
Machine Learning, 33, 105{115 (1998)c 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
Fast Online Q(�)MARCO WIERING marco@idsia.chJ�URGEN SCHMIDHUBER juergen@idsia.chIDSIA, Corso Elvezia 36, 6900 Lugano, SwitzerlandEditor: Leslie Pack KaelblingAbstract. Q(�)-learning uses TD(�)-methods to accelerate Q-learning. The update complexityof previous online Q(�) implementations based on lookup-tables is bounded by the size of thestate/action space. Our faster algorithm's update complexity is bounded by the number of actions.The method is based on the observation that Q-value updates may be postponed until they areneeded.Keywords: Reinforcement learning, Q-learning, TD(�), online Q(�), lazy learning1. IntroductionQ(�)-learning (Watkins, 1989; Peng and Williams, 1996) is an important reinforce-ment learning (RL) method. It combines Q-learning (Watkins, 1989; Watkins andDayan, 1992) and TD(�) (Sutton, 1988; Tesauro, 1992). Q(�) is widely used | itis generally believed to outperform simple one-step Q-learning, since it uses singleexperiences to update evaluations of multiple state/action pairs (SAPs) that haveoccurred in the past.Online vs. o�ine. We distinguish online RL and o�ine RL. Online RL updatesmodi�able parameters after each visit of a state. O�ine RL delays updates untilafter a trial is �nished, that is, until a goal has been found or a time limit hasbeen reached. Without explicit trial boundaries, o�ine RL does not make senseat all. But even where applicable, o�ine RL tends to get outperformed by onlineRL, which uses experience earlier and therefore more e�ciently (Rummery andNiranjan, 1994). Online RL's advantage can be huge. For instance, online methodsthat punish actions (to prevent repetitive selection of identical actions) can discovercertain environments' goal states in polynomial time (Koenig and Simmons, 1996),while o�ine RL requires exponential search time (Whitehead, 1992).Previous Q(�) implementations. To speed up Q-learning, Watkins (1989)suggested combining it with TD(�) learning. His approach resets eligibility tracesonce exploratory actions are executed, while Peng and Williams' variant (1996)does not require this. Typical online Q(�) implementations based on lookup-tables or other local approximators such as CMACs (Albus 1975; Sutton, 1996) orself-organizing maps (Kohonen, 1988), however, are unnecessarily time-consuming.Their update complexity depends on the values of � and discount factor , and isproportional to the number of SAPs (state/action pairs) which have occurred. Thelatter is bounded by the size of state/action space (and by the trial length whichmay be proportional to this).

106 M. WIERING AND J. SCHMIDHUBERLin's o�ine Q(�) (1993) creates an action-replay set of experiences after eachtrial. Cichosz' semi-online method (1995) combines Lin's o�ine method and onlinelearning. It needs fewer updates than Peng and Williams' online Q(�), but post-pones Q-updates until several subsequent experiences are available. Hence actionsexecuted before the next Q-update are less informed than they could be. This mayresult in performance loss. For instance, suppose that the same state is visited twicein a row. If some hazardous action's Q-value does not reect negative experiencecollected after the �rst visit then it may get selected again with higher probabilitythan wanted.The novel method. Previous methods either are not truly online and thus mostlikely require more experiences than necessary, or their updates are less e�cientthan they could be and thus require more computation time. Our Q(�) variant istruly online and more e�cient than others because its update complexity does notdepend on the number of states. The method can also be used for speeding uptabular TD(�). It uses \lazy learning" (introduced in memory-based learning, e.g.,Atkeson, Moore and Schaal 1997) to postpone updates until they are needed.Outline. Section 2 reviews Q(�) and describes Peng andWilliam's Q(�)-algorithm(PW). Section 3 presents our more e�cient algorithm. Section 4 concludes.2. Q(�)-LearningWe consider �nite Markov decision processes, using discrete time steps t = 1; 2; 3; : : :,a �nite set of states S = fS1; S2; S3; : : : ; Sng and a �nite set of actions A. The stateat time t is denoted by st, and at = �(st) denotes the selected action, where �represents the learner's policy mapping states to actions. The transition probabilityto the next state st+1, given st and at, is determined by P aij = P (st+1 = jjst =i; at = a) for i; j 2 S and a 2 A. A reward function R maps SAP (i; a) 2 S � Ato scalar reinforcement signals R(i; a) 2 IR. The reward at time t is denoted by rt.A discount factor 2 [0; 1] discounts later against immediate rewards. The con-troller's goal is to select actions which maximize the expected long-term cumulativediscounted reinforcement, given an initial state selected according to a probabilitydistribution over possible initial states.Reinforcement Learning. To achieve this goal, most reinforcement learningmethods learn an action evaluation function or Q-function. The optimal Q-valueof SAP (i; a) satis�esQ�(i; a) = R(i; a) + Xj P aijV �(j); (1)where V �(j) = maxaQ�(j; a). To learn this Q-function, RL algorithms repeatedlydo: (1) Select action at given state st ; (2) Collect reward rt and observe successorstate st+1 ; (3) Update the Q-function using the latest experience (st; at; rt; st+1).Q-learning. Given (st; at; rt; st+1), standard one-step Q-learning updates just asingle Q-value Q(st; at) as follows (Watkins, 1989):Q(st; at) Q(st; at) + �k(st; at)e0t:

