Machine Learning, 33, 105-115 (1998)
© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Fast Online Q(\)

MARCO WIERING marco@idsia.ch

JURGEN SCHMIDHUBER juergen@idsia.ch
IDSIA, Corso Elvezia 36, 6900 Lugano, Switzerland

Editor: Leslie Pack Kaelbling

Abstract. Q(M)-learning uses TD(A)-methods to accelerate Q-learning. The update complexity
of previous online Q()\) implementations based on lookup-tables is bounded by the size of the
state/action space. Our faster algorithm’s update complexity is bounded by the number of actions.
The method is based on the observation that Q-value updates may be postponed until they are
needed.

Keywords: Reinforcement learning, Q-learning, TD(\), online Q()), lazy learning

1. Introduction

Q(M)-learning (Watkins, 1989; Peng and Williams, 1996) is an important reinforce-
ment learning (RL) method. It combines Q-learning (Watkins, 1989; Watkins and
Dayan, 1992) and TD(\) (Sutton, 1988; Tesauro, 1992). Q(X) is widely used — it
is generally believed to outperform simple one-step Q-learning, since it uses single
experiences to update evaluations of multiple state/action pairs (SAPs) that have
occurred in the past.

Online vs. offline. We distinguish online RL and offline RL. Online RL updates
modifiable parameters after each visit of a state. Offline RL delays updates until
after a trial is finished, that is, until a goal has been found or a time limit has
been reached. Without explicit trial boundaries, offline RL does not make sense
at all. But even where applicable, offline RL tends to get outperformed by online
RL, which uses experience earlier and therefore more efficiently (Rummery and
Niranjan, 1994). Online RL’s advantage can be huge. For instance, online methods
that punish actions (to prevent repetitive selection of identical actions) can discover
certain environments’ goal states in polynomial time (Koenig and Simmons, 1996),
while offline RL requires exponential search time (Whitehead, 1992).

Previous Q()) implementations. To speed up Q-learning, Watkins (1989)
suggested combining it with TD(A) learning. His approach resets eligibility traces
once exploratory actions are executed, while Peng and Williams’ variant (1996)
does not require this. Typical online Q(A) implementations based on lookup-
tables or other local approximators such as CMACs (Albus 1975; Sutton, 1996) or
self-organizing maps (Kohonen, 1988), however, are unnecessarily time-consuming.
Their update complexity depends on the values of A and discount factor v, and is
proportional to the number of SAPs (state/action pairs) which have occurred. The
latter is bounded by the size of state/action space (and by the trial length which
may be proportional to this).

106 M. WIERING AND J. SCHMIDHUBER

Lin’s offline Q(X\) (1993) creates an action-replay set of experiences after each
trial. Cichosz’ semi-online method (1995) combines Lin’s offline method and online
learning. It needs fewer updates than Peng and Williams’ online Q(A), but post-
pones Q-updates until several subsequent experiences are available. Hence actions
executed before the next Q-update are less informed than they could be. This may
result in performance loss. For instance, suppose that the same state is visited twice
in a row. If some hazardous action’s Q-value does not reflect negative experience
collected after the first visit then it may get selected again with higher probability
than wanted.

The novel method. Previous methods either are not truly online and thus most
likely require more experiences than necessary, or their updates are less efficient
than they could be and thus require more computation time. Our Q(X) variant is
truly online and more efficient than others because its update complexity does not
depend on the number of states. The method can also be used for speeding up
tabular TD()). It uses “lazy learning” (introduced in memory-based learning, e.g.,
Atkeson, Moore and Schaal 1997) to postpone updates until they are needed.

Outline. Section 2 reviews Q()) and describes Peng and William’s Q(A)-algorithm
(PW). Section 3 presents our more efficient algorithm. Section 4 concludes.

2. Q(XM)-Learning

We consider finite Markov decision processes, using discrete time stepst = 1,2,3, ...,
a finite set of states S = {51, S2, 53, ..., S, } and a finite set of actions A. The state
at time ¢ is denoted by s, and a; = II(s;) denotes the selected action, where II
represents the learner’s policy mapping states to actions. The transition probability
to the next state s;11, given s; and a;, is determined by P = P(s¢11 = Jlst =
i,a; = a) for i,j € S and a € A. A reward function R maps SAP (i,a) € S x A
to scalar reinforcement signals R(7,a) € IR. The reward at time ¢ is denoted by r;.
A discount factor v € [0, 1] discounts later against immediate rewards. The con-
troller’s goal is to select actions which maximize the expected long-term cumulative
discounted reinforcement, given an initial state selected according to a probability
distribution over possible initial states.

