TD Learning of Game Evaluation Functions
with Hierarchies of Adaptive Experts

Marco A. Wiering and Ben J.A. Krose

Faculty of Mathematics and Computer Science
University of Amsterdam

1 Introduction

Expert Systems for playing games require an evaluation function which returns the expected
payoff from a position given optimal future play of both sides. When the evaluation function
for a game is known accurately, it can be used to compare all possible moves in a position
after which the move which results in a position with the highest evaluation can be selected.

Since neural networks are universal approximators [Cybenko89] they are able to represent
the evaluation function. Learning can be supervised (a human expert or a perfect computer
program) or by self-play [Tesauro92, Boyan92, Schraudol94] in which the temporal difference
method [Sutton88, Dayan94] is used to generate learning samples.

Games provide domains where the evaluation function can differ drastically for similar
positions (e.g. tic-tac-toe, draughts, chess). To solve the problems of having to represent dis-
continuities and storing large amounts of incoherent knowledge in one single neural network,
we propose to use multiple neural networks. In section 2 the modular architectures are de-
scribed. In section 3 the learning procedures are discussed and in section 4 the experiments
with the game of tic-tac-toe and the endgame of backgammon are described.

2 Modular Architectures

Modular architectures have been proposed consisting of a number of small expert neural
networks which co-operate to learn the desired function [Jordan92, Hampshire89]. Typically
they contain ‘gating’ networks which learn to divide the input space into a number of
subregions and ‘expert’ networks which learn a specific part of the function. Architectures
are hierarchical (figure 1) in which each propagate node uses the normalized output vectors
of a gating network to propagate the output vectors of the experts to higher levels. The
highest level propagate node will give the final output.

2.1 Hierarchical Mixtures of Experts

[Jordan92] developed a modular gating architecture for task decomposition. The system
works as follows. The gating networks are linear neural networks and are used to blend the
outputs of the experts. The output of a propagate node is a weighted sum of the gates g;
and the outputs y; of the experts : y =", giy;.

For understanding the learning algorithm, we must give the hierarchy a probabilistic
interpretation. For this the propagate nodes act like single stochastic switches. The gate-
value g; determines the probability that the propagate node decides to select the output
y; of the it" expert network. We must maximize the probability P that the architecture
generates the desired output d when the input vector Z is given. If we use a Gaussian density

‘ OuUTPUT Y ‘

Y Y2
Expert Expert
Network Network
‘ INPUT X ‘

Figure 1: A one level hierarchy of adaptive experts. All networks receive the same input.

function to model the probabilistic component that an expert produces the desired output,
the probability that the architecture generates the desired output is

P(d@) =Y gie™ 470"

A learning algorithm is developed by using gradient ascent and back-propagation to maxi-
mize the log likelihood function given by In P(d|#). When we maximize this function, expert
networks are made more responsible in regions where they out-compete the other experts.

2.2 Meta-Pi Network Architecture

The Meta-Pi network as presented by [Hampshire89] has the same structure as given in
figure 1, but instead of competing networks they use co-operating networks; the Meta-Pi
gating network learns to make experts more responsible in regions where they can be used
to minimize the error of the architecture as a whole. The propagate nodes in a Meta-Pi
architecture use the gates of the gating networks to propagate a weighted sum of the output
vectors of the experts or cluster of experts to higher levels.

The Meta-Pi network uses a squared error cost-function which is to be minimized. The
error of the whole architecture on a given example is given by

1 2
E= §(d— Zglyz)
(2
We use gradient descent and back-propagation to minimize this error-function.

2.3 Selection threshold

For both architectures, a selection threshold can be used by the propagate nodes to speed
up the learning process. The essence of a selection threshold is that experts are only invoked
when their gate is high enough, e.g. .3. This can save a lot of time, especially when many
expert networks are used. The selection threshold ST is used in the following equation as
an intermediate step before calculating the final gates

if (g:>ST) then S; = 8;

otherwise 5, =0

3 Training samples

The modular neural architecture representing the evaluation function has to be trained with
examples. In our experiments we used two methods to generate learning samples:

e Heuristic dynamic programming or reinforcement learning, using the temporal differ-
ence (TD(A)) method [Sutton88, Dayan94].

e For the endgame of backgammon we also generated learning samples from a dynamic
programming program.

The latter method constructs explicitely learning samples of the evaluation function for each
position, which can be used in a supervised learning procedure. However, the method is
computationally expensive since all states have to be evaluated repeatedly.

4 Experiments

4.1 Tic-Tac-Toe
4.1.1 Ezxperiment Design

In the first experiment the architectures are compared in learning (by TD method) to play
tic-tac-toe against a fixed opponent. Identical to the TTT knowledge base used by Boyan
[Boyan92] the opponent used the following rules:

1) IF a given move wins the game THEN play this move.
2) ELSE IF a given move for the opponent would win the game, THEN block this move by playing
on this field.