FAST ONLINE Q(�) 107Here the temporal di�erence or TD(0)-error e0t is given by:e0t = (rt + V (st+1)�Q(st; at));where the value function V (s) is de�ned as V (s) = maxaQ(s; a), and �k(st; at) isthe learning rate for the kth update of SAP (st; at).Learning rate adaptation. The learning rate �k(s; a) for the kth update ofSAP (s; a) should decrease over time to satisfy two conditions for stochastic iterativealgorithms (Watkins and Dayan, 1992; Bertsekas and Tsitsiklis, 1996):1. P1k=1 �k(s; a) =1, and 2. P1k=1 �2k(s; a) <1.They hold for �k(s; a) = 1=k�, where 1=2 < � � 1.Q(�)-learning. Q(�) uses TD(�)-methods (Sutton, 1988) to accelerate Q-learning.First note that Q-learning's update at time t + 1 may change V (st+1) in the def-inition of e0t. Following Peng and Williams (1996) we de�ne the TD(0)-error ofV (st+1) aset+1 = (rt+1 + V (st+2)� V (st+1)):Q(�) uses a factor � 2 [0; 1] to discount TD-errors of future time steps:Q(st; at) Q(st; at) + �k(st; at)e�t ;where the TD(�)-error e�t is de�ned ase�t = e0t + 1Xi=1(�)iet+i:Eligibility traces. The updates above cannot be made as long as TD errors offuture time steps are not known. We can compute them incrementally, however, byusing eligibility traces (Barto et al., 1983; Sutton 1988). In what follows, �t(s; a)will denote the indicator function which returns 1 if (s; a) occurred at time t, and0 otherwise. Omitting the learning rate for simplicity, the increment of Q(s; a) forthe complete trial is:�Q(s; a) = limk!1 kXt=1 e�t �t(s; a)= limk!1 kXt=1[e0t�t(s; a) + kXi=t+1(�)i�tei�t(s; a)]= limk!1 kXt=1[e0t�t(s; a) + t�1Xi=1(�)t�iet�i(s; a)]= limk!1 kXt=1[e0t�t(s; a) + et t�1Xi=1(�)t�i�i(s; a)]: (2)

