Learning to Play Draughts using Temporal Difference Learning
with Neural Networks and Databases

Jan Peter Patist and Marco Wiering
Cognitive Artificial Intelligence
Utrecht University
contact: peter.patist@phil.uu.nl

Abstract

This paper describes several aspects of using
temporal difference learning (TD) and neural
networks to learn game evaluation functions,
and the benefits of using databases. Experi-
ments in tic-tac-toe and international draughts
have been done to measure the effectiveness of
using databases. The experiment of Tic-Tac-
Toe showed that training from database games
resulted in better play than learning from play-
ing against a random player. In the experiment
of learning international draughts, the program
reached after just a few hours of training a bet-
ter level than a strong computer playing pro-
gram and occasionally drew a very strong pro-
gram. Thus, using temporal difference learn-
ing and neural networks on database games is a
time-efficient way to reach a considerable level
of play.

1 Introduction

Reinforcement learning (Sutton, 1988; Kael-
bling et al., 1996) is a learning method which
enables agents to learn to act in an environment
by getting rewards. The agent chooses between
actions based on the current sensory informa-
tion and a function approximator to map sen-
sory information to an output. This output can
be an action or a value used in selecting an ac-
tion. The agent uses a function approximator
to map sensory information to an output which
will result in the correct behavior. Rewards are
used by the agent to adjust his function ap-
proximator to maximize his future cumulative
reward. In game-playing the player or agent
chooses a move which maximizes the chance to
win minus the chance to loose.

Several ways exist to collect the games or ex-
amples needed to learn from. For example by
self-play, playing against humans or by consid-

ering a database of already played games. How-
ever in games like draughts much look-ahead is
needed to create a game which is good enough
to learn from. Therefore, learning by play-
ing an actual game is time consuming. Using
databases of existing games is much less time
consuming because look-ahead is not needed.
Another benefit of using databases over self-play
is that the examples are representative of good
game-playing and do not suffer from start-up
problems like in self-play when a randomly ini-
tiated evaluation function is used.

Games. For a long time now board games
like draughts, checkers, backgammon, chess
etc. have gained the interest of computer
science. Nowadays there are programs which
are playing at a high level. For example in
chess the number one human player, Kas-
parov, has been beaten by Deep Blue[1997]
and Deep Junior[2003]. Also in other board
games the computer has gained ground, like in
backgammon, othello, international draughts
and checkers. In international draughts several
grandmasters were defeated by the programs
Buggy[2003] and Flits[2002].

The success of most of the strongest programs
in these board games is due to the use of the
possibility to look upon many thousands of
positions per second by using computer power
and efficient search algorithms. Because of the
exponential growth of the amount of positions
in respect to the search depth, it is impos-
sible to calculate all possible continuations
until a position which ends by the rules of
the game. Several algorithms and heuristics
have been developed to cut the continuations
looked upon. Although the computer can
search many positions it can not reach an end
position from most of the positions. Therefore
a good evaluation function is very important

to estimate 'the chance’ to win given a certain
board position. In most of the mentioned
board games the evaluation function is tuned
by the system designer and this may cost a
lot of time. Automated learning can probably
result in better evaluation functions in less
time. For example the backgammon program
TD-Gammon (Tesauro, 1995) reached the level
of a world class player by learning using neural
networks and TD-learning (Sutton, 1988).
Learning from database games. In rein-
forcement learning agents act in an environment
and get feedback on their performance by re-
ward signals. They use that feedback to adjust
themselves to maximize their performance.
However, when an agent learns from database
games it does not apply its newly acquired
insights directly to the board and is therefore
not confronted with its behavior. Database
games are only labelled with the end-results
of a game (i.e. win, loss, or draw). We use
a reinforcement learning method to estimate
values of board positions that have occurred
during a game. In many board-games like
draughts, chess, etc. a database exists. Using
temporal difference learning is a good way to
make use of this rich collection of knowledge.

Overview. In the next section we de-
scribe and explain shortly the ingredients of
a game-playing program and some learning
game-programs. Reinforcement learning will
be discussed in section 3. Experiments of
learning Tic-Tac-Toe using TD(\)-learning and
databases will be presented in section 4, and in
section 5 we present results on learning inter-
national draughts. Finally, section 6 concludes
and describes possible future work.

