Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior (SAB’98):
From Animals to Animats 5, 223-228, R. Pfeiffer, B. Blumberg, J. A. Meyer and S. W. Wilson (eds.)

MIT Press/Bradford Books, 1998.
Efficient Model-Based Exploration

Marco Wiering, Jiirgen Schmidhuber

IDSTA
Corso Elvezia 36, Lugano, Switzerland
marco@idsia.ch

juergen@idsia.ch

Abstract

Model-Based Reinforcement Learning (MBRL) can
greatly profit from using world models for estimat-
ing the consequences of selecting particular actions:
an animat can construct such a model from its ex-
periences and use it for computing rewarding behav-
ior. We study the problem of collecting useful experi-
ences through exploration in stochastic environments.
Towards this end we use MBRL to maximize explo-
ration rewards (in addition to environmental rewards)
for visits of states that promise information gain. We
also combine MBRL and the Interval Estimation algo-
rithm (Kaelbling, 1993). Experimental results demon-
strate the advantages of our approaches.

1. Introduction

In reinforcement learning (RL) problems an animat re-
peatedly receives input from the environment, selects
and executes an action, and may receive reinforcement.
At a given time the animat’s goal is to select the ac-
tion leading to maximal future cumulative reward. RL-
based methods essentially learn how much long-term re-
ward the animat will receive on average for selecting
a particular action in a particular state. The expected
future cumulative reward intakes are stored in a value
function which builds the basis for generating reward-
ing behaviors. Direct RL methods like Q-learning learn
the value function from experimenting with the cur-
rent policy without using a world-model. These methods
have been shown to learn significantly slower in discrete
state spaces than model-based RL (Moore and Atkeson,
1993), which first estimates the transition probabilities
between states and the immediate rewards for these tran-
sitions, and then computes a policy by applying dynamic
programming-like techniques (Bellman, 1961) to the es-
timated model.

The problem. Since some RL animat is only able to
learn from what it has experienced, the success of its pol-
icy heavily depends on the utility of its experiences. Op-
timal experimental design (Fedorov, 1972; Dodge et al.,

1988) tries to gather those experiences which are most
useful for computing good approximate solutions. In RL
the problem of selecting alternative non-greedy actions
is called exploration or dual control (Dayan and Hinton,
1993). Deviating from the current greedy policy (which
always selects the action with the highest Q-value), how-
ever, usually causes some loss of immediate reinforce-
ment intake. The animat faces the problem of spending
as little time as possible on exploration without affecting
its ability to find optimal policies.

Previous work. Schmidhuber (1991a) and Thrun
(1992) present comparisons between directed and undi-
rected exploration methods. Directed exploration meth-
ods use special exploration-specific knowledge to guide
the search through alternative policies. Undirected explo-
ration methods use randomized action selection meth-
ods to guess useful experiences. Previous research has
shown significant benefits of using directed exploration
(e.g., Schmidhuber 1991a; Thrun 1992; Storck, Hochre-
iter and Schmidhuber, 1995, Wilson 1996, Schmidhuber
1997). Koenig and Simmons (1996) shows how undi-
rected exploration techniques can be improved by using
the action-penalty rule which makes unexplored actions
look more promising — this decreases the advantage of
directed exploration.

The Interval Estimation (IE) algorithm (Kaelbling,
1993) uses second order statistics to detect whether cer-
tain actions have a potential of belonging to the opti-
mal policy. IE computes confidence intervals of Q-values
and always selects the action with largest upper inter-
val boundary. Previous results (Kaelbling, 1993) show
that TE works well for action selection in bandit prob-
lems (Berry and Fristedt, 1985).

