
The QV Family Compared to

Other Reinforcement Learning Algorithms

Marco A. Wiering and Hado van Hasselt

Abstract— This paper describes several new online model-free
reinforcement learning (RL) algorithms. We designed three new
reinforcement algorithms, namely: QV2, QVMAX, and QV-
MAX2, that are all based on the QV-learning algorithm, but in
contrary to QV-learning, QVMAX and QVMAX2 are off-policy
RL algorithms and QV2 is a new on-policy RL algorithm. We
experimentally compare these algorithms to a large number of
different RL algorithms, namely: Q-learning, Sarsa, R-learning,
Actor-Critic, QV-learning, and ACLA. We show experiments
on five maze problems of varying complexity. Furthermore, we
show experimental results on the cart pole balancing problem.
The results show that for different problems, there can be large
performance differences between the different algorithms, and
that there is not a single RL algorithm that always performs
best, although on average QV-learning scores highest.

I. INTRODUCTION

Reinforcement learning (RL) algorithms [15], [5] are very

suitable for learning to control an agent by letting it interact

with an environment. There are a number of different on-

line model-free value-function-based reinforcement learning

algorithms that use the discounted future reward criterion.

Q-learning [18], Sarsa [10], [14], and Actor-Critic methods

[15] are well known, and there are also two more recent

algorithms: QV-learning [21], [22] and ACLA [22]. We

also include R-learning [11], [6] in our comparison study,

which is based on the average reward optimization criterion.

Furthermore, a number of policy search and policy gradient

algorithms have been proposed [16], [1], and there exist

model-based [7] and batch reinforcement learning algorithms

[9], but we leave these algorithms out of our current study.

In this paper we describe several new model-free, online

RL algorithms, which are inspired by QV-learning. The

new algorithms are similar to the existing algorithm, but

their learning equations are somewhat different. In total we

describe three new RL algorithms: QV2, QVMAX, and QV-

MAX2. In contrary to QV-learning, QVMAX and QVMAX2

are off-policy RL algorithms and QV2 is a new on-policy

RL algorithm. We compare these new QV algorithms to the

above mentioned algorithms on a number of different maze

tasks and the cart pole balancing problem. The aim of this

paper is to research whether there are large performance

differences between the algorithms when they are applied

for solving different control problems, and whether there is

an algorithm that on average performs (much) better than the

others. Furthermore, we want to get a better understanding

Marco Wiering is with the Department of Artificial Intelligence of
the University of Groningen (email: mwiering@ai.rug.nl), and Hado van
Hasselt is with the Intelligent Systems Group of Utrecht University (email:
hado@cs.uu.nl)

of the difference in learning behavior between on-policy and

off-policy algorithms.

Outline. Section II describes previously described online

reinforcement learning algorithms. Section III describes the

new reinforcement learning algorithms. Then, Section IV

describes the results of a number of experiments on problems

of varying complexities with tabular and neural network rep-

resentations. Section V discusses the results and concludes

this paper.

II. REINFORCEMENT LEARNING

Reinforcement learning algorithms are able to let an agent

learn from the experiences generated by its interaction with

an environment. We assume an underlying Markov decision

process (MDP) which is not known to the agent. A finite

MDP is defined as; (1) The state-space S = {s1, s2, . . . , sn},

and st ∈ S denotes the state of the system at time t; (2) A set

of actions available to the agent in each state A(s), where

at ∈ A(st) denotes the action executed at time t; (3) A

transition function T (s, a, s′) mapping state-action pairs s, a

to a probability distribution over successor states s′; (4) A

reward function R(s, a, s′) which denotes the average reward

obtained when the agent makes a transition from state s

to state s′ using action a, where rt denotes the (possibly

stochastic) reward obtained at time t.

In optimal control or reinforcement learning (RL), we are

interested in computing or learning an optimal policy for

mapping states to actions. An optimal policy can be defined

as the policy that receives the highest possible cumulative

discounted rewards in its future from all states. In order

to learn an optimal policy, value-function-based RL [15]

estimates value-functions using past experiences of the agent.

Qπ(s, a) is defined as the expected cumulative discounted

future reward if the agent is in state s, executes action a,

and follows policy π afterwards:

Qπ(s, a) = E(

∞∑

i=0

γiri|s0 = s, a0 = a, π)

where 0 ≤ γ < 1 is the discount factor that values

later rewards less compared to immediate rewards. Another

possible performance measure is the average reward intake

[11], [6]:

Qπ(s, a) = lim
n→∞

1

n
E(

n−1∑

i=0

ri|s0 = s, a0 = a, π)

If the optimal Q-function Q∗ is known, the agent can select

optimal actions by selecting the action with the largest value

in a state: π∗(s) = arg maxa Q∗(s, a).

In the experiments we compare the new algorithms to six

online model-free RL algorithms that are described next.

Q-learning. A famous algorithm for learning a Q-function

is Q-learning [18], [19]. Q-learning makes an update after an

experience (st, at, rt, st+1) as follows:

Q(st, at) := Q(st, at)+α(rt+γ max
a

Q(st+1, a)−Q(st, at))

where 0 ≤ α ≤ 1 is the learning rate. Q-learning is an off-

policy reinforcement learning algorithm [15], which means

that the agent learns about the optimal value-function while

following another behavioral policy that includes exploration

steps. This has the advantage that it does not matter how

much exploration is used, as long as the agent visits all state-

action pairs an infinite number of times, tabular Q-learning

(with appropriate learning rate adaptation) will converge to

the optimal Q-function [19], [4], [17]. A disadvantage of Q-

learning is that it can diverge when combined with function

approximators [2], [3]. Another possible disadvantage is that

off-policy algorithms do not modify the behavior of the agent

to better deal with the exploration/exploitation dilemma [12].

