
Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior (SAB'98):From Animals to Animats 5, 223-228, R. Pfei�er, B. Blumberg, J. A. Meyer and S. W. Wilson (eds.)MIT Press/Bradford Books, 1998.E�cient Model-Based ExplorationMarco Wiering, J�urgen SchmidhuberIDSIACorso Elvezia 36, Lugano, Switzerlandmarco@idsia.chjuergen@idsia.chAbstractModel-Based Reinforcement Learning (MBRL) cangreatly pro�t from using world models for estimat-ing the consequences of selecting particular actions:an animat can construct such a model from its ex-periences and use it for computing rewarding behav-ior. We study the problem of collecting useful experi-ences through exploration in stochastic environments.Towards this end we use MBRL to maximize explo-ration rewards (in addition to environmental rewards)for visits of states that promise information gain. Wealso combine MBRL and the Interval Estimation algo-rithm (Kaelbling, 1993). Experimental results demon-strate the advantages of our approaches.1. IntroductionIn reinforcement learning (RL) problems an animat re-peatedly receives input from the environment, selectsand executes an action, and may receive reinforcement.At a given time the animat's goal is to select the ac-tion leading to maximal future cumulative reward. RL-based methods essentially learn how much long-term re-ward the animat will receive on average for selectinga particular action in a particular state. The expectedfuture cumulative reward intakes are stored in a valuefunction which builds the basis for generating reward-ing behaviors. Direct RL methods like Q-learning learnthe value function from experimenting with the cur-rent policy without using a world-model. These methodshave been shown to learn signi�cantly slower in discretestate spaces than model-based RL (Moore and Atkeson,1993), which �rst estimates the transition probabilitiesbetween states and the immediate rewards for these tran-sitions, and then computes a policy by applying dynamicprogramming-like techniques (Bellman, 1961) to the es-timated model.The problem. Since some RL animat is only able tolearn from what it has experienced, the success of its pol-icy heavily depends on the utility of its experiences. Op-timal experimental design (Fedorov, 1972; Dodge et al.,

1988) tries to gather those experiences which are mostuseful for computing good approximate solutions. In RLthe problem of selecting alternative non-greedy actionsis called exploration or dual control (Dayan and Hinton,1993). Deviating from the current greedy policy (whichalways selects the action with the highest Q-value), how-ever, usually causes some loss of immediate reinforce-ment intake. The animat faces the problem of spendingas little time as possible on exploration without a�ectingits ability to �nd optimal policies.Previous work. Schmidhuber (1991a) and Thrun(1992) present comparisons between directed and undi-rected exploration methods. Directed exploration meth-ods use special exploration-speci�c knowledge to guidethe search through alternative policies. Undirected explo-ration methods use randomized action selection meth-ods to guess useful experiences. Previous research hasshown signi�cant bene�ts of using directed exploration(e.g., Schmidhuber 1991a; Thrun 1992; Storck, Hochre-iter and Schmidhuber, 1995, Wilson 1996, Schmidhuber1997). Koenig and Simmons (1996) shows how undi-rected exploration techniques can be improved by usingthe action-penalty rule which makes unexplored actionslook more promising | this decreases the advantage ofdirected exploration.The Interval Estimation (IE) algorithm (Kaelbling,1993) uses second order statistics to detect whether cer-tain actions have a potential of belonging to the opti-mal policy. IE computes con�dence intervals of Q-valuesand always selects the action with largest upper inter-val boundary. Previous results (Kaelbling, 1993) showthat IE works well for action selection in bandit prob-lems (Berry and Fristedt, 1985).Model-based exploration. Directed explorationmethods learn an exploration value function in the sameway standard RL methods learn a problem-orientedvalue function. Therefore we may simply de�ne an ex-ploration reward function determining immediate explo-ration rewards and let the selected RL method learn



