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Abstract

To solve partially observable Markov decision problems, we introduce HQ-learning, a hier-
archical extension of Q-learning. HQ-learning is based on an ordered sequence of subagents,
each learning to identify and solve a Markovian subtask of the total task. Each agent learns (1)
an appropriate subgoal (though there is no intermediate, external reinforcement for “good”
subgoals), and (2) a Markovian policy, given a particular subgoal. Our experiments demon-
strate: (a) The system can easily solve tasks standard Q-learning cannot solve at all. (b) It can
solve partially observable mazes with more states than those used in most previous POMDP
work. (c) It can quickly solve complex tasks that require manipulation of the environment to
free a blocked path to the goal.

Keywords: reinforcement learning, hierarchical Q-learning, POMDPs, non-Markovian interfaces,
subgoal learning.

1 INTRODUCTION

The problem. If a learner’s optimal next action always depends only on its current input,
we speak of a Markovian interface between learner and environment. The most widely used
reinforcement learning (RL) algorithms, such as TD(\) (Sutton 1988) and Q-learning (Watkins
1989; Watkins and Dayan 1992), depend on Markovian interfaces; they fail if the problem requires
memory of previous events. Such non-Markovian interfaces, however, are common in the real
world — even Markovian environments may appear non-Markovian to the learner due to a lack of
perfect information about the current environmental state. The problem of controlling a system
in such partially observable environments can be cast in the partially observable Markov decision
problem (POMDP) framework. There are a number of algorithms for POMDPs, e.g., Schmidhuber
(1991), McCallum (1993), Ring (1994), Kaelbling et al. (1995), Jaakkola et al. (1995), Littman
(1995), though most of them are feasible only for small problems. This paper presents a novel,
quite different approach which appears to scale far more reasonably. For alternative approaches
to larger scale POMDPs, see also Schmidhuber et al. (1996), Wiering and Schmidhuber (1996),
and Zhao and Schmidhuber (1996).

Basic idea. In realistic environments some memory of previous events is required to select the
optimal next action. Often, however, it is not necessary to memorize the entire past (in general
this would be quite infeasible) — a few memories corresponding to important previously achieved
subgoals can be sufficient. For instance, suppose your instructions for the way to the station were



this: ”Follow this road to the traffic light, turn left, follow that road to the next traffic light,
turn right, there you are.”. While you are on your way, only few memories corresponding to the
important subgoals are relevant, such as “I already passed the first traffic light”. In-between two
subgoals a reactive, memory-independent strategy will carry you safely. This idea is incorporated
in HQ-learning, a novel, hierarchical extension of Watkins’ Q-learning. HQ-learning’s divide-
and-conquer strategy learns subgoals to decompose a possibly non-Markovian task into simpler,
Markovian subtasks. The system uses multiple subagents. Each agent’s policy is a mapping from
states to actions. At a given time, the system’s only type of short-term memory is embodied
by a pointer indicating which agent is active. Each agent learns a context-specific strategy for
solving its subgoal. Policies of different agents are combined in a way learned by the agents
themselves. The first active agent uses a subgoal table (its HQ-table) to generate a subgoal for
itself (for instance, subgoals can be represented as desired inputs). Then it follows the policy
embodied by its Q-table until it achieves its subgoal. Then control is passed to the next agent,
and the procedure repeats itself. After the overall goal is achieved or a time limit is exceeded,
each agent uses a novel learning procedure (to be described in section 2) to adjust its policy and
its subgoal. Although each agent learns only “Markovian” subproblems, the whole system can
learn “non-Markovian” tasks impossible to learn with single lookup tables. Unlike, e.g., Singh’s
system (1992) and Lin’s hierarchical learning method (1993), ours does not depend on an external
teacher who provides a priori information about “good” subtasks. Unlike Jaakkola et al.’s method
(1995), ours is not limited to finding suboptimal stochastic policies for POMDPs with an optimal
deterministic solution.