Reinforcement Learning. To achieve this goal, most reinforcement learning
methods learn an action evaluation function or Q-function. The optimal Q-value
of SAP (i, a) satisfies

Q*(i,a) = R(i,a) +72P;;~V*(j), (1)

where V*(j) = max, Q*(j,a). To learn this Q-function, RL algorithms repeatedly
do: (1) Select action a; given state s; ; (2) Collect reward r; and observe successor
state sty1 ; (3) Update the Q-function using the latest experience (s¢, at, 7, St41)-

Q-learning. Given (s, at,7t, St+1), standard one-step Q-learning updates just a
single Q-value Q(s¢,a;) as follows (Watkins, 1989):

Q(st, ar) — Q(s¢,ar) + ag(sy, ar)ey.

FAST ONLINE Q()\) 107

Here the temporal difference or TD(0)-error e} is given by:

ey = (re + YV (st41) — Q815 a4)),

where the value function V(s) is defined as V(s) = max, Q(s,a), and ay(st, ar) is
the learning rate for the k" update of SAP (s, a;).

Learning rate adaptation. The learning rate ay(s,a) for the k** update of
SAP (s, a) should decrease over time to satisfy two conditions for stochastic iterative
algorithms (Watkins and Dayan, 1992; Bertsekas and Tsitsiklis, 1996):

L Y ag(s,a) =00, and 2. > 10, ai(s,a) < oo.

They hold for ay(s,a) = 1/k®, where 1/2 < 8 < 1.

Q(A)-learning. Q(A) uses TD(A)-methods (Sutton, 1988) to accelerate Q-learning.
First note that Q-learning’s update at time ¢ + 1 may change V' (s¢41) in the def-
inition of e}. Following Peng and Williams (1996) we define the TD(0)-error of
V(St+1) as

err1 = (re1 + 7V (st42) = V(st41))-
Q(X) uses a factor A € [0, 1] to discount TD-errors of future time steps:
Q(st,a¢) — Q(st,a¢) + ag(se, ar)ey,

where the TD(A)-error e} is defined as
e} = e} + Z('y)\)ieH_i.
i=1

Eligibility traces. The updates above cannot be made as long as TD errors of
future time steps are not known. We can compute them incrementally, however, by
using eligibility traces (Barto et al., 1983; Sutton 1988). In what follows, n’(s,a)
will denote the indicator function which returns 1 if (s,a) occurred at time ¢, and
0 otherwise. Omitting the learning rate for simplicity, the increment of Q(s,a) for
the complete trial is:

k
AQ(s,a) = leII;OZei‘nt(s,a)
t=1

k k
= lim Z[e;nt(s,a) + Z (YA teint (s, a)]
h=oo i i=t 11
K -1
= lim 3 fej’(s,0) + ()" eury'(s,0)]
t=1 i=1

k

— lim 3l (s,0) + e 3 (0N (5,0l (2)

t=1 i=1

108 M. WIERING AND J. SCHMIDHUBER

To simplify this we use an eligibility trace l;(s,a) for each SAP (s, a):

t—1

(s, a) = S () (s, a).

i=1
Then the online update at time ¢ becomes:
V(s,a) € Sx A do: Q(s,a) — Q(s,a) + ay(s¢, ar)[en'(s,a) + eili(s,a)].

Online Q(A). We will focus on Peng and Williams’ algorithm (PW) (1996),
although there are other possible variants, e.g, Rummery and Niranjan’s SARSA
(1994). PW uses a list H of SAPs that have occurred at least once. SAPs with
eligibility traces below ¢ > 0 are removed from H. Boolean variables visited(s,a)
are used to make sure no two SAPs in H are identical.

PW’s Q(XA)-update(ss,at, s, St4+1) ¢

1) e}« (re + 7V (s141) — Q(st, ar))
2) er (re + 7V (se41) — V(se))
3) For each SAP (s,a) € H Do :
3a) I(s,a) «— yAl(s,a)
Sb) Q(sa a) — Q(Saa) + ak(staat)etl(sa a)
3c) If (I(s,a) <e)
3c-1) H « H\ (s,a)
3c-2) wisited(s,a) « 0
4) Q(st,at) — Q(st,at) + ag(st,at)el
5) l(St, at) — l(St, at) +1
6) If (visited(s:, ar) =0)
6a) wisited(ss, ar) «— 1
6b) H~— HU (st,at)

Comments.

