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Maro A. WieringInstitute of Informationand Computing Sienes,Utreht University,Padualaan 14, 3508 TB Utreht.The Netherlandsmaro�s.uu.nlhttp://www.s.uu.nl/~maroAbstratFast Q(�) is a model free reinforement learning tehnique for preiselyimplementing Q(�) and other eligibility trae learning algorithms at ahugely redued omputational ost. This report highlights some sub-tleties in the original desription of Fast Q(�) and that are likely tolead to it being inorretly applied. We propose hanges to Fast Q(�),without whih the behaviour of the algorithm an be signi�antly dif-ferent (and inferior) to Q(�). With these hanges the algorithm behavespreisely as Q(�) to a very high degree of preision. We also report onan empirial validation of the algorithm and also provide an explorationinsensitive version (an analogue of Watkins' Q(�)).1 IntrodutionQ(�)-learning is an important and widely used reinforement learning (RL) method. Itombines Q-learning (Watkins, 1989; Watkins and Dayan, 1992) and TD(�) (Sutton,1988; Tesauro, 1992). Q(�) is widely used | it is generally believed to outperformsimple one-step Q-learning, sine it uses single experienes to update evaluations ofmultiple state/ation pairs (SAPs) that have ourred in the past.Q(�) learning is an unneessarily expensive algorithm. It has a time omplexity ofO(jSj � jAj) per step for a state spae S, and ation set A. To improve this, the FastQ(�) algorithm implements Q(�) to a very high degree of preision but at a mean om-putational ost of O(jAj). However, the original desription of Fast Q(�) (as publishedin [18, 19, 17℄) allows for the algorithm to be misapplied and we highlight two subtleerrors that an our. This paper states these errors and orrets them. In addition, weshow how to extend the algorithm for state replaing traes, for o�-poliy (explorationinsensitive) learning and also simplify the algorithm to avoid diÆulties with ationseletion.Setion 2 provides a brief introdution to RL and the Q(�) algorithm. Setion 3 reviewsthe original desription of Fast Q(�). Setion 4 presents the problems, �xes and newextensions to Fast Q(�). Readers who are already familiar with Fast Q(�) should skip toSetion 4. In Setion 5 we test how losely the new and old versions of Fast Q(�) math1



standard Q(�). Setion 6 onludes.2 Q(�)-LearningWe onsider �nite Markov deision proesses, using disrete time steps t = 1; 2; 3; : : :, a�nite set of states S = fS1; S2; S3; : : : ; Sng and a �nite set of ations A. The state attime t is denoted by st, and at = �(st) denotes the seleted ation, where � representsthe learner's poliy mapping states to ations. The transition probability to the nextstate st+1, given st and at, is determined by P aij = P (st+1 = jjst = i; at = a) for i; j 2 Sand a 2 A. A reward funtion R maps the SAP (i; a) 2 S � A to salar reinforementsignals R(i; a) 2 IR. The reward at time t is denoted by rt. A disount fator  2 [0; 1℄disounts later against immediate rewards. The ontroller's goal is to selet ations whihmaximise the expeted long-term umulative disounted reinforement, given an initialstate seleted aording to a probability distribution over possible initial states.Reinforement Learning. To ahieve this goal, most reinforement learning methodslearn an ation evaluation funtion or Q-funtion. The optimal Q-value of a SAP (i; a)satis�es