Outline. Section 2 describes HQ-learning details, including learning rules for both Q- and
HQ-tables. Section 3 describes experiments with relatively complex partially observable mazes.
In the first experiment the system solves a POMDP that standard Q-learning cannot solve by au-
tomatically decomposing it into three appropriate Markovian subtasks. In the second experiment
it solves a complex POMDP (with 960 world states) that requires finding a key to open a door
blocking the path to the goal. Section 4 briefly reviews related work that has mainly been tested
on small problems, as most previous methods do not scale up very well (Littman 1995). Section
5 concludes and lists directions for future research.

2 HQ-LEARNING

POMDP specification. System life is separable into “trials”. A trial consists of at most Tyaz
discrete time steps t = 1,2,3,...,T. The POMDP is specified by Z =< 5,5,,0,B,A,R,v,D >,
where S is a finite set of environmental states, S; € S is the initial state, O is a finite set of
observations, the function B : S — O maps states to (ambiguous) observations, A is a finite set
of actions, R: S x A — IR maps state-action pairs to scalar reinforcement signals, 0 <~y < 1is a
discount factor which trades off immediate rewards against future rewards, and D : Sx A — Sisa
state transition function. Though the framework can be extended to non-deterministic worlds, we
focus on deterministic state transition functions for simplicity: Siy1 := D(Sy, At), where Sy € S
is the environmental state at time ¢, and A; € A is the action executed at time ¢. The system’s
goal is to obtain maximal (discounted) cumulative reinforcement during the trial.

Architecture. There is an ordered sequence of M agents Cy, Ce, ... Cp, each equipped with
a Q-table, an HQ-table, and a transfer control unit, except for Cps, which only has a Q-table (see
figure 1). Each agent is responsible for learning part of the system’s policy. Its Q-table represents
its local policy for executing an action given an input. It is given by a matrix of size |O] x |A],
where |O| is the number of different possible observations and |A| the number of possible actions.
Qi(O¢, A;) denotes C;’s Q-value (utility) of action A; given observation O;. The agent’s current
subgoal is generated with the help of its HQ-table, a vector with |O| elements. HQ;(O;) denotes
Ci’s HQ-value (utility) of selecting O, as its subgoal. For each possible observation there is a
HQ-table entry representing its estimated value as a subgoal.

The system’s current policy is the policy of the currently active agent. If C; is active at time



step t, then we will denote this by Active(t) := i. The information about which agent is active
represents the only kind of short-term memory in the system.
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Figure 1: Basic architecture. Three agents are connected in a sequential way. Fach agent has
a Q-table, an HQ-table, and a transfer control unit, except for the last agent which only has a
Q-table. The Q-table stores estimates of actual observation/action values and is used to select the
next action. The HQ-table stores estimated subgoal values and is used to generate a subgoal once
the agent is made active. The solid box indicates that the second agent is the currently active agent.
Once the agent has achieved its subgoal, the transfer control unit passes control to its successor.

Selecting a subgoal. In the beginning C; is made active. Once C; is active, its HQ-table is
used to select a subgoal for C;. Subgoal O; is chosen with probability P7%i(0;) according to the
Max-Uniform distribution:

Maxl(O]) 1-— Prmaz
+ : 1
S oco Mar,(09) T 0] M

Here Pry,q. denotes the probability of using the “max-choice rule” (which chooses a subgoal with
maximal HQ-value) for subgoal selection. Max;(O;) returns 1if VO, € O : HQ;(Ox) < HQ;(0;),
and 0 otherwise. O; denotes the subgoal selected by agent C;. This subgoal is only used in transfer
control as defined below and should not be confused with an observation.

PHQ(0;) := Pryas

Selecting an action. C;’s action choice depends only on the current observation O;. During
learning, at time ¢, the active agent C; will select action A; with probability PtQi(A]') according
to the Max-Boltzmann distribution:

Max; A Qi(04,A;)/T;
az;(Oy, Aj) + (1= Proa) e L
ZAkGA Mami(ot,Ak) ZAkGA eQz( ty k)/ 3

The function Maxz;(Oy, Aj) returns 1 if VA, € A 1 Qi(O¢, Ar) < Qi(04, 4;), and 0 otherwise.
The “temperature” T; adjusts the degree of randomness involved in agent C;’s action selection (as
long as Prpge < 1).

