Multiple Ant Colony Systems
for the Busstop Allocation Problem

Jasper de Jong ® Marco Wiering 2P

@ University of Utrecht, Cognitive Artificial Intelligence
b University of Utrecht, P.O.Box 80.089, 3508TB Utrecht

Abstract

This paper introduces Multiple Ant Colony Systems, an optimization al-
gorithm based on the Ant Colony System. The performance of this new
algorithm is compared with the performance of a Greedy Algorithm and
Simulated Annealing on a new optimization problem called the Busstop Al-
location Problem (BAP). In the BAP, the goal is to construct a set of buslines
(sequences of busstops) so that the average travel time of all passengers is
minimized. Results show that the new algorithm outperforms the Greedy
Algorithm and Simulated Annealing, which indeed makes it a promising
acquisition to the range of existing Ant Algorithms.

1 Introduction

The research for Ant Algorithms is a growing field. These algorithms can
be used to solve discrete combinatorial optimization problems using an artificial
colony of ants. Previous results [1, 2, 6] have shown that Ant Algorithms are
highly competitive with algorithms such as Tabu Search [8], Genetic Algorithms
[9], and Simulated Annealing [11]. In this paper we introduce a new member
of the class of Ant Algorithms, called Multiple Ant Colony Systems (MACS).
The MACS algorithm can be used to solve particular combinatorial optimization
problems which can be naturally modelled using a number of colonies consisting of
a number of agents. Agents from different colonies collectively create solutions. An
example of such a problem is multiple vehicle routing, in which multiple vehicles
are working together to find a global solution to the problem at hand. To solve
such problems, MACS uses several ant colonies which cooperatively search for a
solution. Tackling such problems with conventional Ant Algorithms appears to be
much less natural. We will use MACS to solve the Busstop Allocation Problem
(BAP). In the BAP, we have to construct a set of buslines in such a way that
the passengers waiting at the busstops will have a minimal average travel time for
going to their destination. This problem can be naturally modelled and solved by
the MACS algorithm.

This paper is organised as follows. In Section 2 we present the Busstop Allo-
cation Problem. Section 3 shortly describes Ant Algorithms. The Multiple Ant
Colony Systems algorithm is presented in Section 4. Then, we compare the per-
formance of the new algorithm with two other algorithms, a Greedy Algorithm

and Simulated Annealing, and show the test results in Section 5. Conclusions are
described in Section 6.

2 Busstop Allocation Problem

A Busstop Allocation Problem (BAP) is the formalisation of the problem that
arises when trying to construct m buslines, each one consisting of a sequence
of busstops. In total there are n busstops, and one of the busstops will be the
main busstop. This main busstop represents the central station. In our model
all buslines will have to call at the main busstop. A solution to the BAP will
be a collection of buslines. The main busstop is allocated to all buslines and all
other busstops are allocated to precisely one busline. Thus, a solution requires:
(1) a partitioning of the n — 1 busstops to m buslines, and (2) an ordering of
each subset of busstops in which the main busstop must also be included. In
our model two busses drive on each busline in different directions starting from
both ends of each busline. All 2m busses in the city start at the same time step
(after a specific time interval the busses go for their next round). Once a bus
passes the central station, passengers going to a busstop which is not allocated to
their current busline exchange busses (after waiting until the other bus arrives).
Formally the problem can be defined by two matrices:

D = {d;;} = Euclidean distance between busstop ¢ and busstop j.
T = {t;;} = passengers waiting at busstop ¢ having busstop j as destination.

Once a solution is generated we want to evaluate this solution to be able to
compare this solution with other solutions. For this purpose we will use the average
travel time (ATT). To compute the ATT, we first compute the travel time for one
passenger: which is u;; if ¢ and j are allocated to the same busline and u;, +O+u.;
if ¢ and j are allocated to two different buslines, where w;; is the time needed for
the bus to travel from busstop ¢ to busstop j, z is the main busstop and O the
time needed to change busses. Then we compute the ATT by averaging over all
passengers. The lower this ATT is, the faster people can get (on average) from
their start busstop to their destination busstop. The goal is to minimize the ATT.

