
Fast-Q(�) RevisitedStuart I. ReynoldsS
hool of Computer S
ien
e,The University of Birmingham,Birmingham, B15 2TT.Englandsir�
s.bham.a
.ukhttp://
s.bham.a
.uk/~sir
Mar
o A. WieringInstitute of Informationand Computing S
ien
es,Utre
ht University,Padualaan 14, 3508 TB Utre
ht.The Netherlandsmar
o�
s.uu.nlhttp://www.
s.uu.nl/~mar
oAbstra
tFast Q(�) is a model free reinfor
ement learning te
hnique for pre
iselyimplementing Q(�) and other eligibility tra
e learning algorithms at ahugely redu
ed
omputational
ost. This report highlights some sub-tleties in the original des
ription of Fast Q(�) and that are likely tolead to it being in
orre
tly applied. We propose
hanges to Fast Q(�),without whi
h the behaviour of the algorithm
an be signi�
antly dif-ferent (and inferior) to Q(�). With these
hanges the algorithm behavespre
isely as Q(�) to a very high degree of pre
ision. We also report onan empiri
al validation of the algorithm and also provide an explorationinsensitive version (an analogue of Watkins' Q(�)).1 Introdu
tionQ(�)-learning is an important and widely used reinfor
ement learning (RL) method. It
ombines Q-learning (Watkins, 1989; Watkins and Dayan, 1992) and TD(�) (Sutton,1988; Tesauro, 1992). Q(�) is widely used | it is generally believed to outperformsimple one-step Q-learning, sin
e it uses single experien
es to update evaluations ofmultiple state/a
tion pairs (SAPs) that have o

urred in the past.Q(�) learning is an unne
essarily expensive algorithm. It has a time
omplexity ofO(jSj � jAj) per step for a state spa
e S, and a
tion set A. To improve this, the FastQ(�) algorithm implements Q(�) to a very high degree of pre
ision but at a mean
om-putational
ost of O(jAj). However, the original des
ription of Fast Q(�) (as publishedin [18, 19, 17℄) allows for the algorithm to be misapplied and we highlight two subtleerrors that
an o

ur. This paper states these errors and
orre
ts them. In addition, weshow how to extend the algorithm for state repla
ing tra
es, for o�-poli
y (explorationinsensitive) learning and also simplify the algorithm to avoid diÆ
ulties with a
tionsele
tion.Se
tion 2 provides a brief introdu
tion to RL and the Q(�) algorithm. Se
tion 3 reviewsthe original des
ription of Fast Q(�). Se
tion 4 presents the problems, �xes and newextensions to Fast Q(�). Readers who are already familiar with Fast Q(�) should skip toSe
tion 4. In Se
tion 5 we test how
losely the new and old versions of Fast Q(�) mat
h1

standard Q(�). Se
tion 6
on
ludes.2 Q(�)-LearningWe
onsider �nite Markov de
ision pro
esses, using dis
rete time steps t = 1; 2; 3; : : :, a�nite set of states S = fS1; S2; S3; : : : ; Sng and a �nite set of a
tions A. The state attime t is denoted by st, and at = �(st) denotes the sele
ted a
tion, where � representsthe learner's poli
y mapping states to a
tions. The transition probability to the nextstate st+1, given st and at, is determined by P aij = P (st+1 = jjst = i; at = a) for i; j 2 Sand a 2 A. A reward fun
tion R maps the SAP (i; a) 2 S � A to s
alar reinfor
ementsignals R(i; a) 2 IR. The reward at time t is denoted by rt. A dis
ount fa
tor
 2 [0; 1℄dis
ounts later against immediate rewards. The
ontroller's goal is to sele
t a
tions whi
hmaximise the expe
ted long-term
umulative dis
ounted reinfor
ement, given an initialstate sele
ted a

ording to a probability distribution over possible initial states.Reinfor
ement Learning. To a
hieve this goal, most reinfor
ement learning methodslearn an a
tion evaluation fun
tion or Q-fun
tion. The optimal Q-value of a SAP (i; a)satis�es Q�(i; a) = R(i; a) +
Xj P aijV �(j); (1)where V �(j) = maxaQ�(j; a). To learn this Q-fun
tion, RL algorithms repeatedly do:(1) Sele
t a
tion at given state st, (2) Colle
t reward rt and observe su

essor state st+1,(3) Update the Q-fun
tion using the latest experien
e (st; at; rt; st+1).Q-learning. Given (st; at; rt; st+1), standard one-step Q-learning updates just a singleQ-value Q(st; at) as follows [15℄:Q(st; at) Q(st; at) + �k(st; at)e0t:Here the temporal di�eren
e or TD(0)-error e0t is given by:e0t = (rt +
V (st+1)�Q(st; at));where the value fun
tion V (s) is de�ned as V (s) = maxaQ(s; a), and �k(st; at) is thelearning rate for the kth update of SAP (st; at).Learning rate adaptation. The learning rate �k(s; a) for the kth update of SAP (s; a)should de
rease over time to satisfy two
onditions for sto
hasti
 iterative algorithms(Watkins and Dayan, 1992; Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998):1. P1k=1 �k(s; a) =1, and2. P1k=1 �2k(s; a) <1.The �rst
ondition ensures that the updates are large enough to over
ome any initialbiases or random
u
tuations. The se
ond
ondition ensures that the updates be
omesmall enough to ensure
onvergen
e. They hold for �k(s; a) = 1=k�, where 1=2 < � � 1.Q(�)-learning. Q(�) uses TD(�)-methods (Sutton, 1988) to a