PRi(A)) := Proas




Why use the Max-Boltzmann (Max-Uniform) distribution for Q-values (HQ-values)? Because
these distributions can prevent over-exploration, which sometimes makes policies unstable (for
discussions of exploration issues see, e.g., Fedorov 1972; Schmidhuber 1991; Thrun 1992; Cohn
1994; Caironi and Dorigo 1994; Storck et al. 1995; Wilson 1996b). These distributions also make
it easy to reduce the relative weight of exploration (as opposed to exploitation). During learning
we can increase Pry,,, until it finally becomes 1 to obtain a deterministic policy at the end of the
learning process. Schraudolph et al. (1994) also used these mixture distributions to train their
TD-Go networks (Schraudolph, personal communication, 1996).

Transfer control. Transfer of control from one active agent to the next is implemented as
follows. Each time C; has executed an action, its transfer control unit checks whether C; has
reached the goal. If not, it checks whether C; has solved its subgoal to decide whether control
should be passed on to C;4 ;. We let ¢; denote the time at which agent C; is made active (at system
start-up, we set ¢, «— 1).

IF no absorbing state reached AND current subgoal = O;

AND Active(t) < M AND B(S;) = O;
THEN Active(t + 1) «— Active(t) +1 AND t;41 «— t+1

2.1 LEARNING RULES

We use off-line learning for updating the tables (no intra-trial changes). The learning rules appear
very similar to those of conventional Q-learning. One major difference though is that each agent’s
prospects of achieving its subgoal tend to vary as various agents try various subgoals.

Learning the Q-values. We want Q;(0,, A;) to approximate the system’s expected dis-
counted future reward for executing action A;, given O;. In the optimal case we have

Qi(0, Aj) = Z Py(S5|0¢,0,0)(R(S5, Aj) + YVactiver+1) (B(D(S;, 45)))),
S]'GS

where P;(S;|0¢,©,1) denotes the probability that the system is in state S; at time t given ob-
servation Oy, all architecture parameters denoted ©, and the information that i = Active(t).
HQ-learning does not depend on estimating this probability (although a world model might help
to speed up learning, e.g., Moore 1993). V;(Oy) is the utility of observation O; according to agent
Ci, which is equal to the Q-value for taking the best action: V;(O;) := Maxa;ca{Qi(O, Aj)}.
Q-value updates are generated in two different cases (T' < Tynq: denotes the total number of
executed actions during the current trial, and a? is the learning rate):

Q.1 If C; is active at time ¢, and C; is active at time ¢ 4+ 1, and ¢ < 7" then
Qi(01, A4y) — (1 = a®)Qi(O4, Ar) + a®(R(St, Ar) + 7Vj(Or11))-

Q.2 If agent C; is active at time T', and the final action Ap has been executed, then
Qi(Or,Ar) — (1 —a®)Qi(Or, Ar) + a®R(St, AT).

As mentioned above, the update rules resemble normal one-step Q-learning. A main difference
is that agents can be trained on Q-values which are not their own (see [Q.1]).

Learning the HQ-values. We want the HQ-values HQ;(O;) to converge to the expected
(discounted) future cumulative reinforcement given subgoal O; and current system policy. In the
optimal case we have

HQi(0;) = E(Ry) + "+ 7" HViy,

i1
where R; = E:ti ! vt R(Sy, Ay), Ci’s discounted cumulative reinforcement during the time it
will be active (note that this time interval and the states encountered by C; depend on C;’s subtask),
and where HV; := Mazo,c0{HQi(O1)}), the estimated discounted cumulative reinforcement to

be received by C;.



In a given trial, we adjust only HQ-values of agents active during that trial. HQ-table updates
resemble Q-table updates (@ denotes the learning rate, and O; the chosen subgoal for agent

C:):

HQ.1 If C; is invoked before agent Cy—;, then we update according to
HQi(0;) — (1 =a")HQi(0;) + a9 (R; + 4l +1 "M HV14).

HQ.2 If Cl = CN—I; then HQz(Oz) — (1 — aHQ)HQi(Oi) +04HQ(R¢ + ’)/tN_tiRN).
HQ.3 If C; =Cn, and ¢ < M, then HQZ(Oz) —(1- aHQ)HQi(Oi) +a"9R;.