3 Ant Algorithms

Foraging ants deposit a chemical substance called pheromone as they move
from the nest to a food source and vice versa, which other foragers follow. This
collective foraging behaviour enables ants to find the shortest path from the nest
to some food source. Optimization algorithms inspired by the collective foraging
behaviour of ants are called Ant Algorithms [4]. There is a wide variety of ant
algorithms, some of them combine local search in their way of finding solutions, but
all these algorithms share some basic properties: (1) They consist of an artificial
colony of cooperating ants, (2) Ants make discrete moves, (3) Ants lay down
pheromone on their chosen paths, and other ants use these pheromone trails in

their local decision policies. The first Ant Algorithm was the Ant System (AS).
The first use of the AS was on the Traveling Salesman Problem (TSP) [7].

Ant System. An AS is a collection of artificial ants. During one iteration
each ant builds one complete tour (solution to the TSP). It does this by moving
from one city to another until all cities have been visited. While moving from one
city to another, ants prefer cities that are connected by short edges containing a
high amount of pheromone. All edges of the graph will be updated at the end of
each iteration. This updating causes all ants to alter the amount of pheromone
on the edges they have travelled. Edges that did not belong to any ant’s tour
will loose some pheromone because of evaporation. Ants that constructed a short
tour will deposit a relatively large amount of pheromone on the visited edges while
ants that constructed a long tour will deposit a smaller amount of pheromone on
the visited edges. AS has more recently been used on the Quadratic Assignment
Problem [12] and the Vehicle Routing Problem [2].

Ant Colony System. To improve upon the results of the Ant System on
various optimization problems, the Ant Colony System (ACS) was developed. The
first use of the ACS was also on the TSP [5, 6]. An ACS is a colony of ants. Just
as in the AS, ants form solutions by moving from one city to another city until all
cities have been visited. They still prefer cities that are connected by short edges
containing a high amount of pheromone. In the ACS, however, edges are updated
after an ant has travelled an edge. This local updating decreases the amount of
pheromone (pheromone evaporation) on the just travelled edge. This will ensure
that not all ants will search in the narrow neighbourhood of the best tour. When
all ants have constructed their tours, a global update will be performed. The
global update causes pheromone evaporation on all edges, except on the edges
belonging to the global best tour which will receive some pheromone.

4 Multiple Ant Colony Systems

Because a solution to the BAP consists of a collection of buslines and each
busline consists of a sequence of busstops it seems natural to try to solve a BAP
with several cooperating ACSs. We have therefore developed an algorithm called
Multiple Ant Colony Systems (MACS). This algorithm is based on the workings
of the ACS but is developed in such a way that each busline is represented by a
separate ACS. This means that the pheromone levels of each ACS are updated
separately. Given a BAP consisting of n busstops and m buslines we initialise a
MACS consisting of m ACSs. All ACSs will consist of an equal number of ants r,
which are numbered from 1 to r. At the end of each iteration, r solutions (each
consisting of m buslines) will have been constructed.

We define a fully connected graph G = (V, E) where V is the set of vertices
(each vertice represents a busstop) and F is the set of edges. Each edge possesses
information about its length and the level of pheromone of each separate colony.
Just as in the ACS, solutions are built by ants moving from one busstop to another.
Each ant will build a busline. This means that m ants with the same number
collectively construct a complete solution (whereby each of them is solving one of

the m sub-problems). Because there are now several colonies of ants, all ants with
the same number of each colony will choose a busstop to move to and only the
most promising ant (to be defined later) is allowed to extend its busline.

In the original ACS algorithm, start locations were chosen at random. We
developed the MACS algorithm in such a way that it can account for the fact
that some busstops will be better busstops to start a busline with than others.
To model this, we extend the graph G by introducing a source node s which is
connected to each busstop (with equal, negligible length). Instead of choosing the
busstop to start a busline with at random, ants start at the source node and the
pheromone level on the edges originating from the source node will influence the
probability of choosing a busstop as the starting busstop.

We will call nﬁj the visibility of edge (i,j) of colony I. The visibility is defined as
the inverse of the time in seconds to get from busstop ¢ to busstop j '. The amount
of pheromone on the edge (i,j) of colony [is denoted by Tfj. If ant k& of colony
[is at busstop i (respectively at source node s) it uses equation 1 (respectively
equation 2) to decide what the next busstop (j) will be. This next busstop should
be a member of the set of busstops Ji, the busstops which are still unvisited by
all k-th ants of all colonies constructing a complete solution together. When ant &
of colony [has not yet visited the main busstop, Jj will include the main busstop
to ensure that all ants will at some point visit the main busstop.