Sarsa. Instead of Q-learning, we can also use the on-

policy algorithm Sarsa [10], [14] for learning Q-values.

Sarsa makes the following update after an experience

(st, at, rt, st+1, at+1):

Q(st, at) := Q(st, at)+α(rt + γQ(st+1, at+1)−Q(st, at))

Tabular Sarsa converges in the limit to the optimal policy

under proper learning rate annealing if the exploration policy

is GLIE (greedy in the limit with infinite exploration),

which means that the agent should always explore, but stop

exploring after an infinite number of steps [12].

R-learning. R-learning [11], [6] uses another optimization

criterion than the other RL algorithms described here: instead

of optimizing the discounted cumulative future reward it aims

to optimize the average future reward. In [6] it was compared

to Q-learning and the results showed that Q-learning reached

better performance levels on a box-pushing task than R-

learning. We want to study in this paper whether these results

transfer to other control problems. The learning equations for

R-learning are:

R(st, at) := R(st, at)+α(rt+max
a

R(st+1, a)−ρ−R(st, at))

where the ρ variable represents the average reward intake of

the policy, regardless of the state the agent occupies. It is

updated with the following learning equation:

ρ := ρ + β(rt + max
a

R(st+1, a) − max
a

R(st, a) − ρ)

We only update ρ when a greedy action a is performed.

Actor-Critic. The Actor-Critic (AC) method is an on-

policy algorithm like Sarsa. In contrast to Q-learning and

Sarsa, AC methods keep track of two functions; a Critic

that evaluates states and an Actor that maps states to a

preference value for each action [15]. After an experience

(st, at, rt, st+1) AC makes a temporal difference (TD) update

[13] to the Critic’s value-function V :

V (st) := V (st) + β(rt + γV (st+1) − V (st)) (1)

where β is the learning rate. AC updates the Actor’s values

P (st, at) as follows:

P (st, at) := P (st, at) + α(rt + γV (st+1) − V (st))

where α is the learning rate for the Actor. The P-values

should be seen as preference values and not as exact Q-

values.

QV-learning. QV-learning [22] works by keeping track of

both the Q- and V-functions. In QV-learning the state value-

function V is learned through TD-methods. This is similar

to Actor-Critic methods. The new idea is that the Q-values

simply learn from the V-values using the one-step Q-learning

algorithm. In contrast to AC these learned values can be seen

as actual Q-values and not as preference values. The updates

after an experience (st, at, rt, st+1) of QV-learning are the

use of Equation 1 and:

Q(st, at) := Q(st, at) + α(rt + γV (st+1) − Q(st, at))

Note that the V-value used in this second update rule is

learned by QV-learning and not defined in terms of Q-values.

There is a strong resemblance with the Actor-Critic method;

the difference is the second learning rule where V (st) is

replaced by Q(st, at) in QV-learning.

ACLA. The Actor Critic Learning Automaton (ACLA)

[22] learns a state value-function in the same way as AC

and QV-learning, but ACLA uses a learning automaton-

like update rule [8] for changing the policy mapping states

to probabilities (or preferences) for actions. The updates

after an experience (st, at, rt, st+1) of ACLA are the use

of Equation 1, and an update rule that examines whether the

last performed action was good (in which case the state-value

was increased) or not. We do this with the following update

rule:

If δt ≥ 0 ∆P (st, at) = α(1 − P (st, at)) and

∀a 6= at ∆P (st, a) = α(0 − P (st, a))

Else ∆P (st, at) = α(0 − P (st, at)) and

∀a 6= at ∆P (st, a) = α(P (st,a)
P

b 6=at
P (st,b)

− P (st, a))

where δt = γV (st+1) + rt − V (st), and ∆P (s, a) is added

to P (s, a). ACLA uses some additional rules to ensure the

targets are always between 0 and 1, independently of the

initialization (e.g. of neural network weights). This is done

by using 1 if the target is larger than 1, and 0 if the target

is smaller than 0. If the denominator is less than or equal

to 0, all targets in the last part of the update rule get the

value 1
|A|−1 where |A| is the number of actions. ACLA was

shown to outperform Q-learning and Sarsa on a number of

problems when ǫ-greedy exploration was used [22].

Comparison between the algorithms. It is known that

better convergence guarantees exist for on-policy methods

when combined with function approximators [15], since it

has been shown that off-policy methods such as Q-learning

can diverge in this case [2], [3]. Therefore theoretically

there are advantages for using one of the on-policy algo-

rithms. A possible advantage of QV-learning, ACLA, and

AC compared to Q-learning and Sarsa, is that they learn a

separate state-value function. This state-value function does

not depend on the action and therefore is trained using

more experiences than a state-action value function that

is only updated if a specific action is selected. When the

state-value function is trained faster, this may also cause

faster bootstrapping of the Q-values or preference values.

A disadvantage of QV-learning, ACLA, and AC and also R-

learning is that they need an additional learning parameter

that has to be tuned.

III. THE NOVEL QV-FAMILY MEMBERS

In this section we will present three novel reinforcement

learning algorithms, which are inspired by QV-learning.

