
TD Learning of Game Evaluation Functionswith Hierarchies of Adaptive ExpertsMarco A. Wiering and Ben J.A. Kr�oseFaculty of Mathematics and Computer ScienceUniversity of Amsterdam1 IntroductionExpert Systems for playing games require an evaluation function which returns the expectedpayo� from a position given optimal future play of both sides. When the evaluation functionfor a game is known accurately, it can be used to compare all possible moves in a positionafter which the move which results in a position with the highest evaluation can be selected.Since neural networks are universal approximators [Cybenko89] they are able to representthe evaluation function. Learning can be supervised (a human expert or a perfect computerprogram) or by self-play [Tesauro92, Boyan92, Schraudol94] in which the temporal di�erencemethod [Sutton88, Dayan94] is used to generate learning samples.Games provide domains where the evaluation function can di�er drastically for similarpositions (e.g. tic-tac-toe, draughts, chess). To solve the problems of having to represent dis-continuities and storing large amounts of incoherent knowledge in one single neural network,we propose to use multiple neural networks. In section 2 the modular architectures are de-scribed. In section 3 the learning procedures are discussed and in section 4 the experimentswith the game of tic-tac-toe and the endgame of backgammon are described.2 Modular ArchitecturesModular architectures have been proposed consisting of a number of small expert neuralnetworks which co-operate to learn the desired function [Jordan92, Hampshire89]. Typicallythey contain `gating' networks which learn to divide the input space into a number ofsubregions and `expert' networks which learn a speci�c part of the function. Architecturesare hierarchical (�gure 1) in which each propagate node uses the normalized output vectorsof a gating network to propagate the output vectors of the experts to higher levels. Thehighest level propagate node will give the �nal output.2.1 Hierarchical Mixtures of Experts[Jordan92] developed a modular gating architecture for task decomposition. The systemworks as follows. The gating networks are linear neural networks and are used to blend theoutputs of the experts. The output of a propagate node is a weighted sum of the gates giand the outputs yi of the experts : y =Pi giyi.For understanding the learning algorithm, we must give the hierarchy a probabilisticinterpretation. For this the propagate nodes act like single stochastic switches. The gate-value gi determines the probability that the propagate node decides to select the outputyi of the ith expert network. We must maximize the probability P that the architecturegenerates the desired output d when the input vector ~x is given. If we use a Gaussian density1

Expert

Network Network

Network

Gating

INPUT X

OUTPUT Y

Expert

node

propagate
g

g

y y

1

2

1 2

Figure 1: A one level hierarchy of adaptive experts. All networks receive the same input.function to model the probabilistic component that an expert produces the desired output,the probability that the architecture generates the desired output isP (dj~x) =Xi gie� 12 (d�yi)2A learning algorithm is developed by using gradient ascent and back-propagation to maxi-mize the log likelihood function given by lnP (dj~x). When we maximize this function, expertnetworks are made more responsible in regions where they out-compete the other experts.2.2 Meta-Pi Network ArchitectureThe Meta-Pi network as presented by [Hampshire89] has the same structure as given in�gure 1, but instead of competing networks they use co-operating networks; the Meta-Pigating network learns to make experts more responsible in regions where they can be usedto minimize the error of the architecture as a whole. The propagate nodes in a Meta-Piarchitecture use the gates of the gating networks to propagate a weighted sum of the outputvectors of the experts or cluster of experts to higher levels.The Meta-Pi network uses a squared error cost-function which is to be minimized. Theerror of the whole architecture on a given example is given byE = 12(d�Xi giyi)2We use gradient descent and back-propagation to minimize this error-function.2.3 Selection thresholdFor both architectures, a selection threshold can be used by the propagate nodes to speedup the learning process. The essence of a selection threshold is that experts are only invokedwhen their gate is high enough, e.g. .3. This can save a lot of time, especially when manyexpert networks are used. The selection threshold ST is used in the following equation asan intermediate step before calculating the �nal gatesif (gi>ST) then si = siotherwise si = 0