= (1)

. arg max{[rj,]- [n;,]°} ¢ <qo (exploitation)
= €Jk
S otherwise (biased exploration)

Here ¢ is a random number (0 < g < 1), parameter ¢o (0 < go < 1) determines

the relative importance of exploitation versus exploration (if go is set high, there

will be more exploitation), and S is a random busstop, selected according to the

probability distribution given in equation 2.

[Tilj]'[nfj]ﬁ LY

pf]l = ZhEJk (il [n},]° ity e (2)
0 otherwise

In both equation 1 and equation 2, parameter 3 controls the importance of visibil-
ity versus pheromone. If this is set to zero, no a-priori knowledge (the preference
for short edges) will be used. Empirical studies have shown that the use of visibility
leads to much faster convergence to good solutions, however.

Each time an ant has moved from some busstop ¢ to some busstop j, it changes
the pheromone levels of edge (i,j) of its colony by applying the local update rule
of equation 3.

= (=p) 4o m 3)

Parameter p (0 < p < 1) represents the evaporation rate and 7p is the initial

IThe time to get from one busstop to another is computed by dividing the distance by the
average busspeed.

pheromone level. Each time an ant has travelled along an edge, the pheromone
level of this edge will drop a little. When all solutions have been made, pheromone
levels of edges belonging to the global best solution (the best solution the algorithm
has found thus far) will increase a little while pheromone levels of all other edges
will decrease a little. The global update is done by applying equation 4.

1 (Lg)™t if edge (i,j) € colony I of Sy
where A7;; = { 0 otherwise

Parameter @ (0 < o < 1) represents the learning rate. The global best solution is
represented by Sy and the ATT of the global best solution is represented by Lgp.

The pseudo code of a MACS is shown in figure 1. S; denotes the solution
formed by all k-th ants of all colonies and L; denotes the ATT of that solution.
Initially all edge pheromone levels of all colonies are set to 5. Now, for a number of
predefined iterations, the algorithm will produce r (the number of ants) solutions.
When expanding a partial solution in exploitation mode, the most promising ant is
the ant with the largest arg max value for going to its next busstop. In exploration
mode, the most promising ant is chosen randomly.

5 Test results

We have developed 4 different instances of a BAP. Problem 1 consists of 12
busstops and 2 buslines, problem 2 consists of 20 busstops and 3 buslines, problem
3 consists of 25 busstops and 4 buslines, and problem 4 consists of 30 busstops
and 4 buslines. The performance of MACS has been compared with two other
algorithms.

The first algorithm is a straightforward Greedy Algorithm (GRA). This al-
gorithm starts with a number of random solutions and selects each iteration the
best possible move for each solution. The GRA thus carries each random solu-
tion to its local minimum. The implementation of this algorithm is based on the
implementation of the Multi Greedy algorithm for the QAP as described in [3].

The second algorithm is the well known Simulated Annealing (SA) [11]. This
algorithm has a parameter that represents the temperature. The temperature is
set to an initial value at the start of the algorithm and it will decrease according
to a cooling rate as the algorithm continues. The algorithm starts with a ran-
dom solution and constructs new solutions by performing random swaps. As the
temperature decreases, the probability that a worse solution replaces the current
solution will also decrease. The implementation of this algorithm is based on the
implementation of the SA algorithm for the QAP as described in [3].

Obviously the number of colonies in an MACS is the same as the number
of buslines used to solve the problem. During all tests the number of ants was
equal to the number of busstops and the initial pheromone levels were set to the
inverse of the product of the number of busstops and the best time found by the
Greedy Algorithm 2. All results were obtained during 10 test runs. All algorithms

2Tots of testing revealed to us that the initial amount of pheromone is quite important.

1 Sett=0
Forl =1 tom do
Set all edge pheromone levels Tilj to T

2 Forl=1tomdo
For k =1 tor do
Choose busstop jiy,,, with probability pfl; given by equation 2
start

Jk = {JL 7]”} - jétart
Update pheromone level of edge (s, jl;,.;) using equation 3

3 Forw=1ton—1do
For k =1tor do
Choose random ¢ (0 < ¢ < 1)
If ¢ < qp then
For [=1 to m do
Store busstop with its value using equation 1
Choose busstop j with largest arg max of all stored busstops
Else
Forl =1tom do
Choose and store busstop using equation 2
Choose busstop j at random from stored busstops
Set, Jk:Jk—jandSk:Sk+j
Perform local update on last edge according to equation 3

4 For k=1tordo
Compute Ly for each solution S, and update Sy and Lgy if Li, < Ly
Forl =1 tom do
For all edges (i,j) € Sy do
Update edge according to equation 4
Sett=t+1

5 If t < tyaz then
Goto step 2

Figure 1: Multiple Ant Colony Systems pseudo code

were given approximately the same computational time during a run. For exact
parameter settings, we refer to [10].