QV2. QV2 works by keeping track of both the Q- and V-

functions. In QV2 the state value-function V is learned with

the following equation:

V (st) := V (st) + β(rt + γV (st+1) − Q(st, at))

The Q-function is then learned in the same way as in QV-

learning:

Q(st, at) := Q(st, at) + α(rt + γV (st+1) − Q(st, at))

There is a strong resemblance with QV-learning; the differ-

ence is the first learning rule where V (st) is replaced by

Q(st, at) in QV2.

QVMAX. QVMAX also works by keeping track of both

the Q- and V-functions. In QVMAX the state value-function

V is learned with the following equation:

V (st) := V (st) + β(rt + γ max
a

Q(st+1, a) − V (st))

The Q-function is then learned in the same way as in QV-

learning:

Q(st, at) := Q(st, at) + α(rt + γV (st+1) − Q(st, at))

There is a strong resemblance with QV-learning; the differ-

ence is the first learning rule where V (st+1) is replaced by

maxa Q(st+1, a) in QVMAX. Note that in contrast to QV-

learning, QVMAX is an off-policy algorithm.

QVMAX2. QVMAX2 also works by keeping track of both

the Q- and V-functions. In QVMAX2 the state value-function

V is learned with the following equation:

V (st) := V (st) + β(rt + γ max
a

Q(st+1, a) − Q(st, at))

The Q-function is then learned in the same way as in QV-

learning:

Q(st, at) := Q(st, at) + α(rt + γV (st+1) − Q(st, at))

There is a strong resemblance with QVMAX; the difference

is the first learning rule where V (st) is replaced by Q(st, at)
in QVMAX2. QVMAX2 is also an off-policy RL algorithm.

Discussion. QVMAX and QVMAX2 use the Max-

operator to get a new, off-policy RL algorithm. It is also

possible to replace the Max-operator with a summation sign

that weighs the next actions with their probability as defined

by the policy. This would amount to two possible new QV-

family members.

IV. EXPERIMENTS

Robot navigation is one important application for rein-

forcement learning algorithms. However, in contrast to most

research in RL that only focuses on static maze tasks,

robots often have to deal with a partially observable and

dynamic environment. A maze containing obstacles is still

a very reasonable model for robot navigation problems in

2D environments. However, we argue that the maze tasks

should be of a dynamic and/or partially observable nature

to be a challenge. The 6 algorithms: Q-learning, Sarsa, R-

learning, AC, QV-learning, and ACLA, are compared to the

three novel RL algorithms, QV2, QVMAX, and QVMAX2.

We performed experiments with five different maze tasks

(one simple and four more complex problems) and the cart

pole balancing problem to compare all presented reinforce-

ment learning algorithms. In the first experiment, the RL

algorithms are combined with tabular representations and are

compared on a small maze task. In all other experiments

neural networks are used as function approximators. In the

second experiment a partially observable maze is used. In the

third experiment a dynamic maze is used where the obstacles

are not placed at fixed positions. In the fourth experiment a

dynamic maze is used where the goal is not placed at a fixed

position. In the fifth experiment a generalized maze [20] task

is used where the goal and the obstacles are not placed at

fixed positions. In the last experiment the cart pole balancing

problem is used.

Experimental set-up for maze experiments. The goal

of the maze experiments is to arrive at the goal state as

soon as possible under the influence of stochastic (noisy)

actions. The reward for arriving at the goal is 100. If the

agent bumps against a wall or border of the environment it

stays still and receives a reward of -2. For other steps the

agent receives a reward of -0.1. A trial is finished after the

agent hits the goal or 1000 actions have been performed. The

random replacement (noise) in action execution is 20%, this

means that a selected action is uniform randomly replaced

with one of the four actions with 20% probability. This

reward function and noise is used in all maze experiments

of this paper.

In the experiments, all parameters were optimized for all

RL algorithms, where they were evaluated using the average

reward intake and the final performance is optimized. We

used the average reward intake just like in the comparison

study between Q-learning and R-learning [6] to make a

comparison with R-learning (that does not use a discount

factor) possible. This also means that for the algorithms that

use a discount factor, the discount factor can be treated as

a free parameter that can be optimized. Although in general

it can cause problems to learn to optimize the discounted

reward intake while evaluating with the average reward

intake, for the studied problems the dominating objective is

to move closer to the goal each step, which is optimized using

both criteria for our current experiments. Since we evaluate

all methods using the average reward criterion, the different

discount factors do not influence the comparison.

We used Boltzmann exploration in the following ex-

periments unless stated differently. Boltzmann exploration

performed much better than the use of ǫ-greedy exploration

in almost all experiments.

A. Small Maze Experiment

We first performed experiments with Sutton’s Dyna maze

shown in Figure 1. This simple maze consists of 9×6 states

and there are 4 actions; north, east, south, and west. The goal

is to arrive at the goal state G as soon as possible starting

from the starting state S under the influence of stochastic

(noisy) actions. We kept the maze small, since we want

to compare the results with the experiments on the more

complex maze tasks, which would otherwise cost too much

computational time.

S

G

P

Fig. 1. Sutton’s Dyna maze. The starting position is indicated by S and
the goal position is indicated by G. In the partially observable maze of
the second experiment the goal position is P and the starting position is
arbitrary.