The first and third rules resemble traditional Q-learning rules. The second rule is necessary
if agent Cy learned a (possibly high) value for a subgoal that is unachievable due to subgoals
selected by previous agents.

Comment. Although Q-tables and HQ-tables do not explicitly communicate they influence
each other. This results in complex dynamics quite different from those of conventional Q-learning.

TD(A)-modification. To speed up learning we may use the TD(A)-method to modify the
learning rules above in a manner analogous to Lin’s (1993). This changes update details as follows:

Q(X).1 For the Q-tables we first compute desired Q-values Q'(Oy, A;) for t =1,...,T:
Q'(Or, Ar) < R(Sr, Ar)
Q' (O, Ar) — R(St, A) + v((1 = M)Vactivet+1)(Otg1) + AQ' (041, Ary1))

Q(A).2 Then we update the Q-values, beginning with Qn(Or, A7) and ending with Q1(01, A1),
according to
Qi(0r, Ar) — (1= a?)Qi (04, Ar) + Q' (O, Ay)

HQ()).1 For the HQ-tables we also compute desired HQ-values HQ;(Ol) fori = 1,...,N:
HQ'y(On) « Ry
HQ9V71(OAN_1) — Ry_1 +yIVtRy
HQ(0:) — Ry + 4"+ ~4((1 = N HVip1 + AHQ}, (Oi41))

HQ()).2 Then we update the HQ-values for agents Cy, ..., Cppin(n,m—1) according to
HQi(0;) « (1 — o) HQ:(0;) + o HQ'(O;)

3 EXPERIMENTS

We test our system on two tasks involving non-Markovian interfaces between learner and environ-
ment. The first task is to find a path from start to goal in a partially observable 10 x 10-maze.
This POMDP can be collectively solved by three or more “Markovian” agents. We study system
performance as more agents are added. The second, quite complex task involves finding a key
which opens a door blocking the path to the goal. The optimal solution (which requires at least
3 “Markovian” agents) takes 83 steps.

3.1 LEARNING TO SOLVE A PARTIALLY OBSERVABLE MAZE

Task. The first experiment involves the partially observable maze shown in figure 2A. The
system has to discover a path leading from start position S to goal G. There are four actions with
obvious semantics: go west, go north, go east, go south. There are 16 possible observations: the
agent can only “see” which of the 4 adjacent fields are blocked. Although there are 62 possible
agent positions, there are only 9 highly ambiguous inputs. (Not all of the 16 possible observations
can occur in this maze; this means that the system may occasionally generate unsolvable subgoals,
such that control will never be transferred to another agent.) There is no deterministic, memory-
free policy for solving this task. For instance, input 5 stands for “fields to the left and to the right
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Figure 2: (A) A partially observable maze (POM). The task is to find a path leading from start S to
goal G. Although there are 62 possible agent positions, there are only 9 different, highly ambiguous
inputs — some kind of memory is necessary to disambiguate them. That’s why conventional
Q-learning fails to solve this problem. The optimal solution requires 28 steps and at least three
“Markovian” agents. The figure shows a possible solution that costs 30 steps. Asterisks mark
appropriate “Markovian” subgoals. (B) HQ-learning results for the partially observable maze, for
3, 4, 6, 8, and 12 agents. We plot average test run length against trial numbers (means of 100
simulations). The system almost always converges to near-optimal solutions. Using more than the
required 8 agents tends to improve performance. (C) Results for 4, 8, and 12 agents whose actions
are corrupted by 10% mnoise. In most cases they find the goal, although noisy actions decrease
performance.

of the agent are blocked”. The optimal action in response to input 5 depends on the subtask: at
the beginning of a trial, it is “go north”, later “go south”, near the end, “go north” again. Hence
at least three “Markovian” agents are necessary to solve this POMDP.

Reward function. Ouly if the system hits the goal, it receives a reward of 100. Otherwise
the reward is zero. The discount factor v = .9.