Results are shown in table 1. It is clear that the MACS algorithm performs a
lot better than the other two algorithms. Results of the MACS algorithms were

Using the heuristic to initialize it to the best time of the Greedy Algorithm saves time exploring
different parameter settings. Note that the algorithm cannot use this a-priori information in a
very sensible way, such as: now the algorithm knows a particular reachable (upper) bound.

GRA SA MACS
best | 351.181 | 351.181 | 351.181
Problem 1 | av 358.036 | 363.758 | 351.181
sd 6.36 11.34 0
best | 474.118 | 465.773 | 452.421
Problem 2 | av 492.608 | 496.313 | 465.424
sd 9.56 19.43 8.29
best | 582.956 | 585.856 | 558.245
Problem 3 | av 606.695 | 605.922 | 571.441
sd 13.15 15.62 6.29
best | 719.250 | 707.963 | 686.391
Problem 4 | av 748.622 | 733.081 | 700.767
sd 20.19 26.23 8.16

Table 1: Best ATT found, average ATT and the standard deviation values of
the Greedy Algorithm, Simulated Annealing and Multiple Ant Colony Systems.
Results obtained during 10 runs. Best results are in bold.

significantly better (t-test, & = 0.01) on all problems.

6 Conclusions

We have proposed an optimization algorithm called Multiple Ant Colony Sys-
tems (MACS), which is based on the behaviour of ants. MACS is a natural ex-
tension of the Ant Colony System, which consists of multiple cooperating ant
colonies. To test the performance of the MACS algorithm we have compared its
performance with the performance of a Greedy Algorithm (GRA) and Simulated
Annealing (SA) on 4 different instances of an optimization problem called the
Busstop Allocation Problem (BAP).

The BAP is a new optimization problem consisting of n busstops and m
buslines. A valid solution is a set of m buslines each one consisting of a sequence of
busstops. Given a solution, we can compute the average travel time (ATT) which
needs to be minimized.

The results showed that the MACS algorithm outperformed both GRA and SA
on all test problems. Thus, the results demonstrate that the MACS is a promis-
ing new Ant Algorithm suitable for solving particular combinatorial optimization
problems. In future work we intend to use MACS on different optimization prob-
lems such as multiple vehicle routing and job-shop scheduling problems.

Acknowledgments

Thanks to Marco Dorigo and Christian Blum for many helpful comments.

References

[1] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence, from Natural
to Artificial Systems. Oxford University Press, 1999.

[2] B. Bullnheimer, R. F. Hartl, and C. Strauss. An improved ant system algo-
rithm for the vehicle routing problem. Technical Report POM Working Paper
No. 10/97, University of Vienna, 1997.

[3] A. Colorni, M. Dorigo, and V. Maniezzo. Algodesk: an experimental com-
parison of eight evolutionary heuristics applied to the quadratic assignment
problem. FEuropean journal of Operational Research, 81:188-204, 1995.

[4] M. Dorigo, G. Di Caro, and L. M. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5(2):137-172, 1999.

[5] M. Dorigo and L. M. Gambardella. Ant colonies for the traveling salesman
problem. Biosystems, 43:73-81, 1997.

[6] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative learning
approach to the traveling salesman problem. IEEE Trans. Evol. Comp., 1:53—
66, 1997.

[7] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization by a
colony of cooperating agents. IEEE Trans. Systems, Man, and Cybernetics,
26:29-41, 1996.

[8] F. Glover. Tabu search, part I. ORSA Journal on Computing, 1(3).

[9] J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor,
MI:The University of Michigan Press, 1975.

[10] J. de Jong. Multiple ant colony systems for the busstop allocation problem,
August 2001. Master’s thesis, Cognitive Artificial Intelligence, University of
Utrecht.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220:671-680, 1983.

[12] V. Maniezzo, A. Colorni, and M. Dorigo. The ant system applied to the
quadratic assignment problem. IEEE Trans. Knowledge and Data Engineer-
ing, 11, 1998.