elerate Q-learning.First note that Q-learning's update at time t + 1 may
hange V (st+1) in the de�nitionof e0t. Following Peng and Williams (1996) we de�ne the TD(0)-error of V (st+1) aset+1 = (rt+1 +
V (st+2)� V (st+1)): (2)Q(�) uses a fa
tor � 2 [0; 1℄ to dis
ount TD-errors of future time steps:Q(st; at) Q(st; at) + �k(st; at)e�t ; (3)2

where the TD(�)-error e�t is de�ned as,e�t = e0t + TXi=1(
�)iet+i; (4)where T denotes the time at whi
h a terminal state in entered. T may be in�nity if thereare no terminal states.Eligibility tra
es. The updates above
annot be made as long as the TD errors offuture time steps are not known. We
an
ompute them in
rementally, however, byusing eligibility tra
es (Barto et al., 1983; Sutton 1988). From update rule (3) andde�nition (4), and assuming a
onstant � for simpli
ity, the Q-fun
tion at time k isgiven by, Qk(s; a) = Q0(s; a) + � kXt=1 e�t �t(s; a): (5)In what follows, �t(s; a) will denote the indi
ator fun
tion whi
h returns 1 if (s; a) o
-
urred at time t, and 0 otherwise. Omitting the learning rate for simpli
ity, the in
rementof Q(s; a) for the
omplete trial is:�Q(s; a) = QT (s; a)�Q0(s; a)�Q(s; a)� = TXt=1 e�t �t(s; a)= TXt=1 "e0t�t(s; a) + TXi=t+1(
�)i�tei�t(s; a)#= TXt=1 "e0t�t(s; a) + t�1Xi=1(
�)t�iet�i(s; a)#= TXt=1 "e0t�t(s; a) + et t�1Xi=1(
�)t�i�i(s; a)# : (6)To simplify this we use an eligibility tra
e lt(s; a) for ea
h SAP (s; a):lt(s; a) = t�1Xi=1(
�)t�i�i(s; a): (7)Then the online update at time t+ 1 be
omes:8(s; a) 2 S �A do : Q(s; a) Q(s; a) + �k(st; at) [e0t�t(s; a) + etlt(s; a)℄ : (8)Online Q(�). We will fo
us on Peng and Williams' algorithm (PW) (1996), althoughthere are other possible variants, e.g, Rummery and Niranjan's sarsa (1994). PW usesa list H of SAPs that have o

urred at least on
e. SAPs with eligibility tra
es below�m � 0 are removed from H . Boolean variables visited(s; a) are used to make sure notwo SAPs in H are identi
al. 3

PW's Q(�)-update(st; at; rt; st+1) :1) e0t (rt +
V (st+1)�Q(st; at))2) et (rt +
V (st+1)� V (st))3) For ea
h SAP (s; a) 2 H Do :3a) l(s; a)
�l(s; a)3b) Q(s; a) Q(s; a) + �k(st; at)etl(s; a)3
) If (l(s; a) < �m)3
-1) H H n (s; a)3
-2) visited(s; a) 04) Q(st; at) Q(st; at) + �k(st; at)e0t5) l(st; at) l(st; at) + 16) If (visited(st; at) = 0)6a) visited(st; at) 16b) H H [(st; at)Comments.1. The sarsa algorithm (Rummery and Niranjan, 1994) repla
es the right hand side inlines (1) and (2) by (rt +
Q(st+1; at+1)�Q(st; at)).2. For state repla
ing eligibility tra
es (Singh and Sutton, 1996), step 5 should be:8a : l(st; a) 0; l(st; at) 1.3. Representing H by a doubly linked list and using dire
t pointers from ea
h SAP to itsposition in H , the fun
tions operating on H (deleting and adding elements | see lines(3
-1) and (6b))
ost O(1).Complexity. Deleting SAPs from H (step 3
-1) on
e their tra
es fall below a
ertainthreshold may signi�
antly speed up the algorithm. If
� is suÆ
iently small, then thiswill keep the number of updates per time step manageable. For large
�, PW does notwork that well: it needs a sweep (sequen
e of SAP updates) after ea
h time step, andthe update
ost for su
h sweeps grows with
�. Let us
onsider worst-
ase behaviour,whi
h means that ea
h SAP o

urs just on
e (if SAPs reo

ur then the history list willgrow at a slower rate). In the beginning of the episode the number of updates in
reaseslinearly until at some time step t some SAPs get deleted from H . This will happen assoon as t � log �m= log(
�). Sin
e the number of updates is bounded from above by thenumber of SAPs, the total update
omplexity in
reases towards O(jSj � jAj) per updatefor
�! 1.The spa
e
omplexity of the algorithm is O(jSj � jAj). We need to store for all SAPs:Q-values, eligibility tra
es, the \visited" bit variable and three pointers for managingthe history list (one from the SAP to its pla
e in the history list, and two for the doublylinked list).3 Fast Q(�)-LearningFast Q(�) is intended a fully online implementation of Q(�) but with a time
omplexityO(jAj) per update. The algorithm is designed for �
 > 0 | otherwise we
an use simpleQ-learning.Main prin
iple. The algorithm is based on the observation that the only Q-valuesneeded at any given time are those for the possible a
tions given the
urrent state.Hen
e, using \lazy learning", we
an postpone updating Q-values until they are needed.Suppose some SAP (s; a) o

