
HQ-LEARNING: DISCOVERING MARKOVIANSUBGOALS FOR NON-MARKOVIANREINFORCEMENT LEARNINGTechnical Report IDSIA-95-96Marco Wiering J�urgen SchmidhuberIDSIA, Corso Elvezia 36, CH-6900-Lugano, Switzerlandmarco,juergen@idsia.ch - http://www.idsia.chOctober 9, 1996AbstractTo solve partially observable Markov decision problems, we introduce HQ-learning, a hier-archical extension of Q-learning. HQ-learning is based on an ordered sequence of subagents,each learning to identify and solve a Markovian subtask of the total task. Each agent learns (1)an appropriate subgoal (though there is no intermediate, external reinforcement for \good"subgoals), and (2) a Markovian policy, given a particular subgoal. Our experiments demon-strate: (a) The system can easily solve tasks standard Q-learning cannot solve at all. (b) It cansolve partially observable mazes with more states than those used in most previous POMDPwork. (c) It can quickly solve complex tasks that require manipulation of the environment tofree a blocked path to the goal.Keywords: reinforcement learning, hierarchical Q-learning, POMDPs, non-Markovian interfaces,subgoal learning.1 IntroductionThe problem. If a learner's optimal next action always depends only on its current input,we speak of a Markovian interface between learner and environment. The most widely usedreinforcement learning (RL) algorithms, such as TD(�) (Sutton 1988) and Q-learning (Watkins1989; Watkins and Dayan 1992), depend on Markovian interfaces; they fail if the problem requiresmemory of previous events. Such non-Markovian interfaces, however, are common in the realworld | even Markovian environments may appear non-Markovian to the learner due to a lack ofperfect information about the current environmental state. The problem of controlling a systemin such partially observable environments can be cast in the partially observable Markov decisionproblem (POMDP) framework. There are a number of algorithms for POMDPs, e.g., Schmidhuber(1991), McCallum (1993), Ring (1994), Kaelbling et al. (1995), Jaakkola et al. (1995), Littman(1995), though most of them are feasible only for small problems. This paper presents a novel,quite di�erent approach which appears to scale far more reasonably. For alternative approachesto larger scale POMDPs, see also Schmidhuber et al. (1996), Wiering and Schmidhuber (1996),and Zhao and Schmidhuber (1996).Basic idea. In realistic environments some memory of previous events is required to select theoptimal next action. Often, however, it is not necessary to memorize the entire past (in generalthis would be quite infeasible) | a few memories corresponding to important previously achievedsubgoals can be su�cient. For instance, suppose your instructions for the way to the station were1



this: "Follow this road to the tra�c light, turn left, follow that road to the next tra�c light,turn right, there you are.". While you are on your way, only few memories corresponding to theimportant subgoals are relevant, such as \I already passed the �rst tra�c light". In-between twosubgoals a reactive, memory-independent strategy will carry you safely. This idea is incorporatedin HQ-learning, a novel, hierarchical extension of Watkins' Q-learning. HQ-learning's divide-and-conquer strategy learns subgoals to decompose a possibly non-Markovian task into simpler,Markovian subtasks. The system uses multiple subagents. Each agent's policy is a mapping fromstates to actions. At a given time, the system's only type of short-term memory is embodiedby a pointer indicating which agent is active. Each agent learns a context-speci�c strategy forsolving its subgoal. Policies of di�erent agents are combined in a way learned by the agentsthemselves. The �rst active agent uses a subgoal table (its HQ-table) to generate a subgoal foritself (for instance, subgoals can be represented as desired inputs). Then it follows the policyembodied by its Q-table until it achieves its subgoal. Then control is passed to the next agent,and the procedure repeats itself. After the overall goal is achieved or a time limit is exceeded,each agent uses a novel learning procedure (to be described in section 2) to adjust its policy andits subgoal. Although each agent learns only \Markovian" subproblems, the whole system canlearn \non-Markovian" tasks impossible to learn with single lookup tables. Unlike, e.g., Singh'ssystem (1992) and Lin's hierarchical learning method (1993), ours does not depend on an externalteacher who provides a priori information about \good" subtasks. Unlike Jaakkola et al.'s method(1995), ours is not limited to �nding suboptimal stochastic policies for POMDPs with an optimaldeterministic solution.Outline. Section 2 describes HQ-learning details, including learning rules for both Q- andHQ-tables. Section 3 describes experiments with relatively complex partially observable mazes.In the �rst experiment the system solves a POMDP that standard Q-learning cannot solve by au-tomatically decomposing it into three appropriate Markovian subtasks. In the second experimentit solves a complex POMDP (with 960 world states) that requires �nding a key to open a doorblocking the path to the goal. Section 4 brie