We used a tabular representation and first performed sim-

ulations to find the best learning rates, discount factors, and

greediness (inverse of the temperature) used in Boltzmann

exploration. The best learning parameters are shown in Table

I. We found that initializing the table entries optimistically

(to 100) helped most algorithms except for R-learning and

ACLA. For ACLA and R-learning we initialized the table

entries to small random values (between -0.1 and 0.1), but

we found that an optimistic high initialization value for ρ (to

10) improved the performance of R-learning a lot.

TABLE I

TABULAR LEARNING RATES α/β , DISCOUNT FACTOR AND GREEDINESS

(INVERSE OF THE TEMPERATURE FOR BOLTZMANN EXPLORATION) FOR

THE ALGORITHMS.

Method α β γ G

Q 0.2 – 0.9 1
Sarsa 0.2 – 0.9 1
R-learning 0.15 0.0007 – 2
AC 0.1 0.2 0.95 1
QV 0.2 0.2 0.9 1
ACLA+ 0.005 0.1 0.99 9
QV2 0.2 0.2 0.9 1
QVMAX 0.2 0.2 0.9 1
QVMAX2 0.2 0.2 0.9 1

In Table II we show average results and standard devia-

tions of 500 simulations of the final reward intake during

the last 2500 learning-steps and the total summed reward

(adding all 20 average reward intakes after each 2,500 steps)

during the entire trial lasting 50,000 learning-steps. This

latter evaluation measure shows the overall performance and

the learning rate with which good solutions are obtained.

TABLE II

THE FOUR COLUMNS SHOW FINAL AND CUMULATIVE RESULTS FOR THE

TABULAR REPRESENTATION AND THE RANKS OF THE DIFFERENT

ALGORITHMS (SIGNIFICANCE OF T-TEST p = 0.05). RESULTS ARE

AVERAGES OF 500 SIMULATIONS.

Method Final Rank Cumulative Rank

Q 5.22 ± 0.15 7-9 81.8 ± 0.6 9
Sarsa 5.29 ± 0.13 6 84.0 ± 0.5 8
R-learning 5.37 ± 0.12 1 97.1 ± 1.5 1
AC 5.22 ± 0.15 7-9 87.6 ± 2.3 7
QV 5.34 ± 0.16 2-5 94.6 ± 2.6 2-3
ACLA+ 5.20 ± 0.23 7-9 90.2 ± 5.2 6
QV2 5.34 ± 0.16 2-5 94.7 ± 2.7 2-3
QVMAX 5.33 ± 0.11 2-5 90.7 ± 0.6 4-5
QVMAX2 5.33 ± 0.15 2-5 90.7 ± 0.7 4-5

The ranks are computed using the student t-test with p =
0.05. Note that since 500 simulations were performed, small

differences may still turn out to be significant.

The results show that R-learning outperforms all other

algorithms. This is not a result of using the average reward in-

take, and to show this we also computed the final discounted

cumulative reward from the starting state with γ = 0.9 for

R-learning, Sarsa, Q-learning, and QV-learning. R-learning

had the highest discounted cumulative reward intake of 16.0

± 0.7 followed QV-learning (15.8 ± 1.0), then Sarsa (15.6 ±
0.8) and the worst performance was by Q-learning (15.2 ±
0.8). This also shows that both performance measures rank

the algorithms in the same way. Furthermore, we note that the

QV family performs very well, and that (maybe) surprisingly

Q-learning performs not very well.

B. Partially Observable Maze

In this experiment we use Markov localization and neural

networks to solve a partially observable Markov decision

process in the case where the model of the environment

is known. We use Markov localization to track the belief

state (or probability distribution over the states) of the agent

given an action and observation after each time-step. This

belief state is then the input for a neural network. We used

20 sigmoidal hidden neurons in our experiments, and the

maze shown in Figure 1 with the goal indicated by P and

each state can be a starting state. The initial belief state is a

uniform distribution where only states that are not obstacles

get assigned a non-zero belief. After each action at the belief

state bt(s) is updated with the observation ot+1:

bt+1(s) = ηP (ot+1|s)
∑

s′

T (s′, at, s)bt(s
′)

where η is some normalization factor. The observations are

whether there is a wall to the north, east, south, and west.

Thus, there are 16 possible observations. We use 20% noise

in the action execution and 10% noise for observing each

independent wall (or empty cell) at the sides. That means

that an observation is correct with probability 0.94 = 66%.

Note that we use a model of the environment to be able

to compute the belief state, and the model is based on the

uncertainties in the transition and observation functions.

We performed experiments consisting of 100,000 learning

steps with Boltzmann exploration. For evaluation after each

5,000 steps we measured the average reward intake during

that period. Table III shows the best learning parameters. The

neural network weights were initialized to random values

between -0.1 and 0.1. For R-learning we again initialized ρ

optimistically. This weight initialization is used in all further

maze experiments. Only for R-learning we needed to use

ǫ-greedy exploration, since this worked significantly better

than the use of Boltzmann exploration. The other algorithms

performed better with Boltzmann exploration.

TABLE III

LEARNING PARAMETERS FOR THE PARTIALLY OBSERVABLE MAZE.

Method α β γ G

Q 0.02 – 0.95 1
Sarsa 0.02 – 0.95 1
R-learning 0.007 0.002 – ǫ = 0.05
AC 0.02 0.03 0.95 1
QV 0.02 0.01 0.9 1
ACLA+ 0.035 0.005 0.99 10
QV2 0.02 0.01 0.9 1
QVMAX 0.02 0.01 0.9 1
QVMAX2 0.02 0.01 0.9 1

TABLE IV

FINAL RESULTS (AVERAGE REWARD FOR LAST 5,000 STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE PARTIALLY OBSERVABLE MAZE. RESULTS ARE AVERAGES OF 100

SIMULATIONS.