urs at steps t1; t2; t3; : : :. Let us abbreviate �t = �t(s; a),4

� =
�. First we unfold terms of expression (6):TXt=1 "e0t�t + et t�1Xi=1 �t�i�i# = t1Xt=1 "e0t�t + et t�1Xi=1 �t�i�i#+t2Xt=t1+1"e0t�t + et t�1Xi=1 �t�i�i#+t3Xt=t2+1"e0t�t + et t�1Xi=1 �t�i�i#+ : : :Sin
e �t is 1 only for t = t1; t2; t3; : : : and 0 otherwise, we
an rewrite this ase0t1 + e0t2 + t2Xt=t1+1 et�t�t1 + e0t3 + t3Xt=t2+1 et ��t�t1 + �t�t2�+ : : : =e0t1 + e0t2 + 1�t1 t2Xt=t1+1 et�t + e0t3 +� 1�t1 + 1�t2 � t3Xt=t2+1 et�t + : : : =e0t1 + e0t2 + 1�t1 t2Xt=1 et�t � t1Xt=1 et�t!+ e0t3 +� 1�t1 + 1�t2 � t3Xt=1 et�t � t2Xt=1 et�t!+ : : :De�ning �t =Pti=1 ei�i, this be
omese0t1 + e0t2 + 1�t1 (�t2 ��t1) + e0t3 +� 1�t1 + 1�t2 � (�t3 ��t2) + : : : (9)This will allow for
onstru
ting an eÆ
ient online Q(�) algorithm. We de�ne a lo
al tra
el0t(s; a) =Pti=1 �i(s;a)�i , and use (9) to write down the total update of Q(s; a) during anepisode: �Q(s; a) = TXt=1 [e0t�t(s; a) + l0t(s; a)(�t+1 ��t)℄ : (10)To exploit this we introdu
e a global variable � keeping tra
k of the
umulative TD(�)error sin
e the start of the episode. As long as SAP (s; a) does not o

ur we postponeupdating Q(s; a). In the update below we need to subtra
t that part of � whi
h hasalready been used (see equations 9 and 10). We use for ea
h SAP (s; a) a lo
al variableÆ(s; a) whi
h re
ords the value of � at the moment of the last update, and a lo
altra
e variable l0(s; a). Then, on
e Q(s; a) needs to be known, we update Q(s; a) byadding l0(s; a)(��Æ(s; a)). Figure 1 illustrates that the algorithm substitutes the varyingeligibility tra
e l(s; a) by multiplying a global tra
e �t by the lo
al tra
e l0(s; a). Thevalue of �t
hanges all the time, but l0(s; a) does not in intervals during whi
h (s; a) doesnot o

ur.Algorithm overview. The algorithm relies on two pro
edures: the Lo
al Update pro-
edure
al
ulates exa
t Q-values on
e they are required; the Global Update pro
edureupdates the global variables and the
urrent Q-value. Initially we set the global vari-ables �0 1:0 and � 0. We also initialise the lo
al variables Æ(s; a) 0 andl0(s; a) 0 for all SAPs.Lo
al updates. Q-values for all a
tions possible in a given state are updated before ana
tion is sele
ted and before a parti
ular V -value is
al
ulated. For ea
h SAP (s; a) avariable Æ(s; a) tra
ks
hanges sin
e the last update:5

φt

l’(s,a)
l(s,a)

t t t1 32
t ->

1

Figure 1: SAP (s; a) o

urs at times t1; t2; t3; : : :. The standard eligibility tra
e l(s; a)equals the produ
t of �t and l0(s; a).Lo
al Update(st; at) :1) Q(st; at) Q(st; at) + �k(st; at)(� � Æ(st; at))l0(st; at)2) Æ(st; at) �The global update pro
edure. After ea
h exe
uted a
tion we invoke the pro
edureGlobal Update, whi
h
onsists of three basi
 steps: (1) To
al
ulate V (st+1) (whi
h mayhave
hanged due to the most re
ent experien
e), it
alls Lo
al Update for the possiblenext SAPs. (2) It updates the global variables �t and �. (3) It updates the Q-value andtra
e variable of (st; at) and stores the
urrent � value (in Lo
al Update).Global Update(st; at; rt; st+1) :1)8a 2 A Do Make V (st+1) up-to-date1a) Lo
al Update(st+1; a)2) e0t (rt +
V (st+1)�Q(st; at))3) et (rt +
V (st+1)� V (st))4) �t
��t�1 Update global
lo
k5) � �+ et�t Add new TD-error to global error6) Lo
al Update(st; at) Make Q(st; at) up-to-date for next step7) Q(st; at) Q(st; at) + �k(st; at)e0t8) l0(st; at) l0(st; at) + 1=�t De
ay Tra
eFor state repla
ing eligibility tra
es (Singh and Sutton, 1996), step 8 should be
hangedas follows: 8a : l0(st; a) 0; l0(st; at) 1=�t.Ma
hine pre
ision problem and solution. Adding et�t to � in line 5 may
reate aproblem due to limited ma
hine pre
ision: for large absolute values of � and small �tthere may be signi�
ant rounding errors. More importantly, line 8 will qui
kly over
owany ma
hine for
� < 1. The following addendum to the pro
edureGlobal Update dete
tswhen �t falls below ma
hine pre
ision �m, updates all SAPs whi
h have o