Q�(i; a) = R(i; a) + Xj P aijV �(j); (1)where V �(j) = maxaQ�(j; a). To learn this Q-funtion, RL algorithms repeatedly do:(1) Selet ation at given state st, (2) Collet reward rt and observe suessor state st+1,(3) Update the Q-funtion using the latest experiene (st; at; rt; st+1).Q-learning. Given (st; at; rt; st+1), standard one-step Q-learning updates just a singleQ-value Q(st; at) as follows [15℄:Q(st; at) Q(st; at) + �k(st; at)e0t:Here the temporal di�erene or TD(0)-error e0t is given by:e0t = (rt + V (st+1)�Q(st; at));where the value funtion V (s) is de�ned as V (s) = maxaQ(s; a), and �k(st; at) is thelearning rate for the kth update of SAP (st; at).Learning rate adaptation. The learning rate �k(s; a) for the kth update of SAP (s; a)should derease over time to satisfy two onditions for stohasti iterative algorithms(Watkins and Dayan, 1992; Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998):1. P1k=1 �k(s; a) =1, and2. P1k=1 �2k(s; a) <1.The �rst ondition ensures that the updates are large enough to overome any initialbiases or random utuations. The seond ondition ensures that the updates beomesmall enough to ensure onvergene. They hold for �k(s; a) = 1=k�, where 1=2 < � � 1.Q(�)-learning. Q(�) uses TD(�)-methods (Sutton, 1988) to aelerate Q-learning.First note that Q-learning's update at time t + 1 may hange V (st+1) in the de�nitionof e0t. Following Peng and Williams (1996) we de�ne the TD(0)-error of V (st+1) aset+1 = (rt+1 + V (st+2)� V (st+1)): (2)Q(�) uses a fator � 2 [0; 1℄ to disount TD-errors of future time steps:Q(st; at) Q(st; at) + �k(st; at)e�t ; (3)2



where the TD(�)-error e�t is de�ned as,e�t = e0t + TXi=1(�)iet+i; (4)where T denotes the time at whih a terminal state in entered. T may be in�nity if thereare no terminal states.Eligibility traes. The updates above annot be made as long as the TD errors offuture time steps are not known. We an ompute them inrementally, however, byusing eligibility traes (Barto et al., 1983; Sutton 1988). From update rule (3) andde�nition (4), and assuming a onstant � for simpliity, the Q-funtion at time k isgiven by, Qk(s; a) = Q0(s; a) + � kXt=1 e�t �t(s; a): (5)In what follows, �t(s; a) will denote the indiator funtion whih returns 1 if (s; a) o-urred at time t, and 0 otherwise. Omitting the learning rate for simpliity, the inrementof Q(s; a) for the omplete trial is:�Q(s; a) = QT (s; a)�Q0(s; a)�Q(s; a)� = TXt=1 e�t �t(s; a)= TXt=1 "e0t�t(s; a) + TXi=t+1(�)i�tei�t(s; a)#= TXt=1 "e0t�t(s; a) + t�1Xi=1(�)t�iet�i(s; a)#= TXt=1 "e0t�t(s; a) + et t�1Xi=1(�)t�i�i(s; a)# : (6)To simplify this we use an eligibility trae lt(s; a) for eah SAP (s; a):lt(s; a) = t�1Xi=1(�)t�i�i(s; a): (7)Then the online update at time t+ 1 beomes:8(s; a) 2 S �A do : Q(s; a) Q(s; a) + �k(st; at) [e0t�t(s; a) + etlt(s; a)℄ : (8)Online Q(�). We will fous on Peng and Williams' algorithm (PW) (1996), althoughthere are other possible variants, e.g, Rummery and Niranjan's sarsa (1994). PW usesa list H of SAPs that have ourred at least one. SAPs with eligibility traes below�m � 0 are removed from H . Boolean variables visited(s; a) are used to make sure notwo SAPs in H are idential. 3



