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Abstract

We study the use of multi-layer perceptrons
in applying artifical learning to the recogni-
tion of emotional expressions from frontal im-
ages of human faces. The perceptrons are
trained using per-pixel luma data from the
images’ mouth and eye areas, and map the
inputs to one of 6 emotions. We compare
3 different methods for processing input in-
formation: 1) one network module for all in-
puts; 2) one network module for both eyes,
and one for the mouth; 3) one network mod-
ule for the mouth, one for the left eye, and
one for the right eye. Our results show that
involving multiple modules leads to better re-
sults, resulting in an overall performance of
84% images classified correctly.

1. Introduction

Automated facial expression recognition from static
images can be useful in a number of different applica-
tions, such as human-machine interaction, or detection
of audience response. The goal of this research is to
find out whether it is possible to successfully perform
facial expression recognition using multi-layer percep-
trons in a modular setup on practically unprocessed
input data. For this specfic purpose a software tool
named Narcissus1 was developed.

The sections 2–7 deal with the following: Section 2
discusses the setup of the research and the image data
used, section 3 is about the application used to pro-
cess the data, section 4 briefly describes the training
and testing procedure, in section 5 the tests and the
results are discussed, and section 6 discusses our study
in a context of related work. Section 7 concludes this
paper.

1After the mythical figure who fell in love with himself
after seeing the reflection of his own face in a pond.

2. Research setup

Since the main object is to construct an artifical clas-
sifier to use with static frontal images of human faces
expressing emotions, a proper classifier as well as suit-
able images will be needed. This section discusses the
selection of both.

2.1. Choice of classifier

We want a classifier that is robust, and relatively easy
to implement, like a multi-layer perceptron (MLP) or
radial basis function network (RBF). Since a study
similar to this one obtained good results with MLPs,
and results with RBFs were a bit worse (Gargesha &
Kuchi, 2002), MLPs with a logistic sigmoid activa-
tion function are chosen as classifiers. Learning takes
place through back-propagation. The classifier’s out-
puts are Ekman’s 6 basic emotions with clear facial
signals: anger, disgust, fear, happiness, sadness, and
surprise (Ekman, 1994). Other output categories are
of course possible —such as the 2-dimensional model
of emotion (Russell, 1980)— but Ekman’s emotions
are widely-used in research, and also the image data
described in section 2.2 is based on them, so this model
was adopted.

2.2. Image data

To investigate the expression of emotions in facial im-
ages, a sufficient amount of images expressing those
emotions is of course required. Three sets were used,
described in more detail in Sections 2.2.1, 2.2.2 and
2.2.3. Sample pictures are shown in Figure 1.

2.2.1. Cohn-Kanade image set

The Cohn-Kanade Facial Expression Database
(Kanade et al., 2000) is a collection of approxi-
mately 2,000 grayscale image sequences from over 200
subjects. The images used were expertly analyzed
with FACS for the occurrence of so-called action



Figure 1: Sample images expressing surprise, one from the
Cohn-Kanade database (left), one from the JAFFE database
(middle), and one from the POFA set (right).

units, as described in the Facial Action Coding
System (Ekman & Friesen, 1978). The AU-codes were
manually translated into Ekman’s 6 basic emotions
using the rules from the FACS Investigator’s Guide
(Ekman et al., 2002), and only the images that were
expressing emotion according to this system were
used in this research.

2.2.2. JAFFE image set

The Japanese Female Facial Expression (JAFFE)
database (Lyons et al., 1998) consists of 213 grayscale
images of Japanese women posing the 6 basic expres-
sions used in this research, plus a neutral one. The
images have been rated on a 5-point scale (from 1 to
5) for each of the 6 emotion categories by 60 female
Japanese students. Each of the images was assigned to
the category for which it achieved the highest overall
rating.

2.2.3. POFA image set

The Pictures Of Facial Affect image set (Ekman &
Friesen, 1976) contains grayscale photographs of 14
actors portraying expressions that are reliably classi-
fied by naive observers as the 6 basic expressions used
in this study (the overall agreement is 91.6%).