108 M. WIERING AND J. SCHMIDHUBERTo simplify this we use an eligibility trace lt(s; a) for each SAP (s; a):lt(s; a) = t�1Xi=1(�)t�i�i(s; a):Then the online update at time t becomes:8(s; a) 2 S �A do : Q(s; a) Q(s; a) + �k(st; at)[e0t�t(s; a) + etlt(s; a)]:Online Q(�). We will focus on Peng and Williams' algorithm (PW) (1996),although there are other possible variants, e.g, Rummery and Niranjan's sarsa(1994). PW uses a list H of SAPs that have occurred at least once. SAPs witheligibility traces below � � 0 are removed from H . Boolean variables visited(s; a)are used to make sure no two SAPs in H are identical.PW's Q(�)-update(st; at; rt; st+1) :1) e0t (rt + V (st+1)�Q(st; at))2) et (rt + V (st+1)� V (st))3) For each SAP (s; a) 2 H Do :3a) l(s; a) �l(s; a)3b) Q(s; a) Q(s; a) + �k(st; at)etl(s; a)3c) If (l(s; a) < �)3c-1) H H n (s; a)3c-2) visited(s; a) 04) Q(st; at) Q(st; at) + �k(st; at)e0t5) l(st; at) l(st; at) + 16) If (visited(st; at) = 0)6a) visited(st; at) 16b) H H [(st; at)Comments.1. The sarsa algorithm (Rummery and Niranjan, 1994) replaces the right handside in lines (1) and (2) by (rt + Q(st+1; at+1)�Q(st; at)).2. For replacing eligibility traces (Singh and Sutton, 1996), step 5 should be:8a : l(st; a) 0; l(st; at) 1.3. Representing H by a doubly linked list and using direct pointers from each SAPto its position in H , the functions operating on H (deleting and adding elements| see lines (3c-1) and (6b)) cost O(1).Complexity. Deleting SAPs from H (step 3c-1) once their traces fall below acertain threshold may signi�cantly speed up the algorithm. If � is su�cientlysmall, then this will keep the number of updates per time step manageable. Forlarge �, PW does not work that well: it needs a sweep (sequence of SAP updates)after each time step, and the update cost for such sweeps grows with �. Letus consider worst-case behavior, which means that each SAP occurs just once (ifSAPs reoccur then the history list will grow at a slower rate). In the beginning ofthe trial the number of updates increases linearly until at some time step t some

FAST ONLINE Q(�) 109SAPs get deleted from H. This will happen as soon as t � log �= log(�). Sincethe number of updates is bounded from above by the number of SAPs, the totalupdate complexity increases towards O(jSjjAj) per update for �! 1.The space complexity of the algorithm is O(jSjjAj). We need to store for allSAPs: Q-values, eligibility traces, the \visited" bit variable and three pointers formanaging the history list (one from the SAP to its place in the history list, andtwo for the doubly linked list).3. Fast Q(�)-LearningThe main contribution of this paper is an e�cient, fully online algorithm with timecomplexity O(jAj) per update. The algorithm is designed for � > 0 | otherwisewe can use simple Q-learning.Main principle. The algorithm is based on the observation that the only Q-values needed at any given time are those for the possible actions given the currentstate. Hence, using \lazy learning", we can postpone updating Q-values until theyare needed. Suppose some SAP (s; a) occurs at steps t1; t2; t3; : : :. Let us abbreviate�t = �t(s; a), � = �. First we unfold terms of expression (1):kXt=1[e0t�t + et t�1Xi=1 �t�i�i] = t1Xt=1[e0t�t + et t�1Xi=1 �t�i�i] +t2Xt=t1+1[e0t�t + et t�1Xi=1 �t�i�i] + t3Xt=t2+1[e0t�t + et t�1Xi=1 �t�i�i] + : : :Since �t is 1 only for t = t1; t2; t3; : : : and 0 otherwise, we can rewrite this ase0t1 + e0t2 + t2Xt=t1+1 et�t�t1 + e0t3 + t3Xt=t2+1 et(�t�t1 + �t�t2) + : : : =e0t1 + e0t2 + 1�t1 t2Xt=t1+1 et�t + e0t3 + (1�t1 + 1�t2) t3Xt=t2+1 et�t + : : : =e0t1 + e0t2 + 1�t1 (t2Xt=1 et�t � t1Xt=1 et�t) + e0t3 + (1�t1 + 1�t2)(t3Xt=1 et�t � t2Xt=1 et�t) + : : :De�ning �t =Pti=1 ei�i, this becomese0t1 + e0t2 + 1�t1 (�t2 ��t1) + e0t3 + (1�t1 + 1�t2)(�t3 ��t2) + : : : (3)This will allow for constructing an e�cient online Q(�) algorithm. We de�ne alocal trace l0t(s; a) = Pti=1 �i(s;a)�i , and use (3) to write down the total update ofQ(s; a) during a trial:�Q(s; a) = limk!1 kXt=1 e0t�t(s; a) + l0t(s; a)(�t+1 ��t): (4)