y reviews related work that has mainly been testedon small problems, as most previous methods do not scale up very well (Littman 1995). Section5 concludes and lists directions for future research.2 HQ-learningPOMDP speci�cation. System life is separable into \trials". A trial consists of at most Tmaxdiscrete time steps t = 1; 2; 3; : : :,T. The POMDP is speci�ed by Z =< S; S1; O;B;A;R; 
;D >,where S is a �nite set of environmental states, S1 2 S is the initial state, O is a �nite set ofobservations, the function B : S ! O maps states to (ambiguous) observations, A is a �nite setof actions, R : S � A! IR maps state-action pairs to scalar reinforcement signals, 0 � 
 � 1 is adiscount factor which trades o� immediate rewards against future rewards, and D : S�A! S is astate transition function. Though the framework can be extended to non-deterministic worlds, wefocus on deterministic state transition functions for simplicity: St+1 := D(St; At), where St 2 Sis the environmental state at time t, and At 2 A is the action executed at time t. The system'sgoal is to obtain maximal (discounted) cumulative reinforcement during the trial.Architecture. There is an ordered sequence of M agents C1 , C2 , ... CM , each equipped witha Q-table, an HQ-table, and a transfer control unit, except for CM , which only has a Q-table (see�gure 1). Each agent is responsible for learning part of the system's policy. Its Q-table representsits local policy for executing an action given an input. It is given by a matrix of size jOj � jAj,where jOj is the number of di�erent possible observations and jAj the number of possible actions.Qi(Ot; Aj) denotes Ci 's Q-value (utility) of action Aj given observation Ot. The agent's currentsubgoal is generated with the help of its HQ-table, a vector with jOj elements. HQi(Oj) denotesCi 's HQ-value (utility) of selecting Oj as its subgoal. For each possible observation there is aHQ-table entry representing its estimated value as a subgoal.The system's current policy is the policy of the currently active agent. If Ci is active at time2



step t, then we will denote this by Active(t) := i. The information about which agent is activerepresents the only kind of short-term memory in the system.
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Figure 1: Basic architecture. Three agents are connected in a sequential way. Each agent hasa Q-table, an HQ-table, and a transfer control unit, except for the last agent which only has aQ-table. The Q-table stores estimates of actual observation/action values and is used to select thenext action. The HQ-table stores estimated subgoal values and is used to generate a subgoal oncethe agent is made active. The solid box indicates that the second agent is the currently active agent.Once the agent has achieved its subgoal, the transfer control unit passes control to its successor.Selecting a subgoal. In the beginning C1 is made active. Once Ci is active, its HQ-table isused to select a subgoal for Ci . Subgoal Oj is chosen with probability PHQi(Oj) according to theMax-Uniform distribution:PHQi(Oj) := Prmax Maxi(Oj)POk2OMaxi(Ok) + 1� PrmaxjOj : (1)Here Prmax denotes the probability of using the \max-choice rule" (which chooses a subgoal withmaximal HQ-value) for subgoal selection. Maxi(Oj) returns 1 if 8Ok 2 O : HQi(Ok) � HQi(Oj),and 0 otherwise. Ôi denotes the subgoal selected by agent Ci . This subgoal is only used in transfercontrol as de�ned below and should not be confused with an observation.Selecting an action. Ci 's action choice depends only on the current observation Ot. Duringlearning, at time t, the active agent Ci will select action Aj with probability PQit (Aj) accordingto the Max-Boltzmann distribution:PQit (Aj) := Prmax Maxi(Ot; Aj)PAk2AMaxi(Ot; Ak) + (1� Prmax) eQi(Ot;Aj)=TiPAk2A eQi(Ot;Ak)=Ti :The function Maxi(Ot; Aj) returns 1 if 8Ak 2 A : Qi(Ot; Ak) � Qi(Ot; Aj), and 0 otherwise.The \temperature" Ti adjusts the degree of randomness involved in agent Ci 's action selection (aslong as Prmax < 1). 3



