory-based memetic
algorithms, which search more efficiently by in-
creasing the diversity of the population. Each
time a new individual is created, it is brought to
its local maximum using local search, and then
the algorithm checks whether the individual has
already been found before. If that is the case,
the lowest possible fitness value is assigned,
so that the individual will be replaced during
the next iteration. The experiments compare
memory-based memetic algorithms to memetic
algorithms, genetic algorithms and multiple-
restart local search on deceptive problems. The
results indicate that the memory-based memetic
algorithm finds the global optimum much more
often than the normal memetic algorithm, and
performs about the same as genetic algorithms
on the chosen test problems which are very dif-
ficult for conventional local search algorithms.

1 Introduction

Memetic algorithms (Radcliffe and Surry, 1994;
Merz and Freisleben, 1997) combine genetic
algorithms (GAs) (Holland, 1975; Goldberg,
1989) with local search (LS). Often local search
is applied to every individual until it cannot
be improved anymore by the local search op-
erators, although some researchers have shown
benefits on particular problems by only par-
tially updating each individual or only updat-

ing some individuals (Hart, 1994). Local search
can be very efficient for solving particular (sim-
ple) problems, but usually suffers from quickly
becoming trapped in local maxima. Multiple
restart local search algorithms such as GRASP
(Feo and Resende, 1995) deal with this prob-
lem by iteratively constructing random starting
points after which local search brings the in-
dividuals to their local maxima. However, for
large state spaces with many local maxima, the
use of random starting points may be far from
efficient. Therefore memetic algorithms evolve
a population of individuals in which genetic op-
erators are used to create new individuals which
are all brought (closer) to their local maximum
using local search. This may provide us with
much better candidate starting points for local
search to improve.

Comparisons between memetic algo-
rithms and other algorithms. Memetic al-
gorithms have already been compared to GAs
on a number of combinatorial optimization
problems such as the traveling salesman prob-
lem (TSP) (Radcliffe and Surry, 1994) and ex-
perimental results indicated that the memetic
algorithms found much better solutions than
standard genetic algorithms. Memetic algo-
rithms have also been compared to the Ant
Colony System (Dorigo et al., 1996), (Dorigo
and Gambardella, 1997) and to Tabu Search
(Glover and Laguna, 1997) and results indicated
that memetic algorithms outperformed both of
them on the Quadratic Assignment Problem
(Merz and Freisleben, 1999). Thus, memetic al-
gorithms provide us with a powerful method for
solving complex problems, and more research on
these promising algorithms should be done to
find their advantages and disadvantages com-
pared to other algorithms. For this reason, we
perform experiments with deceptive problems



containing many local maxima which makes
them difficult for local search and memetic al-
gorithms.

Memory-based memetic algorithms.
One of the problems of local search, as stated
above, is that they usually end up in local
maxima. By keeping a population of individu-
als, memetic algorithms tend to cope with that
problem, but it may happen that the popula-
tion converges quite fast to a single individual
which takes over the whole population. Al-
though in this case, the algorithm may of course
be restarted or additional random solutions may
be inserted in the population, we opt for an-
other approach. In our approach, we preserve
diversity by keeping all found (local maxima)
solutions in memory. When we generate a new
individual and bring it to its maximum using
local search, we check whether we already have
seen this solution, and it this is the case, we
assign a fitness of 0 (the worst possible fitness
value) to the individual. In this way, we do not
keep the same solution in the population a long
time.1 By using hash-tables, checking whether
we already have found an individual can be effi-
ciently implemented, since operations like stor-
ing an individual with hash-tables consumes as
much time as a mutation or crossover opera-
tor. Note that although we could use the com-
plete updated hash-table for representing the
population and for generating offspring, we keep
track of a separate limited population which is
evolved.

Steady state algorithms. We will use
steady state algorithms, in which at each time
step we produce one offspring, bring it to its lo-
cal maximum, check whether we already found
this solution, and if not we store it in mem-
ory, and we replace the worst individual in the
population by the newly found solution. In this
way, the population always contains the best
individuals found so far, and the population is
maximally diverse (i.e., it is not likely to con-
tain any duplicates). Using the crossover oper-
ator we hope to be able to fruitfully combine
individuals in the population to generate new
ones.