exploration Q-values. Most previous methods use Q-learning for learning where to explore, e.g., (Schmidhu-ber, 1991a; Thrun, 1992; Storck et al., 1995). We extendthis work by using model-based RL (MBRL) to learn ex-ploration policies. Since MBRL can outperform its directRL counterpart (Sutton, 1990; Moore and Atkeson, 1993)we expect that it can also improve learning where to ex-plore: model-based exploration is promising because itallows for immediately selecting actions based on global(as opposed to local) expected information gain.Objective. Finding optimal solutions is considered ahard and unprosperous activity in arti�cial intelligence.We will focus on a more modest goal: given some RLproblem, how can we learn with minimal experiences apolicy whose performance is not more than � percentbelow the optimum? Kearns and Singh (1998) provedthat this goal can be achieved in polynomial time forgeneral Markov decision problems. We will use a slightlyadapted version of prioritized sweeping (PS) (Moore andAtkeson, 1993) to learn both an exploration policy anda problem-oriented policy, and combine this approachwith (a) frequency-based and recency-based explorationreward functions, and (b) our novel Model-Based IntervalEstimation (MBIE) update rule, which combines IE andMBRL.Outline. Section 2 describes MBRL and introducesour version of prioritized sweeping. Section 3 addressesexploration issues in RL and mentions the exploration re-ward rules used in the experiments. Section 4 addressesissues related to MBRL for learning exploration policiesand introduces MBIE. Section 5 describes experimentalresults on a task involving a 50 � 50 maze with one opti-mal goal and two suboptimal ones. Section 6 concludes.2. Model-Based Reinforcement Learning2.1 Markov decision problemsWe consider discrete time steps t = 1; 2; 3; : : :, a �nite setof states S = fS1; S2; S3; : : : ; Sng and a �nite set of ac-tions A. Let st denote the state at time t, and at = �(st)the action, where � represents the learner's policy map-ping states to actions. The transition function P withelements Pij(a) := p(st+1 = jjst = i; at = a) for i; j 2 Sde�nes the transition probability to the next state st+1given st and at. A reward function R maps state/actionpairs (SAPs) (i; a; j) 2 S�A�S to scalar reinforcementsignals R(i; a; j) 2 IR. The reward at time t is denotedby rt. A discount factor 
 2 [0; 1] discounts later againstimmediate rewards. The controller's goal is to select ac-tions which maximize the expected long-term cumulativediscounted reinforcement, given an arbitrary initial state2 S. The value V �(s) is a prediction of the expected dis-counted cumulative reward to be received in the future,given that the process is currently in state s and policy

� will be used in the future:V �(i) = E( 1Xk=0 
kR(sk; �(sk); sk+1)js0 = i)Action evaluation functions (Q-functions) Q�(i; a)return the expected future discounted reward for cur-rent state i, current action a, and subsequently executedpolicy � :Q�(i; a) =Xj Pij(a)(R(i; a; j) + 
V �(j))2.2 Estimating a modelInducing a model from experiences can simply be doneby counting the frequency of observed experiences. To-wards this end our animat uses the following variables:Cij(a) := nr. of transitions from state i to j afterexecuting action a.Ci (a) := number of times the animat has executedaction a in state i.Rij(a) := sum over all immediate rewards receivedafter executing action a in state i and step-ping to state j.A maximum likelihood model (MLM) is computed asfollows:P̂ij(a) := Cij(a)Ci(a) and R̂(i; a; j) := Rij(a)Cij(a) (1)After each experience the variables are adjusted and theMLM is updated. In deterministic environments one ex-perience per SAP is su�cient to infer the true underlyingmodel. In stochastic environments, however, we need re-sampling. For resampling a good exploration strategy isessential.2.3 Prioritized Sweeping (PS)Dynamic programming (DP) techniques could immedi-ately be applied to the estimated model, but online DPtends to be computationally very expensive. To speed upDP algorithms, some sort of e�cient update-step man-agement should be performed. This can be done by prior-itized sweeping (PS) (Moore and Atkeson, 1993) whichassigns priorities to updating the Q-values of di�erentstate/action pairs (SAPs) according to a heuristic esti-mate of the update sizes. PS keeps track of a backwardmodel relating states to predecessor SAPs. Following theupdate of a state-value, the state's predecessors are in-serted in a priority queue. Then the priority queue isused for updating Q-values of actions of those states withhighest priority.Our PS. Moore and Atkeson's PS (M+A's PS) cal-culates the priority of some state by checking all tran-sitions to updated successor states and identifying the



one whose update contribution is largest. Our variantallows for computing the exact size of updates of statevalues since they have been used for updating the Q-values of their predecessors, and yields more appropriatepriorities. Unlike our PS, M+A's PS cannot detect largestate-value changes due to many small update steps, andwill forget to process the corresponding states.Our implementation uses a set of predecessor listsPreds(j) containing all predecessor states of state j. Wedenote the priority of state i by j�(i)j, where the value�(i) equals the change of V (i) since the last time it wasprocessed by the priority queue. To calculate it, we con-stantly update all Q-values of predecessor states of cur-rently processed states, and track changes of V (i). Thedetails are as follows:Our Prioritized Sweeping:1) Promote the most recent state k to thetop of the priority queue2) 8 a do:3 Q(k; a) :=Pj P̂kj(a)(R̂(k; a; j) + 