3. Specifics of the application

The inner workings of the software tool Narcissus2 are
briefly described in this section. Section 3.1 describes
the loading of images into the application for process-
ing, in section 3.2 training one or more networks using
data from the opened images is described, and sec-
tion 3.3 describes testing one or more networks on the
opened images.

3.1. Opening images

Images of the formats GIF, JPEG and PNG are sup-
ported. These images can be opened into the applica-

2Available at http://narcissus.no-ip.org/

tion, and can be used either for creating and training
a network, or testing an existing network. When im-
ages are opened for the first time, the areas containing
the left eye, the right eye, and the mouth have to be
selected by hand. These areas are the facial features
that are expected to contain most emotion-related in-
formation. The selection procedure is manual: the
user draws a selection rectangle to select the region
where the features are. The aspects of these selection
rectangles are constant, with a horizontal : vertical
of 1.3 : 1 for the eyes, and 2.2 : 1 for the mouth. The
aspects are kept constant, so that no distortion occurs
when the feature images are scaled. The numbers of
1.3 and 2.2 were chosen more or less arbitrarily; the
criterion being that the whole feature region (e.g. the
left eye) could be fitted, without incorporating a lot of
the surrounding ‘noise’.

3.2. Training one or more networks

In training mode the images that have been opened
can be used to train one or more networks. Table 1
shows the possible situations.

# of networks input

1 both eyes and the mouth
2 both eyes into one network,

the mouth into the other
3 each eye goes into a separate

network, as does the mouth

Table 1: Different networks and their input.

When one network is selected, this network processes
all image features. When two networks are selected,
one network will be set up to process the left as well as
the right eye, the other will process the mouth. In the
case of three networks, each feature is processed by a
separate network. From now on, when talking about
the networks used by Narcissus, these will be referred
to as ‘modules’. The mode in which 2 modules are
selected for processing — wherein one processes both
eyes and the other the mouth — will be referred to as
‘a system of 2 modules’ or a ‘2-module system’, and
likewise for 3 modules.

After selecting the number of modules, the desired
feature dimensions have to be set for the eyes (same
dimensions for both) and the mouth. All features
are scaled to these dimensions using the standard
Java AffineTransform.getScaleInstance(x,y)
scaling operation, to ensure that every feature image
yields the same amount of inputs. The default setting
is a dimension of 20 ∗ 15 pixels for the eyes and 40 ∗ 18
pixels for the mouth.



For a 1-module system, this yields (including the bias):

(20 ∗ 15) ∗ 2 + (40 ∗ 18) + bias = 1, 321 inputs

The data that is the actual input for the networks, is
the luma (Y ′) value of each pixel, which is calculated
with the following standard formula for obtaining luma
values from non-linear RGB.

Y ′ = 0.299 ∗R + 0.587 ∗G + 0.114 ∗B

This comes down to converting the image from RGB
color to grayscale. Using the luma values reduces the
dimensionality of the data: instead of using three val-
ues (R, G, and B) from each pixel as input, we now
only have to use one (Y ′). This is also the case for im-
ages that already are in grayscale, which in RGB color
space are represented as (Y ′, Y ′, Y ′). The resulting
input value is 0.299 ∗Y ′+0.587 ∗Y ′+0.114 ∗Y ′ = Y ′.

3.3. Testing one or more networks

In testing mode, the networks that were created in
training mode can be evaluated. The necessary pa-
rameters, such as the feature dimensions, are taken
from the network settings. Images can be evaluated
with respect to a 1-, 2-, or 3-module system one by
one or all at once. This mode provides a lot of visual
feedback. The outputs of all networks are recorded and
displayed, as well whether or not an image was classi-
fied correctly. Also, the outputs can be visualized in a
graph, for easy viewing.

The face in Figure 2 was analyzed manually as de-
scribed in 2.2.1 and reported to be expressing sadness.
The output of the 3-module system as visualized in
Figure 3 tells that two modules got it right, and one
did not. There are six groups of bars; one for each
emotion category.