Model-based exploration. Directed exploration
methods learn an ezxploration value function in the same
way standard RL methods learn a problem-oriented
value function. Therefore we may simply define an ex-
ploration reward function determining immediate explo-
ration rewards and let the selected RL method learn

exploration Q-values. Most previous methods use Q-
learning for learning where to explore, e.g., (Schmidhu-
ber, 1991a; Thrun, 1992; Storck et al., 1995). We extend
this work by using model-based RL (MBRL) to learn ex-
ploration policies. Since MBRL can outperform its direct
RL counterpart (Sutton, 1990; Moore and Atkeson, 1993)
we expect that it can also improve learning where to ex-
plore: model-based exploration is promising because it
allows for immediately selecting actions based on global
(as opposed to local) expected information gain.

Objective. Finding optimal solutions is considered a
hard and unprosperous activity in artificial intelligence.
We will focus on a more modest goal: given some RL
problem, how can we learn with minimal experiences a
policy whose performance is not more than e percent
below the optimum? Kearns and Singh (1998) proved
that this goal can be achieved in polynomial time for
general Markov decision problems. We will use a slightly
adapted version of prioritized sweeping (PS) (Moore and
Atkeson, 1993) to learn both an exploration policy and
a problem-oriented policy, and combine this approach
with (a) frequency-based and recency-based exploration
reward functions, and (b) our novel Model-Based Interval
Estimation (MBIE) update rule, which combines IE and
MBRL.

Outline. Section 2 describes MBRL and introduces
our version of prioritized sweeping. Section 3 addresses
exploration issues in RL and mentions the exploration re-
ward rules used in the experiments. Section 4 addresses
issues related to MBRL for learning exploration policies
and introduces MBIE. Section 5 describes experimental
results on a task involving a 50 x 50 maze with one opti-
mal goal and two suboptimal ones. Section 6 concludes.

2. Model-Based Reinforcement Learning

2.1 Markov decision problems

We consider discrete time stepst = 1,2, 3, ..., a finite set
of states S = {S1,52,S3,...,5,} and a finite set of ac-
tions A. Let s; denote the state at time ¢, and a; = IT(s;)
the action, where IT represents the learner’s policy map-
ping states to actions. The transition function P with
elements Pj;(a) := p(si41 = j|s¢ = i,ay = a) fori,j € S
defines the transition probability to the next state sy11
given s; and as. A reward function R maps state/action
pairs (SAPs) (i,a,j) € S x Ax S to scalar reinforcement
signals R(i,a,j) € IR. The reward at time ¢ is denoted
by r;. A discount factor v € [0, 1] discounts later against
immediate rewards. The controller’s goal is to select ac-
tions which maximize the expected long-term cumulative
discounted reinforcement, given an arbitrary initial state
€ S. The value V¥ (s) is a prediction of the expected dis-
counted cumulative reward to be received in the future,
given that the process is currently in state s and policy

IT will be used in the future:
o0
V2(i) = E(Y v*R(sk, I (s1), $41)|s0 = i)
k=0

Action evaluation functions (Q-functions) Q% (i,a)
return the expected future discounted reward for cur-
rent state i, current action a, and subsequently executed
policy II:

Q" (i,a) = ZPij(a)(R(i,a,j) +VT(5))

2.2 FEstimating a model

Inducing a model from experiences can simply be done
by counting the frequency of observed experiences. To-
wards this end our animat uses the following variables:

C;j(a) := nr. of transitions from state i to j after
executing action a.

C; (a) := number of times the animat has executed
action a in state 7.

Rij(a) := sum over all immediate rewards received
after executing action a in state 7 and step-
ping to state j.

A maximum likelihood model (MLM) is computed as
follows:

Py(a) = i

After each experience the variables are adjusted and the
MLM is updated. In deterministic environments one ex-
perience per SAP is sufficient to infer the true underlying
model. In stochastic environments, however, we need re-
sampling. For resampling a good exploration strategy is
essential.