urred (againwe make use of a list H), and removes SAPs with l0(s; a) < �m from H . Finally, � and�t are reset to their initial values. 6

Global Update : addendum9) If (visited(st; at) = 0)9a) H H [(st; at)9b) visited(st; at) 110) If (�t < �m)10a) 8(s; a) 2 H Do10a-1) Lo
al Update(s; a)10a-2) l0(s; a) l0(s; a)�t10a-3) If (l0(s; a) < �m)10a-3-1) H H n (s; a)10a-3-2) visited(s; a) 010a-4) Æ(s; a) 010b) � 010
) �t 1:0Comments. Re
all that Lo
al Update sets Æ(s; a) �, and update steps depend on��Æ(s; a). Thus, after having updated all SAPs in H , we
an set � 0 and Æ(s; a) 0.Furthermore, we
an simply set l0(s; a) l0(s; a)�t and �t 1:0 without a�e
ting theexpression l0(s; a)�t used in future updates | this just res
ales the variables. Note thatif
� = 1, then no sweeps through the history list will be ne
essary.Complexity. The algorithm's most expensive part is the set of
alls of Lo
al Update,whose total
ost is O(jAj). This is not bad: even simple Q-learning's a
tion sele
tionpro
edure
osts O(jAj) if, say, the Boltzmann rule (Thrun, 1992; Caironi and Dorigo,1994) is used. Con
erning the o

asional
omplete sweep through SAPs still in historylist H : during ea
h sweep the tra
es of SAPs in H are multiplied by �t. SAPs are deletedfrom H on
e their tra
e falls below �m. In the worst
ase one sweep per n time stepsupdates 2n SAPs and
osts O(1) on average. This means that there is an additional
omputational burden at
ertain time steps, but sin
e this happens infrequently ourmethod's total average update
omplexity stays O(jAj).The spa
e
omplexity of the algorithm remains O(jSj�jAj). We need to store the followingvariables for all SAPs: Q-values, eligibility tra
es, previous delta values, the \visited"bit, and three pointers to manage the history list (one from ea
h SAP to its pla
e in thehistory list, and two for the doubly linked list). Finally we need to store the two globalvariables.4 Revisions to Fast Q(�)In this se
tion we show how the original version of Fast Q(�) is likely to be misappliedto give rise to two subtle errors. This se
tion also introdu
es: i) what modi�
ations, ifany, are required of a
tion sele
tion me
hanisms that intend to employ up-to-date Q-fun
tion, ii) the state-a
tion repla
e version of Fast Q(�), and, iii) how the algorithmmay be modi�ed for o�-poli
y learning (as Watkins' Q(�)) [15, 12℄. The new algorithmsare shown in Figure 2.Error 1. Step 1 of the original Global Update pro
edure performs the updates to theQ-values at st+1 ne
essary to ensure that V (st+1) is an up-to-date estimate before steps2 and 3 where they are used. However, Q(st; at) and V (st) are also used in steps 2 and3 and may not be up-to-date. This is easily
orre
ted by adding:1b) Lo
al Update(st; a)We shall see below that this
hange is not ne
essary if Q(st; �) is made up-to-date at the7

end of the Global Update pro
edure.Error 2. When state repla
ing tra
es are employed with the original Fast Q(�) algo-rithm, it is possible that the eligibility of some SAPs are zeroed. In su
h a
ase, if theseSAPs previously had non zero eligibilities then they will not re
eive any update makinguse of et. An ex
eption is Q(st; at), whi
h is made up-to-date in step 6 (and so makes useof et). However all other SAPs at st with non-zero eligibilities will re
eive no adjustmenttoward et if their eligibilities are zeroed:From the original version of Global Update:. . .3) et (rt +
V (st+1)� V (st)). . .Here, ea
h a 6= at with non-zero tra
es re
eive no update using et(Q(st; at) is already up-to-date before this point)8) 8a : l0(st; a) 0; l0(st; at) 1=�t.To avoid this in the revised algorithm, all of the Q-values at st are made up-to-datebefore zeroing their eligibility tra
es (step 8a).A
tion Sele
tion. Steps 9 and 9a of the Revised Global Update pro
edure are a prag-mati