2 Game playing
2.1 Parts of a game-playing program

Almost all programs which play board-games
like draughts have the same architecture. The
different parts of the programs are a move gen-
erator, a search engine and an evaluation func-
tion. Given a certain position, the move gen-
erator enables generating all possible successor
positions. The search engine is an algorithm
which calculates possible continuations. Exam-
ples of search algorithms are Alpha-Beta, Ne-
gascout, Principal Variation Search etc. See

(Plaat, 1996) for more information on game
search algorithms. Normally search algorithms
are extended with heuristics to enhance speed.
An evaluation function is used to value a po-
sition. In our experiments we used a neural
network because of its ability to represent non-
linear functions (Cybenko, 1989), which is im-
portant in draughts because a good evaluation
function can probably not be represented by a
linear function. It should be noted that the use
of neural networks slows down the search speed.
Because it is very difficult for programs to play
well in the opening and end-game-phase they
are usually equipped with a database for both
phases. In most programs the parameters of the
evaluation function are set by hand. However
this costs a lot of time.

2.2 Learning Programs

Examples of automated learning evaluation
functions are TD-Gammon in backgammon,
KnightCap (Baxter et al., 1997; Baxter et al.,
1998; Baxter et al., 2000) and NeuroChess
(Thrun, 1995) in chess, and NeuroDraughts
(Lynch and Griffith, 1997) in checkers. TD-
Gammon became world class player by learning
from self-play. KnightCap learned by TDleaf, a
TD-method for game-trees and reached a rea-
sonable level of play in fast-play chess. Neu-
roChess used an explanation-based neural net-
work (EBNN) which predicted the position af-
ter some moves and was trained by grandmas-
ter games. Gradient information of the EBNN
was used to adjust the weights of another neural
network V trained by self-play. The EBNN was
trained before V. The level of play was weak.
In Neurodraughts a cloning strategy was used
to test, select and train networks with differ-
ent input features. It is not known how strong
this program plays against other checkers play-
ing programs or humans.

3 Reinforcement Learning
3.1 Markov Decision Problems

Most work done in Reinforcement Learning
(RL) is about solving Markov decision prob-
lems. A problem is a Markov decision prob-
lem whenever it satisfies the Markov property.
The Markov property states that the transition
probabilities to possible next states only depend
on the current state and the selected action. A

Markov decision problem is characterized by the
possible states and actions, a transition func-
tion, a reward function, and a discount factor.
The transition function contains all transition
probabilities of transitions that are made to a
next state, under influence of some action. The
reward function is determined by the system de-
signer. The discounting factor affects the greed-
iness towards immediate or future reward. Play-
ing draughts can be seen as a Markov decision
problem as long as the opponent uses a fixed
strategy for selecting moves.

3.2 Temporal Difference Learning

To estimate the values of positions we used the
temporal difference method (Sutton, 1988).
The Temporal Difference method is a RL-
method driven by the difference between two
successive state values to adjust former state
values which decreases the difference between
all two successive state values. The change in
the value of the state is equal to a learning pa-
rameter « multiplied by the sum of the tem-
poral difference errors between two successive
state values. These temporal differences are
weighed exponentially according to the differ-
ence in time.

The state values are updated using the TD(A)
update rule, defined as:

AV (sy) = ag,e} (1)
T—t
ed =Y Nepy, (2)
1=0
et = (re + V(st+1) — V(st) (3)

where:

e V(s¢) := Value of state s at time ¢
e T:=length of the trajectory
e 7; := reward at time t

e ¢, = TD(0) error between time-step t and
t+1

Because we learn after each game all the
needed TD(0)-errors are known, and in our
work we therefore essentially use offline TD())
learning. In our research the TD-rule is imple-
mented in an incremental way which is derivable
from the TD-rule.

3.3 RL and Neural Networks

Because in draughts the amount of possible
states or positions is too large to directly store
and learn from, a function approximator must
be used to approximate the value of the posi-
tions. In our research we used a feed-forward
neural network as a function approximator.
To learn from a game all positions are scored
by propagating it through the neural network.
New values of the positions are estimated after
each game by using the TD-update rule. These
new values are the target values of the posi-
tions seen in the game. Extended error back-
propagation (Sperduti and Starita, 1993) is
used to adjust the weights of the network in or-
der to minimize the difference between the tar-
get value and the estimated value of the posi-
tion, called error. In our experiments we used
the activation function Sz /(1 + abs(fzx)) with
neuron sensitivity 3. The neuron sensitivity
is adjusted according to the partial derivative
of the error to the neuron sensitivity. Neu-
ron sensitivity is used to speed up the learn-
ing. See (Bishop, 1995) for more information
about feed-forward neural networks and (Wier-
ing, 1999; Kaelbling et al., 1996) for more
information on reinforcement learning.

