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1. Introduction

Reinforcement Learning (Kaelbling et al., 1996) can
be used to learn to control an agent by letting it
interact with its environment. In general there are
two kinds of reinforcement learning; (1) Value-function
based reinforcement learning, which are based on
the use of heuristic dynamic programming algorithms
such as temporal difference learning (Sutton, 1988)
and Q-learning (Watkins, 1989), and (2) Evolution-
ary algorithms such as genetic programming (Koza,
1992), Symbiotic Adaptive Neuron Evolution (SANE)
(Moriarty & Miikkulainen, 1996), and Enforced Sub-
Populations (ESP) (Gomez & Miikkulainen, 1998).
There is still an ongoing debate which of these algo-
rithms works best for a particular problem. E.g. for
learning to play games, often value-function based RL
seems appropriate since the Markov assumption holds.
E.g., Tesauro (1992) used temporal difference learning
to let a program learn to play backgammon by play-
ing against itself, and this led to human-expert level.
However, for non-Markovian environments evolution-
ary approaches may sometimes be more beneficial.

2. Forest Fire Control

In our current research we study forest fire control by
a learning multi-agent system. For this we developed
a forest fire simulator based on a stochastic cellular
automaton where single cells may contain trees, grass,
water, be on fire or not, etc. The fire starts at some
place and then propagates itself according to wind
strength and direction, and humidity. Also because
different cells (grass and trees) have different thresh-
olds for starting to burn and spread different rates of
fire activity, the dynamics of the forest fire can be quite
complex.

The goal of the multi-agent system is to control the
propagation of the forest fire. This they can do by
cutting firelines around the fire. Therefore the ques-
tion becomes where should the agents cut firelines to
minimize the damage done by the forest fire?

To study this problem, we first notice that the Markov
property does not hold even in the case of a single
agent. That’s because the fireline should be around
the complete fire. The last action of an agent is only
good if the agent has already cut an almost complete
fireline around the fire, and therefore the reward de-
pends on the previous actions of the agent. In the case
of multiple agents the problem even becomes harder.
To solve the problem, we need to generate subgoals
and then cut firelines between subgoals. The planning
between subgoals is currently done using A* and this
takes into account that cutting firelines over grass can
be done much faster than cutting away trees. The
main problem is to generate subgoals which are op-
timal. This is a difficult control problem, since each
forest fire looks different and the state space is huge
(i.e., the forest fire may consist of more than 10,000
burning cells).
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TASK ENVIRONMENT

Fitness

Figure 1. Enforced Sub-Populations (ESP) constructs a
neural network by taking one neuron from each sub-
population. The resulting neural network is tested and
the evaluation is used to evolve novel sub-populations of
neurons.

3. ESP

For learning to generate subgoals, we use Enforced
Sub-Populations (ESP). ESP (Gomez & Miikkulainen,
1998) is an evolutionary method for evolving neural
networks. It works by keeping different subpopulations
containing neurons which have weighted connections



to inputs and outputs (see Figure 1). To generate a
neural network, one neuron is selected from each sub-
population and these neurons then form a feedforward
neural network. In order to train the system, each neu-
ron from each subpopulation is combined a number of
times with neurons from different subpopulations, and
the neuron is assigned the average fitness of the net-
works in which it took part. Then crossover and mu-
tation are used within the subpopulations to generate
new neurons. In this way, neurons which can collabo-
rate well with other neurons will receive higher fitness
values, and will be used to evolve novel neurons. ESP
has already been used for particular difficult reinforce-
ment learning problems such as double pole balancing
with hidden state (Gomez & Miikkulainen, 1998) and
obtained good results.

Another advantage of ESP is that it is easy to use
for multi-agent learning. In multi-agent learning, is-
sues arise about credit assignment to individual agents
given a team reward. In ESP these issues are solved
using the same mechanism as with single agent learn-
ing; each agent uses its own neurons and each neuron
is again evaluated by how well the resulting combina-
tions of neurons work.

For controlling forest fires, one agent first uses a neural
network to place an initial possible subgoal, and then
it uses a second neural network to see whether neig-
boring states are better suited as subgoal. Thus the
second neural network is used to refine the subgoal’s lo-
cation and continuously selects new neigboring states
with the highest value according to the second neu-
ral network until a state is reached with the highest
value. The neural networks receive relative inputs to
consider the state; these inputs consist of many fea-
tures such as the distance of a possible subgoal to the
centre of the fire, the distance to the current state of
the agent, the distance to the east/north/west/south
point of the fire, etc. In case of multi-agent learning,
the agents also receive information about the location
and committed subgoals of other agents.

4. Preliminary Experiments

We have done several preliminary experiments to see
whether the learning system is able to learn to set
subgoals in a good way. A problem is that in the be-
ginning, very few controllers learn to completely sur-
round the forest fire, and therefore there is little selec-
tive pressure. However, if we first train the system on
slowly propagating fires, the system reliably learn to
set subgoals which surround the fire. After this, the
fire can propagate faster, and the neural networks are
refined to deal with the more complex problems. The

learning time takes about half an hour in which about
10,000 controllers are evaluated. When we look at the
determined subgoals using our simulator, they make a
lot of sense. They are not too close to the fire, but
neither too far away.

5. Conclusion

We are studying methods for controlling forest fires
with multiple agents. For this we have implemented
a forest fire simulator with which we will compare a
number of multi-agent learning methods. Currently we
have only implemented ESP, an evolutionary method
for evolving neural network controllers. Current ex-
periments have shown that ESP is able to learn to
generate subgoals for a single agent, so that the fire
propagation is stopped within a reasonable amount
of steps. In the near future we will run much more
experiments and also study cooperative learning with
multiple agents.
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