Parameters and experimental set-up. We compare systems with 3, 4, 6, 8, and 12 agents
for noise-free actions. We also compare systems with 4, 8 and 12 agents whose actions selected
during learning/testing are replaced by random actions with probability 10%. One experiment
consists of 100 simulations of a given system. Each simulation consists of 20,000 trials. T},qz is
1000. After every 500th trial there is a test run during which actions and subgoals with maximal
table entries are selected (Pry,qe is set to 1.0). If the system does not find the goal during a test
run, then the trial’s outcome is counted as 1000 steps.

After a coarse search through parameter space, we use the following parameters for all exper-
iments: a? = .05, a9 = 2,Vi: T; = .1, A = .9 for both HQ-tables and Q-tables. Pr,,q,, is set
to .9 and linearly increased to 1.0. All table entries are initialized with 0.

For purposes of comparison, we also ran 20,000 trials during which at most 1000 actions were
picked randomly.

Results. Figure 2B plots average test run length against trial numbers. Within 20,000 trials all
systems almost always find near-optimal deterministic policies. (Q-learning by itself fails miserably,
of course.)

Consider Table 1. The largest systems are always able to decompose the POMDP into Marko-
vian subtasks. The average number of steps is close to optimal. In approximately 1 out of 8 cases,
the optimal path is found. In most cases one of the 30-step solutions is found. Since the number
of 30-step solutions is much larger than the number of 28-step solutions (there are many more
possible subgoal sequences), this result is not surprising.

Systems with more than 3 agents are performing better — here the system profits from having
more free parameters. More than 6 agents don’t help though. All systems perform significantly



| System | Av. steps | (%) Found Goal | (%) Optimal

3 agents 263 76 3
4 agents 60 97 6
6 agents 31 100 14
8 agents 31 100 12
12 agents 32 100 6
4 agents 10% noise 177 86 2
8 agents 10% noise 166 87 2
12 agents 10% noise 196 84 0
Random 912 19 0

Table 1: HQ-learning results for random actions replacing the selected actions with probability 0%
and 10%. The 2nd column lists average numbers of steps required to find the goal. The 3rd column
lists numbers of simulations during which the goal is found in the final trial. The Jth column lists
numbers of simulations during which the optimal path is found in the final trial.

better than the random system, which finds the goal in only 19% of all 1000 step trials.

In case of noisy actions (the probability of replacing a selected action by a random action is
10%), the systems still reach the goal in most of the simulations (see figure 3C). In the final trial
of each simulation, systems with 4 (8, and 12) agents find the goal with probability 86% (87%,
and 84%). There is no significant difference between smaller and larger systems.

We also studied how the system adds agents during the learning process. The 8-agent system
found solutions using 3 (4, 5, 6, 7, 8) agents in 8 (19, 16, 17, 21, 19) simulations. Using more
agents tends to make things easier. During the first few trials 3 agents were used on average.
During the final trials 6 agents were used on average. Less agents tend to lead to better results,
however. Why? Systems that fail to solve the task with few subgoals start using more subgoals
until they become successful. But the more subgoals there are, the more possibilities to compose
paths, and the lower the probability of finding a shortest path in this maze.

3.2 THE KEY AND THE DOOR

Task. The second experiment involves the 26 x 23 maze shown in figure 3A. Starting at S,
the system has to (1) fetch a key at position K, (2) move towards the “door” (the shaded area)
which normally behaves like a wall and will open (disappear) only if the agent is in possession of
the key, and (3) proceed to goal G. There are only 11 different, highly ambiguous inputs — the
task is a difficult POMDP. The optimal path takes 83 steps.

Reward function. Once the system hits the goal, it receives a reward of 500. For all other
actions there is a reward of -0.1. There is no additional, intermediate reward for taking the key
or going through the door. The discount factor v = 1.0.

Parameters. The experimental set-up is analogous to the one in section 3.1. We use systems
with 3, 4, 6 and 8 agents, and systems with 8 agents whose actions are corrupted by different
amounts of noise (5%, 10%, and 25%). a® = .05, afQ = 01 Vi : T; = 2. Pry,, is linearly
increased from .4 to .8. Other parameters are the same as in section 3.1. One simulation consists
of 20,000 trials.