Figure 2: Sample image from the Cohn-Kanade database,
expressing sadness.

Figure 3: Graph showing the output from three networks.

From left to right: anger, disgust, fear, happiness, sad-
ness, surprise. There are three bars: one for each mod-
ule. The module analyzing the left eye is represented
by the leftmost bar in each group (blue), the middle
(green) bar stands for the right eye, and the module
analyzing the mouth is the rightmost bar in each group
(red). In this case, the left eye (left, blue) and mouth
(right, red) correctly reported sadness (the 5thgroup of
bars), while the right eye module (middle, green) got
it all wrong: it reported surprise, with fear coming in
second by the smallest of margins. Sadness actually
was the least likely option for this network.

4. Training and testing procedure

The image set available for training and testing con-
sists of 458 images in total. The images are spread
unevenly over the 6 emotion categories , as follows
(with the Cohn-Kanade / JAFFE / POFA ratio shown
in parentheses): 60 in anger (23/24/13), 82 in dis-
gust (51/18/13), 30 in fear (10/7/13), 116 in happi-
ness (73/30/13), 55 in sadness (22/22/11) and 115 in
surprise (77/25/13).

Since the number of samples is quite low for some cat-
egories, cross-validation has been adopted as training
procedure. Cross-validation allows us to obtain valid
results using only a small number of samples. This is
done by dividing the data into S segments, using data
from S − 1 of these segments for training, and testing
performance with the remaining segment. This pro-
cess is repeated S times, and the results of S runs are
then averaged to obtain the final result. In our case the
data has been split up in 10 sets, each containing ap-
proximately 90% of the samples as training data and
the remaining 10% or so for testing. A certain net-
work’s performance has been defined as the average of
its results on the 10 subsets.



5. Tests & results

The tests described in this section were performed fol-
lowing the procedure explained in section 4.

5.1. Determining optimal parameters

The following sections are about determining a func-
tion that returns a reasonable number of hidden units
based on the number of inputs (5.1.1), and finding a
feature size that has enough detail, without being un-
necessarily large and slow to process (5.1.2).

5.1.1. Hidden units

The focus here is on calculating the number of hid-
den units as a function of the number of inputs. This
number should not be too small because this allows
for fewer possible mappings, and thus less expressive
power, but there should not be too many hidden units
either, because this increases processing time and can
lead to overfitting the data.

No optimal feature size has been determined yet, so
three sets of feature sizes have been considered, listed
below in order of increasing number of inputs.

Low-detail: The dimension of the eyes is 5 ∗ 4 = 20
pixels and the dimension of the mouth is 10 ∗ 5 =
50 pixels. Including the bias, this amounts to
(2 ∗ 20) + 50 + 1 = 91 inputs.

Medium-detail: Eyes are 10 ∗ 8 and mouth is 20 ∗ 9.
Total of 160 + 180 + 1 = 341 inputs.

High-detail: Eyes are 40 ∗ 31 and mouth is 80 ∗ 36.
Total of 2, 480 + 2, 880 + 1 = 5, 361 inputs.

All features are processed by one single network. For
this test there was no need to do otherwise, because
the number of hidden units applies to a network in
general, and does not depend on the particular features
it is processing. The learning rate was fixed at 0.02
and all networks ran 500 passes. If a 100% score was
achieved on the training set before the 500thpass, back-
propagation (and thus further learning) stopped.

First the number of hidden units nhidden was calcu-
lated from the number of inputs ninput using the func-
tion:

nhidden = x
√

ninput

Then, 4 tests were performed using the aforementioned
formula and the values 2, 3, 4 and 5 for x. This test
yielded the results shown in Table 2. This table shows
the average score over 10 cross-validation runs, and in
parentheses the standard deviation (σ) of the 10 scores
that make up the final score.

x low medium high

2 70% (5.6) 79% (4.3) 81% (3.6)
3 64% (3.9) 78% (6.5) 81% (4.2)
4 57% (7.9) 73% (5.8) 81% (4.3)
5 48% (8.9) 57% (7.0) 77% (5.0)

Table 2: Scores for the x
√

ninput function.