Method Final Rank Cumulative Rank

Q 9.65 ± 0.33 1-4 154.1 ± 7.3 2
Sarsa 9.41 ± 1.26 1-8 137.6 ± 21.1 5-9
R-learning 9.22 ± 0.27 7-8 149.5 ± 10.2 3
AC 9.33 ± 0.31 6-7 159.4 ± 3.5 1
QV 9.59 ± 0.31 1-6 135.3 ± 12.3 6-9
ACLA+ 8.44 ± 0.27 9 135.1 ± 3.7 6-9
QV2 9.55 ± 0.30 2-6 133.0 ± 13.5 6-9
QVMAX 9.59 ± 0.28 1-6 141.4 ± 8.0 4-6
QVMAX2 9.56 ± 0.29 2-6 142.4 ± 8.3 4-5

Table IV shows that Q-learning achieves the best overall

performance, while ACLA is falling behind all other algo-

rithms. The QV-algorithms all perform similarly, although

the off-policy QVMAX and QVMAX2 algorithms learn

faster than QV-learning and QV2. The learning curves of

Q-learning, QV-learning and R-learning are shown in Figure

2. The learning curves of the other algorithms are similar.

C. Solving a Maze with Dynamic Obstacles

We also compared the algorithms on a dynamic maze,

where in each trial there are several obstacles at random

locations (see Fig. 3).

In order to deal with this task the agent uses a neural

network that receives as inputs whether a particular state-cell

contains an obstacle (1) or not (0). The neural network uses

2 × 54 = 108 inputs including the position of the agent and

60 sigmoidal hidden units. At the start of each new trial there

are between 4 and 8 obstacles generated at random positions

and it is made sure that a path to the goal exists from the

 0

 2

 4

 6

 8

 10

 0 20000 40000 60000 80000

A
v
er

ag
e

re
w

ar
d

Number of steps

Results for POMDP

Q-learning
QV-learning

R-learning

Fig. 2. The learning curves for Q-learning, QV-learning and R-learning on
the POMDP.

G

S

Fig. 3. The 9×6 maze with dynamic obstacles used in the third experiment.
The starting position is denoted by S and the goal position is indicated by
G. The obstacles indicated in black are dynamically generated at the start
of each new trial.

fixed starting location S. Since there are many instances of

this maze, the neural network has to learn the knowledge of a

path planner. A simulation lasts for 3,000,000 learning steps

and we measure performance after each 150,000 steps. The

learning parameters are shown in Table V. Again R-learning

performed much better with ǫ-greedy exploration than with

Boltzmann exploration.

TABLE V

LEARNING PARAMETERS FOR THE MAZE WITH DYNAMIC OBSTACLES.

Method α β γ G

Q 0.01 – 0.95 1
Sarsa 0.01 – 0.95 1
R-learning 0.0005 0.0003 – ǫ = 0.05
AC 0.015 0.003 0.95 1
QV 0.01 0.01 0.9 0.4
ACLA+ 0.06 0.002 0.98 6
QV2 0.01 0.01 0.9 0.4
QVMAX 0.01 0.01 0.9 0.4
QVMAX2 0.01 0.01 0.9 0.4

Table VI shows the final and total performance of the

different algorithms. It shows that Q-learning performs best,

followed by Sarsa. R-learning did not perform very well,

despite extensive parameter tuning to get its optimal perfor-

mance. This may be explained by the dynamic nature of this

problem where average reward intake fluctuates quite a lot.

D. Solving a Maze with Dynamic Goal Positions

In this fourth maze experiment, we use the same small

maze as before (see Figure 1) where the starting position

is indicated by S, but now the goal is placed at a different

TABLE VI

FINAL RESULTS (AVERAGE REWARD FOR LAST 150,000 STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE MAZE WITH DYNAMIC OBSTACLES. RESULTS ARE AVERAGES OF 50

SIMULATIONS.

Method Final Rank Cumulative Rank

Q 6.79 ± 0.21 1 116.2 ± 2.7 1
Sarsa 6.66 ± 0.37 2 112.6 ± 5.9 2
R-learning 4.59 ± 0.39 9 45.7 ± 5.5 9
AC 5.98 ± 0.31 7 97.7 ± 9.4 7
QV 6.27 ± 0.20 3-6 108.3 ± 2.7 3-5
ACLA+ 5.39 ± 0.15 8 89.2 ± 1.3 8
QV2 6.31 ± 0.20 3-6 108.9 ± 2.4 3-4
QVMAX 6.25 ± 0.19 3-6 107.2 ± 2.0 6
QVMAX2 6.25 ± 0.15 3-6 108.0 ± 1.7 4-5

location in each trial. To deal with this, we use a neural

network function approximator that receives the position of

the goal as input. Therefore there are 54 × 2 inputs, that

indicate the position of the agent and the position of the

goal. A simulation lasts for 3,000,000 learning steps and

we measure performance after each 150,000 steps. We used

feedforward neural networks with 20 sigmoidal hidden units.

The learning parameters are shown in Table VII.

TABLE VII

LEARNING PARAMETERS FOR THE MAZE WITH DYNAMIC GOAL

POSITIONS.