PW's Q(�)-update(st; at; rt; st+1) :1) e0t  (rt + V (st+1)�Q(st; at))2) et  (rt + V (st+1)� V (st))3) For eah SAP (s; a) 2 H Do :3a) l(s; a) �l(s; a)3b) Q(s; a) Q(s; a) + �k(st; at)etl(s; a)3) If (l(s; a) < �m)3-1) H  H n (s; a)3-2) visited(s; a) 04) Q(st; at) Q(st; at) + �k(st; at)e0t5) l(st; at) l(st; at) + 16) If (visited(st; at) = 0)6a) visited(st; at) 16b) H  H [ (st; at)Comments.1. The sarsa algorithm (Rummery and Niranjan, 1994) replaes the right hand side inlines (1) and (2) by (rt + Q(st+1; at+1)�Q(st; at)).2. For state replaing eligibility traes (Singh and Sutton, 1996), step 5 should be:8a : l(st; a) 0; l(st; at) 1.3. Representing H by a doubly linked list and using diret pointers from eah SAP to itsposition in H , the funtions operating on H (deleting and adding elements | see lines(3-1) and (6b)) ost O(1).Complexity. Deleting SAPs from H (step 3-1) one their traes fall below a ertainthreshold may signi�antly speed up the algorithm. If � is suÆiently small, then thiswill keep the number of updates per time step manageable. For large �, PW does notwork that well: it needs a sweep (sequene of SAP updates) after eah time step, andthe update ost for suh sweeps grows with �. Let us onsider worst-ase behaviour,whih means that eah SAP ours just one (if SAPs reour then the history list willgrow at a slower rate). In the beginning of the episode the number of updates inreaseslinearly until at some time step t some SAPs get deleted from H . This will happen assoon as t � log �m= log(�). Sine the number of updates is bounded from above by thenumber of SAPs, the total update omplexity inreases towards O(jSj � jAj) per updatefor �! 1.The spae omplexity of the algorithm is O(jSj � jAj). We need to store for all SAPs:Q-values, eligibility traes, the \visited" bit variable and three pointers for managingthe history list (one from the SAP to its plae in the history list, and two for the doublylinked list).3 Fast Q(�)-LearningFast Q(�) is intended a fully online implementation of Q(�) but with a time omplexityO(jAj) per update. The algorithm is designed for � > 0 | otherwise we an use simpleQ-learning.Main priniple. The algorithm is based on the observation that the only Q-valuesneeded at any given time are those for the possible ations given the urrent state.Hene, using \lazy learning", we an postpone updating Q-values until they are needed.Suppose some SAP (s; a) ours at steps t1; t2; t3; : : :. Let us abbreviate �t = �t(s; a),4



� = �. First we unfold terms of expression (6):TXt=1 "e0t�t + et t�1Xi=1 �t�i�i# = t1Xt=1 "e0t�t + et t�1Xi=1 �t�i�i#+t2Xt=t1+1"e0t�t + et t�1Xi=1 �t�i�i#+t3Xt=t2+1"e0t�t + et t�1Xi=1 �t�i�i#+ : : :Sine �t is 1 only for t = t1; t2; t3; : : : and 0 otherwise, we an rewrite this ase0t1 + e0t2 + t2Xt=t1+1 et�t�t1 + e0t3 + t3Xt=t2+1 et ��t�t1 + �t�t2�+ : : : =e0t1 + e0t2 + 1�t1 t2Xt=t1+1 et�t + e0t3 +� 1�t1 + 1�t2 � t3Xt=t2+1 et�t + : : : =e0t1 + e0t2 + 1�t1  t2Xt=1 et�t � t1Xt=1 et�t!+ e0t3 +� 1�t1 + 1�t2 � t3Xt=1 et�t � t2Xt=1 et�t!+ : : :De�ning �t =Pti=1 ei�i, this beomese0t1 + e0t2 + 1�t1 (�t2 ��t1) + e0t3 +� 1�t1 + 1�t2 � (�t3 ��t2) + : : : (9)This will allow for onstruting an eÆient online Q(�) algorithm. We de�ne a loal trael0t(s; a) =Pti=1 �i(s;a)�i , and use (9) to write down the total update of Q(s; a) during anepisode: �Q(s; a) = TXt=1 [e0t�t(s; a) + l0t(s; a)(�t+1 ��t)℄ : (10)To exploit this we introdue a global variable � keeping trak of the umulative TD(�)error sine the start of the episode. As long as SAP (s; a) does not our we postponeupdating Q(s; a). In the update below we need to subtrat that part