The most desirable results were obtained with x = 2
for the low-detail system, x = 2 for medium-detail,
and x = 4 for high-detail. A function that yields a
suitable number of hidden units, in a range compara-
ble to the one given by nhidden = x

√
ninput with the

aforementioned values for x, is

nhidden = 3 ∗ lnninput

This function returns a relatively large amount of
hidden units for small networks, and (compared to
2
√

ninput, for instance) a small nhidden for large net-
works. Considering the results as seen in Table 2, this
is what we want.

5.1.2. Feature size

As Table 2 shows, more inputs and a lot of hidden
neurons seem to give the best results. However, there
is a downside to having a large network. Table 3 shows
the approximated processing times3 for one pass on
414 examples without back-propagation.

x low medium high

2 0.05 0.24 12.70
3 0.04 0.10 3.20
4 0.03 0.06 1.50
5 0.02 0.05 1.10

Table 3: Approximated processing times in seconds for each of
the networks.

This means the network processing the low-detail fea-
tures (91 inputs in total) with 2

√
ninput function for

the hidden neurons took 50 milliseconds (0.05 seconds)
for classifying 414 images, while the network process-
ing high-detail features with 2

√
ninput hidden neurons

took 12.7 seconds. Training both these network for
500 passes would take well over (because of back-
propagation, which was not considered in Table 3) 25
seconds for the low-detail network, compared to 1 hour
and 45 minutes for the high-detail network. Quite the
difference!

The medium-detail network did not have as good re-
sults as the high-detail one, but the latter took a lot
longer to process, without spectacular improvements
in performance. Therefore an intermediate sized net-
work was trained. This network has a 20 ∗ 15 size

3On an Athlon XP 3200+ with 1 gigabyte of memory.



for the eyes, and a 40 ∗ 18 size for the mouth. In-
cluding the bias, this amounts to 1,321 inputs. The
nhidden = 3 ∗ lnninput function returns 22 hidden neu-
rons. This network has quite a good processing time:
about 0.8 seconds per pass. The averaged score of 10
cross-validation runs is 82% with a standard deviation
of 4.7, which is the best so far. In all following exper-
iments this network (summarized in Table 4) is used.

eyes mouth nhidden

20 ∗ 15 40 ∗ 18 3 ∗ ln 1, 321 = 22

Table 4: Optimal settings for feature size and nhidden.

5.2. Performance of networks

Using the parameters found in section 5.1, several sys-
tems are tested using the cross-validation procedure
described in section 4.

5.2.1. Cross-module comparison

Table 5 shows the performance of each network from
a 1-, 2-, and 3-module system as the overall percent-
age of correctly classified images, with the standard
deviation σ on 10 cross-validation runs in brackets.

system module score (σ)

1 module eyes & mouth 82% (4.7)
2 modules eyes 68% (5.3)

mouth 70% (7.9)
3 modules left eye 62% (7.8)

right eye 60% (5.0)
mouth 69% (6.0)

Table 5: Comparison of 1-, 2-, and 3-module systems.

Clearly, the single-module system does best. It has the
highest overall score of 82% correctly classified images,
and the lowest σ (4.7), which means that it had the
least amount of variation on the 10 cross-validation
runs, and therefore is the most consistent of the 3 sys-
tems. Table 6 shows the highest and lowest scores for
each of the networks in Table 5.

network module highest lowest

1 module eyes & mouth 89% 74%
2 modules eyes 74% 59%

mouth 85% 60%
3 modules left eye 76% 54%

right eye 65% 51%
mouth 77% 61%

Table 6: Performance high/low for 1-, 2-, and 3-module
systems.

Also note how the networks processing a single eye do
not perform much worse than the network processing
both eyes. The highest score for the 3-module system

working on the left eye (76%) was even higher than the
one for the 2-module network working on both eyes
(74%). This is interesting, because it shows that even
from a partially occluded face (where perhaps only half
of the face is visible) expression recognition is possible
when using a modular approach.