Why use the Max-Boltzmann (Max-Uniform) distribution for Q-values (HQ-values)? Becausethese distributions can prevent over-exploration, which sometimes makes policies unstable (fordiscussions of exploration issues see, e.g., Fedorov 1972; Schmidhuber 1991; Thrun 1992; Cohn1994; Caironi and Dorigo 1994; Storck et al. 1995; Wilson 1996b). These distributions also makeit easy to reduce the relative weight of exploration (as opposed to exploitation). During learningwe can increase Prmax until it �nally becomes 1 to obtain a deterministic policy at the end of thelearning process. Schraudolph et al. (1994) also used these mixture distributions to train theirTD-Go networks (Schraudolph, personal communication, 1996).Transfer control. Transfer of control from one active agent to the next is implemented asfollows. Each time Ci has executed an action, its transfer control unit checks whether Ci hasreached the goal. If not, it checks whether Ci has solved its subgoal to decide whether controlshould be passed on to Ci+1 . We let ti denote the time at which agent Ci is made active (at systemstart-up, we set t1  1).IF no absorbing state reached AND current subgoal = ÔiAND Active(t) < M AND B(St) = ÔiTHEN Active(t+ 1) Active(t) + 1 AND ti+1  t+ 12.1 LEARNING RULESWe use o�-line learning for updating the tables (no intra-trial changes). The learning rules appearvery similar to those of conventional Q-learning. One major di�erence though is that each agent'sprospects of achieving its subgoal tend to vary as various agents try various subgoals.Learning the Q-values. We want Qi(Ot; Aj) to approximate the system's expected dis-counted future reward for executing action Aj , given Ot. In the optimal case we haveQi(Ot; Aj) = XSj2S Pt(Sj jOt;�; i)(R(Sj ; Aj) + 
VActive(t+1)(B(D(Sj ; Aj))));where Pt(Sj jOt;�; i) denotes the probability that the system is in state Sj at time t given ob-servation Ot, all architecture parameters denoted �, and the information that i = Active(t).HQ-learning does not depend on estimating this probability (although a world model might helpto speed up learning, e.g., Moore 1993). Vi(Ot) is the utility of observation Ot according to agentCi , which is equal to the Q-value for taking the best action: Vi(Ot) := MaxAj2AfQi(Ot; Aj)g:Q-value updates are generated in two di�erent cases (T � Tmax denotes the total number ofexecuted actions during the current trial, and �Q is the learning rate):Q.1 If Ci is active at time t, and Cj is active at time t+ 1, and t < T thenQi(Ot; At) (1� �Q)Qi(Ot; At) + �Q(R(St; At) + 
Vj(Ot+1)).Q.2 If agent Ci is active at time T , and the �nal action AT has been executed, thenQi(OT ; AT ) (1� �Q)Qi(OT ; AT ) + �QR(ST ; AT ).As mentioned above, the update rules resemble normal one-step Q-learning. A main di�erenceis that agents can be trained on Q-values which are not their own (see [Q.1]).Learning the HQ-values. We want the HQ-values HQi(Oj) to converge to the expected(discounted) future cumulative reinforcement given subgoal Oj and current system policy. In theoptimal case we have HQi(Oj) = E(Ri) + 
ti+1�tiHVi+1;where Ri = Pti+1�1t=ti 
t�tiR(St; At), Ci 's discounted cumulative reinforcement during the time itwill be active (note that this time interval and the states encountered by Ci depend on Ci 's subtask),and where HVi := MaxOl2OfHQi(Ol)g), the estimated discounted cumulative reinforcement tobe received by Ci . 4



In a given trial, we adjust only HQ-values of agents active during that trial. HQ-table updatesresemble Q-table updates (�HQ denotes the learning rate, and Ôi the chosen subgoal for agentCi):HQ.1 If Ci is invoked before agent CN�1 , then we update according toHQi(Ôi) (1� �HQ)HQi(Ôi) + �HQ(Ri + 
ti+1�tiHVi+1).HQ.2 If Ci = CN�1 , then HQi(Ôi) (1� �HQ)HQi(Ôi) + �HQ(Ri + 
tN�tiRN ).HQ.3 If Ci = CN , and i < M , then HQi(Ôi) (1� �HQ)HQi(Ôi) + �HQRi.The �rst and third rules resemble traditional Q-learning rules. The second rule is necessaryif agent CN learned a (possibly high) value for a subgoal that is unachievable due to subgoalsselected by previous agents.Comment. Although Q-tables and HQ-tables do not explicitly communicate they in
uenceeach other. This results in complex dynamics quite di�erent from those of conventional Q-learning.TD(�)-modi�cation. To speed up learning we may use the TD(�)-method to modify thelearning rules above in a manner analogous to Lin's (1993). This changes update details as follows:Q(�).1 For the Q-tables we �rst compute desired Q-values Q0(Ot; Aj) for t = 1; : : : ; T :Q0(OT ; AT ) R(ST ; AT )Q0(Ot; At) R(St; At) + 