2.3 Prioritized Sweeping (PS)
Dynamic programming (DP) techniques could immedi-
ately be applied to the estimated model, but online DP
tends to be computationally very expensive. To speed up
DP algorithms, some sort of efficient update-step man-
agement should be performed. This can be done by prior-
itized sweeping (PS) (Moore and Atkeson, 1993) which
assigns priorities to updating the Q-values of different
state/action pairs (SAPs) according to a heuristic esti-
mate of the update sizes. PS keeps track of a backward
model relating states to predecessor SAPs. Following the
update of a state-value, the state’s predecessors are in-
serted in a priority queue. Then the priority queue is
used for updating Q-values of actions of those states with
highest priority.

Our PS. Moore and Atkeson’s PS (M+A’s PS) cal-
culates the priority of some state by checking all tran-
sitions to updated successor states and identifying the

Rij(a)

and R(i,a,j) ==

one whose update contribution is largest. Our variant
allows for computing the ezact size of updates of state
values since they have been used for updating the Q-
values of their predecessors, and yields more appropriate
priorities. Unlike our PS, M+A’s PS cannot detect large
state-value changes due to many small update steps, and
will forget to process the corresponding states.

Our implementation uses a set of predecessor lists
Preds(j) containing all predecessor states of state j. We
denote the priority of state i by |A(7)|, where the value
A(i) equals the change of V(i) since the last time it was
processed by the priority queue. To calculate it, we con-
stantly update all Q-values of predecessor states of cur-
rently processed states, and track changes of V(7). The
details are as follows:

Our Prioritized Sweeping:

1) Promote the most recent state k to the
top of the priority queue
2) Ya do: . .
3 Q(k,a) := 3, Prj(a)(R(k,a,5) + 7V (j))
4) While n < Upgqe AND the queue is not empty
5 Remove the top state s from the queue
6 A(s):=0
7 V Predecessor states i of s do:
8 V'(i) == V(i)
9 Va do: . A
10 Q(i,a) := 3_; Pij(a)(R(i,a,) +7V (7))
11 V(i) := max, Q(i,a
12 A(i) := A(i) + V(i) — V'(i)
13 If |A(Z)] > e
14 Promote i to priority |A(i)]
15 n:==n+1
16) Empty priority queue, but keep the
A(i) values

Here U,p,qz is the maximal number of updates to be per-
formed per update-sweep. The parameter ¢ € IRt con-
trols update accuracy. Note that another difference to
M+A’s PS is that we remove all entries from the queue
after having processed the maximal number of states.

3. Exploration

3.1 Undirected Ezxploration

Undirected exploration methods rely on pseudo-random
generators, e.g., the Max-random and Boltzmann explo-
ration rules. We will use Max-random which outper-
formed Boltzmann in a number of experiments (Thrun,
1992; Caironi and Dorigo, 1994).

Max-random exploration rule. The Max-random
rule, also known as e-greedy (Sutton, 1996) or pseudo-
stochastic (Caironi and Dorigo, 1994), is the simplest
one. It uses a single parameter P,,,, denoting the prob-
ability of selecting the action with highest Q-value, and

selects a random action otherwise. In case there are mul-
tiple actions with highest Q-value, we select one of them
stochastically.

3.2 Directed Ezxploration

Directed exploration techniques use knowledge of what
an animat has learned to direct the exploration behavior
to the most interesting parts of the state space. All they
require is a local reward function determining which ex-
perience is interesting (e.g. Schmidhuber, 1991a,b, 1997).
It takes the place of the standard MDP reward function.
The MDP transitions and the experiences stay the same,
but now we learn two Q-functions: the exploration Q-
function and the exploitation Q-function. Here we look at
two types of exploration: recency-based, and frequency-
based.

Recency-based. Select the action which has been
selected least recently. The local reward function for ex-
ploring SAP (s, a) is:

—t
- = @

where K7 is a scaling constant and ¢ the current time
step. The asterisk stands for the don’t-care symbol —
the exploration reward is local because it depends on the
current state/action pair only.