V (j))4) While n < Umax AND the queue is not empty5 Remove the top state s from the queue6 �(s) := 07 8 Predecessor states i of s do:8 V 0(i) := V (i)9 8 a do:10 Q(i; a) :=Pj P̂ij(a)(R̂(i; a; j)+
V (j))11 V (i) := maxaQ(i; a)12 �(i) := �(i) + V (i) � V 0(i)13 If j�(i)j > �14 Promote i to priority j�(i)j15 n := n + 116) Empty priority queue, but keep the�(i) valuesHere Umax is the maximal number of updates to be per-formed per update-sweep. The parameter � 2 IR+ con-trols update accuracy. Note that another di�erence toM+A's PS is that we remove all entries from the queueafter having processed the maximal number of states.3. Exploration3.1 Undirected ExplorationUndirected exploration methods rely on pseudo-randomgenerators, e.g., the Max-random and Boltzmann explo-ration rules. We will use Max-random which outper-formed Boltzmann in a number of experiments (Thrun,1992; Caironi and Dorigo, 1994).Max-random exploration rule. The Max-randomrule, also known as �-greedy (Sutton, 1996) or pseudo-stochastic (Caironi and Dorigo, 1994), is the simplestone. It uses a single parameter Pmax denoting the prob-ability of selecting the action with highest Q-value, and

selects a random action otherwise. In case there are mul-tiple actions with highest Q-value, we select one of themstochastically.3.2 Directed ExplorationDirected exploration techniques use knowledge of whatan animat has learned to direct the exploration behaviorto the most interesting parts of the state space. All theyrequire is a local reward function determining which ex-perience is interesting (e.g. Schmidhuber, 1991a,b, 1997).It takes the place of the standard MDP reward function.The MDP transitions and the experiences stay the same,but now we learn two Q-functions: the exploration Q-function and the exploitation Q-function. Here we look attwo types of exploration: recency-based, and frequency-based.Recency-based. Select the action which has beenselected least recently. The local reward function for ex-ploring SAP (st; at) is:RE(st; at; �) := �tKT ; (2)where KT is a scaling constant and t the current timestep. The asterisk stands for the don't-care symbol |the exploration reward is local because it depends on thecurrent state/action pair only.Frequency-based. Explore actions which have beenexecuted least frequently. The local reward function issimply: RE(st; at; �) := �Cst(at)KC ; (3)where KC is a scaling constant.4. Learning Exploration ModelsWe can use all RL methods to learn exploration valuefunctions. While most previous approaches used stan-dard Q-learning for learning it (Schmidhuber, 1991a;Thrun, 1992; Storck et al., 1995), we prefer to use priori-tized sweeping (PS) instead. PS allows for quickly learn-ing exploration models which may be useful for learningQ-values estimating global information gain, taking intoaccount yet unexplored regions of the state-space.Replacing reward. The nice thing about usingMBRL is that all explorative transition rewards can bebased entirely on the current reward. Suppose that ananimat selects an action which has already been exe-cuted several times. Computing the local exploration re-ward by averaging over all previous transition rewardswould not result in the desired reward measure. For in-stance, with frequency-based exploration rewards the ex-ploration model's estimate R̂E(i; a; �) would be the aver-age over 1; 2; : : : ; Ci(a) instead of just Ci(a). Direct RLcannot circumvent this problem, but with MBRL we canjust replace the estimated reward R̂(i; a; j) by RE(i; a; j)for all j with P̂ij(a) > 0, that is, we update all rewards for



outgoing transitions from the current state/action pairto take the latest available information into account.Never-ending exploration. The exploration utili-ties continually change; there is no such thing as a sta-ble, optimal exploration function. This is not a funda-mental problem | in fact the goal of exploration is tosearch for alternative paths in order to �nd better andbetter policies; therefore the exploration policy shouldnever converge. In particular applications, however, e.g.,in limited life-time scenarios (Berry and Fristedt, 1985;Thrun, 1992; Schmidhuber et al., 1997), we want to in-crease or switch to exploitation after some time.Interval Estimation. To explore e�ciently, an ani-mat should not repeatedly try out actions that certainlycannot belong to the optimal policy. To reduce the setof optimal action candidates we extend the interval es-timation algorithm (IE) (Kaelbling, 1993) to make itamenable for MBRL.Standard IE selects the action with the largest upperbound for its Q-value. To compute upper bounds it keepstrack of the means and standard deviations of all Q-values.MBIE, however, uses the model to compute the up-per bound of Q-values. Given a set of outgoing tran-sitions from SAP (i; a), MBIE increases the probabil-ity of the best transition (the one which maximizes
