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Abstract

Reinforcement learning can greatly profit from world models updated
by experience and used for computing policies. Fast discovery of near-
optimal policies, however, requires to focus on “useful” experiences. Using
an additional exploration model, we learn an exploration policy maximiz-
ing “exploration rewards” for visits of states that promise information
gain. We augment this approach by an extension of Kaelbling’s Interval
Estimation algorithm to the model-based case. Experimental results in
stochastic environments demonstrate advantages of this hybrid approach.

1 Introduction

Since a reinforcement learning (RL) agent is only able to learn from what it has
experienced, the success of its computed policy heavily depends on the utility
of its experiences. In RL the problem of selecting actions for information gain
is called exploration or dual control (Dayan and Sejnowski, 1996).

Previous work. Undirected exploration methods use randomized action
selection methods to guess useful experiences. Directed exploration methods
learn an ezploration value function in the same way standard RL methods learn
a problem-oriented value function. They simply define an exploration reward
function determining immediate exploration rewards, and let the selected RL
method learn exploration values. Previous methods use Q-learning for learn-
ing where to explore (e.g., Schmidhuber 1991; Thrun 1992; Storck, Hochreiter
and Schmidhuber, 1995). This can work significantly better than undirected
methods. More recent research, however, also shows how undirected explo-
ration techniques can be improved by using the action-penalty rule (Koenig
and Simmons, 1996) which makes unexplored actions look more promising —
this decreases the advantage of directed exploration. Another exploration strat-
egy is embodied by the Interval Estimation (IE) algorithm (Kaelbling, 1993)



which uses second order statistics to detect whether certain actions have a po-
tential of belonging to the optimal policy. IE computes confidence intervals of
Q-values and always selects the action with largest upper interval boundary.
Our approach. We extend previous work by using model-based RL (MBRL)
to learn exploration policies. Since MBRL can outperform its direct RL coun-
terpart (Moore and Atkeson, 1993), we expect that it can also improve learn-
ing to explore. We will use a slightly adapted version of prioritized sweeping
(PS) (Moore and Atkeson, 1993) to learn both an exploration policy and a
problem-oriented policy, and combine this approach with (a) frequency-based
and recency-based exploration reward functions, and (b) our novel Model-Based
Interval Estimation (MBIE) update rule, which combines TE and MBRL.
Outline. Section 2 briefly describes MBRL. Section 3 addresses exploration
in RL and mentions the exploration reward rules used in the experiments. Sec-
tion 4 introduces MBIE. Section 5 describes experimental results on a 50 x 50
maze with one optimal goal and two suboptimal ones. Section 6 concludes.

2 Model-Based Reinforcement Learning

Inducing a model from experiences can simply be done by counting the frequency
of observed experiences. Towards this end the agent uses the following variables:
C;j(a) := nr. of transitions from state i to j after executing action a.
C; (a) := number of times the agent has executed action a in state i.
R;;j(a) := sum over all immediate rewards received after executing action a
in state ¢ and stepping to state j.

A maximum likelihood model (MLM) is computed as follows (where 2 := 0):
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Prioritized Sweeping (PS). Dynamic programming (DP) techniques could
immediately be applied to the estimated model, but online DP tends to be com-
putationally very expensive. To speed up DP algorithms, some sort of efficient
update-step management should be performed. This can be done by prioritized
sweeping (PS) (Moore and Atkeson, 1993) which assigns priorities to updating
the Q-values of various state/action pairs according to a heuristic estimate of
the update sizes.

Our PS. Moore and Atkeson’s PS (M+A’s PS) calculates priorities based
on the largest single update of a successor state. It inserts states in the priority
queue before their Q-values are updated. Our variant, however, updates Q-
values of states before the states are inserted. This allows for computing the
ezact size of updates of state values since they have been used for updating the
Q-values of their predecessors. Unlike our PS, M+A’s PS cannot detect large



state-value changes due to many small update steps, and will forget to process
the corresponding states.

3 Exploration

Max-Random exploration rule. Undirected exploration methods rely on
pseudo-random generators, e.g., the Boltzmann exploration rules. We will use
Max-Random, however, because it often outperforms Boltzmann (Thrun, 1992;
Caironi and Dorigo, 1994). It uses a single parameter P,,,, denoting the prob-
ability of selecting the action with highest Q-value, and selects a random action
otherwise.

Directed Exploration. Directed exploration techniques direct the explo-
ration behavior to the most interesting parts of the state space. All they re-
quire is a local reward function determining which experience is interesting (e.g.
Schmidhuber, 1991). It takes the place of the standard MDP reward function.
The MDP transitions and the experiences stay the same, but now we learn two
Q-functions: the exploration Q-function and the exploitation Q-function.

Recency-based. One of our local reward functions for exploring state/action
pair (s¢,ar) is: R (s¢, a4, 8¢41) := I}—;, where K is a scaling constant and ¢ the

current time step.
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T where K¢ is

Frequency-based. The other is: R”(s;, a4, 5:41) = —
a scaling constant.

Learning exploration models. We use prioritized sweeping to quickly
learn exploration models useful for learning Q-values estimating global informa-
tion gain, taking into account yet unexplored regions of the state-space.

Replacing reward. To focus on the latest available information, we replace
the estimated reward R(i,a,7) by R”(i,a,s.,1) for all j with P;;(a) > 0 in our
exploration model.