Frequency-based. Explore actions which have been
executed least frequently. The local reward function is
simply:

RE(st,at,*):

Ost (a’t)

RE(st,at,*)::— Ko

(3)
where K¢ is a scaling constant.

4. Learning Exploration Models

We can use all RL methods to learn exploration value
functions. While most previous approaches used stan-
dard Q-learning for learning it (Schmidhuber, 1991a;
Thrun, 1992; Storck et al., 1995), we prefer to use priori-
tized sweeping (PS) instead. PS allows for quickly learn-
ing exploration models which may be useful for learning
Q-values estimating global information gain, taking into
account yet unexplored regions of the state-space.
Replacing reward. The nice thing about using
MBRL is that all explorative transition rewards can be
based entirely on the current reward. Suppose that an
animat selects an action which has already been exe-
cuted several times. Computing the local exploration re-
ward by averaging over all previous transition rewards
would not result in the desired reward measure. For in-
stance, with frequency-based exploration rewards the ex-
ploration model’s estimate R (i, a, *) would be the aver-
age over 1,2,...,C;(a) instead of just C;(a). Direct RL
cannot circumvent this problem, but with MBRL we can
just replace the estimated reward R(z, a,j) by R¥(i,a,j)
for all j with Pi]'(a) > 0, that is, we update all rewards for

outgoing transitions from the current state/action pair
to take the latest available information into account.

Never-ending exploration. The exploration utili-
ties continually change; there is no such thing as a sta-
ble, optimal exploration function. This is not a funda-
mental problem — in fact the goal of exploration is to
search for alternative paths in order to find better and
better policies; therefore the exploration policy should
never converge. In particular applications, however, e.g.,
in limited life-time scenarios (Berry and Fristedt, 1985;
Thrun, 1992; Schmidhuber et al., 1997), we want to in-
crease or switch to exploitation after some time.

Interval Estimation. To explore efficiently, an ani-
mat should not repeatedly try out actions that certainly
cannot belong to the optimal policy. To reduce the set
of optimal action candidates we extend the interval es-
timation algorithm (IE) (Kaelbling, 1993) to make it
amenable for MBRL.

Standard IE selects the action with the largest upper
bound for its Q-value. To compute upper bounds it keeps
track of the means and standard deviations of all Q-
values.

MBIE, however, uses the model to compute the up-
per bound of Q-values. Given a set of outgoing tran-
sitions from SAP (i,a), MBIE increases the probabil-
ity of the best transition (the one which maximizes
vV () + R(i,a, 7)), depending on its standard deviation.
Then MBIE renormalizes the transition probabilities and
uses the result for computing the Q-values. The follow-
ing algorithm can be substituted for line 3 and 10 in our
PS algorithm:

Model Based Interval Estimation:

a m = Argmaz; p, 45 1R, a.5) + 7V ()}
b n:= C’Z(a)

c P:= pzm(a)
4 Ph(a) = (P + 5 + /PO P)+)/ +)
e Ap:= PZ:,L(G,) —f)zm(a)
£ Vj#m
g Py (a) := Pyj(a) - el

Q(i,a) := ;P (a)(R(i,a,) + 7V (5))

=

Here z, is a variable which determines the size of the
confidence bounds. Step 8d elaborates on the commonly
used z4+/P(1 — P)/n, and is designed to give better re-
sults for small values of n — see (Kaelbling, 1993) for
details.

MBIE hybrids. Although TE seems promising it
does not clearly outperform Q-learning with Boltzmann
exploration due to problems of estimating the variance
of a changing Q-function in the beginning of the learn-
ing phase (Kaelbling, 1993). Since MBIE also relies on
initial statistics we propose to circumvent such problems

by starting out with some other exploration method and
switching to IE once some appropriate condition holds.