V (j) +R(i; a; j)), depending on its standard deviation.Then MBIE renormalizes the transition probabilities anduses the result for computing the Q-values. The follow-ing algorithm can be substituted for line 3 and 10 in ourPS algorithm:Model Based Interval Estimation:a m := Argmaxj:P̂ij (a)>0fR(i; a; j) + 
V (j)gb n := Ci(a)c P := P̂im(a)d P+im(a) := (P + z2�2n + z�pnqP (1� P ) + z2�4n )=(1 + z2�n )e �P := P+im(a) � P̂im(a)f 8j 6= mg P+ij (a) := P̂ij(a) � �PCij(a)Ci(a)�Cim(a)h Q(i; a) :=Pj P+ij (a)(R̂(i; a; j) + 
V (j))Here z� is a variable which determines the size of thecon�dence bounds. Step 8d elaborates on the commonlyused z�pP (1 � P )=n, and is designed to give better re-sults for small values of n | see (Kaelbling, 1993) fordetails.MBIE hybrids. Although IE seems promising itdoes not clearly outperform Q-learning with Boltzmannexploration due to problems of estimating the varianceof a changing Q-function in the beginning of the learn-ing phase (Kaelbling, 1993). Since MBIE also relies oninitial statistics we propose to circumvent such problems

by starting out with some other exploration method andswitching to IE once some appropriate condition holds.This is done as follows: we start with frequency-basedexploration and keep tracking the cumulative change ofthe problem-oriented value function. Once the averageupdate of the V � function (computed over the most re-cent N time-steps) falls below � 2 IR+, we (I) copy therewards and Q-values from the problem-oriented modelto the exploration model, and (II) switch to IE: we ap-ply asynchronous value iteration (Bellman, 1961) to themodel; the iteration procedure calls MBIE for comput-ing Q-values and ends once the maximal change of somestate value is less than � 2 IR+.Simultaneous policy learning. The model-basedlearner simultaneously learns both exploration policyand problem-oriented policy. After each experience weupdate the model and use PS to recompute the valuefunctions.5. Experiments5.1 Maze-tasksTo compare the di�erent RL methods discussed in previ-ous chapters we use a 50 � 50 maze shown in Figure 1. Itconsists of about 20% blocked states and 20% punishingstates (these are inserted randomly). Blocked states arerepresented by black �elds, penalty states by grey �elds,free states by white �elds. In each state the animat canselect one of four actions: go north, go east, go south, gowest. The starting state (S) is located 1 �eld north/eastof the south-west corner. There are three absorbing goalstates, two of them are suboptimal. The optimal goalstate (G) is located 1 �eld south/west of the north-eastcorner, the suboptimal goal states (F) are located in thenorth-west and south-east corners. Once the animat hitsthe goal it is reset to its initial position. Selected actionsare replaced by random actions with 10% probability.Reward function. Actions leading to a blockedstate are not executed and punished by a reward of �2.Steps leading to free states are punished by a reward of�1. Actions leading to a penalty state yield a rewardof -10. If the animat �nds the optimal goal state it willreceive a reward of 1000. For �nding a suboptimal goalstate it gets a reward of 500. The discount factor 
 is0:99.Comparison. We compare the following explo-ration methods: Max-random, directed model-based ex-ploration techniques using frequency-based and recency-based reward rules, and MBIE. The latter starts out withmodel-based exploration using the frequency-based re-ward rule, and switches to IE once the value functionhardly changes any more.The goal is to learn good policies as quickly as pos-sible. We computed an optimal policy using value iter-ation (Bellman, 1961) and tested this optimal policy byexecuting it for 1,000 steps. We computed its average
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Figure 1 The 50 � 50 maze used in the experiments. Blacksquares denote blocked �elds, grey squares penalty �elds. Theanimat starts at S and searches for a minimally punishingpath to the optimal goal G. Good exploration is required toavoid focusing on suboptimal goal states (F).reinforcement intake by testing it 10,000 times, whichresulted in 7590 � 2.For each method we conduct 20 runs of 100,000 learn-ing steps. During each run we measure how quickly andhow often the animat's policy collects 95%, 99% and99.8% of what the optimal policy collects. This is done byaveraging the results of 1000 test runs conducted every2000 learning steps | each test run consists of executingthe greedy policies (always selecting actions with maxi-mal Q-value) for 1000 steps.Parameters. We set the accuracy parameter � :=0:1, and Umax := 100 for both learning the problem-oriented and exploration value functions. The explo-ration reward's discount factor 