hange to ensure that all of the Q-values for st+1 are up-to-date by the end ofthe pro
edure. If this were not so then any
ode needing to make use of the up-to-dateQ-fun
tion at st+1, su
h as those for sele
ting the agent's next a
tion, would need to bede�ned in terms of the up-to-date, Q-fun
tion instead. The up-to-date fun
tion, Q+, isgiven by: Q+(s; a) = Q(s; a) + �k(s; a)(� � Æ(s; a))l0(st; at) (11)From an implementation standpoint, these
hanges are desirable for at least three rea-sons. Firstly, the need to use Q+ for a
tion sele
tion is easy to overlook when imple-menting the original version of Fast Q(�) as part of a larger learning agent. Se
ondly,it redu
es
oupling between algorithms; an algorithm that implements a
tion sele
tionbased on the up-to-date Q-values of st+1 does not need to use Q+ or even
are thatvalues at di�erent states may be out-of-date. Thirdly, it redu
es the dupli
ation of
ode;we are likely to already have a
tion-sele
tion algorithms that use Q(st+1; �) and so wedon't need to implement others that use Q+(st+1; �) instead.The original des
ription of Fast Q(�) assumed that the Lo
al Update pro
edure was
alledfor all a
tions in the
urrent state immediately after the Global Update pro
edure andprior to sele
ting a
tions. However, from the original des
ription, it was not
lear thatthis still needs to be done even if the Q-values at the
urrent state are not used by thea
tion sele
tion method (for example, if the a
tions for sele
ted randomly or provided bya trainer). If this is done, then the new and revised algorithms are essentially identi
al.State-A
tion Repla
ing Tra
es. The des
riptions of Q(�) and Fast Q(�) in Se
tions2 and 3 in
lude only the a

umulating and state repla
ing tra
e variants. In additionto these, Singh and Sutton des
ribe a third state-a
tion repla
ing tra
e variant. This issimilar to the state repla
ing tra
e ex
ept that the eligibilities of the a
tions not followedare not zeroed but de
ayed as in the a

umulating tra
e
ase [4℄:lt+1(s; a) = � 1; if s = st and a = at,
�lt(s; a); otherwise. (12)For Fast Q(�), an e�e
t equivalent to setting an eligibility to 1 is a
hieved byl0t+1(s; a) 1=�t. We in
lude this variant only for
ompleteness. See [12℄ for a dis-
ussion of the properties of the di�erent variants.8

For a

umulating tra
es:Revised Global Update(st; at; rt; st+1) :1)8a 2 A Do1a) Lo
al Update(st+1; a)2) e0t (rt +
V (st+1)�Q(st; at)) NB. st was made up-to-date in step 93) et (rt +
V (st+1)� V (st))4) �t
��t�15) � �+ et�t6) Lo
al Update(st; at)7) Q(st; at) Q(st; at) + �k(st; at)e0t8) l0(st; at) l0(st; at) + 1=�t In
rement eligibility9) 8a 2 A Do9a) Lo
al Update(st+1; a) Make Q(st+1; �) up-to-date before a
tion sele
tionFor state-a
tion repla
ing tra
es repla
e step 8 with:8) l0(st; at) 1=�t Set eligibility to 1For state repla
ing tra
es, repla
e steps 8 - 9a with:8) 8a 2 A Do8a) Lo
al Update(st; a) Make Q(st; �) up-to-date before zeroing eligibility8b) l0(st; a) 0 Zero eligibility8
) Lo
al Update(st+1; a) Make Q(st+1; �) up-to-date before a
tion-sele
tion9) l0(st; at) 1=�t Set eligibility to 1For Watkins Q(�) prepend the following to the Revised Global Update pro
edure.0) if Q(st; at) < V (st) Test whether a non-greedy a
tion was taken0a) Flush Updates()Flush Updates()1) 8(s; a) 2 H Do2) Q(s; a) Q(s; a) + �k(st; at)(�� Æ(s; a))l0(s; a)3) Æ(s; a) 04) l0(s; a) 05) H fg6) � 07) �t 1Figure 2: The revised Fast Q(�) algorithm for a

umulating, state repla
ing and state-a
tion repla
ing tra
es and for Watkins' Q(�). The ma
hine pre
ision addendum shouldbe appended to ea
h algorithm. The Flush Updates pro
edure
an also be
alled uponentering a terminal state to make the entire Q-fun
tion up-to-date and also reinitialisethe eligibility and error values of ea
h SAP ready for learning in the next episode.
9

Watkins' Q(�). Q(�) was originally
on
eived by Watkins and appeared in his thesis[15℄. Like Q-learning, Watkins' Q(�) is an o�-poli
y method; it
an learn from the returnobtainable under one poli
y (the greedy poli
y) while, in pra
ti
e, almost any poli
y
anbe used to generate experien
e. It a
hieves this by ignoring the observed return thatfollows from a non-greedy a
tion in updates to the states visited prior to that a
tion. Inan eligibility tra
e method the
redit following a non-greedy a
tion
an be removed fromthe error signal by setting the eligibilities of all SAPs to zero after taking that a
tion.The new Fast Q(�) version works in the same way ex
ept that here we must ensure thatall non-up-to-date SAPs are updated before zeroing their tra
es (see the Flush Updatespro
edure).Frequently zeroing the tra
e will mean that
redit for re
eiving a parti
ular reward willimmediately be assigned only to the few re
ent SAPs sin
e the last non-greedy a
tion.A re
ent dis
ussion of methods to over
ome this ineÆ
ien
y
an be found in [6℄.Unlike Watkins' Q(�), Peng and Williams' Q(�) is not o�-poli
y. The Q-fun
tion that itwill
onverge upon (if it
onverges at all) will be biased by the distribution of experien
e;it
an be shown that if the method
onverges then the �nal Q-fun
tion may be di�erentfrom Q� if non-greedy a
tions are
ontinually taken.1 However, learning an a