1It can happen that the same solution is stored twice,
but one of these will be replaced during the next time-
step.

Coping with large memory require-
ments. We only use the memory implemented
in the hash-table to assign a fitness of 0 to al-
ready found solutions, we never use the memory
to select parents for recombination. Note also
that by only storing local maxima, we strongly
reduce the size of the memory. Although for
very large problems involving many local max-
ima, the storage space will become very large, it
will grow less fast than the computational time
needed to generate them. Furthermore, since
we use steady-state algorithms, we do not have
to store individuals below the lowest fitness of
an individual in the population, thereby making
the hash-tables much smaller and more memory
efficient.

Outline of this paper. We will discuss
memetic algorithms in section 2. In section 3,
we describe memory-based memetic algorithms.
Experimental results comparing memetic algo-
rithms, memory-based memetic algorithms, ge-
netic algorithms, and local search on deceptive
problems are presented and discussed in section
4. Finally, section 5 concludes this paper.

2 Memetic Algorithms

Memetic algorithms combine genetic algorithms
with local search. Memetic algorithms are
inspired by memes (Dawkins, 1976), pieces
of mental ideas, like stories, ideas, and gos-
sip, which reproduce (propagate) themselves
through a population of meme carriers. Cor-
responding to the selfish gene idea (Dawkins,
1976) in this mechanism each meme uses the
host (the individual) to propagate itself further
through the population, and in this way com-
petes with different memes for the limited re-
sources (there is always limited memory and
time for knowing and telling all ideas and sto-
ries).

Memetic evolution. The difference be-
tween genes and memes is that the first are in-
spired by biological evolution and the second
by cultural evolution. Cultural evolution is dif-
ferent because Lamarckian learning is possible
in this model. That means that each transmit-
ted meme can be changed according to receiving
more information from the environment. This
makes it possible to locally optimize each dif-
ferent meme before it is transmitted to other
individuals. Although optimization of trans-



mitted memes before they are propagated fur-
ther seems an efficient way for knowledge prop-
agation or population-based optimization, the
question is how we can optimize a meme or in-
dividual. For this we can combine genetic al-
gorithms with different optimization methods.
The optimization technique we use in this pa-
per is a simple local hillclimber, but others have
also proposed different techniques such as Tabu
Search. Because we use a local hillclimber,
each individual is not truly optimized, but only
brought to its local maximum. If we would be
able to fully optimize the individual, we would
not need a genetic algorithm at all.

First-visit local hillclimbing. We use local
hillclimbing on each newly created individual.
This local hillclimber is a first-visit method; the
first change which improves the individual is
used. We use binary strings for the individ-
uals in our experiments and use the simplest
neighbourhood function as possible which con-
tains only individuals generated by a mutation
of a single bit. Of course, this is an impor-
tant choice, but we did not want to optimize
the neighbourhood function, since this would
require a-priori knowledge or a lot of testing
from which only the memetic algorithms could
profit and not the genetic algorithms to which
they are compared. Furthermore, the best used
neighbourhood size seems to be very dependent
on the specific chosen test-problems. The lo-
cal hillclimber starts with a random bit of an
individual and examines whether changing this
bit improves the fitness of the individual. Then
it goes to the next bit, etc. After it tried out
all bits of the individual, it checks whether it
has made at least one improvement, and if so it
continues to try to change bits and otherwise it
stops. Note that the local hillclimber may need
many evaluations to change a single individual.
Therefore, the use of local hillclimbing may not
always be very effective. However, for a prob-
lem such as one-max which favours individuals
having more 1’s in the bitstring, the local search
method will lead to an optimal result in a num-
ber of evaluations given by the length of the
individual, which is very fast indeed.

The algorithm. The algorithm is shown be-
low. First an initial population of individuals is
created. Then local hillclimbing is applied to all
individuals. After this, two parents are selected

for recombination and mutation is applied to
the new individual. Then local hillclimbing is
applied to the new individual and the worst in-
dividual is replaced by the new individual.