1. The sARsA algorithm (Rummery and Niranjan, 1994) replaces the right hand
side in lines (1) and (2) by (7t + YQ(St+1, at+1) — Q(S¢,az)).

2. For replacing eligibility traces (Singh and Sutton, 1996), step 5 should be:
Va: l(s,a) « 0; l(sg,ae) < 1.

3. Representing H by a doubly linked list and using direct pointers from each SAP
to its position in H, the functions operating on H (deleting and adding elements
— see lines (3c-1) and (6b)) cost O(1).

Complexity. Deleting SAPs from H (step 3c-1) once their traces fall below a
certain threshold may significantly speed up the algorithm. If v\ is sufficiently
small, then this will keep the number of updates per time step manageable. For
large yA, PW does not work that well: it needs a sweep (sequence of SAP updates)
after each time step, and the update cost for such sweeps grows with yA. Let
us consider worst-case behavior, which means that each SAP occurs just once (if
SAPs reoccur then the history list will grow at a slower rate). In the beginning of
the trial the number of updates increases linearly until at some time step ¢ some

FAST ONLINE Q(A) 109

SAPs get deleted from H. This will happen as soon as ¢ > loge/log(y\). Since
the number of updates is bounded from above by the number of SAPs, the total
update complexity increases towards O(]S||A|) per update for yA — 1.

The space complexity of the algorithm is O(]|S||A]). We need to store for all
SAPs: Q-values, eligibility traces, the “visited” bit variable and three pointers for
managing the history list (one from the SAP to its place in the history list, and
two for the doubly linked list).

3. Fast Q(\)-Learning

The main contribution of this paper is an efficient, fully online algorithm with time
complexity O(|A|) per update. The algorithm is designed for Ay > 0 — otherwise
we can use simple Q-learning,.

Main principle. The algorithm is based on the observation that the only Q-
values needed at any given time are those for the possible actions given the current
state. Hence, using “lazy learning”, we can postpone updating Q-values until they
are needed. Suppose some SAP (s, a) occurs at steps t1,t2,t3,. ... Let us abbreviate
nt = nt(s,a), ¢ = y\. First we unfold terms of expression (1):

k t—1 t1 t—1
Slein' +er Y = lein' +er Y ']+
t=1 i=1 t=1 i=1

to t—1 ts t—1
Yo len +ed ¢+ D et ey 6T+
t=t;+1 i=1 t=ty+1 i=1
Since ' is 1 only for t = t1,t2,t3,... and 0 otherwise, we can rewrite this as

Great 3 ad vt Y ald g)=

t=t1+1 t=to+1
1 & 1 1. &
! ! t ! t
e+t g > ed et + (g +%) > et +
t=t1+1 t=ts+1

to t1
1
6;1 + 6;2 + %(Z €t¢t — Z€t¢t) + 6;3 e + Z@ﬂbt Z@ﬂbt

t=1 t=1

Defining A; = Z’;_l e;#’, this becomes
1 1

o (Atz At1)+€;3+(@+ﬁ)(At:¢ —Ag)+ .. (3)
This will allow for constructing an efficient online Q(X) algorithm. We define a
local trace Ij(s,a) = S 4_ 7059) and use (3) to write down the total update of

1=1 ot
Q(s,a) during a trial:

!
€y, + et2

k
AQ(s,a) = klin;o Z eint(s,a) +1,(s,a) (A1 — Ay). (4)
t=1

110 M. WIERING AND J. SCHMIDHUBER

To exploit this we introduce a global variable A keeping track of the cumulative
TD()) error since the start of the trial. As long as SAP (s,a) does not occur we
postpone updating Q(s,a). In the update below we need to subtract that part of
A which has already been used (see equations 3 and 4). We use for each SAP
(s,a) a local variable 6(s,a) which records the value of A at the moment of the
last update, and a local trace variable I'(s,a). Then, once Q(s,a) needs to be
known, we update Q(s,a) by adding I'(s,a)(A — 6(s,a)). Figure 1 illustrates that
the algorithm substitutes the varying eligibility trace I(s, a) by multiplying a global
trace ¢! by the local trace I’(s,a). The value of ¢ changes all the time, but I'(s,a)
does not in intervals during which (s, a) does not occur.