4 Experiments
4.1 Tic-Tac-Toe

Tic-Tac-Toe is a simple children’s game. It
is played on a 3 by 3 squared board. The
players put turnwise the mark X, O on a empty
square on the board. If one player makes a
move, which brings about three of his marks in
diagonal, horizontal or vertical order, he wins.
If all the squares are filled and the position
is not a winning position, it is a draw. By
learning the game, we mean to be able to
play near optimal. To play optimal is to get
the highest theoretical win-loss. For that we
define ’equity’ by the number of wins minus
the number of losses divided by the games
played. In our experiment we compared the
performance of play of neural networks with
different amounts of hidden units trained by
playing against a random player versus training
from database games. The performance is
tested by playing against a predefined player,
who we will call Expert that plays according to
the following rules:

-If there are moves X which makes a win Then
choose random between moves X

-Else If there are moves possible for opponent to
win Then choose random a move which blocks
one of these moves by playing on the same field
-Else play a random move

4.2 Representation

For each field on the board there is an input
node reserved in the input vector of the neural
network. An empty field is represented by the
value zero, a field with X the value 1 and a O
by -1. A win by X is evaluated by the reward
function by 1, a win by O by -1, a draw by 0.
And 0 reward for all other moves. The represen-
tation of 1, 0, -1 is chosen because of symmetry
considerations.

The neural network player selects a move by cal-
culating all his possible moves. These moves re-
sult in a new position. This position is the input
of the neural network. The output of the neu-
ral network is the value of the position. When-
ever no exploration is used the agent chooses
the move which results in the position with the
highest value (this is used in testing the net-
works).

4.3 Simulations

In all of the above experiments networks with
40, 60 and 80 hidden neurons are used. All
experiments are averaged over 10 simulations.
In the case of learning from playing against a
random player a simulation amounts to 40,000
training games. In case of database learning
the amount of 160,000 games is used, which
are randomly selected from the database. The
database is filled with 40.000 games played by
FExpert against a neural network during the
training phase of the neural network. When a
database is used in learning no games have to
be played. So move generation and evaluation
is not needed and this saves time. In the same
time more games can be used in learning. This
is the reason why 160,000 games are used in
respect to the 40,000 games in the other exper-
iments. After each 2,000 games, in the case of
playing against random and 10.000 games in the
case of learning from the database, the neural
network is tested by playing 2,000 test games
against Expert. The average of the equity of
the 10 simulations per 2,000 games is taken.

0.6

80 hidden neuronen —
gg wggen neuronen —
idden neuronen ---
0.5
0.4
o
203
(s
i
0.2
0.1 -
5 ¢
0 20 40 60 80 100 120 140 160
Games (x1000)
Figure 1: Learning from a database tested

against Expert

4.4 Network and learning parameters
e Hidden units : 80,60,40

e Learning rate : 0.008

e Initial weights : random between -0.2 and

0.2
e Initial hidden neuron sensitivity 3 : 5

° Act[igvation function hidden neurons
X
1+abs(Bz)
e Activation function output neuron :
function

unity

e Learning rate sensitivity hidden neurons :
0.00003

e Lambda: 0.8

4.5 Experimental Results

The maximal theoretical equity against Expert
is about 0.61 (Wiering, 1995). All the networks
which learned from playing against a random
player reached all near optimal play against ran-
dom of 0.928. After a network has learned to
play near optimal against Random of course
he will not play near optimal against Expert.
The reason is very simple, namely because opti-
mal play against random is different than play-
ing optimal against Expert. But the optimal
play against Expert and Random have some
common strategies. The Network is able to
learn some forks, which is the only way to win
again Expert, from playing against Random.

0.2

80 hidden neuronen —
60 hidden neuronen — —
40 hidden neuronen -----

0.15

0.1

Equity

0.05

0 5 10 15 20 25 30 35 40
Games (x1000)

Figure 2: Learning from playing against a ran-
dom player tested against Expert

Learning by database results in play which is
not as good as a network trained by playing
against Expert, which achieved a near optimal
equity of 0.58(Wiering, 1995). This is because
the database consists of bad and inconsistent
games. In the case of the networks with size
80 learning from the database gives the best
performance. In the test-phase the networks
reached a high win-percentage however the loss-
percentage hampered a higher equity.