((1� �)VActive(t+1)(Ot+1) + �Q0(Ot+1; At+1))Q(�).2 Then we update the Q-values, beginning with QN (OT ; AT ) and ending with Q1(O1; A1),according toQi(Ot; At) (1� �Q)Qi(Ot; At) + �QQ0(Ot; At)HQ(�).1 For the HQ-tables we also compute desired HQ-values HQ0i(Ôi) for i = 1; : : : ; N :HQ0N(ÔN ) RNHQ0N�1(ÔN�1) RN�1 + 
tN�tiRNHQ0i(Ôi) Ri + 
ti+1�ti((1� �)HVi+1 + �HQ0i+1(Ôi+1))HQ(�).2 Then we update the HQ-values for agents C1 ; : : : ; CMin(N ;M�1 ) according toHQi(Ôi) (1� �HQ)HQi(Ôi) + �HQHQ0i(Ôi)3 ExperimentsWe test our system on two tasks involving non-Markovian interfaces between learner and environ-ment. The �rst task is to �nd a path from start to goal in a partially observable 10 � 10-maze.This POMDP can be collectively solved by three or more \Markovian" agents. We study systemperformance as more agents are added. The second, quite complex task involves �nding a keywhich opens a door blocking the path to the goal. The optimal solution (which requires at least3 \Markovian" agents) takes 83 steps.3.1 Learning to Solve a Partially Observable MazeTask. The �rst experiment involves the partially observable maze shown in �gure 2A. Thesystem has to discover a path leading from start position S to goal G. There are four actions withobvious semantics: go west, go north, go east, go south. There are 16 possible observations: theagent can only \see" which of the 4 adjacent �elds are blocked. Although there are 62 possibleagent positions, there are only 9 highly ambiguous inputs. (Not all of the 16 possible observationscan occur in this maze; this means that the system may occasionally generate unsolvable subgoals,such that control will never be transferred to another agent.) There is no deterministic, memory-free policy for solving this task. For instance, input 5 stands for \�elds to the left and to the right5
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Figure 2: (A) A partially observable maze (POM). The task is to �nd a path leading from start S togoal G. Although there are 62 possible agent positions, there are only 9 di�erent, highly ambiguousinputs | some kind of memory is necessary to disambiguate them. That's why conventionalQ-learning fails to solve this problem. The optimal solution requires 28 steps and at least three\Markovian" agents. The �gure shows a possible solution that costs 30 steps. Asterisks markappropriate \Markovian" subgoals. (B) HQ-learning results for the partially observable maze, for3, 4, 6, 8, and 12 agents. We plot average test run length against trial numbers (means of 100simulations). The system almost always converges to near-optimal solutions. Using more than therequired 3 agents tends to improve performance. (C) Results for 4, 8, and 12 agents whose actionsare corrupted by 10% noise. In most cases they �nd the goal, although noisy actions decreaseperformance.of the agent are blocked". The optimal action in response to input 5 depends on the subtask: atthe beginning of a trial, it is \go north", later \go south", near the end, \go north" again. Henceat least three \Markovian" agents are necessary to solve this POMDP.Reward function. Only if the system hits the goal, it receives a reward of 100. Otherwisethe reward is zero. The discount factor 
 = :9.Parameters and experimental set-up. We compare systems with 3, 4, 6, 8, and 12 agentsfor noise-free actions. We also compare systems with 4, 8, and 12 agents whose actions selectedduring learning/testing are replaced by random actions with probability 10%. One experimentconsists of 100 simulations of a given system. Each simulation consists of 20,000 trials. Tmax is1000. After every 500th trial there is a test run during which actions and subgoals with maximaltable entries are selected (Prmax is set to 1.0). If the system does not �nd the goal during a testrun, then the trial's outcome is counted as 1000 steps.After a coarse search through parameter space, we use the following parameters for all exper-iments: �Q = .05, �HQ = .2, 8i : Ti = :1, � = .9 for both HQ-tables and Q-tables. Prmax is setto :9 and linearly increased to 1.0. All table entries are initialized with 0.For purposes of comparison, we also ran 20,000 trials during which at most 1000 actions werepicked randomly.Results. Figure 2B plots average test run length against trial numbers. Within 20,000 trials allsystems almost always �nd near-optimal deterministic policies. (Q-learning by itself fails miserably,of course.)Consider Table 1. The largest systems are always able to decompose the POMDP into Marko-vian subtasks. The average number of steps is close to optimal. In approximately 1 out of 8 cases,the optimal path is found. In most cases one of the 30-step solutions is found. Since the numberof 30-step solutions is much larger than the number of 28-step solutions (there are many morepossible subgoal sequences), this result is not surprising.Systems with more than 3 agents are performing better | here the system pro�ts from havingmore free parameters. More than 6 agents don't help though. All systems perform signi�cantly6