urateQ-fun
tion is di�erent from learning a good poli
y. Be
ause Peng and Williams' Q(�)does not zero its tra
e, ea
h experien
e may immediately a�e
t many more SAPs thanWatkins' Q(�). Thus, in many instan
es it may learn more qui
kly.5 ValidationIn this se
tion we empiri
ally test how
losely the
orre
t and erroneous implementationsof Fast Q(�) approximate the original version of Q(�). We use Fast Q(�)+ to denote the
orre
t implementation suggested in this paper and Fast Q(�)� to denote the methodthat does not apply a Lo
al Update for all a
tions in the new state between
alls tothe Global Update pro
edure. Note that if these updates are performed, Fast Q(�)+and Fast Q(�)� are identi
al methods.2 We analyse what
onsequen
es the erroneousimplementation has on the learning ability of the RL agent.The algorithms were tested using the maze task shown in Figure 3. At ea
h step theagent may
hoose one of four a
tions (N,S,E,W). Transitions have probabilities of 0:8of su

eeding, 0:08 of moving the agent laterally and 0:04 of moving in the oppositeto intended dire
tion. Episodes start in random states and
ontinue until one of thefour terminal
orner states is entered. A reward of 100 is given for entering the top-right
orner and 10 for the others. There are a number of penalty �elds of �1 and �4around the maze. This task was
hosen as
redit for a
tions leading to the goal
an besigni�
antly delayed and also be
ause state revisits
an frequently o

ur.The a
tion taken by the agent at ea
h step was sele
ted using �-greedy [12℄. This se-le
ts a greedy a
tion, argmaxaQ(st; a), with probability �, and a random a
tion with1� �. For Fast Q(�)� the greedy a
tion is
hosen based upon the up-to-date Q-fun
tion:argmaxaQ+(st; a).Figure 5
ompares the results for the PW Q(�) variants. The graphs measure the totalreward
olle
ted by ea
h algorithm and the mean squared error (MSE) in the up-to-dateQ-fun
tion learned by ea
h algorithm over the
ourse of 200000 time steps. The squared1There is, as yet, no proof that any RL method with � > 0
onverges upon Q� [12, 9℄.2The experiments in the original des
ription of Fast Q(�) did perform these lo
al updatesand so we do not repeat the experiments in the original paper in order to
ompare the time-
ostof Fast Q(�)+ and Peng's Q(�) [18, 19, 17℄. 10

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Figure 3: The large sto
hasti
 maze task. Impassable walls are marked in bla
k andpenalty �elds of �4 and �1 are marked in dark and light grey respe
tively.
1

2

3

2 431

-1

+1

Figure 4: A small sto
hasti
 maze task taken from [8℄. Rewards of �1 and +1 are givenfor entering (4; 2) and (4; 3), respe
tively. On non-terminal transitions, rt = 1=25.
Fast Q(�)� Fast Q(�)+PW-a

 0.7 1:7 � 10�15PW-srepl 1.3 8:8 � 10�16PW-sarepl 0.3 1:7 � 10�15WAT-a

 1.3 7:6 � 10�13WAT-srepl 2.5 4:2 � 10�10WAT-sarepl 0.6 2:9 � 10�11Table 1: The largest di�eren
es from Q-fun
tion learned by original Q(�) during the
ourse of 2000 time steps of experien
e within the small maze task. The experimentparameters were �m = 10�9, � = 0:2, � = 0:95 and
 = 1:0. The experien
e wasgenerated by randomly sele
ting a
tions. 11

-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

PW, acc
Fast PW (+), acc
Fast PW (-), acc

0

200

400

600

800

1000

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

PW, acc
Fast PW (+), acc
Fast PW (-), acc

-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

PW, srepl
Fast PW (+), srepl
Fast PW (-), srepl

0

200

400

600

800

1000

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

PW, srepl
Fast PW (+), srepl
Fast PW (-), srepl

-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

PW, sarepl
Fast PW (+), sarepl
Fast PW (-), sarepl

0

200

400

600

800

1000

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

PW, sarepl
Fast PW (+), sarepl
Fast PW (-), sarepl

Figure 5: Comparison of PW Q(�), Fast PW Q(�)+ and Fast PW Q(�)� performan
epro�les in the sto
hasti
 maze task. Results are the average of 20 runs. The parameterswere Q0 = 100, � = 0:3, � = 0:1, � = 0:9 and �m = 1 � 10�3 for regular Q(�) and�m = 10�10 for the Fast versions. (left
olumn) Total reward
olle
ted. (right
olumn)Mean squared error in the value fun
tion. (top row) With a

umulating tra
es. (middlerow) With state repla
ing tra
es. (bottom row) With state-a
tion repla
ing tra
es.
12