3) ELSE play a random move.

The maximal obtainable performance when playing against TTT is about 0.614. This per-
formance (match-equity) stands for (wins - losses)/games when one plays a match of a large
number of games with both white and black against the opponent TTT.

When a position has to be evaluated by the networks in which black has to move, the
colors are inverted. The advantage of this is that the input vector implicitly encodes the
fact that the opponent has to move next. The input of the networks consists of 9 units :
each unit encodes one field. The activation of an input unit will be : +1 for a circle (white),
-1 for a cross (black) and 0 for an empty field. The output V' of the networks lies between
+1 <= P(white wins) = 100% and -1 <= P(white looses) = 100%.

In order to speed up learning, expert networks were trained with extended back-propaga-
tion [Sperduti92], which multiplies the input of each neuron with an adaptive “neuron sen-
sitivity”, which are initially set to a high value (3.0) so that the activation functions become
steeper.

We studied architectures consisting of single neural networks with 30, 50 and 80 hidden
units. For the hierarchical approaches about the same number of parameters was used as
the 80 hidden units single network. The chosen HME and Meta-Pi architectures used only
two expert networks, because larger hierarchies did not perform better. We also used an
architecture which uses symbolic rules to select an expert network. The symbolic rules
select for each move a different expert network to evaluate that move. Finally we used
lookup tables to store the evaluation of each position in a different table-entry.

4.1.2 Results and Discussion

Table 1 shows that larger single networks performed better than smaller single networks.
The largest single network with 80 hidden units performed a little bit better then the HME

architectures, but this difference is not significant and the HME architecture with a selection
threshold of 0.3 saves a lot of time by not invoking one of its experts in 98% of the times!

| Architecture | h.u. || equity [SD [time]
Single 30 0.526 | .030 51m
Single 50 0.577 | .014 86m
Single 80 0.600 | .010 | 136m
HME ST=.0 2*%40 0.592 | .011 | 138m
HME ST=.3 2%40 0.592 | .009 78m

Meta-Pi ST=.0 | 2*40 0.588 | .011 | 138m
Meta-Pi ST=.3 | 2*40 0.587 | .016 | 78m

Symbolic 9%20 || 0.590 | .013 | 35m
Symbolic 9%30 0.598 | .004 | 51m
Lookup 4560* 0.606 | .007 | 102m

Table 1: The average maximal match equities obtained by the single networks and hierarchi-
cal architectures. Simulations were repeated 10 times, the required time for one simulation
is given in minutes.

The results show that architectures with a lot of parameters perform better than smaller
architectures. The selection threshold is an efficient method to use more parameters without
decreasing the propagating speed of the architecture. The hierarchical architectures which
uses symbolic rules to select a different expert network for evaluating the merits of playing
different moves gives very good performance. These architectures have a lot of parameters,
but each time only one expert needs to be invoked so they perform very fast.

The lookup table used about 4560 tables to store all evaluations of the states it had
visited. Thus it needs much more parameters than the neural networks, but it obtains the
best performance.

Almost all simulations reached a match equity which proximates the maximal obtainable
match equity of 0.614. When we compare these results with [Boyan92], who attained a
maximal match equity of 0.474, they are impressive. Except for a different input encoding,
the use of large neuron sensitivities could be the reason for the difference between the results.
The activation functions with steep slopes have less problems with learning discontinuities
than normal sigmoids have. This was also confirmed by our obtained results when we trained
the networks on a discontinuous function.

4.2 The Endgame of Backgammon
4.2.1 Ezxperimental Design

In this section we used the endgame (bear-off) of backgammon to compare TD learning to
supervised learning. The endgame considers all positions with a maximum of 14 against 14
stones in the two home-tables. This makes a total of 1.5 x 10° positions.

The networks used 68 inputs, 56 inputs encode the possible fields 0-6 where the stones
for both players are allowed to stand. The maximal number of stones that can be on a
particular field is 14, and so the number of stones on a field is binary encoded by 4 inputs.
For the other 12 inputs some features are used which are hard to learn for the network itself.

We compared temporal difference learning with supervised learning. For supervised
learning, perfect learning samples consisting of the evaluation V for a given state & are
generated by dynamic programming. Two learning set sizes have been studied: 500 samples
and 5000 samples. The architecture is trained on the learning sets for 800000 iterations.

An experiment with temporal difference learning consisted of 130000 games of self-play
starting with randomly drawn positions in the endgame. We also studied using a combina-

tion of TD and supervised learning. For this, TD learning on 100 games was interchanged
with supervised learning on 500 perfect examples during a simulation.