This is done as follows: we start with frequency-based
exploration and keep tracking the cumulative change of
the problem-oriented value function. Once the average
update of the VT function (computed over the most re-
cent N time-steps) falls below n € IR™, we (I) copy the
rewards and Q-values from the problem-oriented model
to the exploration model, and (II) switch to IE: we ap-
ply asynchronous value iteration (Bellman, 1961) to the
model; the iteration procedure calls MBIE for comput-
ing Q-values and ends once the maximal change of some
state value is less than € € IR™.

Simultaneous policy learning. The model-based
learner simultaneously learns both exploration policy
and problem-oriented policy. After each experience we
update the model and use PS to recompute the value
functions.

5. Experiments

5.1 Maze-tasks

To compare the different RL methods discussed in previ-
ous chapters we use a 50 x 50 maze shown in Figure 1. It
consists of about 20% blocked states and 20% punishing
states (these are inserted randomly). Blocked states are
represented by black fields, penalty states by grey fields,
free states by white fields. In each state the animat can
select one of four actions: go north, go east, go south, go
west. The starting state (S) is located 1 field north/east
of the south-west corner. There are three absorbing goal
states, two of them are suboptimal. The optimal goal
state (G) is located 1 field south/west of the north-east
corner, the suboptimal goal states (F) are located in the
north-west and south-east corners. Once the animat hits
the goal it is reset to its initial position. Selected actions
are replaced by random actions with 10% probability.

Reward function. Actions leading to a blocked
state are not executed and punished by a reward of —2.
Steps leading to free states are punished by a reward of
—1. Actions leading to a penalty state yield a reward
of -10. If the animat finds the optimal goal state it will
receive a reward of 1000. For finding a suboptimal goal
state it gets a reward of 500. The discount factor v is
0.99.

Comparison. We compare the following explo-
ration methods: Max-random, directed model-based ex-
ploration techniques using frequency-based and recency-
based reward rules, and MBIE. The latter starts out with
model-based exploration using the frequency-based re-
ward rule, and switches to IE once the value function
hardly changes any more.

The goal is to learn good policies as quickly as pos-
sible. We computed an optimal policy using value iter-
ation (Bellman, 1961) and tested this optimal policy by
executing it for 1,000 steps. We computed its average

Figure 1 The 50 x 50 maze used in the experiments. Black
squares denote blocked fields, grey squares penalty fields. The
animat starts at S and searches for a minimally punishing
path to the optimal goal G. Good exploration is required to
avoid focusing on suboptimal goal states (F').

reinforcement intake by testing it 10,000 times, which
resulted in 7590 £ 2.

For each method we conduct 20 runs of 100,000 learn-
ing steps. During each run we measure how quickly and
how often the animat’s policy collects 95%, 99% and
99.8% of what the optimal policy collects. This is done by
averaging the results of 1000 test runs conducted every
2000 learning steps — each test run consists of executing
the greedy policies (always selecting actions with maxi-
mal Q-value) for 1000 steps.

Parameters. We set the accuracy parameter € :=
0.1, and Upqz = 100 for both learning the problem-
oriented and exploration value functions. The explo-
ration reward’s discount factor ~ is set to 0.99 for
frequency-based and to 0.95 for recency-based explo-
ration. The constant K¢ (used by the frequency-based
reward rules) is set to 50; K (used by the recency-based
reward rule) is set to 1000. We used two values for Py,qs
(for Max-random exploration): 0.2 and 0.4. The value
of z, (for MBIE) is set to 1.96 (which corresponds to a
confidence interval of 95%). The combination of MBIE
and model-based exploration switches to MBIE once the
value function has not changed by more than 0.1 () on
average within the 1000 (U) most recent steps.