of � whih hasalready been used (see equations 9 and 10). We use for eah SAP (s; a) a loal variableÆ(s; a) whih reords the value of � at the moment of the last update, and a loaltrae variable l0(s; a). Then, one Q(s; a) needs to be known, we update Q(s; a) byadding l0(s; a)(��Æ(s; a)). Figure 1 illustrates that the algorithm substitutes the varyingeligibility trae l(s; a) by multiplying a global trae �t by the loal trae l0(s; a). Thevalue of �t hanges all the time, but l0(s; a) does not in intervals during whih (s; a) doesnot our.Algorithm overview. The algorithm relies on two proedures: the Loal Update pro-edure alulates exat Q-values one they are required; the Global Update proedureupdates the global variables and the urrent Q-value. Initially we set the global vari-ables �0  1:0 and �  0. We also initialise the loal variables Æ(s; a)  0 andl0(s; a) 0 for all SAPs.Loal updates. Q-values for all ations possible in a given state are updated before anation is seleted and before a partiular V -value is alulated. For eah SAP (s; a) avariable Æ(s; a) traks hanges sine the last update:5
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Figure 1: SAP (s; a) ours at times t1; t2; t3; : : :. The standard eligibility trae l(s; a)equals the produt of �t and l0(s; a).Loal Update(st; at) :1) Q(st; at) Q(st; at) + �k(st; at)(� � Æ(st; at))l0(st; at)2) Æ(st; at) �The global update proedure. After eah exeuted ation we invoke the proedureGlobal Update, whih onsists of three basi steps: (1) To alulate V (st+1) (whih mayhave hanged due to the most reent experiene), it alls Loal Update for the possiblenext SAPs. (2) It updates the global variables �t and �. (3) It updates the Q-value andtrae variable of (st; at) and stores the urrent � value (in Loal Update).Global Update(st; at; rt; st+1) :1)8a 2 A Do Make V (st+1) up-to-date1a) Loal Update(st+1; a)2) e0t  (rt + V (st+1)�Q(st; at))3) et  (rt + V (st+1)� V (st))4) �t  ��t�1 Update global lok5) � �+ et�t Add new TD-error to global error6) Loal Update(st; at) Make Q(st; at) up-to-date for next step7) Q(st; at) Q(st; at) + �k(st; at)e0t8) l0(st; at) l0(st; at) + 1=�t Deay TraeFor state replaing eligibility traes (Singh and Sutton, 1996), step 8 should be hangedas follows: 8a : l0(st; a) 0; l0(st; at) 1=�t.Mahine preision problem and solution. Adding et�t to � in line 5 may reate aproblem due to limited mahine preision: for large absolute values of � and small �tthere may be signi�ant rounding errors. More importantly, line 8 will quikly overowany mahine for � < 1. The following addendum to the proedureGlobal Update detetswhen �t falls below mahine preision �m, updates all SAPs whih have ourred (againwe make use of a list H), and removes SAPs with l0(s; a) < �m from H . Finally, � and�t are reset to their initial values. 6



Global Update : addendum9) If (visited(st; at) = 0)9a) H  H [ (st; at)9b) visited(st; at) 110) If (�t < �m)10a) 8(s; a) 2 H Do10a-1) Loal Update(s; a)10a-2) l0(s; a) l0(s; a)�t10a-3) If (l0(s; a) < �m)10a-3-1) H  H n (s; a)10a-3-2) visited(s; a) 010a-4) Æ(s; a) 010b) � 010) �t  1:0Comments. Reall that Loal Update sets Æ(s; a)  �, and update steps depend on��Æ(s; a). Thus, after having updated all SAPs in H , we an set � 0 and Æ(s; a) 0.Furthermore, we an simply set l0(s; a)  l0(s; a)�t and �t  1:0 without a�eting theexpression l0(s; a)�t used in future updates | this just