
Comparing Training Paradigms for Learning to Play Backgammon

Marco A. Wiering marco@cs.uu.nl

Intelligent Systems Group, Institute of Information and Computing Sciences, Utrecht University

1. Introduction

The backgammon learning program TD-Gammon of
Tesauro (1995) was probably the greatest demonstra-
tion of the impressive ability of machine learning tech-
niques to learn to play games. TD-Gammon used re-
inforcement learning techniques, in particular tempo-
ral difference learning (Sutton, 1988) for learning a
backgammon evaluation function from training games
generated by letting the program play against itself.

For learning a game evaluation function for mapping
positions to moves (which is done by the agent), there
are the following three possibilities for obtaining expe-
riences or training examples; (1) Learning from games
played by the agent against itself (learning by self-
play), (2) Learning by playing against a (good) op-
ponent, (3) Learning from observing other (strong)
players play games against each other. The third pos-
sibility might be done by letting a strong program
play against itself and let a learner program learn the
game evaluation function from observing these games
or from database games played by human experts.

One advantage of learning from games provided by
another expert or a database is that games are im-
mediately played at a high level instead of completely
random when the agent would play its own games. An-
other advantage is that for particular games such as
draughts, chess, and Go, usually expensive lookahead
searches are necessary to choose a good move. Since
lookahead is expensive, learning from a database of
played games could save a huge amount of computa-
tion time. A disadvantage of learning from databases
games or from observing an expert play is that the
learning agent is never allowed to try the action which
it would prefer. Basically, the exploration is gov-
erned by human decisions and there is no exploitation.
Therefore, the agent might remain biased to particu-
lar moves which the experts would never select and
are therefore never punished. We will examine in this
paper whether learning from game demonstrations for
the game of backgammon is really fruitful compared
to other paradigms for generating training games.

2. Experiments with Backgammon

Tesauro’s TD-Gammon program learned after about
1,000,000 games to play at human world class level, but
already after 300,000 games TD-Gammon turned out
to be a good match against the human grand-master
Robertie. In our research, first an expert backgam-
mon program was trained so that we have a program
against which we can train other learning programs
and which can be used for generating games that can
be observed by a learning program. Finally, we will
evaluate the learning programs by playing test-games
against this expert. To make the expert player we
used TD-learning combined with learning from self-
play using a hierarchical neural network architecture
consisting of 9 neural networks of 40 hidden units that
evaluate different kinds of strategical positions. This
program was trained by playing more than 1 million
games against itself during which intermediate tests
were held to finally keep the best program.

Experimental setup. We first made a number of
simulations in which 200,000 training games were used
and after each 5,000 games we played 5,000 test games
between the learner and the expert to evaluate the
learning program. Because these simulations took a
lot of time (several days for one simulation), they were
only repeated two times for every setup. For the learn-
ing program we made use of different architectures.
First of all, we used the same large architecture con-
sisting of 9 neural networks. Furthermore, we used a
smaller architecture consisting of three networks; one
for the endgame of 20 hidden units, one for the long
endgame (racing game) of 20 hidden units, and one for
the other board positions with 40 hidden units. We
also used a larger network architecture with the same
three networks, but with 80 hidden units for the other
board positions, and finally we used an architecture
with 20, 20, 40 hidden units with a kind of radial basis
activation function. These architectures were trained
by playing training games against the expert. We also
experimented with the small network architecture that
learns by self-play or by observing games played by the
expert against itself.



Experimental results. Table 1 shows that all archi-
tectures and training paradigms, except for the archi-
tecture using RBF neurons, obtained an equity higher
than 0.5 in at least one of the 80 tests. Testing these
found solutions 10 times for 5000 games against the ex-
pert indicated that their playing strengths were equal.

Architecture 5000 100,000 175,000 Max eval
Small Network (SN) 0.327 0.483 0.478 0.508
Large architecture 0.290 0.473 0.488 0.506
Network 80 hidden 0.309 0.473 0.485 0.505
Network 40 RBF 0.162 0.419 0.443 0.469
SN Self-play 0.298 0.471 0.477 0.502
SN Observing expert 0.283 0.469 0.469 0.510

Table 1. Results for the different methods as averages of
matches of 5,000 games against the expert. The results are
smoothed so that the equity for 5000 games is the mean of
the 6 tests after 100, 5000, and 10,000 games.

Results of smaller simulations. We performed a
number of smaller simulations of 15,000 training games
where we tested after each 500 games for 500 test-
games. We repeated these simulations 5 times with
the small neural network architecture and different
paradigms for generating training games. The results
displayed in Figure 1 and Table 2 show that observ-
ing the expert play and learning from these generated
games (expert plays against expert) progresses slower
and reaches slightly worse results within 15,000 games.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 3000 6000 9000 12000 15000

E
va

lu
at

io
n 

sc
or

e

Number of games

Small network learns from own evaluation

Trainer plays against Expert
Trainer plays against Trainer

Expert plays against Expert

Figure 1. Results for the small architecture when using a
particular paradigm for generating games.

Method 100 500 1000 5000 10,000
Self-play 0.006 0.20 0.36 0.41 0.46
Against expert 0.007 0.26 0.36 0.45 0.46
Observing expert 0.003 0.01 0.16 0.41 0.43

Table 2. Results for the three different paradigms for gen-
erating training games using the small architecture (SN).
The results are averages of 5 simulations.

Effect of λ. Finally, we examine what the effect of dif-
ferent values for λ is when the small architecture learns
by playing against the expert. We tried values for λ of
0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. When using λ = 1 we
needed to use a smaller learning-rate, since otherwise
initially the weights became too large. Table 3 shows
the results. We can see that higher values of λ initially
result in faster learning which can be explained by the
fact that bootstrapping from the initially random eval-
uation function does not work too well and therefore
larger eligibility traces are profitable. After a while λ

values between 0.2 and 0.8 perform similarly.

λ 100 500 1000 5000 10,000
0.0 0.004 0.13 0.31 0.42 0.43
0.2 0.002 0.24 0.34 0.43 0.45
0.4 0.002 0.26 0.35 0.44 0.44
0.6 0.007 0.26 0.36 0.45 0.46
0.8 0.06 0.34 0.39 0.44 0.45
1.0 0.12 0.23 0.31 0.39 0.40

Table 3. Results for different values of λ when the small
architecture learns from playing against the expert. The
results are averages of 5 simulations.

3. Discussion

Learning a good evaluation function for backgammon
with temporal difference learning appears to succeed
very well. Already within few thousands of games
which can be played in less than one hour a good
playing level is learned with an equity of around 0.45
against the expert program. The results show that
learning by self-play and by playing against the expert
obtain the same performance. Learning by observing
an expert play progresses slower than the other meth-
ods. In our current experiments the learning program
observed another program that still needed to select
moves. Therefore there was no computational gain in
generating training games. However, if we would have
used a database, then in each position also one-step
lookahead would not be needed. Since the branching
factor for a one-step lookahead search is around 16
for backgammon, we would gain 94% of the computa-
tional time for generating and learning from a single
game. Therefore learning from database games could
still be advantageous compared to learning by self-play
or playing against an expert. We intend to study this
further on different games such as Go, chess, and 3D
action games.

References

Sutton, R. S. (1988). Learning to predict by the methods
of temporal differences. Machine Learning, 3, 9–44.

Tesauro, G. (1995). Temporal difference learning and TD-
Gammon. Communications of the ACM, 38, 58–68.