Memetic Algorithm
1) Make a population of random

individuals.
2) ∀ individuals i do:

3) Ind(i) = Local-Hillclimbing(Ind(i))
4) Parent1 = Select-Parent(Population)
5) Parent2 = Select-Parent(Population)
6) Offspr = Crossover(Parent1,Parent2)
7) Offspr = Mutate(Offspr)
8) Offspr = Local-Hillclimbing(Offspr)
9) Replace worst individual by Offspr
10) If termination criterion not met

goto 4.

3 Memory-based Memetic
Algorithms

Although memetic algorithms can be quite effi-
cient on their own, the whole population may
converge quite quickly to a (bad) local max-
imum. The reason is that the same build-
ing blocks can be quickly found in all indi-
viduals, and mutation to escape local maxima
may not be very useful in combination with
memetic algorithms, since the mutated parts
have to be brought to a local maximum each
time again. In our experiments on deceptive
problems we found that using mutation oper-
ators with memetic algorithms does not work
well, since it just costs of lot of evaluations and
harmful mutations are most likely. Therefore
we do not use mutation at all with our memetic
algorithms. To compensate for this, we use big
populations which are likely to contain the re-
quired genetic material. But without mutation,
the problem of early convergence is even big-
ger, and therefore we have to cope with lack of
diversity using another method.

Maximally diverse populations. In our
approach we store all found solutions using a
hash-table. After we created a new offspring
and we brought it to its local maximum using
local hillclimbing, we check whether the solu-
tion has already been found before. If that is
the case, we assign a fitness value of zero to
this individual (but still replace the worst indi-
vidual in the population by this individual). In



this case, the new individual will have the lowest
fitness in the population and is replaced by the
next offspring immediately, and thus only dif-
ferent individuals are incorporated in the pop-
ulation. On one hand we keep all local max-
ima in the hash-table, and therefore there is no
loss of information. On the other hand, only
the best individuals are in the population and
used for recombination, thereby making evolu-
tion more efficient. Thus, the memory combined
with the steady state memetic algorithm allows
us not only to keep maximally diverse popula-
tions which do not contain copies of individuals,
it also allows us to store all best (local maxima)
individuals found so far during an experiment
in the population.

Memory-based Memetic Algorithm
1) Make population of random

individuals.
2) ∀ individuals i do:
3) Ind(i) = Local-Hillclimbing(Ind(i))
4) If Ind(i) is in Memory

assign fitness 0 to it,
Else Store Ind(i) in Memory.

5) Parent1 = Select-Parent(Population)
6) Parent2 = Select-Parent(Population)
7) Offspr = Crossover(Parent1,Parent2)
8) Offspr = Mutate(Offspr)
9) Offspr = Local-Hillclimbing(Offspr)
10) If Offspr is in Memory

assign fitness 0 to it,
Else Store Offspr in Memory.

11) Replace worst individual in
Population by Offspr

12) If termination criterion not
met goto 5.

The algorithm. The algorithm is shown
above. First an initial population of individu-
als is created. Then local hillclimbing is applied
to all individuals. All different individuals are
stored in memory, and solutions which have al-
ready been found before will receive a fitness
of 0 (the lowest possible fitness value). After
this, two parents are selected for recombination
and mutation is applied to the new individual
with a specific probability (which we set to 0 in
our experiments). Then local hillclimbing is ap-
plied to the new individual. Again the solution

is stored in memory or if it already was in mem-
ory it receives a fitness of 0. Finally, the worst
individual is replaced by the new individual.

Time and space requirements. Since we
use a hash-table, the time requirements for this
method are not different from conventional ge-
netic algorithms. The cost for checking whether
an individual has already been found before and
the cost of inserting a new individual in the
hash-table is equal to the number of bits in
the individual. Thus, these operators are just
as fast as the use of mutation or crossover op-
erators, and the use of memory does not slow
things down. In the most general case, the stor-
age space requirements grows with the number
of different found individuals during a run, but
since we only store local maxima, the storage
space grows less fast than the time needed for
running an experiment. Still, for very large ex-
periments, the needed memory may not fit any-
more in computer memory, so we would have to
manage the hash-table in some other way. Since
we use steady state algorithms and each time
remove the worst individual in the population,
we do not need to store any (new) individuals in
the hash-table below the lowest fitness value of
an individual in a population, since they will be
immediately replaced anyway. This is therefore
a very efficient implementation of the steady-
state memory-based memetic algorithm. Note
that if we would not use a hash-table, but im-
mediately check whether a new individual’s so-
lution was already in the population, time re-
quirements would become much larger.