3 Training samplesThe modular neural architecture representing the evaluation function has to be trained withexamples. In our experiments we used two methods to generate learning samples:� Heuristic dynamic programming or reinforcement learning, using the temporal di�er-ence (TD(�)) method [Sutton88, Dayan94].� For the endgame of backgammon we also generated learning samples from a dynamicprogramming program.The latter method constructs explicitely learning samples of the evaluation function for eachposition, which can be used in a supervised learning procedure. However, the method iscomputationally expensive since all states have to be evaluated repeatedly.4 Experiments4.1 Tic-Tac-Toe4.1.1 Experiment DesignIn the �rst experiment the architectures are compared in learning (by TD method) to playtic-tac-toe against a �xed opponent. Identical to the TTT knowledge base used by Boyan[Boyan92] the opponent used the following rules:1) IF a given move wins the game THEN play this move.2) ELSE IF a given move for the opponent would win the game, THEN block this move by playingon this �eld.3) ELSE play a random move.The maximal obtainable performance when playing against TTT is about 0.614. This per-formance (match-equity) stands for (wins - losses)/games when one plays a match of a largenumber of games with both white and black against the opponent TTT.When a position has to be evaluated by the networks in which black has to move, thecolors are inverted. The advantage of this is that the input vector implicitly encodes thefact that the opponent has to move next. The input of the networks consists of 9 units :each unit encodes one �eld. The activation of an input unit will be : +1 for a circle (white),-1 for a cross (black) and 0 for an empty �eld. The output V of the networks lies between+1 () P(white wins) = 100% and -1 () P(white looses) = 100%.In order to speed up learning, expert networks were trained with extended back-propaga-tion [Sperduti92], which multiplies the input of each neuron with an adaptive \neuron sen-sitivity", which are initially set to a high value (3.0) so that the activation functions becomesteeper.We studied architectures consisting of single neural networks with 30, 50 and 80 hiddenunits. For the hierarchical approaches about the same number of parameters was used asthe 80 hidden units single network. The chosen HME and Meta-Pi architectures used onlytwo expert networks, because larger hierarchies did not perform better. We also used anarchitecture which uses symbolic rules to select an expert network. The symbolic rulesselect for each move a di�erent expert network to evaluate that move. Finally we usedlookup tables to store the evaluation of each position in a di�erent table-entry.4.1.2 Results and DiscussionTable 1 shows that larger single networks performed better than smaller single networks.The largest single network with 80 hidden units performed a little bit better then the HME

architectures, but this di�erence is not signi�cant and the HME architecture with a selectionthreshold of 0.3 saves a lot of time by not invoking one of its experts in 98% of the times!Architecture h.u. equity SD timeSingle 30 0.526 .030 51mSingle 50 0.577 .014 85mSingle 80 0.600 .010 136mHME ST=.0 2*40 0.592 .011 138mHME ST=.3 2*40 0.592 .009 78mMeta-Pi ST=.0 2*40 0.588 .011 138mMeta-Pi ST=.3 2*40 0.587 .016 78mSymbolic 9*20 0.590 .013 35mSymbolic 9*30 0.598 .004 51mLookup 4560* 0.606 .007 102mTable 1: The average maximal match equities obtained by the single networks and hierarchi-cal architectures. Simulations were repeated 10 times, the required time for one simulationis given in minutes.The results show that architectures with a lot of parameters perform better than smallerarchitectures. The selection threshold is an e�cient method to use more parameters withoutdecreasing the propagating speed of the architecture. The hierarchical architectures whichuses symbolic rules to select a di�erent expert network for evaluating the merits of playingdi�erent moves gives very good performance. These architectures have a lot of parameters,but each time only one expert needs to be invoked so they perform very fast.The lookup table used about 4560 tables to store all evaluations of the states it hadvisited. Thus it needs much more parameters than the neural networks, but it obtains thebest performance.Almost all simulations reached a match equity which proximates the maximal obtainablematch equity of 0.614. When we compare these results with [Boyan92], who attained amaximal match equity of 0.474, they are impressive. Except for a di�erent input encoding,the use of large neuron sensitivities could be the reason for the di�erence between the results.The activation functions with steep slopes have less problems with learning discontinuitiesthan normal sigmoids have. This was also con�rmed by our obtained results when we trainedthe networks on a discontinuous function.4.2 The Endgame of Backgammon4.2.1 Experimental DesignIn this section we used the endgame (bear-o�) of backgammon to compare TD learning tosupervised learning. The endgame considers all positions with a maximum of 14 against 14stones in the two home-tables. This makes a total of 1:5 � 109 positions.The networks used 68 inputs, 56 inputs encode the possible �elds 0-6 where the stonesfor both players are allowed to stand. The maximal number of stones that can be on aparticular �eld is 14, and so the number of stones on a �eld is binary encoded by 4 inputs.For the other 12 inputs some features are used which are hard to learn for the network itself.We compared temporal di�erence learning with supervised learning. For supervisedlearning, perfect learning samples consisting of the evaluation V for a given state ~x aregenerated by dynamic programming. Two learning set sizes have been studied: 500 samplesand 5000 samples. The architecture is trained on the learning sets for 800000 iterations.An experiment with temporal di�erence learning consisted of 130000 games of self-playstarting with randomly drawn positions in the endgame. We also studied using a combina-