5.2 Results

Table 1 shows significant improvements achieved by
learning an exploration model. The undirected explo-

| Exploration Rule[95% (freq) [99% (freq) [99.8% (freq)]
MBIE 25K (20)| 42K (19)| 66K (13)
Frequency-based | 24K (20)| 50K (16) 66K (10)
Recency-based 27K (19) | 55K (18) 69K (9)
Max-random 0.2 | 43K (4)| 52K (4)| 68K (4)
Max-random 0.4 — (0) — (0) — (0)

Table 1 The number of steps required by several exploration
methods for obtaining p-optimal policies (and how many runs
found them at all) (K stands for 1000).

| Exploration Rule | Best run result | Training Performance

MBIE 7.57TK £ 0.05K 350K + 40K
Frequency-based | 7.55K £ 0.06K -45K + 9K
Recency-based 7.54K £ 0.11K -120K + 10K
Max-random 0.2 | 4.8K £ 1.4K -190K + 16K
Max-random 0.4 | 4.1K £ 0.3K -62K + 19K

Table 2 Awerage and standard deviation of the best test result
during a run and the total cumulative reward during training.

ration methods focus too much on suboptimal goals
(which are closer and therefore easier to find). This of-
ten prevents them from discovering near-optimal poli-
cies. On the other hand, exploration model-based learn-
ing does favor paths leading to the optimal goal. Us-
ing the frequency-based reward rule by itself, the ani-
mat always finds the optimal goal although it fails to
always find 99.8% optimal policies. Figure 2 shows a
large difference between learning performances of explo-
ration models and max-random exploration. It does not
clearly show the distinction between frequency-based or
recency-based exploration and the extension with MBIE.
Switching to MBIE after some time (between 35,000 and
55,000 steps), however, significantly improves matters.
First of all, Table 1 shows that this strategy finds opti-
mal or near-optimal policies in 90% of the cases, whereas
the others fail in at least 50% of the cases. The second
improvement with MBIE is shown in Table 2. MBIE col-
lects much more reward during training than all other
exploration methods, thereby effectively addressing the
exploration/exploitation dilemma. In fact it is the only
exploration rule leading to a positive cumulative reward
score.

6. Discussion

Undirected exploration relies on a random generator for
selecting actions. When applied to tasks with multiple
absorbing goal states, it faces major difficulties in find-
ing the optimal one. Our exploration models, however,
allow for globally maximizing exploration rewards. This
allows for discovering good policies circumventing subop-
timal goal states. We compared two types of exploration
rewards: frequency-based, and recency-based. Although
frequency-based exploration performed slightly better in
our stationary environments, recency-based reward rules

8000
6000 |
2]
53
7]
8
8 4000 | | i - |
N
o]
o
5 2000¢ ' MBIE ——
§ Frequency-based --—---—
S Recency-based -
g 0F Max-random 0.2 |
T Max-random 0.4 ———--
-2000 F74 |

0 20000 40000 60000 80000 100000

#steps

Figure 2 Cumulative reward during test runs, averaged over
20 stmulations.

may make more sense in non-stationary ones.

Optimal exploration. When it comes to finding op-
timal policies, methods using external MDP rewards for
focusing on actions with large probability of being opti-
mal will often save some SAP visits over methods based
solely on local exploration reward rules. Furthermore, cu-
mulative external MDP rewards obtained during training
should be taken into account in attempts at approaching
the exploit/explore dilemma. That is why we introduced
MBIE, a method combining Kaelbling’s interval estima-
tion (IE) algorithm (Kaelbling, 1993) and model-based
reinforcement learning (MBRL). Since MBIE heavily re-
lies on initial statistics, we switch it on only after an ini-
tial phase during which an exploration model is learned
(according to, say, the frequency-based local exploration
reward rule). In our experiments this approach almost
always led to 99.8%-optimal policies.

Future work: function approximators. Our ideas
have been presented in the context of discrete state
spaces. We can extend them to function approximators
in the same way we can extend model-based RL meth-
ods to learning in continuous state spaces. This is an
interesting topic for future research.

7. Acknowledgments

Many thanks to Rafal Salustowicz, Nic Schraudolph, and
Jieyu Zhao for helpful discussions. We are thankful to the
Swiss Center for Scientific Computing (CSCS/SCSC) for
providing additional computing power. This work was
supported in part by SNF grant 2100-49'144.96 “Long
Short-Term Memory”.