Method α β γ G

Q 0.005 – 0.95 0.5
Sarsa 0.008 – 0.95 0.6
R-learning 0.003 0.0015 – ǫ = 0.07
AC 0.006 0.008 0.95 0.6
QV 0.012 0.004 0.95 0.6
ACLA+ 0.06 0.006 0.98 10
QV2 0.012 0.004 0.95 0.6
QVMAX 0.012 0.004 0.95 0.6
QVMAX2 0.012 0.004 0.95 0.6

Table VIII shows the final and total performance of the

different algorithms. It shows that QV2 reaches the best final

performance whereas AC learns fastest. R-learning again

performs worst for this problem followed by Q-learning,

QVMAX and ACLA.

TABLE VIII

FINAL RESULTS (AVERAGE REWARD FOR LAST 150,000 STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE MAZE WITH DYNAMIC GOAL POSITIONS. RESULTS ARE AVERAGES

OF 50 SIMULATIONS.

Method Final Rank Cumulative Rank

Q 10.05 ± 0.37 6-8 152.7 ± 8.3 7
Sarsa 10.69 ± 0.47 1-4 176.9 ± 8.7 2
R-learning 4.79 ± 3.50 9 16.5 ± 12.4 9
AC 10.65 ± 0.11 2-4 180.5 ± 3.3 1
QV 10.66 ± 1.16 1-6 169.4 ± 20.2 3-4
ACLA+ 10.11 ± 1.80 4-8 121.5 ± 25.6 8
QV2 10.83 ± 0.35 1-3 171.7 ± 10.9 3-4
QVMAX 10.07 ± 1.39 5-8 160.0 ± 23.1 5-6
QVMAX2 10.33 ± 0.85 4-7 161.8 ± 20.2 4-6

E. Solving the Generalized Maze

In this last maze experiment, we use the same small

maze as before, but now the goal and walls are placed at

a different location in each trial. This is what Werbos and

Pang call the “Generalized Maze” [20] experiment. To deal

with this, a neural network function approximator receives

the position of the agent, goal and the dynamic walls as

input. Therefore there are 54 × 3 inputs. A simulation lasts

for 15,000,000 learning steps and we measure performance

after each 750,000 steps. The feedforward neural networks

have 100 sigmoidal hidden units. The learning parameters are

shown in Table IX. Surprisingly R-learning performed a bit

better for this problem with Boltzmann exploration than with

ǫ-greedy exploration, although its performance was anyway

not very good.

TABLE IX

LEARNING PARAMETERS FOR THE GENERALIZED MAZE.

Method α β γ G

Q 0.003 – 0.95 0.3
Sarsa 0.003 – 0.92 0.3
R-learning 0.0001 0.00005 – 1.0
AC 0.014 0.0015 0.95 0.5
QV 0.002 0.001 0.95 0.2
ACLA+ 0.1 0.001 0.98 5
QV2 0.002 0.001 0.95 0.2
QVMAX 0.002 0.001 0.95 0.2
QVMAX2 0.002 0.001 0.95 0.2

Table X shows the final and total performance of the

different algorithms. Here Q-learning obtains the best final

results and AC comes as second best. Although again R-

learning performed worst, it is surprising that Sarsa also

obtained much worse results than the other algorithms. Off-

policy discounted methods such as QVMAX and QVMAX2

perform better than on-policy variants such as QV and QV2.

TABLE X

FINAL RESULTS (AVERAGE REWARD FOR LAST 750,000 STEPS) AND

CUMULATIVE RESULTS FOR A NEURAL NETWORK REPRESENTATION ON

THE GENERALIZED MAZE. RESULTS ARE AVERAGES OF 50

SIMULATIONS.

Method Final Rank Cumulative Rank

Q 6.92 ± 0.16 1 96.6 ± 1.1 1
Sarsa 1.06 ± 0.20 8 13.3 ± 0.9 8
R-learning 0.79 ± 0.04 9 7.1 ± 0.1 9
AC 5.84 ± 0.15 2 89.0 ± 1.0 2
QV 5.17 ± 0.16 5-6 76.6 ± 1.1 5-6
ACLA+ 4.81 ± 0.12 7 56.7 ± 1.5 7
QV2 5.19 ± 0.13 5-6 76.9 ± 1.1 5-6
QVMAX 5.63 ± 0.14 3 80.6 ± 0.9 3-4
QVMAX2 5.55 ± 0.16 4 80.6 ± 1.0 3-4

The learning curves for Q-learning, QV-learning, and R-

learning are shown in Figure 4.

F. Cart Pole

For the last experiment we investigated performance on

a well known different type of task: the Cart Pole. In this

task the agents should learn to balance a pole on a cart by

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 5e+06 1e+07 1.5e+07

A
v
er

ag
e

re
w

ar
d

Number of steps

Results for generalized maze

Q-learning
QV-learning

R-learning

Fig. 4. The learning curves of Q-learning, QV-learning, and R-learning on
the generalized maze.

pushing the cart left or right. The action space consists of all

integer amounts of force between −10 N and 10 N, where

negative force corresponds to pushing left and positive force

to pushing right. Whenever the pole had an angle of more

than 12 degrees with the vertical line or whenever the cart

was more than 2.4 m from the center of the track the agent

received a reward of −1 and the trial was finished. On all

other time steps, the agent received a positive reward of 1.

Each trial starts with the cart at the center of the track and

the pole at a random angle between −3 and 3 degrees. One

step lasts 0.02 simulated seconds and a whole trial lasts 4000
simulated seconds. The state space consists of the position

and velocity of the cart and the angle and angular velocity

of the pole. All value functions were approximated by neural

networks with 15 sigmoidal hidden units.