Isa) |

Figure 1. SAP (s,a) occurs at times t1,t2,t3,.... The standard eligibility trace I(s,a) equals the
product of ¢* and I'(s,a).

Algorithm overview. The algorithm relies on two procedures: the Local Up-
date procedure calculates exact Q-values once they are required; the Global Update
procedure updates the global variables and the current Q-value. Initially we set
the global variables ¢° < 1.0 and A « 0. We also initialize the local variables
6(s,a) «— 0 and I'(s,a) « 0 for all SAPs.

Local updates. Q-values for all actions possible in a given state are updated
before an action is selected and before a particular V-value is calculated. For each
SAP (s,a) a variable §(s, a) tracks changes since the last update:

Local Update(s;,a:) :

D Q(s1,a1) — Q(s1,a1) + ap(se,ai)(A — (s, a0))l' (51, a4)
2) §(st,at) — A

The global update procedure. After each executed action we invoke the pro-
cedure Global Update, which consists of three basic steps: (1) To calculate V' (s441)
(which may have changed due to the most recent experience), it calls Local Update
for the possible next SAPs. (2) It updates the global variables ¢! and A. (3) Tt

FAST ONLINE Q(\) 111

updates (s¢,a¢)’s Q-value and trace variable and stores the current A value (in
Local Update).

Global Update(ss, at, 7, St41) ¢

1) Ya € A Do

1a) Local Update(sit1,a)
2) ey — (re + 7V (st41) — Q(s1,a1))
3) e (re + 7V (se41) — V(st))
4) (bt — ,7/\¢t71
5) A — A -+ €t¢t
6) Local Update(s,ay)
7) Q(st,at) — Q(st,at) + ap(sy, ar)el
8) U'(st,ar) « U'(sy,ar) + 1/t

For replacing eligibility traces (Singh and Sutton, 1996), step 8 should be changed
as follows: Va : I'(s¢,a) « 0; I'(s¢,a¢) «— 1/t

Machine precision problem and solution. Adding e;¢! to A in line 5 may
create a problem due to limited machine precision: for large absolute values of A
and small ¢! there may be significant rounding errors. More importantly, line 8
will quickly overflow any machine for yA < 1. The following addendum to the
procedure Global Update detects when ¢! falls below machine precision €,,, updates
all SAPs which have occurred (again we make use of a list H), and removes SAPs
with I'(s,a) < €, from H. Finally, A and ¢ are reset to their initial values.

Global Update : addendum

9) If (uisited(s: ar) =0)
9a) H « H U (s4,a)
9b) wisited(s, ar) — 1
10) If (¢! < é€m)
10a) Do V(s,a) € H
10a-1) Local Update(s,a)
10a-2) I'(s,a) « l'(s,a)¢
10a-3) If (I'(s,a) < €m)
10a-3-1) H « H \ (s,a)
10a-3-2) wisited(s,a) < 0
10a-4) 6(s,a) <0
10b) A 0
10c) ¢t «— 1.0

Comments. Recall that Local Update sets 6(s,a) < A, and update steps depend
on A — §(s,a). Thus, after having updated all SAPs in H, we can set A — 0 and
8(s,a) < 0. Furthermore, we can simply set I'(s,a) « I'(s,a)¢! and ¢! «— 1.0
without affecting the expression I'(s,a)¢ used in future updates — this just rescales
the variables. Note that if yA = 1, then no sweeps through the history list will be
necessary.

112 M. WIERING AND J. SCHMIDHUBER

Complexity. The algorithm’s most expensive part is the set of calls of Local
Update, whose total cost is O(|A[). This is not bad: even simple Q-learning’s action
selection procedure costs O(|A]) if, say, the Boltzmann rule (Thrun, 1992; Caironi
and Dorigo, 1994) is used. Concerning the occasional complete sweep through SAPs
still in history list H: during each sweep the traces of SAPs in H are multiplied
by I < e,,. SAPs are deleted from H once their trace falls below e,,. In the worst
case one sweep per n time steps updates 2n. SAPs and costs O(1) on average. This
means that there is an additional computational burden at certain time steps, but
since this happens infrequently our method’s total average update complexity stays
O(|A4l)-

The space complexity of the algorithm remains O(|S||A|). We need to store the
following variables for all SAPs: Q-values, eligibility traces, previous delta values,
the “visited” bit, and three pointers to manage the history list (one from each SAP
to its place in the history list, and two for the doubly linked list). Finally we need
to store the two global variables.