The variance of the Equity after database learn-
ing is very high. Probably this is because the
database contains many inconsistent and bad
games. Learning from playing Expert yields
the best play. This is because it is trained and
tested against the same opponent. The biggest
network performs the best. Database learning
achieves higher equity than learning by playing
against Random.

5 Learning to Play Draughts

It should be noted that with draughts we
mean international draughts played on a 10x10
squared board. The game is played by two op-
ponents on the 50 dark squares of the board (as
shown in figure 3). In the starting position both
players occupy the first four rows of either white
or black checkers. The players move turnwise
beginning with the white player. The goal of the
game is to achieve a position in which the oppo-
nent can not make a move. If neither player can
accomplish this it is a draw. Checkers can move
one square at a time in a diagonal forward direc-

tion, to an unoccupied square or field. Check-
ers capture by jumping over an opposing man
on a diagonal adjacent square to a unoccupied
square directly beyond it. Checkers can jump in
any diagonal direction and may continue as long
as they encounter opposing checkers with unoc-
cupied squares immediately beyond them. The
capture with the maximal amount of captured
checkers is obliged. When a checker reaches the
far side of the board it becomes a king. Kings
can move in a diagonal line to an unoccupied
square only if all squares on the diagonal line
are unoccupied. King capture at any distance
along a diagonal direction with at least one un-
occupied square immediately beyond it. Kings
continue jumping from one of these squares till
no jumping is possible. Kings and checkers are
not allowed to jump more than one time over
an opposing checker or King.

5.1 Experimental Setup

The games used in training are extracted
from Turbo Dambase!, the only draughts-games
database and contains approximately 260.000
games. The database contains games between
players of all different levels. For testing pur-
poses the neural network was incorporated in
the draughts program Buggy? which is proba-
bly the best draughts program of the world and
uses state-of-the-art search algorithms. Because
it is almost impossible to learn from the raw
board position alone, we represented the board
position by features.

5.2 Input features

We used 3 different kinds of features namely
global-features, structural features and raw
board representation. In the raw board rep-
resentation every field of the game position is
decoded to represent the presence of the kind
of piece. Every square is represented by two
bits. One bit to represent the occupance of a
white single checker and one for a single black
checker. We did not use raw-board presentation
for kings. Structural features are boolean com-
binations of occupied or empty squares. Unlike
structural features and the raw-board represen-
tation, global features model knowledge which is

'For information on Turbo
http://www.turbodambase.com/

2For information on Buggy, see http://www.buggy-
online.com/

Dambase, see

Figure 3: The structural feature "Hekstelling’

not directly available from a board position. An
example of a global-feature is material balance.
Material balance is the difference in checkers
plus 3 times the difference in kings. An example
of a structural feature is 'Hekstelling” shown in
figure 3.

The total amount of inputs, which are 23
global plus 99 structural features plus 100 raw
board features, is 222. Five neural networks
were trained. The difference between the first
four neural networks lies only in the represen-
tation of a board position. We define the four
neural network players in respect to the input,
namely:

e NN1: Global features

e NN2: Global features plus all possible
"three-on-a-diagonal’

e NN3: All features except the raw board
representation

o NN4: All features

The fifth neural network consists of three dif-
ferent neural networks. The neural networks
were used in training or playing on the ba-
sis how many pieces were on the board. One
for the position with more than 25 pieces, one
for more than 15 till 25 pieces and one for
the resting positions, for which all three were
equipped with all features. All the neural net-
works were trained a single time over the first
200.000 games of Turbo Dambase. Positions in
which a player was obliged to hit were elimi-
nated from the game. Also all positions were
eliminated which are a part of a tactical combi-
nation or a local discontinuity in material bal-
ance. This is for example when a player succes-
sively sacrifices two checkers in two moves and

regains material balance on the third move by
hitting two checkers. The reason why we did
this is because learning on these positions dis-
torted the learning process. The neural network
has great difficulty in learning specific board
settings in order to compensate the temporal
difference in material.