For both learning strategies, an independent test-set of 5000 randomly drawn examples
generated by dynamic programming was used. After every 40000 iterations, the RMS er-
ror was computed. The lowest obtained RMS error was recorded as the final result of a
simulation.

After a coarse search through the parameter space, we decided to keep a single network
with 10 hidden units. Neuron sensitivities were initialized at 1.0.

4.2.2 Results and Discussion

| Method | nr games or epochs | RMS | SD |
500 examples 1600 || 0.101 | 0.006
5000 examples 160 || 0.044 | 0.002
TD learning 130000 || 0.080 | 0.002
TD + 500 examples 65000 + 800 (| 0.068 | 0.003

Table 2: The results of training a single network with 10 hidden units on supervised learning
and TD learning. The method specifies if supervised learning is used, TD learning is used,
or a mixture of TD and supervised learning is used. The simulations were repeated 5 times.

Table 2 shows that using a large set of learning samples works best. Supervised learning on
500 examples has a much higher RMS; good generalization performance cannot be attained
with so few training examples. In figure 2 we can see that overtraining occurs.

This problem does not occur with TD learning or the mixture of TD learning and super-
vised learning. Both methods obtain better results than supervised learning on the small
learning set.

RMS 0.13

o.12

Oo.11
500
0O.10
0.09
0.08
O.07 Nzl TD 5000
0.06

0.05

0.04
iterations

Figure 2: The learning curves for a single network with 10 hidden units when the following
learning methods are used : supervised learning on 500 and 5000 perfect examples, TD
learning and a mixture of TD and supervised learning. The learning curves are averaged
over 5 simulations.

5 Conclusion

We have presented two learning algorithms for task decomposition. These methodologies are
combined with temporal difference learning to be able to learn game evaluation functions

with modular neural network architectures. Results show that TD learning is an efficient
way to learn a control policy for an agent. The obtained results show that by using archi-
tectures which contain many adjustable parameters, we can get very close to the maximal
performance of playing tic-tac-toe against a fixed imperfect opponent. When more parame-
ters are used in an architecture, the learning performance improves. Using multiple expert
networks is an efficient way to use many parameters, because we can select independent neu-
ral networks for evaluating different moves and positions, which is much faster than always
invoking one large single network.

Experiments with the endgame of backgammon show that TD learning is a viable alter-
native for learning on a training set. Overtraining of the architectures does not occur, and
it is to be expected that the generalization error will gradually decrease. The results also
showed that a combination of TD and supervised learning can be advantageous.

In the future, we want to research the efficiency of TD learning and modular neural
network architectures to learn to play more difficult games, so that the true power of this
combination can be validated.

6 Acknowledgements

Thanks to Jan Wortelboer for placing enough computer power at our disposal. Also thanks
to Patrick v.d. Smagt for introducing graphic tools and thanks to Sander Bosman, Joris v.
Dam, Anuj Dev and Gerard Schram for helping in one way or the other.

References

[Boyan92] J. Boyan. Modular Neural Networks for learning Context-Dependent Game Strate-
gies. Thesis report B.S. | University of Chicago, 1992.

[Cybenko89] G. Cybenko. Approximation by Superpositions of a Sigmoidal Function. Math. Con-
trol Signals Systems, 2, (303-314), 1989.

[Dayan94] P. Dayan & T.J. Sejnowski. TD(A) Converges with Probability 1. Machine Learning,
14, (295-301), 1994.

[Hampshire89] J.B. Hampshire & A. Waibel. The Meta-Pi network: Building distributed knowledge
representations for robust pattern recognition. Tech. report CMU-CS-89-166, Car-
negie Mellon University, August 1989.

[Jordan92] M.I. Jordan & R.A. Jacobs. Hierarchies of adaptive experts. In J. Moody, S. Hanson
& R. Lippmann (eds.), Advances in Neural Information Processing Systems, 4, (985-
993), San Mateo, CA: Morgan Kaufmann, 1992.

[Schraudol94] N.N. Schraudolph, P. Dayan, T.J. Sejnowski : Temporal difference learning of Posi-
tion evaluation in the Game of Go. In J.D. Cowan, G. Tesauro & J. Alspector (eds.),
Advances in Neural Information Processing, 6, San Fransisco, Morgan Kaufmann,
1994.

[Sperduti92] A. Sperduti. Speed Up Learning and Network Optimization With Extended Back
Propagation. Tech. report TR-10/92, University of Pisa, May 1992.

[Sutton88] R. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3, (9-44), 1988.

[Tesauro92] G. Tesauro. Practical issues in temporal difference learning. Machine Learning,

8(3/4), (257-277), Kluwer Academic Publishers, May 1992.