Comparison to PW. Figure 2 illustrates differences between both methods for
|A| =5, |S| = 1000, and v = 1. We plot the number of updates against time for
A € {0.7,0.9.0.99}. The plots refer to worst-case behavior: we assume that at each
time step a new SAP is added to the history list. The accuracy parameter € (used
in PW) is set to 1075 (in practice less precise values may be used, but this will not
change matters much). The machine precision parameter €, is set to 10716, Plot
2(A) shows that PW’s update costs increase until the history lists have reached
their maximum size, although for A = 0.99 this does not happen before time step
1375. The spikes in the fast Q(A) plot reflect occasional full sweeps through the
history list due to limited machine precision (the corresponding average number of
updates, however, is very close to the value indicated by the horizontal solid line
— as explained above, the spikes hardly affect the average). No sweep is necessary
in fast Q(0.99)’s plot during the shown interval. Fast Q needs on average a total
of 13 update steps: 5 in choose-action, 5 for calculating V(s;11), 1 for updating
the chosen action, and 2 for taking into account the full sweeps. See Wiering and
Schmidhuber (1998) for illustrative experiments with maze tasks.

Extension to function approximators. Tabular representations do not allow
for generalizing from previous experiences, which is necessary in case of large state
spaces. Fast Q()), however, can also improve matters in case of “local” function ap-
proximators (FAs) consisting of seperate building blocks, such as Kohonen networks
(Kohonen, 1988), CMACs (Albus, 1975; Sutton, 1996), locally weighted learning
(Atkeson, Moore and Schaal 1996), and neural gas (Fritzke, 1994). Such FAs work
as follows: there are |S| possible state space “features”. There are Q-values for all
possible feature/action pairs, just like there are Q-values of state/action pairs in
the case of tabular representation. Q-values of I < |S| features are combined to
evaluate an input (query). Here the update complexity of fast Q(A) equals O(I|A]).
This results in a speed-up of |S|/I in comparison to PW’s method.

Our method can also be used in conjunction with arbitrary gradient-based FAs. In
case of global FAs, such as monolithic neural networks, it will be useless due to I =
|S]. Consider, however, a combination of CMACs and neural network FAs. Only

FAST ONLINE Q(\) 113

_ Fast Q lambda= 0.9
350 | PW lambda=0.99." | 350 | |
250 | o : 250 - .
9] 9]
5 g
s 200 - 1 s 200 - 1
= =
150 - " PWlambda=09] 150 1
/ Fast Q lambda={0.7
100 - 1 100 |- 1
’/
,’//
50+ / PW lambda= 0.7 B 50 + B
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 80 160 240 320 400 0 80 160 240 320 400
Time Time

Figure 2. Number of updates plotted against time: a worst case analysis comparing our method
(right) and Peng and Williams’ (left) for different values of X\. The occasional spikes (right)
hardly affect our method’s average performance, which is very close to the horizontal line.

few neural networks are used at any given time, hence our method will be useful:
in Global Update we simply add to each weight trace the gradient of the combined
Q-values (the weighted sum of all used network outputs) with respect to the used
weight. More formally: in the lookup-table case we used I'(s,a) := I'(s,a) + 1/¢"
(in line 8 of Global Update). Now we replace this by I'(w;) := I'(w;) + W,
where I'(w;) is the fast-eligibility trace of weight w;. The speed-up equals the
average fraction of weights used per time step, a measure of the inference process’
degree of locality.

Multiple Trials. We have described a single-trial version of our algorithm. One
might be tempted to think that in case of multiple trials all SAPs in the history
list need to be updated and all eligibility traces reset after each trial. This is not
necessary — we may use cross-trial learning as follows:

We introduce AM variables, where index M stands for the M trial. Let N
denote the current trial number, and let variable visited(s,a) represent the trial
number of the most recent occurrence of SAP (s,a). Now we slightly change Local
Update:

Local Update(s;,at) :
1) M « visited(ss,at)
2) Q(s¢,a1) — Q(s¢,as)+an(se, ar)(AM—6(s¢,a:))l'(s¢, ar)
3) 6(s¢,a4) — AN
4) If (M <N)
4a) '(s¢,a4) < 0
4b) wvisited(sy,a;) — N