Table XII shows the result of the different algorithms on

this task and Table XI shows the parameters that were used

to obtain these results. All these results were obtained during

and after training on separate test runs that were run every

40 seconds without updating the algorithms and without

exploration.

TABLE XI

LEARNING PARAMETERS FOR THE CART POLE TASK.

Method α β γ G

Q 0.008 – 0.95 1
Sarsa 0.004 – 0.95 2
R-learning 0.008 0.001 – 10
AC 0.01 0.002 0.95 2
QV 0.01 0.004 0.95 1
ACLA+ 0.08 0.004 0.95 10
QV2 0.002 0.0001 0.95 0.5
QVMAX 0.01 0.01 0.95 1
QVMAX2 0.01 0.0004 0.95 0.2

As can be seen in Table XII, in this task QV obtains a

solution that balances the pole for at least 20 seconds the

fastest, on average after 171 seconds. Note that in fact the

solution will probably be found earlier, but we only tested

for successful runs every 40 seconds.

It is interesting to note that even though most algorithms

TABLE XII

AVERAGE NUMBER OF SECONDS UNTIL THE FIRST TEST RUN WHERE

THE POLE WAS BALANCED FOR 20 S AND THE PERCENTAGE OF

SIMULATIONS THAT INCLUDED SUCH A SUCCESSFUL TEST RUN ARE

GIVEN. IF NO SUCCESSFUL RUN WAS OBSERVED, THE MAXIMUM VALUE

OF 4000 S WAS USED TO CALCULATE HET AVERAGE. TEST RUNS WERE

CONDUCTED AFTER EVERY 40 S OF TRAINING. IN TOTAL 50

SIMULATIONS WERE CONDUCTED.

Method Episodes Rank % success

Q 485 ± 674 3-5 100
Sarsa 811 ± 937 5-6 96
R-learning 3285 ±1355 9 34
AC 1311 ±1297 7 90
QV 171 ± 136 1 100
ACLA+ 395 ± 284 3-4 100
QV2 2436 ±1179 8 66
QVMAX 287 ± 183 2 100
QVMAX2 646 ± 635 4-6 100

TABLE XIII

FINAL AND CUMULATIVE RESULTS FOR THE CART POLE. RESULTS ARE

AVERAGES OF 50 SIMULATIONS.

Method Final Rank Cumulative Rank

Q 0.987 ± 0.006 4-7 98.1 ± 0.4 6-7
Sarsa 0.994 ± 0.006 2-3 98.4 ± 0.5 3-5
R-learning 0.967 ± 0.023 8 96.6 ± 1.0 8
AC 0.996 ± 0.006 2-3 98.8 ± 1.6 2-5
QV 0.988 ± 0.008 4-7 98.7 ± 0.3 2-3
ACLA+ 0.998 ± 0.002 1 99.6 ± 0.1 1
QV2 0.844 ± 0.265 9 83.6 ± 12.3 9
QVMAX 0.986 ± 0.006 4-7 98.4 ± 0.3 3-5
QVMAX2 0.987 ± 0.006 4-7 98.2 ± 0.3 6-7

find a perfect policy for this problem on some point during

training, none reached perfect final results on every trial.

This is due to a problem related to overfitting: because the

algorithms continue to learn after reaching a good policy,

they will mostly experience states that are close to optimal

and update the neural networks that were used as function

approximators with this knowledge. However, because of

the distributed nature of these networks, this will cause

knowledge about states that are experienced less to fade.

As can be seen in Table XIII ACLA, Actor Critic and

Sarsa reach the best final average results, with near perfect

scores of 0.998, 0.996 and 0.994, respectively. The fast

learning of QV can also be seen by its relatively high

cumulative results, although ACLA performs better using this

performance metric.

V. DISCUSSION

The RL algorithms were compared on six different control

problems. We are now interested in comparing the overall

final performances of the different algorithms, for which

we optimized the learning parameters. Since we used two

evaluation measures in the last cart pole experiment, we

combine all seven rankings in Table XIV and Table XV.

The overall scores in Table XV show that QV-learning on

overall performs best, but it is closely followed by QVMAX,

Q-learning, Sarsa, and QVMAX2. R-learning performs worst

on average, despite its great learning performance on the

TABLE XIV

THE RANKS OF THE DIFFERENT METHODS WHEN WE LOOK AT FINAL

PERFORMANCE OF THE LEARNED CONTROLLERS FOR THE FIRST 4

EXPERIMENTS.

Exp. nr. 1 (Tab.) 2 (NN) 3 (NN) 4 (NN)

Q 7-9 1-4 1 6-8
Sarsa 6 1-8 2 1-4

R-learning 1 7-8 9 9
AC 7-9 6-7 7 2-4
QV 2-5 1-6 3-6 1-6

ACLA 7-9 9 8 4-8
QV2 2-5 2-6 3-6 1-3

QVMAX 2-5 1-6 3-6 5-8
QVMAX2 2-5 2-6 3-6 4-7

TABLE XV

THE RANKS OF THE DIFFERENT METHODS WHEN WE LOOK AT FINAL

PERFORMANCE OF THE LEARNED CONTROLLERS FOR THE LAST TWO

EXPERIMENTS AND THE OVERALL SCORES.