-50000

0

50000

100000

150000

200000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

PW, acc
Fast PW (+), acc
Fast PW (-), acc

0

500

1000

1500

2000

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

PW, acc
Fast PW (+), acc
Fast PW (-), acc

-50000

0

50000

100000

150000

200000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

PW, srepl
Fast PW (+), srepl
Fast PW (-), srepl

0

500

1000

1500

2000

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

PW, srepl
Fast PW (+), srepl
Fast PW (-), srepl

-50000

0

50000

100000

150000

200000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

PW, sarepl
Fast PW (+), sarepl
Fast PW (-), sarepl

0

500

1000

1500

2000

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

PW, sarepl
Fast PW (+), sarepl
Fast PW (-), sarepl

Figure 6: Comparison of Peng and Williams' Q(�) methods with a high exploration rate(� = 0:5). All other parameters are as in Figure 5. Note that the s
ale of the verti
alaxes di�ers between experiment sets.
13

-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

WAT, acc
Fast WAT (+), acc
Fast WAT (-), acc

0

200

400

600

800

1000

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

WAT, acc
Fast WAT (+), acc
Fast WAT (-), acc

-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

WAT, srepl
Fast WAT (+), srepl
Fast WAT (-), srepl

0

200

400

600

800

1000

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

WAT, srepl
Fast WAT (+), srepl
Fast WAT (-), srepl

-50000

0

50000

100000

150000

200000

250000

300000

350000

400000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

WAT, sarepl
Fast WAT (+), sarepl
Fast WAT (-), sarepl

0

200

400

600

800

1000

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

WAT, sarepl
Fast WAT (+), sarepl
Fast WAT (-), sarepl

Figure 7: Comparison of Watkins' Q(�), Fast Watkins' Q(�)� and Revised Fast Watkins'Q(�)+ in the sto
hasti
 maze task. All parameters are as in Figure 5.
14

-50000

0

50000

100000

150000

200000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

WAT, acc
Fast WAT (+), acc
Fast WAT (-), acc

0

50

100

150

200

250

300

350

400

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

WAT, acc
Fast WAT (+), acc
Fast WAT (-), acc

-50000

0

50000

100000

150000

200000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

WAT, srepl
Fast WAT (+), srepl
Fast WAT (-), srepl

0

50

100

150

200

250

300

350

400

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

WAT, srepl
Fast WAT (+), srepl
Fast WAT (-), srepl

-50000

0

50000

100000

150000

200000

0 50000 100000 150000 200000

C
um

ul
at

iv
e

R
ew

ar
d

Steps

WAT, sarepl
Fast WAT (+), sarepl
Fast WAT (-), sarepl

0

50

100

150

200

250

300

350

400

0 50000 100000 150000 200000

M
ea

n
S

qu
ar

ed
 E

rr
or

Steps

WAT, sarepl
Fast WAT (+), sarepl
Fast WAT (-), sarepl

Figure 8: Comparison of Watkins' Q(�) methods with a high exploration rate (� = 0:5).All other parameters are as in Figure 5.
15

error was measured as, SE(s) = �V �(s)�maxa Q(s; a)�2 ; (13)for regular Q(�) and as,SE(s) = �V �(s)�maxa Q+(s; a)�2 ; (14)for both versions of Fast Q(�). An a

urate V � was found by dynami
 programmingmethods. All of the results in the graphs are the average of 100 runs.Fast PW Q(�)+ provided equal or better performan
e than Fast PW Q(�)� in mostinstan
es, and its results also provided an extremely good �t against the original versionof PW Q(�) in all
ases (see Figures 5 and 6). Similar results were found when
omparingWatkins' Q(�) and its Fast variants (see Figures 7 and 8).Fast Q(�)� worked espe
ially worse in terms of error than Fast Q(�)+ for PW witha

umulating or state-a
tion repla
ing tra
es. However, in one instan
e (with a staterepla
ing tra
e) the error performan
e of the revised algorithm was a
tually worse thanthe original (see Figure 6).3 This anomaly was not seen for Watkins' Q(�) (see Figure 8).The e�e
t of exploratory a
tions on PW Q(�) are also evident in these results. The PWQ(�) methods
olle
ted less reward and found a hugely less a

urate Q-fun
tion in the
ase of a high exploration rate than the Watkins' methods (
ompare Figures 6 and 8). In
ontrast, the Watkins' variants
olle
ted similar or better amounts of reward but foundfar more a