System Av. steps (%) Found Goal (%) Optimal3 agents 263 76 34 agents 60 97 66 agents 31 100 148 agents 31 100 1212 agents 32 100 64 agents 10% noise 177 86 28 agents 10% noise 166 87 212 agents 10% noise 196 84 0Random 912 19 0Table 1: HQ-learning results for random actions replacing the selected actions with probability 0%and 10%. The 2nd column lists average numbers of steps required to �nd the goal. The 3rd columnlists numbers of simulations during which the goal is found in the �nal trial. The 4th column listsnumbers of simulations during which the optimal path is found in the �nal trial.better than the random system, which �nds the goal in only 19% of all 1000 step trials.In case of noisy actions (the probability of replacing a selected action by a random action is10%), the systems still reach the goal in most of the simulations (see �gure 3C). In the �nal trialof each simulation, systems with 4 (8, and 12) agents �nd the goal with probability 86% (87%,and 84%). There is no signi�cant di�erence between smaller and larger systems.We also studied how the system adds agents during the learning process. The 8-agent systemfound solutions using 3 (4, 5, 6, 7, 8) agents in 8 (19, 16, 17, 21, 19) simulations. Using moreagents tends to make things easier. During the �rst few trials 3 agents were used on average.During the �nal trials 6 agents were used on average. Less agents tend to lead to better results,however. Why? Systems that fail to solve the task with few subgoals start using more subgoalsuntil they become successful. But the more subgoals there are, the more possibilities to composepaths, and the lower the probability of �nding a shortest path in this maze.3.2 The Key and the DoorTask. The second experiment involves the 26 � 23 maze shown in �gure 3A. Starting at S,the system has to (1) fetch a key at position K, (2) move towards the \door" (the shaded area)which normally behaves like a wall and will open (disappear) only if the agent is in possession ofthe key, and (3) proceed to goal G. There are only 11 di�erent, highly ambiguous inputs | thetask is a di�cult POMDP. The optimal path takes 83 steps.Reward function. Once the system hits the goal, it receives a reward of 500. For all otheractions there is a reward of -0.1. There is no additional, intermediate reward for taking the keyor going through the door. The discount factor 
 = 1:0.Parameters. The experimental set-up is analogous to the one in section 3.1. We use systemswith 3, 4, 6 and 8 agents, and systems with 8 agents whose actions are corrupted by di�erentamounts of noise (5%, 10%, and 25%). �Q = .05, �HQ = .01 8i : Ti = :2. Prmax is linearlyincreased from :4 to :8. Other parameters are the same as in section 3.1. One simulation consistsof 20,000 trials.Results. We �rst ran 20,000 1000 step trials of a system executing random actions. It neverfound the goal. Then we ran the random system for 3000 10,000 step trials. The shortest path everfound took 1,174 steps. We observe: �nding the goal at all without any negative reinforcementsignals is extremely di�cult.Figure 3B and Table 2 show HQ-learning results for noise-free actions. Within 20,000 trialsgood, deterministic policies are found in almost all simulations. Optimal 83 step paths are foundwith 3 (4, 6, 8) agents in 8% (9%, 8%, 6%) of all simulations.7
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Figure 3: (A) A partially observable maze containing a key K and a door (grey area). Starting atS, the system �rst has to �nd the key to open the door, then proceed to the goal G. The shortestpath costs 83 steps. This optimal solution requires at least three \Markovian" agents. The numberof possible world states is 960, which is much higher than in most POMDPs studied by otherauthors. (B) HQ-learning results for this \key and door problem". We plot average test run lengthagainst trial number (means of 100 simulations). Within 20,000 trials systems with 3 (4, 6 and8) agents �nd good deterministic policies in 85% (96%, 96% and 99%) of the simulations. (C)HQ-learning results with an 8 agent system whose actions are replaced by random actions