Exp. nr. 5 (NN) 6a (NN) 6b (NN) Total

Q 1 3-5 4-7 29
Sarsa 8 5-6 2-3 31

R-learning 9 9 8 52.5
AC 2 7 2-3 36
QV 5-6 1 4-7 27

ACLA 7 3-4 1 42.5
QV2 5-6 8 9 36.5

QVMAX 3 2 4-7 28.5
QVMAX2 4 4-6 4-7 32

simple maze problem. ACLA also does not perform very

well on average.

The variants of QV-learning seem to perform a bit worse

than QV-learning itself, although QVMAX can outperform

QV-learning for problems where off-policy algorithms out-

perform on-policy algorithms, see for example the fifth ex-

periment. The fourth experiments shows another perspective:

here Sarsa outperforms Q-learning and QV and QV2 perform

also better than their off-policy counterparts.

The results also indicate that there are for particular control

problems large performance differences between the different

algorithms. The most striking example is the generalized

maze experiment in which Sarsa does not perform well,

whereas Q-learning achieves excellent results. It seems that

one way out of the dilemma of choosing a single RL

algorithm, is to use a combination of all algorithms in an

ensemble to get the best out of them [23].

In future work we want to compare all algorithms on the

large partially observable generalized maze problem, which

will be a very difficult task for RL algorithms. If some of

them are able to obtain good results on this problem, it

would be interesting to add game-like features such as gold,

dragons, exits, and multiple levels. Finally, we want to make

the transition to hierarchical extensions of the algorithms and

compare their batch versions.

REFERENCES

[1] J. Baxter and P.L. Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 15:319–350, 2001.

[2] J. A. Boyan and A. W. Moore. Generalization in reinforcement
learning: Safely approximating the value function. In G. Tesauro, D. S.
Touretzky, and T. K. Leen, editors, Advances in Neural Information

Processing Systems 7, pages 369–376. MIT Press, Cambridge MA,
1995.

[3] G.J. Gordon. Stable function approximation in dynamic programming.
Technical Report CMU-CS-95-103, Carnegie Mellon University, 1995.

[4] T. Jaakkola, M. I. Jordan, and S. P. Singh. On the convergence
of stochastic iterative dynamic programming algorithms. Neural

Computation, 6:1185–1201, 1994.
[5] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement

learning: A survey. Journal of Artificial Intelligence Research, 4:237–
285, 1996.

[6] S. Mahadevan. To discount or not to discount in reinforcement
learning: A case study comparing R learning and Q learning. In
Proceedings of the Eleventh International Conference on Machine

Learning, pages 164–172. Morgan Kaufmann, 1994.
[7] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement

learning with less data and less time. Machine Learning, 13:103–130,
1993.

[8] K. S. Narendra and M. A. L. Thathatchar. Learning automata - a
survey. IEEE Transactions on Systems, Man, and Cybernetics, 4:323–
334, 1974.

[9] M. Riedmiller. Neural fitted Q iteration - first experiences with a
data efficient neural reinforcement learning method. In Proceedings of

the Sixteenth European Conference on Machine Learning (ECML’05),
pages 317–328, 2005.

[10] G.A. Rummery and M. Niranjan. On-line Q-learning using connection-
ist sytems. Technical Report CUED/F-INFENG-TR 166, Cambridge
University, UK, 1994.

[11] A. Schwartz. A reinforcement learning method for maximizing
undiscounted rewards. In Machine Learning: Proceedings of the

Tenth International Conference, pages 298–305. Morgan Kaufmann,
Amherst, MA, 1993.

[12] S.P. Singh, T. Jaakkola, M.L. Littman, and C. Szepesvari. Convergence
results for single-step on-policy reinforcement-learning algorithms.
Machine Learning, 38(3):287–308, 2000.

[13] R. S. Sutton. Learning to predict by the methods of temporal
differences. Machine Learning, 3:9–44, 1988.

[14] R. S. Sutton. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In D. S. Touretzky, M. C.
Mozer, and M. E. Hasselmo, editors, Advances in Neural Information

Processing Systems 8, pages 1038–1045. MIT Press, Cambridge MA,
1996.

[15] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduc-

tion. The MIT press, Cambridge MA, A Bradford Book, 1998.
[16] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient

methods for reinforcement learning with function approximation. In
Advances in Neural Information Processing Systems 12, pages 1057–
1063. MIT Press, 2000.

[17] J. N. Tsitsiklis. Asynchronous stochastic approximation and Q-
learning. Machine Learning, 16:185–202, 1994.

[18] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,
King’s College, Cambridge, England, 1989.

[19] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning,
8:279–292, 1992.

[20] P.J. Werbos and X. Pang. Generalized maze navigation: Srn critics
solve what feedforward nets cannot. IEEE Transactions on Systems,

Man, and Cybernetics, 3:1764–1769, 1996.
[21] M.A. Wiering. QV(lambda)-learning: A new on-policy reinforcement

learning algorithm. In D. Leone, editor, Proceedings of the 7th

European Workshop on Reinforcement Learning, pages 29–30, 2005.
[22] M.A. Wiering and H. van Hasselt. Two novel on-policy reinforcement

learning algorithms based on TD(λ)-methods. In Proceedings of the

IEEE International Symposium on Adaptive Dynamic Programming

and Reinforcement Learning, pages 280–287, 2007.
[23] M.A. Wiering and H. van Hasselt. Ensemble algorithms in rein-

forcement learning. IEEE Transactions, SMC Part B, special issue

on Adaptive Dynamic Programming and Reinforcement Learning in

Feedback Control, 2008.