References

Bellman, R. (1961). Adaptive Control Processes. Princeton
University Press.

Berry, D. and Fristedt, B. (1985). Bandit Problems: sequen-
tial allocation of erperiments. Chapman and Hall, Lon-
don/New York.

Caironi, P. V. C. and Dorigo, M. (1994). Training Q-
agents. Technical Report IRIDIA-94-14, Université Libre
de Bruxelles.

Dayan, P. and Hinton, G. (1993). Feudal reinforcement learn-
ing. In Lippman, D. S., Moody, J. E., and Touretzky,
D. S., editors, Advances in Neural Information Process-
ing Systems 5, pages 271-278. San Mateo, CA: Morgan
Kaufmann.

Dodge, Y., Fedorov, V., and Wynn, H., editors (1988). Op-
timal Design and Analysis of Erperiments: Proceedings
of First International Conference on Optimal Design and
Analysis of Ezperiments. Elsevier Publishers.

Fedorov, V. V. (1972). Theory of optimal erperiments. Aca-
demic Press.

Kaelbling, L. (1993). Learning in Embedded Systems. MIT
Press.

Kearns, M. and Singh, S. (1998). Near-optimal performance
for reinforcement learning in polynomial time. Retriev-
able from http://www.research.att.com/~mkearns/.

Koenig, S. and Simmons, R. G. (1996). The effect of rep-
resentation and knowledge on goal-directed exploration
with reinforcement-learning algorithms. Machine Learn-
ing, 22:228-250.

Moore, A. and Atkeson, C. G. (1993). Prioritized sweeping;:
Reinforcement learning with less data and less time. Ma-
chine Learning, 13:103-130.

Schmidhuber, J. (1991a). Curious model-building control sys-
tems. In Proc. International Joint Conference on Neural
Networks, Singapore, volume 2, pages 1458-1463. IEEE.

Schmidhuber, J. (1991b). A possibility for implementing cu-
riosity and boredom in model-building neural controllers.
In Meyer, J. A. and Wilson, S. W., editors, Proc. of the
International Conference on Simulation of Adaptive Be-
havior: From Animals to Animats, pages 222-227. MIT
Press/Bradford Books.

Schmidhuber, J. (1997). What’s interesting? Technical Re-
port IDSIA-35-97, IDSIA.

Schmidhuber, J., Zhao, J., and Wiering, M. (1997). Shift-
ing inductive bias with success-story algorithm, adaptive
Levin search, and incremental self-improvement. Machine
Learning, 28:1:105-130.

Storck, J., Hochreiter, S., and Schmidhuber, J. (1995). Re-
inforcement driven information acquisition in nondeter-
ministic environments. In Proceedings of the Interna-
tional Conference on Artificial Neural Networks, vol-
ume 2, pages 159-164. EC2 & Cie, Paris.

Sutton, R. S. (1990). Integrated architectures for learning,
planning and reacting based on dynamic programming.
In Machine Learning: Proceedings of the Seventh Interna-
tional Workshop.

Sutton, R. S. (1996). Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
D. S. Touretzky, M. C. M. and Hasselmo, M. E., editors,
Advances in Neural Information Processing Systems 8,
pages 1038-1045. MIT Press, Cambridge MA.

Thrun, S. B. (1992). The role of exploration in learning con-
trol. In Handbook of Intelligent Control: Neural, Fuzzy

and Adaptive Approaches. Florence, Kentucky 41022: Van
Nostrand Reinhold.

Wilson, S. W. (1996). Explore/exploit strategies in auton-
omy. In Meyer, J. A. and Wilson, S. W., editors, Proc.
of the Fourth International Conference on Simulation of
Adaptive Behavior: From Animals to Animats 4, pages
325-332. MIT Press/Bradford Books.