5.2.2. Module addition

Section 5.2.1 showed how a 1-module system outper-
formed the individual networks from the 2- and 3-
module systems, and how the networks from the 2-
module system also outperformed those from the 3-
module system. Now let’s see what happens when the
individual modules are combined, so that they all ‘cast
a vote’ in a single system. An easy way to achieve this
is by simply adding up the 6 outputs of each system
and pretending the resulting values are the outputs of
a single system. Table 7 shows the results of this pro-
cedure for the 2- and 3-module systems, along with
the result of the 1-module system (where no addition
is possible) for comparison.

system module score (σ)

1 module eyes & mouth 82% (4.7)
2 modules eyes + mouth 82% (3.5)
3 modules left eye + right eye + mouth 84% (5.3)

Table 7: Performance of the 2- and 3-module systems after
addition of output activations.

After addition of output activations, the 3-module sys-
tem suddenly performs best! Same as with the discus-
sion of the separate modules, let’s have a look at the
highest and lowest scores of each of the systems. The
1-module system’s scores are the same, of course. The
results are shown in Table 8.

system module highest lowest

1 module eyes & mouth 89% 74%
2 modules eyes + mouth 87% 77%
3 modules left eye + right eye + mouth 93% 79%

Table 8: Performance high/low for 1-, 2-, and 3-module
systems after addition.

Adding these systems up again produces a combined
super-system in which all three systems are casting
their vote. This system performs as shown in Table 9.

system score σ highest lowest

combined 85% 5.5 93% 75%

Table 9: Score, σ and performance high/low for 1-, 2-,
3-module systems added together.

This is the best system so far, but not by a great mar-
gin and at a price. It takes approximately three times
as much time to run compared to the other systems,



because it actually consists of those systems. Its pro-
cessing time is the processing time of the 1-module
system, added up to that of the 2-module system, and
again to that of the 3-module system. Therefore it’s
quite inefficient without major improvement over the
other systems.

5.3. In-depth analysis

In this section the four systems discussed in section
5.2.2, which are the ones that yielded the best results,
will be analyzed in-depth. The analysis is presented
in form of a confusion matrix, as defined in (Kohavi &
Provost, 1998). This matrix visualizes the combined
results of the 10 cross-validation test runs in a dia-
gram, whose row as well as column headings show a
category label. A stands for anger, D for disgust, F
for fear, H for happiness, Sa for sadness and Su for
surprise. The row headings stand for the desired (cor-
rect) classification, the column headings for the actual
classification. The cell values show how often a cer-
tain error (confusion) occurred. The values in the Σ-
column’s and Σ-row’s cells show the summation over
the preceding cells in their respective row and column.
For the Σ-column, this can be interpreted as the bias
towards a category, and for the Σ-row it represents the
total number of misclassifications for images from this
category. On the diagonal the percentage of correctly
classified samples of a certain category is shown, and
the final row (T) shows the total number of samples
in each category, together with the total number of
pictures. (Σ,Σ) shows the performance of this system
as a percentage of correctly classified images, with the
total number of misclassified images in brackets.

So, for example, by going to (Sa, A) in Table 10,
we find that after 10 cross-validation tests for the 1-
module system, 3 images in total that should have
been classified as Sadness were confused for the cate-
gory Anger.

(A,A) tells us that 63% of the test samples from the
Anger category were correctly classified as such. This
can be verified by checking the total number of misclas-
sified Anger images in (A,Σ), which is 22, and indeed
60−22

60 ∗ 100% = 63%.

The following sections 5.3.1 to 5.3.4 discuss the four
addition systems from section 5.2.2.