Results. We first ran 20,000 1000 step trials of a system executing random actions. It never
found the goal. Then we ran the random system for 3000 10,000 step trials. The shortest path ever
found took 1,174 steps. We observe: finding the goal at all without any negative reinforcement
signals is extremely difficult.

Figure 3B and Table 2 show HQ-learning results for noise-free actions. Within 20,000 trials
good, deterministic policies are found in almost all simulations. Optimal 83 step paths are found
with 3 (4, 6, 8) agents in 8% (9%, 8%, 6%) of all simulations.



1000 ; . 1000 , —

) 3 agents X 5% noise ——

A\ 4 agents - 3 10% noise -

i 6 agents - - s 25% noise - -
800 [ i 8 agents 4 800 optimal

y optimal ------- &,
600 g 600 -
400 | I 1 400 |
N TT—— |
200 e 1 200 f
o . . . o . . .
o 5000 10000 15000 20000 (o] 5000 10000 15000 20000

Figure 3: (A) A partially observable maze containing a key K and a door (grey area). Starting at
S, the system first has to find the key to open the door, then proceed to the goal G. The shortest
path costs 83 steps. This optimal solution requires at least three “Markovian” agents. The number
of possible world states is 960, which is much higher than in most POMDPs studied by other
authors. (B) HQ-learning results for this “key and door problem”. We plot average test run length
against trial number (means of 100 simulations). Within 20,000 trials systems with 3 (4, 6 and
8) agents find good deterministic policies in 85% (96%, 96% and 99%) of the simulations. (C)
HQ-learning results with an 8 agent system whose actions are replaced by random actions with
probability 5%, 10%, and 25%.

If random actions are taken in 5% (10%, 25%) of all cases, the 8 agent system still finds the
goal in 92% (90%, 84%) of the final trials (see table 2). In many cases long paths (300 — 700
steps) are found. The best solutions use only 84 (91, 118) steps, though. Interestingly, a little
noise (e.g. 5%) does decrease performance, but much more noise does not lead to much worse
results. We do not yet know whether this is due to HQ-learning or the task set-up or both.

| System | Av. steps | (%) Found Goal | (%) Optimal |
3 agents 224 85 8
4 agents 126 96 9
6 agents 127 96 8
8 agents 101 99 6
8 agents (5% noise) 360 92 0
8 agents (10% noise) 399 90 0
8 agents (25% noise) 442 84 0
Random *9310 19 0

Table 2: Results of 100 HQ-learning simulations for the “key and door” task. The second column
lists average numbers of steps required to find the goal. The third lists numbers of simulations
during which the goal was found in the final trial. The fourth lists numbers of simulations during
which the optimal path of 83 steps was found in the final trial. HQ-learning could solve the task
with a limit of 1000 steps per trial. Random search needed a 10,000 step limit.

4 PREVIOUS WORK

Other authors proposed hierarchical reinforcement learning techniques to improve performance on
Markov decision problems (MDPs), e.g., Dayan and Hinton (1993), Moore (1993), Tham (1995).
However, their methods are based on the Markov assumption. Since the focus of our paper is on
POMDPs, this section is limited to a brief summary of previous POMDP approaches with specific



advantages and disadvantages.

Recurrent neural networks. There are two interacting, gradient-based recurrent networks.
The “model network” serves to model (predict) the environment, the other one uses the model
net to compute gradients maximizing reinforcement predicted by the model (Schmidhuber 1991;
extending ideas by Nguyen and B. Widrow 1989; and Jordan and Rumelhart 1990). To our
knowledge this work presents the first successful reinforcement learning application to simple non-
Markovian tasks (e.g., learning to be a flipflop). Lin (1993) also uses combinations of controllers
and recurrent nets. He compares time-delay neural networks (TDNNs) and recurrent neural
networks. Despite their theoretical power, standard recurrent nets run into practical problems in
case of long time lags between relevant input events. Although there are recent approaches to
overcome this problem (Hochreiter and Schmidhuber 1996), there are no reinforcement learning
applications yet.