4 Experiments

We compare genetic algorithms, memetic algo-
rithms, and memory-based memetic algorithms
on four different experiments with deceptive
problems which contain many local maxima,
and therefore makes search for optimal solutions
difficult, especially for local search based algo-
rithms. All evolutionary algorithms are steady-
state algorithms to make comparisons clearer.
We also compare these three algorithms to mul-
tiple restart local hillclimbing. In our decep-
tive problems, the building blocks are separa-
ble, so we do not need to use any genetic linkage
learning, and we can (for example) use 1-point
crossover, that we used in the simulations and
works well for the generated problems.



We run experiments on deceptive trap func-
tions of different building block length and dif-
ferent individual (bitstring) length. A trap
function (Goldberg et al., 1992) of size n, called
trap-n, divides the total individual of length l
in l

n different building blocks of size n. For each
building block, the highest fitness of 1 is given
if all bits are 0, but if one bit is 1 and the oth-
ers are 0, the fitness is the lowest and equals
0. After this, with s bits set to 1, the fitness
increases with increasing s > 1, until it reaches
a local deceptive maximum at s = n. Figure 1
shows how the fitness of a single building block
for the two different trap functions of our ex-
periments is computed. The total fitness of an
individual equals the sum of the fitness values
over all building blocks.
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Figure 1: The fitness values of a building block
in a trap-4 and trap-6 problem is determined by
the number of ones in the building block. The
fitness is maximal with only 0’s, but a deceptive
maximum arises with only 1’s.

4.1 Experiments: trap-4 functions

Experimental set-up. We first performed
experiments on trap-4 functions with total in-
dividual lengths of 72 and 108 bits. After a
search through parameter space, we decided to
use the following experimental parameters for
the methods. The genetic algorithm (GA) used
a population size of 8000 for the 72-bit prob-
lem and 12000 for the 108-bit problem. We
noted that the GA needed a very large popula-
tion to work well. The crossover probability is
1.0 and the mutation probability is 0.02 for the
72-bit problem and 0.01 for the 108-bit prob-
lem. The memetic algorithm (MA) used a pop-
ulation size of 900 for the 72-bit problem and
a population size of 1200 for the 108-bit prob-
lem, a crossover probability of 1.0 and no mu-
tation. The memory-based memetic algorithm
(MBMA) used the same parameters as the nor-

mal memetic algorithm. For selecting the two
parents for recombination in the three evolu-
tionary algorithms we used tournament selec-
tion with tournament size 4. The multiple ran-
dom restart local search (LS) algorithm does not
use any parameters. We let all methods exe-
cute for 200,000 evaluations for the 72-bit prob-
lem and for 330,000 evaluations for the 108-bit
problem.
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Figure 2: (A) The experimental results on the
Trap-4 function of 72 bits. (B) The experi-
mental results on the Trap-4 function of 108
bits. The figures show the percentage of simu-
lations in which the optimum (all 0’s) has been
found. The total number of simulations with
each method is 100.

Experimental results. The results are



shown in figures 2(A) and 2(B). The figures
show the percentage of simulations (out of 100)
that the optimal solution has been found for in-
dividual length 72 and 108.

We can see that the genetic algorithm out-
performs the other methods on the trap-4 func-
tions. The memory-based memetic algorithm
significantly outperforms the normal memetic
algorithm, and multiple restart local hillclimb-
ing is not able to find any optimal solution.

4.2 Experiments: trap-6 functions
The parameters are the same as the ones used
for trap-4 functions. The results are shown in
figures 3(A) and 3(B)..

We can see that for the trap-6 function, the
memory-based memetic algorithm performs sig-
nificantly better than all other algorithms. The
genetic algorithm comes as second best, and the
local hillclimbing method again does not find
the optimal result at all.