resales the variables. Note thatif � = 1, then no sweeps through the history list will be neessary.Complexity. The algorithm's most expensive part is the set of alls of Loal Update,whose total ost is O(jAj). This is not bad: even simple Q-learning's ation seletionproedure osts O(jAj) if, say, the Boltzmann rule (Thrun, 1992; Caironi and Dorigo,1994) is used. Conerning the oasional omplete sweep through SAPs still in historylist H : during eah sweep the traes of SAPs in H are multiplied by �t. SAPs are deletedfrom H one their trae falls below �m. In the worst ase one sweep per n time stepsupdates 2n SAPs and osts O(1) on average. This means that there is an additionalomputational burden at ertain time steps, but sine this happens infrequently ourmethod's total average update omplexity stays O(jAj).The spae omplexity of the algorithm remains O(jSj�jAj). We need to store the followingvariables for all SAPs: Q-values, eligibility traes, previous delta values, the \visited"bit, and three pointers to manage the history list (one from eah SAP to its plae in thehistory list, and two for the doubly linked list). Finally we need to store the two globalvariables.4 Revisions to Fast Q(�)In this setion we show how the original version of Fast Q(�) is likely to be misappliedto give rise to two subtle errors. This setion also introdues: i) what modi�ations, ifany, are required of ation seletion mehanisms that intend to employ up-to-date Q-funtion, ii) the state-ation replae version of Fast Q(�), and, iii) how the algorithmmay be modi�ed for o�-poliy learning (as Watkins' Q(�)) [15, 12℄. The new algorithmsare shown in Figure 2.Error 1. Step 1 of the original Global Update proedure performs the updates to theQ-values at st+1 neessary to ensure that V (st+1) is an up-to-date estimate before steps2 and 3 where they are used. However, Q(st; at) and V (st) are also used in steps 2 and3 and may not be up-to-date. This is easily orreted by adding:1b) Loal Update(st; a)We shall see below that this hange is not neessary if Q(st; �) is made up-to-date at the7



end of the Global Update proedure.Error 2. When state replaing traes are employed with the original Fast Q(�) algo-rithm, it is possible that the eligibility of some SAPs are zeroed. In suh a ase, if theseSAPs previously had non zero eligibilities then they will not reeive any update makinguse of et. An exeption is Q(st; at), whih is made up-to-date in step 6 (and so makes useof et). However all other SAPs at st with non-zero eligibilities will reeive no adjustmenttoward et if their eligibilities are zeroed:From the original version of Global Update:. . .3) et  (rt + V (st+1)� V (st)). . .Here, eah a 6= at with non-zero traes reeive no update using et(Q(st; at) is already up-to-date before this point)8) 8a : l0(st; a) 0; l0(st; at) 1=�t.To avoid this in the revised algorithm, all of the Q-values at st are made up-to-datebefore zeroing their eligibility traes (step 8a).Ation Seletion. Steps 9 and 9a of the Revised Global Update proedure are a prag-mati hange to ensure that all of the Q-values for st+1 are up-to-date by the end ofthe proedure. If this were not so then any ode needing to make use of the up-to-dateQ-funtion at st+1, suh as those for seleting the agent's next ation, would need to bede�ned in terms of the up-to-date, Q-funtion instead. The up-to-date funtion, Q+, isgiven by: Q+(s; a) = Q(s; a) + �k(s; a)(� � Æ(s; a))l0(st; at) (11)From an implementation standpoint, these hanges are desirable for at least three rea-sons. Firstly, the need to use Q+ for ation seletion is easy to overlook when imple-menting the original version of Fast Q(�) as part of a larger learning agent. Seondly,it redues oupling between algorithms; an algorithm that implements ation seletionbased on the up-to-date Q-values of st+1 does not need to use Q+ or even are thatvalues at di�erent states may be out-of-date. Thirdly, it redues the dupliation of ode;we are likely to already have ation-seletion algorithms that use Q(st+1; �) and so wedon't need to implement others that use Q+(st+1; �) instead.The original desription of Fast Q(�) assumed that the Loal Update proedure was alledfor all ations in the urrent state immediately after the Global Update proedure andprior to seleting ations. However, from the original desription, it was not lear thatthis still needs to be done even if the Q-values at the urrent state are not used by theation seletion method (for example, if the ations for seleted randomly or provided bya trainer). If this is done, then the new and revised algorithms are essentially idential.State-Ation Replaing Traes. The desriptions of Q(�) and Fast Q(�) in Setions2 and 3 inlude only the aumulating and state replaing trae variants. In additionto these, Singh and Sutton desribe a third state-ation replaing trae variant. This issimilar to the state replaing trae exept that the eligibilities of the ations not followedare not zeroed but deayed as in the aumulating trae ase [4℄:lt+1(s; a) = � 1; if s = st and a = at,�lt(s; a); otherwise. (12)For Fast Q(�), an e�et equivalent to setting an eligibility to 1 is ahieved byl0t+1(s; a) 1=�t. We inlude this variant only for ompleteness. See [12℄ for a dis-ussion of the properties of the di�erent variants.8



For aumulating traes:Revised Global Update(st; at; rt; st+1) :1)8a 2 A Do1a) Loal Update(st+1; a)2) e0t  (rt + V (st+1)�Q(st; at)) NB. st was made up-to-date in step 93) et  (rt + V (st+1)� V (st))4) �t  ��t�15) � �+ et�t6) Loal Update(st; at)7) Q(st; at) Q(st; at) + �k(st; at)e0t8) l0(st; at) l0(st; at) + 1=�t Inrement eligibility9) 8a 2 A Do9a) Loal Update(st+1; a) Make Q(st+1; �) up-to-date before ation seletionFor state-ation replaing traes replae step 8 with:8) l0(st; at) 1=�t Set eligibility to 1For state replaing traes, replae steps 8 - 9a with:8) 8a 2 A Do8a) Loal Update(st; a) Make Q(st; �) up-to-date before zeroing eligibility8b) l0(st; a) 0 Zero eligibility8) Loal Update(st+1; a) Make Q(st+1; �) up-to-date before ation-seletion9) l0(st; at) 1=�t Set eligibility to 1For Watkins Q(�) prepend the following to the Revised Global Update proedure.0) if Q(st; at) < V (st) Test whether a non-greedy ation was taken0a) Flush Updates()Flush Updates()1) 8(s; a) 2 H Do2) Q(s; a) Q(s; a) + �k(st; at)(�� Æ(s; a))l0(s; a)3) Æ(s; a) 04) l0(s; a) 05) H  fg6) � 07) �t  1Figure 2: The revised Fast Q(�) algorithm for aumulating, state replaing and state-ation replaing traes and for Watkins' Q(�). The mahine preision addendum shouldbe appended to eah algorithm. The Flush Updates proedure an also be alled uponentering a terminal state to make the entire Q-funtion up-to-date and also reinitialisethe eligibility and error values of eah SAP ready for learning in the next episode.