5.3.1. 1-module system

As Table 10 shows us, the best-recognized category
(happiness) was recognized much better than the
worst-recognized (fear): 94% compared to 47%. Anger
and disgust were often confused for each other: 15

A D F H Sa Su Σ

A 63% 6 1 2 3 3 15
D 9 85% 2 0 3 1 15
F 2 0 47% 2 2 3 9
H 3 3 2 94% 5 2 15
Sa 6 3 4 3 73% 0 16
Su 2 0 7 0 2 92% 11

Σ 22 12 16 7 15 9 82% (81)

T 60 82 30 116 55 115 458

Table 10: Confusion matrix for the 1-module system.

times in total (add (A,D) and (D,A) together). Sur-
prise is mistaken for disgust only once, and disgust
never for surprise. In fact, only fear is often mistaken
for surprise, and this quite often too (7 times). An-
other thing to note is that sadness is mistaken for hap-
piness — which could be considered the opposite emo-
tion — 5 times in total, which is a lot in this context.

5.3.2. 2-module system4

A D F H Sa Su Σ

A 73% 7 2 4 5 1 19
D 5 84% 1 2 1 0 9
F 3 0 47% 1 3 5 12
H 3 4 3 93% 6 1 17
Sa 5 2 4 1 65% 1 13
Su 0 0 6 0 4 93% 10

Σ 16 13 16 8 19 8 82% (80)

T 60 82 30 116 55 115 458

Table 11: Confusion matrix for the 2-module system, after
addition of individual modules.

Anger and disgust are mistaken for each other 12 times
in total, again the highest score, while disgust and
surprise are never mistaken for each other. Again, fear
is often mistaken for surprise: 6 times. This is a lot,
especially considering the fact that fear only has 30
samples. Sadness is mistaken for happiness 6 times.

5.3.3. 3-module system

The anger-disgust confusion is lower for the 3-module
system, only 8 mistakes. Sadness is mistaken for hap-
piness 7 times. Disgust and surprise are confused only
once. Fear is mistaken for surprise 5 times.

5.3.4. Combined super-system

Since this system reflects the previously discussed
three systems, there are no real surprises.

The overall pattern for the four systems considered is
4For (Σ, Σ) in Table 11, (378/458) ∗ 100% = 83% and

not 82%. This is not an error, but a reflection of the fact
that the performance has been calculated as the average of
the performance of individual cross-validation tests, which
in this case leads to a discrepancy of 1%.



A D F H Sa Su Σ

A 70% 3 1 2 5 0 11
D 5 85% 3 3 1 1 13
F 2 2 53% 1 3 1 9
H 5 6 3 93% 7 1 22
Sa 5 1 2 1 69% 1 10
Su 1 0 5 1 1 97% 8

Σ 18 12 14 8 17 4 84% (73)

T 60 82 30 116 55 115 458

Table 12: Confusion matrix for the 3-module system, after
addition of individual modules.

A D F H Sa Su Σ

A 72% 5 1 1 3 0 10
D 6 87% 3 1 2 1 13
F 1 0 50% 1 3 3 8
H 3 4 3 96% 6 1 17
Sa 5 2 4 2 73% 0 13
Su 2 0 4 0 1 96% 7

Σ 17 11 15 5 15 5 85% (68)

T 60 82 30 116 55 115 458

Table 13: Confusion matrix for the combined super-system.

that fear is recognized worst by far, and that perfor-
mance on happiness and surprise is best. There is a
clear correlation between performance and the total
number of samples for a certain category: the more
samples, the better the performance. For all cases
considered, bias towards happiness was significantly
higher than bias towards surprise. Perhaps this is be-
cause the expression of surprise has a more unique sig-
nal (wide-open mouth), only to be confused with fear,
while the expression of happiness comes in many dif-
ferent forms.

6. Related work

In the first part of this section, related studies are
briefly reviewed. In the second part, this study is com-
pared to similar ones, and a comparison is drawn. Fi-
nally, suggestions for further research are given, as well
as possible improvements for the current approach.

6.1. Review of related work

The past decade has seen a lot of activity in the field
of (semi-) automatic facial expression recognition, us-
ing widely differing approaches. This brief review will
focus on a neural network-based method operating on
input data gathered from static facial images. Other
possibilities are analysis of image sequences (with out-
put to FACS AU’s, for instance), and analysis of static
images using template- or rule-based methods. For a
concise overview of the myriad of possible approaches,
see (Pantic & Rothkrantz, 2000).