4.3 Discussion
The overall experimental results show that
the genetic algorithm and the memory-based
memetic algorithm perform best; they find the
optimal result in more than 90% of the simu-
lations on the smaller problems and more than
60% on the larger problems (given the maxi-
mum number of evaluations). We have to say
that the genetic algorithm profited from the
large population, with smaller populations the
results were much worse. Thus, it seems that
a steady-state genetic algorithm can work quite
well on deceptive problems if the population size
is large. The memetic algorithm performs worse
than the genetic algorithm, often the population
converges too fast and there is not any progress
anymore. We did not use mutation on our ex-
periments with memetic algorithms, since the
probability of mutating a whole building block
consisting of only 1’s to a building block of only
0 or 1 1’s is very small, and harmful mutations
are much more likely in combination with lo-
cal search (i.e. mutating a building block of
only 0’s to a building block containing at least
2 1’s is much more probable). Instead of us-
ing mutation, we used a fairly large population,
and using this, the memory-based memetic al-
gorithm performs very well. The optimal build-
ing blocks should all be in the initial popula-
tion, and therefore if there are many local max-
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Figure 3: (A) The experimental results on the
Trap-6 function of 72 bits. (B) The experimen-
tal results on the Trap-6 function of 108 bits.
The figures show the percentage of simulations
the optimum has been found. The total number
of simulations with each method is 100.

ima we need to use a fairly large population
size. If we could afford to use larger popula-
tions the results of the memory-based memetic
algorithms would of course improve, but this is
costly due to the local search procedure which is
executed on the initial population. The figures
of our experimental results clearly show the long
initial phase used for local hillclimbing on the
large initial population. As soon as recombina-
tion is used, the performance quickly increases.
Therefore there might be advantages by using



adaptive population sizes for (memory-based)
memetic algorithms.

Although we cannot afford to use such large
populations as used by the genetic algorithm,
the memory-based memetic algorithms perform
also very well and clearly outperform the normal
memetic algorithms. Since we keep maximum
diversity the memory-based memetic algorithm
can find the optimal result in most of the runs
in all experiments.

If we compare the genetic algorithm and the
memory-based memetic algorithm, we can see
that the genetic algorithm performs better on
the trap-4 than on the trap-6 function, whereas
the memory-based memetic algorithm performs
better on the trap-6 function. Thus, it seems
that for difficult deceptive problems with large
building blocks, the memory-based memetic al-
gorithm may be an effective candidate, as long
as the initial population can be chosen big
enough to contain all the necessary building
blocks. If all local building blocks can be found,
recombining the solution-parts is done very ef-
fectively.

5 Conclusion

We introduced memory-based memetic algo-
rithms, which use memory in memetic algo-
rithms to keep maximal diversity in the popu-
lation. The method stores all found individuals
in a hash-table and each time a new individual
is computed it is checked whether the individ-
ual has already been found before. If that is the
case, the individual receives a fitness of 0 (the
lowest possible). In this way, memory-based
memetic algorithms can keep maximal diversity,
which is not the case for normal memetic algo-
rithms. We combine the use of memory with
steady-state memetic algorithms which always
replace the worst individual, which provides us
with a very efficient implementation for using
memory.

We compared the new approach to memetic
algorithms, genetic algorithms, and local hill-
climbing with multiple restarts on four differ-
ent deceptive problems. The results showed
that the memory-based memetic algorithm and
the genetic algorithm performed much better
than the other algorithms. The genetic algo-
rithms performed best when the locally decep-
tive building blocks of the problem were smaller,

whereas the memory-based memetic algorithm
performed best for larger building blocks.

In future work we want to study adap-
tive population sizes for the (memory-based)
memetic algorithms, since they seem to suffer
much from the long initial phase of local hill-
climbing on the initial population. We also want
to get more insight in the trade-off in the time
spent by the local search algorithm compared
to the global search GA algorithm. Further-
more, we want to combine linkage learning algo-
rithms such as BOA (Pelikan et al., 1999) with
memory-based memetic algorithms. Finally,
we want to use memory-based memetic algo-
rithms on combinatorial optimization problems.
Since memetic algorithms have been shown to
outperform genetic algorithms for solving com-
binatorial optimization problems in a number
of experiments, we expect that memory-based
memetic algorithms may even perform better.
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