withprobability 5%, 10%, and 25%.If random actions are taken in 5% (10%, 25%) of all cases, the 8 agent system still �nds thegoal in 92% (90%, 84%) of the �nal trials (see table 2). In many cases long paths (300 | 700steps) are found. The best solutions use only 84 (91, 118) steps, though. Interestingly, a littlenoise (e.g. 5%) does decrease performance, but much more noise does not lead to much worseresults. We do not yet know whether this is due to HQ-learning or the task set-up or both.System Av. steps (%) Found Goal (%) Optimal3 agents 224 85 84 agents 126 96 96 agents 127 96 88 agents 101 99 68 agents (5% noise) 360 92 08 agents (10% noise) 399 90 08 agents (25% noise) 442 84 0Random *9310 19 0Table 2: Results of 100 HQ-learning simulations for the \key and door" task. The second columnlists average numbers of steps required to �nd the goal. The third lists numbers of simulationsduring which the goal was found in the �nal trial. The fourth lists numbers of simulations duringwhich the optimal path of 83 steps was found in the �nal trial. HQ-learning could solve the taskwith a limit of 1000 steps per trial. Random search needed a 10,000 step limit.4 Previous WorkOther authors proposed hierarchical reinforcement learning techniques to improve performance onMarkov decision problems (MDPs), e.g., Dayan and Hinton (1993), Moore (1993), Tham (1995).However, their methods are based on the Markov assumption. Since the focus of our paper is onPOMDPs, this section is limited to a brief summary of previous POMDP approaches with speci�c8



advantages and disadvantages.Recurrent neural networks. There are two interacting, gradient-based recurrent networks.The \model network" serves to model (predict) the environment, the other one uses the modelnet to compute gradients maximizing reinforcement predicted by the model (Schmidhuber 1991;extending ideas by Nguyen and B. Widrow 1989; and Jordan and Rumelhart 1990). To ourknowledge this work presents the �rst successful reinforcement learning application to simple non-Markovian tasks (e.g., learning to be a 
ip
op). Lin (1993) also uses combinations of controllersand recurrent nets. He compares time-delay neural networks (TDNNs) and recurrent neuralnetworks. Despite their theoretical power, standard recurrent nets run into practical problems incase of long time lags between relevant input events. Although there are recent approaches toovercome this problem (Hochreiter and Schmidhuber 1996), there are no reinforcement learningapplications yet.Belief vectors etc. Kaelbling et al. (1995) hierarchically build policy trees to calculateoptimal policies in stochastic, partially observable environments. For each possible environmentalstate, a \belief vector" represents the agent's estimate of the probability of currently being in thisstate. The belief vector is updated after each observation. Operation research algorithms are usedto compute optimal actions by dynamic programming. Problems with this approach are that thenature of the underlying MDP needs to be known, and that it is computationally very expensive.McCallum's utile distinction memory (1993) combines Hidden Markov Models (HMMs) withQ-learning. It is able to solve simple POMDPs (maze tasks with only a few �elds) by splitting\inconsistent" HMM states whenever the agent fails to predict their utilities (but instead expe-riences quite di�erent returns from these states). One problem of the approach is that it cannotsolve problems in which conjunctions of successive perceptions are useful for predicting rewardwhile independent perceptions are irrelevant. HQ-learning does not have this problem | it dealswith perceptive conjunctions by using multiple agents if necessary.Littman et al. (1995) compare di�erent POMDP algorithms using belief vectors. They reportthat \small POMDPs" (with less than 10 states and few actions) do not pose a very big problemfor most methods. Larger POMDPs (50 to 100 states), however, cause major problems. Thisindicates that the problems in the current paper (which involve 62 and 960 states) can hardlybe solved by such methods. HQ-learning, by contrast, is neither computationally complex norrequires knowledge of the underlying MDP. In absence of prior knowledge this can be a signi�cantadvantage.Memory bits. Littman (1994) uses branch-and-bound heuristics to �nd suboptimal mem-oryless policies extremely quickly. To deal with mazes for which there is no safe, deterministic,memoryless policy, he replaces each conventional action by two actions, each having the additionale�ect of switching on or o� a \memory