9



Watkins' Q(�). Q(�) was originally oneived by Watkins and appeared in his thesis[15℄. Like Q-learning, Watkins' Q(�) is an o�-poliy method; it an learn from the returnobtainable under one poliy (the greedy poliy) while, in pratie, almost any poliy anbe used to generate experiene. It ahieves this by ignoring the observed return thatfollows from a non-greedy ation in updates to the states visited prior to that ation. Inan eligibility trae method the redit following a non-greedy ation an be removed fromthe error signal by setting the eligibilities of all SAPs to zero after taking that ation.The new Fast Q(�) version works in the same way exept that here we must ensure thatall non-up-to-date SAPs are updated before zeroing their traes (see the Flush Updatesproedure).Frequently zeroing the trae will mean that redit for reeiving a partiular reward willimmediately be assigned only to the few reent SAPs sine the last non-greedy ation.A reent disussion of methods to overome this ineÆieny an be found in [6℄.Unlike Watkins' Q(�), Peng and Williams' Q(�) is not o�-poliy. The Q-funtion that itwill onverge upon (if it onverges at all) will be biased by the distribution of experiene;it an be shown that if the method onverges then the �nal Q-funtion may be di�erentfrom Q� if non-greedy ations are ontinually taken.1 However, learning an aurateQ-funtion is di�erent from learning a good poliy. Beause Peng and Williams' Q(�)does not zero its trae, eah experiene may immediately a�et many more SAPs thanWatkins' Q(�). Thus, in many instanes it may learn more quikly.5 ValidationIn this setion we empirially test how losely the orret and erroneous implementationsof Fast Q(�) approximate the original version of Q(�). We use Fast Q(�)+ to denote theorret implementation suggested in this paper and Fast Q(�)� to denote the methodthat does not apply a Loal Update for all ations in the new state between alls tothe Global Update proedure. Note that if these updates are performed, Fast Q(�)+and Fast Q(�)� are idential methods.2 We analyse what onsequenes the erroneousimplementation has on the learning ability of the RL agent.The algorithms were tested using the maze task shown in Figure 3. At eah step theagent may hoose one of four ations (N,S,E,W). Transitions have probabilities of 0:8of sueeding, 0:08 of moving the agent laterally and 0:04 of moving in the oppositeto intended diretion. Episodes start in random states and ontinue until one of thefour terminal orner states is entered. A reward of 100 is given for entering the top-right orner and 10 for the others. There are a number of penalty �elds of �1 and �4around the maze. This task was hosen as redit for ations leading to the goal an besigni�antly delayed and also beause state revisits an frequently our.The ation taken by the agent at eah step was seleted using �-greedy [12℄. This se-lets a greedy ation, argmaxaQ(st; a), with probability �, and a random ation with1� �. For Fast Q(�)� the greedy ation is hosen based upon the up-to-date Q-funtion:argmaxaQ+(st; a).Figure 5 ompares the results for the PW Q(�) variants. The graphs measure the totalreward olleted by eah algorithm and the mean squared error (MSE) in the up-to-dateQ-funtion learned by eah algorithm over the ourse of 200000 time steps. The squared1There is, as yet, no proof that any RL method with � > 0 onverges upon Q� [12, 9℄.2The experiments in the original desription of Fast Q(�) did perform these loal updatesand so we do not repeat the experiments in the original paper in order to ompare the time-ostof Fast Q(�)+ and Peng's Q(�) [18, 19, 17℄. 10
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Figure 4: A small stohasti maze task taken from [8℄. Rewards of �1 and +1 are givenfor entering (4; 2) and (4; 3), respetively. On non-terminal transitions, rt = 1=25.
Fast Q(�)� Fast Q(�)+PW-a 0.7 1:7 � 10�15PW-srepl 1.3 8:8 � 10�16PW-sarepl 0.3 1:7 � 10�15WAT-a 1.3 7:6 � 10�13WAT-srepl 2.5 4:2 � 10�10WAT-sarepl 0.6 2:9 � 10�11Table 1: The largest di�erenes from Q-funtion learned by original Q(�) during theourse of 2000 time steps of experiene within the small maze task. The experimentparameters were �m = 10�9, � = 0:2, � = 0:95 and  = 1:0. The experiene wasgenerated by randomly seleting ations. 11
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Figure 5: Comparison of PW Q(�), Fast PW Q(�)+ and Fast PW Q(�)� performanepro�les in the stohasti maze task. Results are the average of 20 runs. The parameterswere Q0 = 100, � = 0:3, � = 0:1, � = 0:9 and �m = 1 � 10�3 for regular Q(�) and�m = 10�10 for the Fast versions. (left olumn) Total reward olleted. (right olumn)Mean squared error in the value funtion. (top row) With aumulating traes. (middlerow) With state replaing traes. (bottom row) With state-ation replaing traes.