urate Q-fun
tions than the Peng and Williams' methods in both the highand low exploration rate
ases. Similar results were also reported by Wyatt in [20℄.In addition to showing that the performan
e of Fast Q(�)+ is similar to Q(�) in themean, we performed a more detailed test. The agents were made to learn from identi
alexperien
e gathered over 2000 simulation steps in the small sto
hasti
 maze shown inFigure 4. At ea
h time step, the di�eren
e between the Q-fun
tions of Q(�) and the up-to-date Q-fun
tions of Fast Q(�)+ and Fast Q(�)� was measured. The largest di�eren
esat any time during the
ourse of learning are shown in Table 1. The di�eren
es for FastQ(�)+ are all in the order of �m or better. The di�eren
es for Fast Q(�)� are manyorders of magnitude greater.Also, overall, state repla
ing tra
es produ
ed best performan
e in terms of Q-fun
tionerror in both sets of experiments. State repla
ing tra
es are the variants suggested bySingh and Sutton [10℄ and in the original des
ription of Fast Q(�) [18, 19, 17℄.6 Con
lusionFast Q(�) provided the means to implement Q(�) at a greatly redu
ed
omputational
ost that is independent of the size of the state spa
e. As su
h, it makes it feasible forRL to ta
kle problems of greater s
ale. Although the underlying derivation of Fast Q(�)is
orre
t, we have shown in this paper that the original algorithmi
 des
ription is likelyto be misinterpreted and in
orre
tly implemented. This paper has provided both sim-pli�
ations and
lari�
ations of the original algorithm. The revised algorithm maintainsa mean time
omplexity of O(jAj) per step (as Fast Q(�)). Naive implementations ofQ(�) are O(jSj � jAj) per step.3An interpretation of this result might be that the Peng and Williams' Fast Q(�)� methodisn't performing as bad as qui
kly as the other methods sin
e the error is a
tually in
reasing inall methods until the end of this plot. 16

We have also shown how Fast Q(�)
an be modi�ed to use state-a
tion repla
ing tra
esor used as an exploration insensitive learning method and reported upon the relativemerits of these modi�
ations. In parti
ular, in the experiments
ondu
ted here, theexploration insensitive versions provided similar performan
e in terms of the
olle
tedreward, but a
hieved uniformly better performan
e in terms of Q-fun
tion error. Thiswas found both with high or low amounts of exploration.Referen
es[1℄ Andrew G. Barto, Ri
hard S. Sutton, and Charles W. Anderson. Neuronlike adap-tive elements that
an solve diÆ
ult learning problems. IEEE Transa
tions onSystems, Man and Cyberneti
s, 13(5):834{846, Septemeber 1983.[2℄ D. P. Bertsekas and J. N. Tsitsiklis. Neurodynami
 Programming. Athena S
ienti�
,Belmont, MA, 1996.[3℄ P. V. C. Caironi and M. Dorigio. TrainingQ agents. Te
hni
al Report IRIDIA-94-14,Universit�e Libre de Bruxelles, 1994.[4℄ Pawel Ci
hosz. A forwards view of repla
ing eligibility tra
es for states and state-a
tion pairs. Mathemati
al Algorithms, 1:283{297, 2000.[5℄ J. Peng and R. J. Williams. Te
hni
al note: In
remental Q-learning. Ma
hineLearning, 22:283{290, 1996.[6℄ Stuart I Reynolds. Experien
e sta
k reinfor
ment learning for o�-poli
y
on-trol. Te
hni
al Report CSRP-02-1, University of Birmingham, S
hool of ComputerS
ien
e, January 2002. ftp://ftp.
s.bham.a
.uk/pub/te
h-reports/2002/CSRP-02-01.ps.gz.[7℄ G. A. Rummery and M. Niranjan. On-line Q-learning using
onne
tionist systems.Te
hni
al Report CUED/F-INFENG/TR 166, Cambridge Univeristy EngineeringDepartment, September 1994.[8℄ Stuart Russell and Peter Norvig. Arti�
ial Intelligen
e: A Modern Approa
h. Pren-ti
e Hall, London, UK, 1995.[9℄ Satinder Singh. Personal
ommuni
ation, 2001.[10℄ Satinder P. Singh and Ri
hard S. Sutton. Reinfor
ement learning with repla
ingeligibility tra
es. Ma
hine Learning, 22:123{158, 1996.[11℄ Ri
hard S. Sutton. Learning to predi
t by methods of temporal di�eren
e. Ma
hineLearning, 3:9{44, 1988.[12℄ Ri
hard S. Sutton and Andrew G. Barto. Reinfor
ement Learning: An Introdu
tion.The MIT Press, Cambridge, MA., 1998.[13℄ G. J. Tesauro. Pra
ti
al issues in temporal di�eren
es learning. In Advan
es inNeural Information Pro
essing Systems 4, pages 259{266, San Mateo, CA, 1992.Morgan Kaufamann.[14℄ S. Thrun. EÆ
ient exploration in reinfor
ement learning. Te
hni
al Report CMU-CS-92-102, Carnegie Mellon University, PA, 1992.[15℄ C.J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis, King's College,Cambridge, UK, May 1989.[16℄ C.J.C.H. Watkins and P. Dayan. Te
hni
al note: Q-Learning. Ma
hine Learning,8:279{292, 1992.[17℄ Mar
o Wiering. Explorations in EÆ
ient Reinfor
ement Learning. PhD thesis,Universiteit van Amsterdam, The Netherlands, February 1999.17

[18℄ Mar
o Wiering and J�urgen S
hmidhuber. Fast online Q(�). Ma
hine Learning,33(1):105{115, 1998.[19℄ Mar
o Wiering and J�urgen S
hmidhuber. Speeding up Q(�)-Learning. In Pro
eed-ings of the Tenth European Conferen
e on Ma
hine Learning (ECML'98), 1998.[20℄ Jeremy Wyatt, Gillian Hayes, and John Hallam. Investigating the behaviour ofQ(�). In In Colloquium on Self-Learning Robots, IEE, London, February 1996.

18