110 M. WIERING AND J. SCHMIDHUBERTo exploit this we introduce a global variable � keeping track of the cumulativeTD(�) error since the start of the trial. As long as SAP (s; a) does not occur wepostpone updating Q(s; a). In the update below we need to subtract that part of� which has already been used (see equations 3 and 4). We use for each SAP(s; a) a local variable �(s; a) which records the value of � at the moment of thelast update, and a local trace variable l0(s; a). Then, once Q(s; a) needs to beknown, we update Q(s; a) by adding l0(s; a)(� � �(s; a)). Figure 1 illustrates thatthe algorithm substitutes the varying eligibility trace l(s; a) by multiplying a globaltrace �t by the local trace l0(s; a). The value of �t changes all the time, but l0(s; a)does not in intervals during which (s; a) does not occur.
φt

l’(s,a)
l(s,a)

t t t1 32
t ->

1

Figure 1. SAP (s; a) occurs at times t1; t2 ; t3; : : :. The standard eligibility trace l(s; a) equals theproduct of �t and l0(s; a).Algorithm overview. The algorithm relies on two procedures: the Local Up-date procedure calculates exact Q-values once they are required; the Global Updateprocedure updates the global variables and the current Q-value. Initially we setthe global variables �0 1:0 and � 0. We also initialize the local variables�(s; a) 0 and l0(s; a) 0 for all SAPs.Local updates. Q-values for all actions possible in a given state are updatedbefore an action is selected and before a particular V-value is calculated. For eachSAP (s; a) a variable �(s; a) tracks changes since the last update:Local Update(st; at) :1) Q(st; at) Q(st; at) + �k(st; at)(�� �(st; at))l0(st; at)2) �(st; at) �The global update procedure. After each executed action we invoke the pro-cedure Global Update, which consists of three basic steps: (1) To calculate V (st+1)(which may have changed due to the most recent experience), it calls Local Updatefor the possible next SAPs. (2) It updates the global variables �t and �. (3) It

FAST ONLINE Q(�) 111updates (st; at)'s Q-value and trace variable and stores the current � value (inLocal Update).Global Update(st; at; rt; st+1) :1) 8a 2 A Do1a) Local Update(st+1; a)2) e0t (rt + V (st+1)�Q(st; at))3) et (rt + V (st+1)� V (st))4) �t ��t�15) � �+ et�t6) Local Update(st; at)7) Q(st; at) Q(st; at) + �k(st; at)e0t8) l0(st; at) l0(st; at) + 1=�tFor replacing eligibility traces (Singh and Sutton, 1996), step 8 should be changedas follows: 8a : l0(st; a) 0; l0(st; at) 1=�t.Machine precision problem and solution. Adding et�t to � in line 5 maycreate a problem due to limited machine precision: for large absolute values of �and small �t there may be signi�cant rounding errors. More importantly, line 8will quickly overow any machine for � < 1. The following addendum to theprocedure Global Update detects when �t falls below machine precision �m, updatesall SAPs which have occurred (again we make use of a list H), and removes SAPswith l0(s; a) < �m from H . Finally, � and �t are reset to their initial values.Global Update : addendum9) If (visited(st; at) = 0)9a) H H [(st; at)9b) visited(st; at) 110) If (�t < �m)10a) Do 8(s; a) 2 H10a-1) Local Update(s; a)10a-2) l0(s; a) l0(s; a)�t10a-3) If (l0(s; a) < �m)10a-3-1) H H n (s; a)10a-3-2) visited(s; a) 010a-4) �(s; a) 010b) � 010c) �t 1:0Comments. Recall that Local Update sets �(s; a) �, and update steps dependon �� �(s; a). Thus, after having updated all SAPs in H , we can set � 0 and�(s; a) 0. Furthermore, we can simply set l0(s; a) l0(s; a)�t and �t 1:0without a�ecting the expression l0(s; a)�t used in future updates | this just rescalesthe variables. Note that if � = 1, then no sweeps through the history list will benecessary.