114 M. WIERING AND J. SCHMIDHUBER

Thus we update (s, a) using the value AM of the most recent trial M during
which SAP (s,a) occurred and the corresponding values of §(s¢, a;) and (s, at)
(computed during the same trial). In case SAP (s,a) has not occurred during
the current trial we reset the eligibility trace and set wvisited(s,a) to the current
trial number. In Global Update we need to change lines 5 and 10b by adding
trial subscripts to A, and we need to change line 9b in which we have to set
visited(s;,a;) «— N. At trial end we reset ¢! to ¢° = 1.0, increment the trial
counter N, and set AN « 0. This allows for postponing certain updates until after
the current trial’s end.

4. Conclusion

While other Q(A) approaches are either offline, inexact, or may suffer from average
update complexity depending on the size of the state/action space, ours is fully
online Q(A) with average update complexity linear in the number of actions. Effi-
ciently dealing with eligibility traces makes fast Q()) applicable to larger scale RL
problems.

Acknowledgments

Thanks to Nic Schraudolph for helpful comments. This work was supported in part
by SNF grant 2100-49’144.96 “Long Short-Term Memory”.

References

Albus, J. S. (1975). A new approach to manipulator control: The cerebellar model articulation
controller (CMAC). Dynamic Systems, Measurement and Control, 97:220-227.

Atkeson, C. G., Schaal, S., & Moore, A. W. (1997). Locally weighted learning. Artificial
Intelligence Review, 11:11-73.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983). Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-13:834-846.

Bertsekas, D. P. & Tsitsiklis, J. N. (1996). Neuro-dynamic Programming. Athena Scientific,
Belmont, MA.

Caironi, P. V. C. & Dorigo, M. (1994). Training Q-agents. Technical Report IRIDIA-94-14,
Université Libre de Bruxelles.

Cichosz, P. (1995). Truncating temporal differences: On the efficient implementation of TD(X)
for reinforcement learning. Journal of Artificial Intelligence Research, 2:287-318.

Fritzke, B. (1994). Supervised learning with growing cell structures. In Cowan, J., Tesauro, G.,
& Alspector, J., (Eds.), Advances in Neural Information Processing Systems 6, pages 255-262.
San Mateo, CA: Morgan Kaufmann.

Koenig, S. & Simmons, R. G. (1996). The effect of representation and knowledge on goal-directed
exploration with reinforcement learning algorithms. Machine Learning, 22:228-250.

Kohonen, T. (1988). Self-Organization and Associative Memory. Springer, second edition.

Lin, L-J. (1993). Reinforcement Learning for Robots Using Neural Networks. PhD thesis,
Carnegie Mellon University, Pittsburgh.

Peng, J. & Williams, R. (1996). Incremental multi-step Q-learning. Machine Learning, 22:283—
290.

Rummery, G. & Niranjan, M. (1994). On-line Q-learning using connectionist sytems. Technical
Report CUED/F-INFENG-TR 166, Cambridge University, UK.

FAST ONLINE Q(\) 115

Singh, S. & Sutton, R. (1996). Reinforcement learning with replacing eligibility traces. Machine
Learning, 22:123-158.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3:9-44.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Touretzky, D.S., Mozer, M.C, & Hasselmo, M. E., (Eds.), Advances in Neural
Information Processing Systems 8, pages 1038-1045. MIT Press, Cambridge MA.

Tesauro, G. (1992). Practical issues in temporal difference learning. In Lippman, D. S., Moody,
J. E., & Touretzky, D. S., (Eds.), Advances in Neural Information Processing Systems 4, pages
259-266. San Mateo, CA: Morgan Kaufmann.

Thrun, S. (1992). Efficient exploration in reinforcement learning. Technical Report CMU-CS-92-
102, Carnegie-Mellon University.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, King’s College,
Cambridge, England.

Watkins, C. J. C. H. & Dayan, P. (1992). Technical note: Q-learning. Machine Learning,
8:279-292.

Whitehead, S. (1992). Reinforcement Learning for the adaptive control of perception and action.
PhD thesis, University of Rochester.

Wiering, M. A. & Schmidhuber, J. (1998). Speeding up Q(X)-learning. In Nedellec, C. & Rou-
veirol, C., editors, Machine Learning: Proceedings of the Tenth European Conference. Springer
Verlag, Berlin.