5.3 Network and learning parameters
e Hidden units : 80

e Learning rate NN1, NN2 : 0.001
e Learning rate NN3, NN4, NN5 : 0.0005

e Initial weights : random between -0.2 and

0.2
e Initial hidden neuron sensitivity 5: 3

° Act[igvation function hidden neurons
X

1+abs(Bz)

e Activation function output neuron : unity

function

e Learning rate sensitivity hidden neurons

NN1, NN2 : 0.01

e Learning rate sensitivity hidden neurons
NN3, NN4, NN5 : 0.005

e Lambda: 0.9

5.4 Testing

The four neural networks, created by learn-
ing from 200.000 games, were tested against
two draughts programs available on the inter-
net. DAM 2.23 is a very strong player and
GWD* a strong player on the scale of very weak,
weak, medium, strong and very strong (ac-
cording to http://perso.wanadoo.fr/alemannia
page76_e.html). Each network played one
match of 10 games, 5 with white and 5 with
black against both computer programs. In all
the games both players got 4 minutes time. In
the programs GWD and DAM 2.2. it was only
possible to give the computer the amount of
time per move. So GWD and DAM 2.2 got 4
seconds per move. Furthermore a round tour-
nament was held with only the neural network

3For information and download, see
http://www.xsdall.nl/ hjetten/dameng.html

“For information and down-
load, see http://www.wxs.nl/ gijs-

bert.wiesenekker/gwd4distrib.zip

program: GWD
NN-... | WIN | LOSS | DRAW | RESULT
NN1 3 4 3 9-11
NN2 4 1 5 13-7
NN3 7 3 0 14-6
NN4 8 1 1 17-3

Table 1: The result of the matches against the
program GWD. A win is awarded with 2 points,
a draw with 1 point.

program: DAM 2.2
NN-... | WIN | LOSS | DRAW | RESULT
NN1 0 9 1 1-19
NN2 0 9 1 1-19
NN3 0 7 3 3-17
NN4 0 9 1 1-19

Table 2: The result of the matches against the
program DAM 2.2. A win is awarded with 2
points, a draw with 1 point.

players. So each player played 10 games against
another player using 4 minutes per game per

player. No program made use of an opening
book.
5.5 Results

All neural networks, except NN1 were able
to beat GWD, the networks occasionally drew
against DAM 2.2. as shown in Tables 1 and 2.
In the round tournament NN3 and NN4 have
beaten NN1 and NN2 as shown in Table 3.

5.6 Discussion

The Networks NN2, NN3 and NN4 were able
to defeat GWD on a regular basis. Most of the
time NN1 had a superb position against GWD.
In many of the games the advantage in develop-
ment for NN1 was huge and NN1 was control-

X NN1 | NN2 | NN3 | NN4
NN1 X 3-3-4 | 2-6-2 | 4-6-0
NN2 | 3-3-4 X 1-6-3 | 3-5-2
NN3 | 6-2-2 | 6-1-3 X 4-5-1
NN4 | 6-4-0 | 5-3-2 | 5-4-1 X

Table 3: The results of the round tournament
between the neural networks. A cross means no
games are played. 3-3-4 means the row player
won 3 games, lost 3 games and drew 4 games.

ling all the center fields. However sometimes
NN1 made it possible for GWD to get a clear
way to promotion. Also sometimes it built un-
comfortable formations. The reason why it did
this is because it does not have enough input
features. All networks were not able to com-
pete against Dam 2.2. Some of the networks
were able to draw sometimes. NN4 is proba-
bly the best network. NN2 had also the prob-
lem of building bad structures sometimes. NN3
and NN4 are much better playing networks than
NN1 and NN2. A problem of NN3 and NN4
is the evaluation of positions with structures
where break off and rebuilding of the structure
plays an important role. Probably this is be-
cause of the input features and the lack of an
opening book. The networks NN3 and NN4
only have one feature for these kind of positions.
This feature is only set on when the structure
is on the board. That’s probably why it is very
difficult to learn using these features whether
the positions, where the strategy is applicable
to obtain the structure, are good or bad for the
opponent. It is to be noted that this is of course
when look-ahead does not reach to the struc-
ture. Another problem in the play is the open-
ing. In some openings the networks want to take
a front on 22 or 24 for white, 27 or 29 for black.
The numbers correspond to fields on the board.
If we look at the board with the black pieces
going down, the number count is 1 to 50 from
left above to right below in reading order. In the
opening this is most of the time not a good idea.
One simple strategy is to attack this piece a cou-
ple of times and exchange it. This results im-
mediately in disadvantage in development and
splitting the opponent’s structure. The problem
of the opening is that the positions are the most
far positions from the end position. Because of
this, the variance in the value of the features is
very small. Therefore some small differences on
the board can lead to a considerable advantage.
The opening has been kind of a problem also for
normal draughts playing computers. The net-
works were trained over a whole game. However
because an endgame has nothing to do with the
middle game inference can be a problem. We
also tried an experiment with 3 neural networks
for the opening, the middle game and endgame.
However the network was not able to learn the
material function in the opening. The reason is