 is set to 0.99 forfrequency-based and to 0.95 for recency-based explo-ration. The constant KC (used by the frequency-basedreward rules) is set to 50; KT (used by the recency-basedreward rule) is set to 1000. We used two values for Pmax(for Max-random exploration): 0.2 and 0.4. The valueof z� (for MBIE) is set to 1.96 (which corresponds to acon�dence interval of 95%). The combination of MBIEand model-based exploration switches to MBIE once thevalue function has not changed by more than 0.1 (�) onaverage within the 1000 (U) most recent steps.5.2 ResultsTable 1 shows signi�cant improvements achieved bylearning an exploration model. The undirected explo-

Exploration Rule 95% (freq) 99% (freq) 99.8% (freq)MBIE 25K (20) 42K (19) 66K (18)Frequency-based 24K (20) 50K (16) 66K (10)Recency-based 27K (19) 55K (18) 69K (9)Max-random 0.2 43K (4) 52K (4) 68K (4)Max-random 0.4 | (0) | (0) | (0)Table 1 The number of steps required by several explorationmethods for obtaining p-optimal policies (and how many runsfound them at all) (K stands for 1000).Exploration Rule Best run result Training PerformanceMBIE 7.57K � 0.05K 350K � 40KFrequency-based 7.55K � 0.06K -45K � 9KRecency-based 7.54K � 0.11K -120K � 10KMax-random 0.2 4.8K � 1.4K -190K � 16KMax-random 0.4 4.1K � 0.3K -62K � 19KTable 2 Average and standard deviation of the best test resultduring a run and the total cumulative reward during training.ration methods focus too much on suboptimal goals(which are closer and therefore easier to �nd). This of-ten prevents them from discovering near-optimal poli-cies. On the other hand, exploration model-based learn-ing does favor paths leading to the optimal goal. Us-ing the frequency-based reward rule by itself, the ani-mat always �nds the optimal goal although it fails toalways �nd 99.8% optimal policies. Figure 2 shows alarge di�erence between learning performances of explo-ration models and max-random exploration. It does notclearly show the distinction between frequency-based orrecency-based exploration and the extension with MBIE.Switching to MBIE after some time (between 35,000 and55,000 steps), however, signi�cantly improves matters.First of all, Table 1 shows that this strategy �nds opti-mal or near-optimal policies in 90% of the cases, whereasthe others fail in at least 50% of the cases. The secondimprovement with MBIE is shown in Table 2. MBIE col-lects much more reward during training than all otherexploration methods, thereby e�ectively addressing theexploration/exploitation dilemma. In fact it is the onlyexploration rule leading to a positive cumulative rewardscore.6. DiscussionUndirected exploration relies on a random generator forselecting actions. When applied to tasks with multipleabsorbing goal states, it faces major di�culties in �nd-ing the optimal one. Our exploration models, however,allow for globally maximizing exploration rewards. Thisallows for discovering good policies circumventing subop-timal goal states. We compared two types of explorationrewards: frequency-based, and recency-based. Althoughfrequency-based exploration performed slightly better inour stationary environments, recency-based reward rules
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Figure 2 Cumulative reward during test runs, averaged over20 simulations.may make more sense in non-stationary ones.Optimal exploration. When it comes to �nding op-timal policies, methods using external MDP rewards forfocusing on actions with large probability of being opti-mal will often save some SAP visits over methods basedsolely on local exploration reward rules. Furthermore, cu-mulative external MDP rewards obtained during trainingshould be taken into account in attempts at approachingthe exploit/explore dilemma. That is why we introducedMBIE, a method combining Kaelbling's interval estima-tion (IE) algorithm (Kaelbling, 1993) and model-basedreinforcement learning (MBRL). Since MBIE heavily re-lies on initial statistics, we switch it on only after an ini-tial phase during which an exploration model is learned(according to, say, the frequency-based local explorationreward rule). In our experiments this approach almostalways led to 99.8%-optimal policies.Future work: function approximators. Our ideashave been presented in the context of discrete statespaces. We can extend them to function approximatorsin the same way we can extend model-based RL meth-ods to learning in continuous state spaces. This is aninteresting topic for future research.7. AcknowledgmentsMany thanks to Rafa l Sa lustowicz, Nic Schraudolph, andJieyu Zhao for helpful discussions. We are thankful to theSwiss Center for Scienti�c Computing (CSCS/SCSC) forproviding additional computing power. This work wassupported in part by SNF grant 2100-49'144.96 \LongShort-Term Memory".ReferencesBellman, R. (1961). Adaptive Control Processes. PrincetonUniversity Press.
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