Zhang et al. (Zhang et al., 1998) compare geometry-

based and Gabor wavelets-based approaches to facial
expression recognition using multi-layer perceptrons.
Their findings are that Gabor wavelets are much more
powerful than geometric position. They achieve an
overall score of 90.1% using combined information
from Gabor wavelets and geometric position, with 7
hidden units and output to 7 categories (anger, dis-
gust, fear, happiness, sadness, surprise, and neutral),
using 213 images from the JAFFE database. Fear is
problematic: when excluding it, the results are 92.3%
correctly classified images, and human agreement with
the expressors’ intention rises with 6% to 85.6%.

A very interesting approach is taken by Dailey et al.
(Dailey et al., 2002) in a system called EMPATH.
They present an artificial approach to facial expres-
sion recognition, modelled on the human perceptual
system. Their system has three major layers. The
perceptual layer uses Gabor filters and represents the
human complex cells in the visual cortex. The Gestalt
layer performs principal component analysis using lin-
ear hidden units, and is comparable to the ‘face cells’
in the human inferior temporal cortex. The category
layer is the output layer, and has the 6 categories
of anger, disgust, fear, happiness, sadness and sur-
prise. This system’s performance on the POFA image
database as input was as depicted in Table 14. Again,
performance on fear is particularly bad.

Expression System performance Human agreement

Happiness 100.0% 98.7%
Surprise 100.0% 92.4%
Disgust 100.0% 92.3%
Anger 89.1% 88.9%

Sadness 83.3% 89.2%
Fear 67.2% 87.7%

Average 90.0% 91.6%

Table 14: Performance of EMPATH and human agreement on
image data from the POFA database.

6.2. Comparison to related work

Compared to other approaches, ours is simple and
straightforward because it uses hardly any preprocess-
ing (apart from converting all data to grayscale, which
doesn’t affect much since all image sets used have
grayscale images). Still, it achieves pretty good re-
sults, with a high around 85%. However, feature se-
lection is manual, and one could wonder how much
bias is introduced by hand-selecting the features.

An interesting phenomenon is the (relatively) poor de-
tection of fear by artificial neural network-based sys-
tems, as well as human observers (as illustrated by
Table 14 with the EMPATH results). In our system,
detection of fear was quite terrible too, which we first



attributed to the low number of training samples. Now
it seems that a higher amount of fear-examples maybe
could improve results, but that fear also has inherent
characteristics which make it harder to recognize.

It should be noted that we used three different image
collections, and that most other studies use only one.
The sample images from a single set for a single cate-
gory can be quite low; e.g. 7 samples from the JAFFE
database for fear. Most likely our results could im-
prove by using more samples per image set, since it is
much harder for artificial learning methods to gener-
alize when learning from a low number of samples.

7. Discussion

Our goal of creating a working system to classify emo-
tions from static frontal images, using hardly prepro-
cessed images and multi-layer perceptrons, has been
met quite well. Most notable of the method used
in this study is perhaps the use of a separate net-
work module per facial feature (left eye, right eye, and
mouth). Separate feature modules yield reasonable re-
sults (between 60% and 70%), and simple addition of
output values improves results to well over 80%). This
could be useful in processing facial images for recogni-
tion of emotional expression, where features have been
(partially) obscured. It is very probable that our ap-
proach could be successful in identity recognition from
(partially obscured) facial images as well.

Using preprocessing, such as application of Gabor fil-
ters, seems to improve results. This study could be
extended by applying a Gabor wavelet-based approach
and a modular one to build a more robust Gabor-
based system. It would also be interesting to see how
a modular approach would perform when automatic
face and/or feature detection is applied. Moreover,
to obtain a generally applicable emotion-recognition
tool, training should be performed using many sam-
ples showing expressions in many different circum-
stances. This means using different image collections
that involve multi-cultural subjects and different light-
ing conditions, and perhaps also lateral facial im-
ages, subjects with partially obscured faces, or sub-
jects wearing glasses.
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