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Figure 6: Comparison of Peng and Williams' Q(�) methods with a high exploration rate(� = 0:5). All other parameters are as in Figure 5. Note that the sale of the vertialaxes di�ers between experiment sets.
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Figure 7: Comparison of Watkins' Q(�), Fast Watkins' Q(�)� and Revised Fast Watkins'Q(�)+ in the stohasti maze task. All parameters are as in Figure 5.
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Figure 8: Comparison of Watkins' Q(�) methods with a high exploration rate (� = 0:5).All other parameters are as in Figure 5.
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error was measured as, SE(s) = �V �(s)�maxa Q(s; a)�2 ; (13)for regular Q(�) and as,SE(s) = �V �(s)�maxa Q+(s; a)�2 ; (14)for both versions of Fast Q(�). An aurate V � was found by dynami programmingmethods. All of the results in the graphs are the average of 100 runs.Fast PW Q(�)+ provided equal or better performane than Fast PW Q(�)� in mostinstanes, and its results also provided an extremely good �t against the original versionof PW Q(�) in all ases (see Figures 5 and 6). Similar results were found when omparingWatkins' Q(�) and its Fast variants (see Figures 7 and 8).Fast Q(�)� worked espeially worse in terms of error than Fast Q(�)+ for PW withaumulating or state-ation replaing traes. However, in one instane (with a statereplaing trae) the error performane of the revised algorithm was atually worse thanthe original (see Figure 6).3 This anomaly was not seen for Watkins' Q(�) (see Figure 8).The e�et of exploratory ations on PW Q(�) are also evident in these results. The PWQ(�) methods olleted less reward and found a hugely less aurate Q-funtion in thease of a high exploration rate than the Watkins' methods (ompare Figures 6 and 8). Inontrast, the Watkins' variants olleted similar or better amounts of reward but foundfar more aurate Q-funtions than the Peng and Williams' methods in both the highand low exploration rate ases. Similar results were also reported by Wyatt in [20℄.In addition to showing that the performane of Fast Q(�)+ is similar to Q(�) in themean, we performed a more detailed test. The agents were made to learn from identialexperiene gathered over 2000 simulation steps in the small stohasti maze shown inFigure 4. At eah time step, the di�erene between the Q-funtions of Q(�) and the up-to-date Q-funtions of Fast Q(�)+ and Fast Q(�)� was measured. The largest di�erenesat any time during the ourse of learning are shown in Table 1. The di�erenes for FastQ(�)+ are all in the order of �m or better. The di�erenes for Fast Q(�)� are manyorders of magnitude greater.Also, overall, state replaing traes produed best performane in terms of Q-funtionerror in both sets of experiments. State replaing traes are the variants suggested bySingh and Sutton [10℄ and in the original desription of Fast Q(�) [18, 19, 17℄.6 ConlusionFast Q(�) provided the means to implement Q(�) at a greatly redued omputationalost that is independent of the size of the state spae. As suh, it makes it feasible forRL to takle problems of greater sale. Although the underlying derivation of Fast Q(�)is orret, we have shown in this paper that the original algorithmi desription is likelyto be misinterpreted and inorretly implemented. This paper has provided both sim-pli�ations and lari�ations of the original algorithm. The revised algorithm maintainsa mean time omplexity of O(jAj) per step (as Fast Q(�)). Naive implementations ofQ(�) are O(jSj � jAj) per step.3An interpretation of this result might be that the Peng and Williams' Fast Q(�)� methodisn't performing as bad as quikly as the other methods sine the error is atually inreasing inall methods until the end of this plot. 16
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