112 M. WIERING AND J. SCHMIDHUBERComplexity. The algorithm's most expensive part is the set of calls of LocalUpdate, whose total cost is O(jAj). This is not bad: even simple Q-learning's actionselection procedure costs O(jAj) if, say, the Boltzmann rule (Thrun, 1992; Caironiand Dorigo, 1994) is used. Concerning the occasional complete sweep through SAPsstill in history list H : during each sweep the traces of SAPs in H are multipliedby l < em. SAPs are deleted from H once their trace falls below em. In the worstcase one sweep per n time steps updates 2n SAPs and costs O(1) on average. Thismeans that there is an additional computational burden at certain time steps, butsince this happens infrequently our method's total average update complexity staysO(jAj).The space complexity of the algorithm remains O(jSjjAj). We need to store thefollowing variables for all SAPs: Q-values, eligibility traces, previous delta values,the \visited" bit, and three pointers to manage the history list (one from each SAPto its place in the history list, and two for the doubly linked list). Finally we needto store the two global variables.Comparison to PW. Figure 2 illustrates di�erences between both methods forjAj = 5, jSj = 1000, and = 1. We plot the number of updates against time for� 2 f0:7; 0:9:0:99g. The plots refer to worst-case behavior: we assume that at eachtime step a new SAP is added to the history list. The accuracy parameter � (usedin PW) is set to 10�6 (in practice less precise values may be used, but this will notchange matters much). The machine precision parameter �m is set to 10�16. Plot2(A) shows that PW's update costs increase until the history lists have reachedtheir maximum size, although for � = 0:99 this does not happen before time step1375. The spikes in the fast Q(�) plot reect occasional full sweeps through thehistory list due to limited machine precision (the corresponding average number ofupdates, however, is very close to the value indicated by the horizontal solid line| as explained above, the spikes hardly a�ect the average). No sweep is necessaryin fast Q(0.99)'s plot during the shown interval. Fast Q needs on average a totalof 13 update steps: 5 in choose-action, 5 for calculating V (st+1), 1 for updatingthe chosen action, and 2 for taking into account the full sweeps. See Wiering andSchmidhuber (1998) for illustrative experiments with maze tasks.Extension to function approximators. Tabular representations do not allowfor generalizing from previous experiences, which is necessary in case of large statespaces. Fast Q(�), however, can also improve matters in case of \local" function ap-proximators (FAs) consisting of seperate building blocks, such as Kohonen networks(Kohonen, 1988), CMACs (Albus, 1975; Sutton, 1996), locally weighted learning(Atkeson, Moore and Schaal 1996), and neural gas (Fritzke, 1994). Such FAs workas follows: there are jSj possible state space \features". There are Q-values for allpossible feature/action pairs, just like there are Q-values of state/action pairs inthe case of tabular representation. Q-values of I � jSj features are combined toevaluate an input (query). Here the update complexity of fast Q(�) equals O(I jAj).This results in a speed-up of jSj=I in comparison to PW's method.Our method can also be used in conjunction with arbitrary gradient-based FAs. Incase of global FAs, such as monolithic neural networks, it will be useless due to I =jSj. Consider, however, a combination of CMACs and neural network FAs. Only

FAST ONLINE Q(�) 113

0

50

100

150

200

250

300

350

400

0 80 160 240 320 400

N
r

U
pd

at
es

Time

PW lambda = 0.7

PW lambda = 0.9

PW lambda = 0.99

0

50

100

150

200

250

300

350

400

0 80 160 240 320 400

N
r

U
pd

at
es

Time

Fast Q lambda = 0.7

Fast Q lambda = 0.9

Figure 2. Number of updates plotted against time: a worst case analysis comparing our method(right) and Peng and Williams' (left) for di�erent values of �. The occasional spikes (right)hardly a�ect our method's average performance, which is very close to the horizontal line.few neural networks are used at any given time, hence our method will be useful:in Global Update we simply add to each weight trace the gradient of the combinedQ-values (the weighted sum of all used network outputs) with respect to the usedweight. More formally: in the lookup-table case we used l0(s; a) := l0(s; a) + 1=�t(in line 8 of Global Update). Now we replace this by l0(wi) := l0(wi) + @Q(s;a)=@wi�t ;where l0(wi) is the fast-eligibility trace of weight wi. The speed-up equals theaverage fraction of weights used per time step, a measure of the inference process'degree of locality.Multiple Trials. We have described a single-trial version of our algorithm. Onemight be tempted to think that in case of multiple trials all SAPs in the historylist need to be updated and all eligibility traces reset after each trial. This is notnecessary | we may use cross-trial learning as follows:We introduce �M variables, where index M stands for the M th trial. Let Ndenote the current trial number, and let variable visited(s; a) represent the trialnumber of the most recent occurrence of SAP (s; a). Now we slightly change LocalUpdate: Local Update(st; at) :1) M visited(st; at)2) Q(st; at) Q(st; at)+�k(st; at)(�M��(st; at))l0(st; at)3) �(st; at) �N4) If (M < N)4a) l0(st; at) 04b) visited(st; at) N