bit". Good results are obtained with a toy problem. Themethod does not scale though, due to search space explosion caused by adding memory bits. Bycontrast, HQ-learning does not depend on �nding optimal memory bit settings with branch-and-bound techniques but uses an incremental learning method instead.Cli� and Ross (1994) describe a classi�er system (ZCS) for POMDPs which is trained bybucket-brigade and genetic algorithms. They also use memory bits, to be set and reset by actions.The system is reported to work well for small problems but to become unstable in case of morethan one memory bit. Also, it is usually not able to �nd optimal deterministic policies. Wilson(1996a) recently described a more sophisticated classi�er system which uses prediction accuracyfor calculating �tness, and a genetic algorithm working in environmental niches. His study showsthat this makes the classi�ers more general and more accurate. It would be interesting to testwhether his system can use memory for solving POMDPs.One problem with memory bits (we tried them, too) is that tasks such as those in section 3require long traces of memory bit resets. Memory bits are critical and must be turned on/o� atprecisely the right moment. For instance, suppose that the probability of turning on a memory bitin response to a particular observation is indeed low, but that the agent makes this observationvery often. Eventually the memory bit won't remain switched o�. Q-learning, for example, tends9



to fail to reliably set memory bits because learning the Q-values for changing a bit depends onluck (L. Kaelbling, personal communication, 1995). HQ-learning, however, does not depend onlong traces of memory bit resets. Its memory is embodied solely in the active agent number, whichis rarely incremented during a trial. This makes it much more stable.Multiple Q-learners. Like HQ-learning, Humphrys' W-learning (1996) uses multiple Q-learning agents. A major di�erence is that his agents' skills are prewired | di�erent agents focuson di�erent input-features and receive di�erent rewards. \Good" reward functions are found bygenetic algorithms. An important goal is to learn which agent to select for which part of the inputspace. Eight di�erent learning methods implementing cooperative and competitive strategies aretested in a rather complex dynamic environment, and seem to lead to reasonable results. PossiblyW-learning and HQ-learning can be combined in an advantageous way.Digney (1996) describes a nested Q-learning technique based on multiple agents learning inde-pendent, reusable skills. To generate quite arbitrary control hierarchies, simple actions and skillscan be composed to form more complex skills. Learning rules for selecting skills and for selectingactions are the same, however. This may make it hard to deal with long reinforcement delays. Inexperiments the system reliably learns to solve a small maze-task. It remains to be seen, however,whether the system can reliably learn to decompose solutions of complex problems into stableskills.Learning control hierarchies. Ring's system (1994) constructs a bottom-up control hierar-chy. The lowest level nodes are primitive perceptual and control actions. Nodes at higher levelsrepresent sequences of lower level nodes. To disambiguate inconsistent states, new higher-levelnodes are added to incorporate information hidden \deeper" in the past, if necessary. The systemis able to quickly learn certain non-Markovian maze problems but often is not able to generalizefrom previous experience without additional learning, even if the optimal policies for old and newtask are identical. HQ-learning, however, can reuse the same policy and generalize well fromprevious to \similar" problems.McCallum's U-tree (1996) is quite similar to Ring's system. It uses prediction su�x treesin which the branches re
ect decisions based on current or previous inputs/actions. Q-values arestored in the leaves, which correspond to clusters of instances collected and stored during the entirelearning phase. Statistical tests are used to decide whether instances in a cluster correspond tosigni�cantly di�erent utility estimates. If so, the cluster is split. The method may be viewed adecision tree with reinforcement learning additions. McCallum's recent experiments demonstratethe algorithm's ability to improve in comparatively large state spaces. Its problem is that itdepends on the creation of an n-th order Markov model, where n is the size of the \time window"used for sampling observations. Hence for large n the approach will su�er from the curse