Belief vectors etc. Kaelbling et al. (1995) hierarchically build policy trees to calculate
optimal policies in stochastic, partially observable environments. For each possible environmental
state, a “belief vector” represents the agent’s estimate of the probability of currently being in this
state. The belief vector is updated after each observation. Operation research algorithms are used
to compute optimal actions by dynamic programming. Problems with this approach are that the
nature of the underlying MDP needs to be known, and that it is computationally very expensive.

McCallum’s utile distinction memory (1993) combines Hidden Markov Models (HMMs) with
Q-learning. It is able to solve simple POMDPs (maze tasks with only a few fields) by splitting
“inconsistent” HMM states whenever the agent fails to predict their utilities (but instead expe-
riences quite different returns from these states). One problem of the approach is that it cannot
solve problems in which conjunctions of successive perceptions are useful for predicting reward
while independent perceptions are irrelevant. HQ-learning does not have this problem — it deals
with perceptive conjunctions by using multiple agents if necessary.

Littman et al. (1995) compare different POMDP algorithms using belief vectors. They report
that “small POMDPs” (with less than 10 states and few actions) do not pose a very big problem
for most methods. Larger POMDPs (50 to 100 states), however, cause major problems. This
indicates that the problems in the current paper (which involve 62 and 960 states) can hardly
be solved by such methods. HQ-learning, by contrast, is neither computationally complex nor
requires knowledge of the underlying MDP. In absence of prior knowledge this can be a significant
advantage.

Memory bits. Littman (1994) uses branch-and-bound heuristics to find suboptimal mem-
oryless policies extremely quickly. To deal with mazes for which there is no safe, deterministic,
memoryless policy, he replaces each conventional action by two actions, each having the additional
effect of switching on or off a “memory bit”. Good results are obtained with a toy problem. The
method does not scale though, due to search space explosion caused by adding memory bits. By
contrast, HQ-learning does not depend on finding optimal memory bit settings with branch-and-
bound techniques but uses an incremental learning method instead.

Cliff and Ross (1994) describe a classifier system (ZCS) for POMDPs which is trained by
bucket-brigade and genetic algorithms. They also use memory bits, to be set and reset by actions.
The system is reported to work well for small problems but to become unstable in case of more
than one memory bit. Also, it is usually not able to find optimal deterministic policies. Wilson
(1996a) recently described a more sophisticated classifier system which uses prediction accuracy
for calculating fitness, and a genetic algorithm working in environmental niches. His study shows
that this makes the classifiers more general and more accurate. It would be interesting to test
whether his system can use memory for solving POMDPs.

One problem with memory bits (we tried them, too) is that tasks such as those in section 3
require long traces of memory bit resets. Memory bits are critical and must be turned on/off at
precisely the right moment. For instance, suppose that the probability of turning on a memory bit
in response to a particular observation is indeed low, but that the agent makes this observation
very often. Eventually the memory bit won’t remain switched off. Q-learning, for example, tends



to fail to reliably set memory bits because learning the Q-values for changing a bit depends on
luck (L. Kaelbling, personal communication, 1995). HQ-learning, however, does not depend on
long traces of memory bit resets. Its memory is embodied solely in the active agent number, which
is rarely incremented during a trial. This makes it much more stable.

Multiple Q-learners. Like HQ-learning, Humphrys’ W-learning (1996) uses multiple Q-
learning agents. A major difference is that his agents’ skills are prewired — different agents focus
on different input-features and receive different rewards. “Good” reward functions are found by
genetic algorithms. An important goal is to learn which agent to select for which part of the input
space. Eight different learning methods implementing cooperative and competitive strategies are
tested in a rather complex dynamic environment, and seem to lead to reasonable results. Possibly
W-learning and HQ-learning can be combined in an advantageous way.

Digney (1996) describes a nested Q-learning technique based on multiple agents learning inde-
pendent, reusable skills. To generate quite arbitrary control hierarchies, simple actions and skills
can be composed to form more complex skills. Learning rules for selecting skills and for selecting
actions are the same, however. This may make it hard to deal with long reinforcement delays. In
experiments the system reliably learns to solve a small maze-task. It remains to be seen, however,
whether the system can reliably learn to decompose solutions of complex problems into stable
skills.