that there are too few examples of positions in
the opening with piece (dis)advantage.

6 Conclusion

We have seen that the neural networks, trained
on draughts database games, were able to beat
on a regular basis a strong computer program
and occasionally able to draw a very strong pro-
gram. It only used 200.000 training games and
lasted approximately 5 hours. We showed that
adding a raw board presentation and global-
and structural- information improved the level
of play and probably adding more features can
improve the level of play even further.

6.1 Future Work

We trained a neural network on a database of
200.000 games. This resulted in an evaluation
function which is able to beat a good draughts
program and occasionally draw a very good pro-
gram. However now rises the question how we
can improve this. First the amount of features
can be extended. Research can be done in or-
dering the database in such a way that it will
lead to better play. The games can be ordered
in result, common positions, different level of
players etc. Although the experiment of 3 neu-
ral networks for the opening, the middle-game
and endgame failed to learn the material func-
tion we should not forget this idea. The reason
to learn three networks was to overcome pos-
sible unpleasant inference. However some fea-
tures we want to infer. For example the mate-
rial feature. Some features we want to model
locally in respect to some kind of position and
some globally. Perhaps it is also an idea to use a
minimum of look-ahead to also learn on concur-
rent positions. Other things to research is the
combination of learning from database games
and learning by self-play and playing against
other computer programs or human players.

References

Baxter, J., Tridgell, A., and Weaver, L. (1997).
Knightcap: A chess program that learns
by combining TD(A) with minimax search.
Technical report, Department of Systems En-
gineering, Australian National University.

Baxter, J., Tridgell, A., and Weaver, L. (1998).
Experiments in parameter learning using
temporal differences. International Com-

puter Chess Association Journal, 21(2):84-
99.

Baxter, J., Tridgell, A., and Weaver, L. (2000).
Learning to play chess using temporal differ-
ences. International Computer Chess Associ-
ation Journal, 40(3):243-263.

Bishop, C. M. (1995). Neural Networks for
Pattern recognition. Oxford University, New
york.

Cybenko, G. (1989). Approximation by super-
positions of a sigmoidal function. Signals and
Systems, 2:303-314.

Kaelbling, L. P., Littman, M. L., and Moore,
A. P. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Re-
search, 4:237-285.

Leouski, A. (1995). Learning of position eval-
uation in the game of othello. Technical Re-
port UM-CS-1995-023, Department of Com-
puter Science University of Massachusetts,
Ambherst, MA.

Lynch, M. and Griffith, N. (1997). Neuro-
draughts: the role of representation, search,
training regime and architecture in a TD
draughts player. FEighth Ireland Conference
on Artificial Intelligence, pages 64—72.

Plaat, A. (1996). Research Re:Search and Re-
search. PhD thesis, Erasmus University, Am-
sterdam.

Sperduti, A. and Starita, A. (1993). Speed up
learning and network optimization with ex-
tended back propagation. Neural Networks,
6:365-383.

Sutton, R. S. (1988). Learning to predict by
the methods of temporal differences. Ma-
chine Learning, 3:9-44.

Tesauro, G. (1995). Temporal difference learn-
ing and TD-gammon. Communications of the
ACM, 38(3):58-68.

Thrun, S. (1995). Learning to play the game of
chess. Advances in Neural Information Pro-
cessing Systems (NIPS), 7:1069-1076.

Wiering, M. (1995). TD-Learning of Game
Evaluation Functions with Hierarchical Neu-
ral Architectures. Department of Computer
Systems, University of Amsterdam April,
1995

Wiering, M. (1999). FEzxplorations in Efficient
Reinforcement Learning. PhD thesis, Univer-
sity of Amsterdam, The Netherlands, 1999.