ofdimensionality.Consistent Representations. Whitehead (1992) uses the \Consistent Representation (CR)Method" to deal with inconsistent internal states which result from \perceptual aliasing" due toambiguous input information. CR uses an \identi�cation stage" to execute perceptual actionswhich collect the information needed to de�ne a consistent internal state. Once a consistentinternal state has been identi�ed, a single action is generated to maximize future discountedreward. Both identi�er and controller are adaptive. One limitation of the method is that theagent must have access to the external Markov model; this is not necessary for HQ-learning.Levin Search. Wiering and Schmidhuber (1996) use Levin search (LS) through programspace (Levin 1973) to discover programs computing solutions for large POMDPs. LS is of interestbecause of its amazing theoretical properties: for a broad class of search problems, it has theoptimal order of computational complexity. For instance, suppose there is an algorithm that solvesa certain type of maze task in O(n3) steps, where n is a positive integer representing the problemsize. Then LS will solve the same task in at most O(n3) steps. Wiering and Schmidhuber showthat LS may have substantial advantages over other reinforcement learning techniques, provided10



the algorithmic complexity of the solutions is low.Meta-Reinforcement Learning. Wiering and Schmidhuber (1996) also extend LS to obtainan incremental method for generalizing from previous experience. To guarantee that the lifelonghistory of policy changes corresponds to a lifelong history of reinforcement accelerations, a novelreinforcement learning paradigm called \Meta-reinforcement learning" (MRL, Schmidhuber et al.1996) is combined with LS. It is shown that this can lead to further signi�cant learning speed-ups. MRL is actually not LS-speci�c, but a general approach that allows for plugging in a greatvariety of learning algorithms. For instance, in additional experiments with a \self-referential"system that embeds its policy-modifying method within the policy itself, MRL is able to solvehuge POMDPs with more than 1013 states (Schmidhuber et al. 1996). We believe that we will beable to combine MRL with HQ-learning in an advantageous way.5 ConclusionSummary. We introduced HQ-learning, a novel method for reinforcement learning in partiallyobservable environments. \Non-Markovian" tasks are automatically decomposed into Markoviansubtasks without intermediate external reinforcement for \good" subgoals. This is done by an or-dered sequence of agents, each discovering both a local control policy and an appropriate \Marko-vian" subgoal. Our experiments involve POMDPs with many more states than most POMDPsfound in the literature. The results demonstrate HQ-learning's ability to quickly learn optimal ornear-optimal policies. We believe that currently there is no other reinforcement learning methodfor solving similar POMDPs in comparable time.Limitations and future work. The current version is restricted to linearly ordered subgoalsequences. For very complex POMDPs, generalized HQ-architectures based on directed acyclic(or even recurrent) graphs may turn out to be useful. This is left for future research.6 AcknowledgmentsThanks for valuable comments and discussions to Marco Dorigo, Nic Schraudolph, Luca Gam-bardella, Rafa l Sa lustowicz, Jieyu Zhao, Cristina Versino.ReferencesCaironi, P. V. C. and Dorigo, M. (1994). Training Q-agents. Technical Report IRIDIA-94-14,Universit�e Libre de Bruxelles.Cli�, D. and Ross, S. (1994). Adding temporary memory to ZCS. Adaptive Behavior, 3:101{150.Cohn, D. A. (1994). Neural network exploration using optimal experiment design. In Cowan, J.,Tesauro, G., and Alspector, J., editors, Advances in Neural Information Processing Systems6, pages 679{686. San Mateo, CA: Morgan Kaufmann.Dayan, P. and Hinton, G. (1993). Feudal reinforcement learning. In Lippman, D. S., Moody, J. E.,and Touretzky, D. S., editors, Advances in Neural Information Processing Systems 5, pages271{278. San Mateo, CA: Morgan Kaufmann.Digney, B. (1996). Emergent hierarchical control structures: Learning reactive/hierarchical rela-tionships in reinforcement environments. In Maes, P., Mataric, M., Meyer, J.-A., Pollack, J.,and Wilson, S. W., editors, >From Animals to Animats 4: Proceedings of the Fourth Interna-tional Conference on Simulation of Adaptive Behavior, Cambridge, MA, pages 363{372. MITPress, Bradford Books.Fedorov, V. V. (1972). Theory of optimal experiments. Academic Press.11
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