4 Model Based Interval Estimation

To explore efficiently, an agent should not repeatedly try out actions that cer-
tainly cannot belong to the optimal policy. To reduce the set of optimal action
candidates we extend the interval estimation algorithm (IE) (Kaelbling, 1993) to
make it suitable to MBRL. IE selects the action with the largest upper bound
for its Q-value. To compute upper bounds it keeps track of the means and
standard deviations of all Q-values.

MBIE uses the model to compute the upper bound of Q-values. Given a
set of outgoing transitions from state/action pair (i,a), MBIE increases the
probability of the best transition (the one which maximizes 4V (j) + R(i, a, j)),
depending on its standard deviation. Then MBIE renormalizes the transition



probabilities and uses the result for computing the Q-values. The following
algorithm can be used in the prioritized sweeping algorithm:

Model Based Interval Estimation:
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Here z, is a variable which determines the confidence bounds — see (Kaelbling,
1993) for details.

MBIE hybrids. Although IE seems promising it does not clearly outper-
form Q-learning with Boltzmann exploration due to problems of estimating the
variance of a changing Q-function in the beginning of the learning phase (Kael-
bling, 1993). Since MBIE also relies on initial statistics we propose to start out
with some other exploration method and switch to TE once some appropriate
condition holds. After switching, we first copy the exploitation model and then
we apply asynchronous value iteration (Bellman, 1961) to it; the iteration pro-
cedure calls MBIE for computing Q-values and ends once the maximal change
of some state value is below some threshold.

5 Experiments

The problem. We use a 50 x 50 maze shown in Figure 1. It consists of about
20% blocked states and 20% penalty states (these are inserted randomly). In
each state the agent can select one of four actions: go north, go east, go south,
go west. There is a fixed starting state (S). There are three absorbing goal
states, two of them are suboptimal (F), and one is optimal (G). Selected actions
are replaced by random actions with 10% probability.

Reward function. Actions leading to a blocked state are not executed and
punished by a reward of —2. Steps leading to free (penalty) states are punished
by a reward of —1 (—10). If the agent finds the optimal (suboptimal) goal state
it will receive a reward of 1000 (500). The discount factor v is 0.99.

Comparison. We compare the following exploration methods: Max-Random,
directed model-based exploration techniques using frequency-based and recency-
based reward rules, and MBIE. The latter starts out with model-based explo-
ration using the frequency-based reward rule, and switches to IE once the value
function hardly changes any more (by less than 0.02 % per update).



Figure 1: The 50 x 50 maze used in the experiments. Black squares denote
blocked fields, grey squares penalty fields. The agent starts at S and searches for
a minimally punishing path to the optimal goal G. Good exploration is required
to avoid focusing on suboptimal goal states (F).

The goal is to learn good policies as quickly as possible. We computed an
optimal policy using value iteration (Bellman, 1961) and tested this optimal
policy by testing it for 1000 steps. Average reinforcement intake during 10,000
tests was 7590 + 2 = 7.59K. For each method we conduct 20 runs of 100,000
learning steps. During each run we measure how quickly and how often the
agent’s policy collects 95%, 99% and 99.8% of what the optimal policy collects.
This is done by averaging the results of 1000 test runs conducted every 2000
learning steps — each test run consists of executing the greedy policies.

| Exploration Rule || 95% (freq) | 99% (freq) | 99.8% (freq) | Best run result |
Max-Random 0.2 | 43K (4) | 52K (4) | 63K (4) | 48K £ 14K
Max Random 04 || — (0) | (0) — (0) | 41K £ 03K
Frequency-based 24K (20) 50K (16) 66K (10) | 7.55K £+ 0.06K
Recency-based 30K (19) 51K (7) 9K (3) | 73K+ 0.7K
MBIE 25K (20) | 42K (19) 66K (18) | 7.57K £ 0.05K

Table 1: The number of steps required by several exploration methods for obtain-
ing e-optimal policies (and how many runs found them). The rightmost column
shows average and standard deviation of the best test result during a run.

Results. Table 1 shows significant improvements achieved by learning an
exploration model. The undirected exploration methods focus too much on
suboptimal goals (which are closer and therefore easier to find). Exploration
model-based learning, however, does favor paths leading to the optimal goal.
Using the frequency-based reward rule by itself, the agent always finds the



optimal goal although it often fails to find 99.8% optimal policies. Switching to
MBIE after some time (about 45,000 steps), however, further improves matters.
This strategy finds optimal or near-optimal policies in 90% of the cases and
results in the best final performance.

6 Discussion

Undirected exploration applied to tasks with multiple absorbing goal states
faces major difficulties in finding the optimal one. Exploration models, however,
allow for discovering good policies circumventing suboptimal goal states. We
compared two types of exploration rewards: frequency-based and recency-based.
Although frequency-based exploration works best in stationary environments,
recency-based reward rules may make more sense in non-stationary ones.

Estimating the variance of the Q-values can save unnecessary resampling of
many actions. For this reason we introduced MBIE, which combines Kaelbling’s
interval estimation (IE) algorithm (Kaelbling, 1993) and model-based reinforce-
ment learning (MBRL). Since MBIE heavily relies on initial statistics, we switch
it on only after an initial phase during which an exploration model is learned
(according to, say, the frequency-based local exploration reward rule). To our
knowledge, this approach is currently the most effective exploration method for
maze problems.
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