114 M. WIERING AND J. SCHMIDHUBERThus we update Q(s; a) using the value �M of the most recent trial M duringwhich SAP (s; a) occurred and the corresponding values of �(st; at) and l0(st; at)(computed during the same trial). In case SAP (s; a) has not occurred duringthe current trial we reset the eligibility trace and set visited(s; a) to the currenttrial number. In Global Update we need to change lines 5 and 10b by addingtrial subscripts to �, and we need to change line 9b in which we have to setvisited(st; at) N . At trial end we reset �t to �0 = 1:0, increment the trialcounter N , and set �N 0. This allows for postponing certain updates until afterthe current trial's end.4. ConclusionWhile other Q(�) approaches are either o�ine, inexact, or may su�er from averageupdate complexity depending on the size of the state/action space, ours is fullyonline Q(�) with average update complexity linear in the number of actions. E�-ciently dealing with eligibility traces makes fast Q(�) applicable to larger scale RLproblems.AcknowledgmentsThanks to Nic Schraudolph for helpful comments. This work was supported in partby SNF grant 2100-49'144.96 \Long Short-Term Memory".ReferencesAlbus, J. S. (1975). A new approach to manipulator control: The cerebellar model articulationcontroller (CMAC). Dynamic Systems, Measurement and Control, 97:220{227.Atkeson, C. G., Schaal, S., & Moore, A. W. (1997). Locally weighted learning. Arti�cialIntelligence Review, 11:11{73.Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that cansolve di�cult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,SMC-13:834{846.Bertsekas, D. P. & Tsitsiklis, J. N. (1996). Neuro-dynamic Programming. Athena Scienti�c,Belmont, MA.Caironi, P. V. C. & Dorigo, M. (1994). Training Q-agents. Technical Report IRIDIA-94-14,Universit�e Libre de Bruxelles.Cichosz, P. (1995). Truncating temporal di�erences: On the e�cient implementation of TD(�)for reinforcement learning. Journal of Arti�cial Intelligence Research, 2:287{318.Fritzke, B. (1994). Supervised learning with growing cell structures. In Cowan, J., Tesauro, G.,& Alspector, J., (Eds.), Advances in Neural Information Processing Systems 6, pages 255{262.San Mateo, CA: Morgan Kaufmann.Koenig, S. & Simmons, R. G. (1996). The e�ect of representation and knowledge on goal-directedexploration with reinforcement learning algorithms. Machine Learning, 22:228{250.Kohonen, T. (1988). Self-Organization and Associative Memory. Springer, second edition.Lin, L-J. (1993). Reinforcement Learning for Robots Using Neural Networks. PhD thesis,Carnegie Mellon University, Pittsburgh.Peng, J. & Williams, R. (1996). Incremental multi-step Q-learning. Machine Learning, 22:283{290.Rummery, G. & Niranjan, M. (1994). On-line Q-learning using connectionist sytems. TechnicalReport CUED/F-INFENG-TR 166, Cambridge University, UK.

FAST ONLINE Q(�) 115Singh, S. & Sutton, R. (1996). Reinforcement learning with replacing eligibility traces. MachineLearning, 22:123{158.Sutton, R. S. (1988). Learning to predict by the methods of temporal di�erences. MachineLearning, 3:9{44.Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using sparsecoarse coding. In Touretzky, D.S., Mozer, M.C, & Hasselmo, M. E., (Eds.), Advances in NeuralInformation Processing Systems 8, pages 1038{1045. MIT Press, Cambridge MA.Tesauro, G. (1992). Practical issues in temporal di�erence learning. In Lippman, D. S., Moody,J. E., & Touretzky, D. S., (Eds.), Advances in Neural Information Processing Systems 4, pages259{266. San Mateo, CA: Morgan Kaufmann.Thrun, S. (1992). E�cient exploration in reinforcement learning. Technical Report CMU-CS-92-102, Carnegie-Mellon University.Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King's College,Cambridge, England.Watkins, C. J. C. H. & Dayan, P. (1992). Technical note: Q-learning. Machine Learning,8:279{292.Whitehead, S. (1992). Reinforcement Learning for the adaptive control of perception and action.PhD thesis, University of Rochester.Wiering, M. A. & Schmidhuber, J. (1998). Speeding up Q(�)-learning. In Nedellec, C. & Rou-veirol, C., editors, Machine Learning: Proceedings of the Tenth European Conference. SpringerVerlag, Berlin.