tion of TD and supervised learning. For this, TD learning on 100 games was interchangedwith supervised learning on 500 perfect examples during a simulation.For both learning strategies, an independent test-set of 5000 randomly drawn examplesgenerated by dynamic programming was used. After every 40000 iterations, the RMS er-ror was computed. The lowest obtained RMS error was recorded as the �nal result of asimulation.After a coarse search through the parameter space, we decided to keep a single networkwith 10 hidden units. Neuron sensitivities were initialized at 1.0.4.2.2 Results and DiscussionMethod nr games or epochs RMS SD500 examples 1600 0.101 0.0065000 examples 160 0.044 0.002TD learning 130000 0.080 0.002TD + 500 examples 65000 + 800 0.068 0.003Table 2: The results of training a single network with 10 hidden units on supervised learningand TD learning. The method speci�es if supervised learning is used, TD learning is used,or a mixture of TD and supervised learning is used. The simulations were repeated 5 times.Table 2 shows that using a large set of learning samples works best. Supervised learning on500 examples has a much higher RMS; good generalization performance cannot be attainedwith so few training examples. In �gure 2 we can see that overtraining occurs.This problem does not occur with TD learning or the mixture of TD learning and super-vised learning. Both methods obtain better results than supervised learning on the smalllearning set.
 500

 TD + 500

 TD

 5000

 0.13

 0.12

 0.11

 0.10

 0.09

 0.08

 0.07

 0.06

 0.05

 0.04

 500000

RMS

iterationsFigure 2: The learning curves for a single network with 10 hidden units when the followinglearning methods are used : supervised learning on 500 and 5000 perfect examples, TDlearning and a mixture of TD and supervised learning. The learning curves are averagedover 5 simulations.5 ConclusionWe have presented two learning algorithms for task decomposition. These methodologies arecombined with temporal di�erence learning to be able to learn game evaluation functions

with modular neural network architectures. Results show that TD learning is an e�cientway to learn a control policy for an agent. The obtained results show that by using archi-tectures which contain many adjustable parameters, we can get very close to the maximalperformance of playing tic-tac-toe against a �xed imperfect opponent. When more parame-ters are used in an architecture, the learning performance improves. Using multiple expertnetworks is an e�cient way to use many parameters, because we can select independent neu-ral networks for evaluating di�erent moves and positions, which is much faster than alwaysinvoking one large single network.Experiments with the endgame of backgammon show that TD learning is a viable alter-native for learning on a training set. Overtraining of the architectures does not occur, andit is to be expected that the generalization error will gradually decrease. The results alsoshowed that a combination of TD and supervised learning can be advantageous.In the future, we want to research the e�ciency of TD learning and modular neuralnetwork architectures to learn to play more di�cult games, so that the true power of thiscombination can be validated.6 AcknowledgementsThanks to Jan Wortelboer for placing enough computer power at our disposal. Also thanksto Patrick v.d. Smagt for introducing graphic tools and thanks to Sander Bosman, Joris v.Dam, Anuj Dev and Gerard Schram for helping in one way or the other.References[Boyan92] J. Boyan. Modular Neural Networks for learning Context-Dependent Game Strate-gies. Thesis report B.S. , University of Chicago, 1992.[Cybenko89] G. Cybenko. Approximation by Superpositions of a Sigmoidal Function.Math. Con-trol Signals Systems, 2, (303-314), 1989.[Dayan94] P. Dayan & T.J. Sejnowski. TD(�) Converges with Probability 1. Machine Learning,14, (295-301), 1994.[Hampshire89] J.B. Hampshire & A. Waibel. The Meta-Pi network: Building distributed knowledgerepresentations for robust pattern recognition. Tech. report CMU-CS-89-166, Car-negie Mellon University, August 1989.[Jordan92] M.I. Jordan & R.A. Jacobs. Hierarchies of adaptive experts. In J. Moody, S. Hanson& R. Lippmann (eds.), Advances in Neural Information Processing Systems, 4, (985-993), San Mateo, CA: Morgan Kaufmann, 1992.[Schraudol94] N.N. Schraudolph, P. Dayan, T.J. Sejnowski : Temporal di�erence learning of Posi-tion evaluation in the Game of Go. In J.D. Cowan, G. Tesauro & J. Alspector (eds.),Advances in Neural Information Processing, 6, San Fransisco, Morgan Kaufmann,1994.[Sperduti92] A. Sperduti. Speed Up Learning and Network Optimization With Extended BackPropagation. Tech. report TR-10/92, University of Pisa, May 1992.[Sutton88] R. Sutton. Learning to predict by the methods of temporal di�erences. MachineLearning, 3, (9-44), 1988.[Tesauro92] G. Tesauro. Practical issues in temporal di�erence learning. Machine Learning,8(3/4), (257-277), Kluwer Academic Publishers, May 1992.