Learning control hierarchies. Ring’s system (1994) constructs a bottom-up control hierar-
chy. The lowest level nodes are primitive perceptual and control actions. Nodes at higher levels
represent sequences of lower level nodes. To disambiguate inconsistent states, new higher-level
nodes are added to incorporate information hidden “deeper” in the past, if necessary. The system
is able to quickly learn certain non-Markovian maze problems but often is not able to generalize
from previous experience without additional learning, even if the optimal policies for old and new
task are identical. HQ-learning, however, can reuse the same policy and generalize well from
previous to “similar” problems.

McCallum’s U-tree (1996) is quite similar to Ring’s system. It uses prediction suffix trees
in which the branches reflect decisions based on current or previous inputs/actions. Q-values are
stored in the leaves, which correspond to clusters of instances collected and stored during the entire
learning phase. Statistical tests are used to decide whether instances in a cluster correspond to
significantly different utility estimates. If so, the cluster is split. The method may be viewed a
decision tree with reinforcement learning additions. McCallum’s recent experiments demonstrate
the algorithm’s ability to improve in comparatively large state spaces. Its problem is that it
depends on the creation of an n-th order Markov model, where n is the size of the “time window”
used for sampling observations. Hence for large n the approach will suffer from the curse of
dimensionality.

Consistent Representations. Whitehead (1992) uses the “Consistent Representation (CR)
Method” to deal with inconsistent internal states which result from “perceptual aliasing” due to
ambiguous input information. CR uses an “identification stage” to execute perceptual actions
which collect the information needed to define a consistent internal state. Once a consistent
internal state has been identified, a single action is generated to maximize future discounted
reward. Both identifier and controller are adaptive. One limitation of the method is that the
agent must have access to the external Markov model; this is not necessary for HQ-learning.

Levin Search. Wiering and Schmidhuber (1996) use Levin search (LS) through program
space (Levin 1973) to discover programs computing solutions for large POMDPs. LS is of interest
because of its amazing theoretical properties: for a broad class of search problems, it has the
optimal order of computational complexity. For instance, suppose there is an algorithm that solves
a certain type of maze task in O(n?) steps, where n is a positive integer representing the problem
size. Then LS will solve the same task in at most O(n?) steps. Wiering and Schmidhuber show
that LS may have substantial advantages over other reinforcement learning techniques, provided
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the algorithmic complexity of the solutions is low.

Meta-Reinforcement Learning. Wiering and Schmidhuber (1996) also extend LS to obtain
an incremental method for generalizing from previous experience. To guarantee that the lifelong
history of policy changes corresponds to a lifelong history of reinforcement accelerations, a novel
reinforcement learning paradigm called “Meta-reinforcement learning” (MRL, Schmidhuber et al.
1996) is combined with LS. It is shown that this can lead to further significant learning speed-
ups. MRL is actually not LS-specific, but a general approach that allows for plugging in a great
variety of learning algorithms. For instance, in additional experiments with a “self-referential”
system that embeds its policy-modifying method within the policy itself, MRL is able to solve
huge POMDPs with more than 102 states (Schmidhuber et al. 1996). We believe that we will be
able to combine MRL with HQ-learning in an advantageous way.

5 CONCLUSION

Summary. We introduced HQ-learning, a novel method for reinforcement learning in partially
observable environments. “Non-Markovian” tasks are automatically decomposed into Markovian
subtasks without intermediate external reinforcement for “good” subgoals. This is done by an or-
dered sequence of agents, each discovering both a local control policy and an appropriate “Marko-
vian” subgoal. Our experiments involve POMDPs with many more states than most POMDPs
found in the literature. The results demonstrate HQ-learning’s ability to quickly learn optimal or
near-optimal policies. We believe that currently there is no other reinforcement learning method
for solving similar POMDPs in comparable time.

Limitations and future work. The current version is restricted to linearly ordered subgoal
sequences. For very complex POMDPs, generalized HQ-architectures based on directed acyclic
(or even recurrent) graphs may turn out to be useful. This is left for future research.
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